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Abstract— We present a method for Simultaneous Localiza-
tion and Mapping (SLAM) using a monocular camera that is
capable of reconstructing dense 3D geometry online without
the aid of a graphics processing unit (GPU).

Our key contribution is a multi-resolution depth estimation
and spatial smoothing process that exploits the correlation
between low-texture image regions and simple planar structure
to adaptively scale the complexity of the generated keyframe
depthmaps to the texture of the input imagery. High-texture
image regions are represented at higher resolutions to capture
fine detail, while low-texture regions are represented at coarser
resolutions for smooth surfaces. The computational savings
enabled by this approach allow for significantly increased re-
construction density and quality when compared to the state-of-
the-art. The increased depthmap density also improves tracking
performance as more constraints can contribute to the pose esti-
mation. A video of experimental results is available at http://
groups.csail.mit.edu/rrg/multi_level_mapping.

I. INTRODUCTION

Cameras are powerful sensors for robotic navigation be-
cause they provide rich environment information (color,
shape, texture, etc.) at high resolution and long ranges, while
being lightweight, low-power, and inexpensive. Exploiting
such sensor data for navigation tasks typically falls into the
realm of monocular SLAM, where both the robot’s pose and
a map of the environment are estimated concurrently from
the imagery produced by a single camera mounted on the
robot.

Traditionally, real-time methods capable of operating at
the camera frame rate have relied on computing sparse
interest points or features (e.g. [1]–[3]) in each camera
frame, matching these features across frames, and then using
these feature tracks to estimate the camera trajectory and
the 3D positions of the features [4]–[7]. While the tracking
performance of such algorithms is impressive, the sparse
point-based maps generated have limited utility for robotic
navigation because they do not sufficiently distinguish be-
tween free and occupied space and therefore cannot be used
for motion planning.

Recently, however, advances have been made in real-time,
dense and semi-dense methods that are able to construct
high-quality 3D scene models by leveraging many small-
baseline stereo comparisons using raw pixel intensities rather
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Fig. 1: Our multi-level depth estimation and spatial reg-
ularization process enables dense point cloud maps to be
generated online without GPU acceleration. This point cloud
was generated in real-time from approximately two minutes
of 30 Hz video around a laboratory workspace.

than a small number of large-baseline stereo comparisons
with robust feature descriptors [8]–[14]. All these methods,
however, struggle in low-texture environments and require
expensive global regularization procedures (often requiring
GPU acceleration) to smoothly interpolate over these regions.

Our approach is guided by two observations about the low-
texture image regions that are particularly troublesome for
visual SLAM systems: (1) in the absence of high-frequency
information such as sharp image gradients, depth estimation
is typically unreliable and (2) in man-made environments,
low-texture regions are often correlated with simple or planar
surfaces. These observations suggest that attempting to esti-
mate depth in low-texture regions at native image resolution
is misguided: the estimation process is inherently error-prone
and the resulting (noisy) depths must be smoothed out using
expensive spatial regularization. Useful information may still
be extracted from these regions, however, by leveraging
lower-frequency features or gradients.

Motivated by these observations, our method uses
variable-resolution quadtrees to represent keyframe images,
where we estimate the depth of each leaf in the quadtree,
rather than each pixel in the image. The quadtree rep-
resentation of the keyframe allows us to model different
image regions at a scale appropriate for the available texture:
high-texture regions will be represented at the finest scale,
while low-texture regions will be represented at coarser
scales. This approach has a number of advantages: (1) the
computational budget is more efficiently distributed among
the image pixels, (2) low-texture regions are represented at
a level of detail appropriate to their information content, (3)
we can apply variational regularization techniques without
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Fig. 2: Monocular SLAM Pipeline: Incoming images are first tracked in SE(3) relative to the current keyframe using
dense, direct image alignment. Tracked frames are then passed to the Local Mapper, which estimates a quadtree-based,
multi-resolution inverse depthmap using many short-baseline stereo computations. Holes in the depthmap are then filled
before being interpolated back into the native image resolution using a simple software rasterization procedure. When a
keyframe is finished, it is passed to a variational regularizer which removes outliers and smooths away noise. The keyframe
is then inserted into a pose-graph defined on Sim(3) and is incrementally aligned to the other keyframes. Finally, the
depthmaps are projected into 3D and visualized as colored point clouds.

GPU acceleration, and (4) low-frequency image features can
be exploited when high-frequency information is absent.

The key technical challenge is capturing the spatial cor-
relations between the different scales of the quadtree leaf
representation to infer a smooth estimate of the inverse
depthmap at full resolution. The contribution of this paper
is to first show how the multiscale representation can be
inferred and then show how the multiscale representation
enables smoothing across scales using a primal-dual opti-
mization that is then used to infer a dense depthmap at native
resolution. Our approach results in both denser and more
accurate keyframes than the state of the art direct methods
such as LSD-SLAM [14] in comparable time.

II. RELATED WORK

While 3D reconstruction from 2D images is a classical
problem in computer vision (typically dubbed multi-view
stereo or Structure from Motion in the literature), the first
monocular SLAM system to operate in real-time is com-
monly attributed to [6], which used an extended Kalman filter
(EKF) to recursively estimate the camera pose and sparse
feature positions. While an important milestone, the cubic
complexity of the EKF constrains the state space dimension
and caps the number of features that can be present at any
time in the filter.

The Parallel Tracking and Mapping (PTAM) algorithm
developed by [7] sidesteps this constraint by splitting the
tracking and mapping computations into separate threads that
run in parallel at different rates. This allows for tracking
to occur at frame rate with only the relevant features in
view, while a separate thread performs costly least-squares
optimization to align all the features present in the map at a
lower rate.

Similarly innovative, the Dense Tracking and Mapping
(DTAM) algorithm of [8] combines this parallel approach
with the horsepower of the GPU and variational regular-
ization inspired by [15] to achieve impressive real-time
results with both dense tracking and dense mapping. Similar

solutions utilizing the GPU and variational methods for
regularization were also developed by [9]–[11].

Multi-resolution depth estimation techniques also have
precedence in the multi-view stereo literature, with sev-
eral algorithms developed in the past 15 years proposing
approaches that leverage multiple image scales [16]–[18].
SLAM solutions leveraging hierarchical maps or multi-
resolution features have also been explored [19]–[21].

Our approach is most similar, however, to the so-called
“direct” methods of [12]–[14], which can be thought of
as a hybrid between the aforementioned sparse and dense
techniques. The Semi-direct Visual Odometry (SVO) algo-
rithm of [12] estimates camera pose and 3D points using
the raw pixel intensity patches of a sparse set of keypoints
rather than expensive feature descriptors (hence the “direct”
label) and is able to run at nearly 300 Hz on a commodity
desktop computer without a GPU. The Large-Scale Direct-
SLAM (LSD-SLAM) algorithm [13], [14] also uses raw
pixel intensities, but leverages all pixels with sufficient image
gradient instead of just a sparse subset, allowing for large,
semi-dense point cloud maps to be generated at frame-rate.
Our work builds on top of [14] and extends the mapping
component to produce accurate, dense point clouds while
maintaining real-time operation.

III. PROBLEM FORMULATION

A. Notation

Let It : Ω → R represent an m × n image taken from a
camera at time index t, where Ω ⊂ R2 represents the image
pixel domain. We denote the pose of the camera at time t
with respect to keyframe k (up to the unobservable global
scale factor) by

Tk
t =

[
R t
0 1

]
∈ SE(3), (1)

where R ∈ SO(3) and t ∈ R3. We let x̄ =
[
xT 1

]T
represent the homogeneous coordinates of x such that a point
pt ∈ R3 in frame t can be transformed into frame k by
p̄k = Tk

t p̄t.



Fig. 3: Multi-level Depth Estimation: We perform stereopsis
at the image scale appropriate for the available texture.
For each keyframe Ik we compute a quadtree-compressed
representation qIk based on the pixel intensities and define
an inverse depthmap over the leaf nodes (left). For each
newly tracked frame It, we compute its power-of-two image
pyramid LIt and perform small-baseline stereo computations
between nodes in qIk and pixels in LIt at the image
scale corresponding to the given node (right). The green
lines represents the epipolar search regions for each stereo
computation.

We let the matrix K ∈ R3×3 represent the camera intrinsic
parameters and define the perspective projection function
as π

([
x y z

]T)
=
[
x/z y/z

]T
. The projection of

point pk ∈ R3 into camera t is therefore given by u =
π(KTt

kp̄k) (where the de-homogenization is implied for
notational clarity). We also define the inverse projection
function p = π−1(u, d) = ū/d, which maps pixel u to
3D point p with depth 1/d.

We define the kth keyframe to be a tuple Kk =
(SWk , Ik, Dk, Vk), where Dk : Ω → R is the full-resolution
inverse depthmap associated with image Ik (scaled to have
a mean of 1), and Vk is the associated map of inverse depth
variances. Note that only a subset of pixels Ωk ⊆ Ω will have
valid inverse depth estimates. SWk = (TW

k , sk) ∈ Sim(3) is
the pose TW

k of the camera with respect to world frame
W (taken to be that of the first keyframe) and scale factor
sk > 0 which scales the geometry in Dk appropriately.

We arrange the keyframes in a pose graph G = (V, E),
where V = {Kk} is the set of keyframes and E = {Sji ∈
Sim(3) : Ki,Kj ∈ V} is the set of constraint factors.
Each Sji provides a measurement of the rigid body motion
Tj
i and scale factor sji > 0 that aligns the point clouds

π−1(Ωi, Di(Ωi)) and π−1(Ωj , Dj(Ωj)). The projection of
all the keyframe point clouds into W will comprise our map.

B. Dense Monocular SLAM

Given a sequence of images It from a moving camera and
the current designated keyframe Kk, our goal is to estimate
online:
• The current camera pose Tk

t (Section IV-A)

• The inverse depthmap Dk (Sections IV-B to IV-E)
• The optimal keyframe pose SWk (Section IV-F).

While the above quantities are interdependent, we follow
what has become the standard approach to monocular SLAM
and decouple their computations, solving for each component
in a separate thread in parallel.

Furthermore, we focus our attention on improving the
quality of the depthmap Dk (which in turn affects the
estimates Tk

t and SWk ). State-of-the-art approaches such
as LSD-SLAM [14] only estimate depth for regions of
Ω with high-image gradient, and are unable to interpolate
through low-texture regions, resulting in point cloud maps
with undesirable holes (that is |Ωk| � |Ω|). Our primary
contribution will be to increase the fraction of each keyframe
with valid depth estimates (i.e. increase |Ωk|), while also
increasing the accuracy of Dk, through a multi-resolution
depth estimation process using quadtrees.

IV. MULTI-LEVEL MAPPING

In this section we outline our dense monocular SLAM
pipeline (see Figure 2). Section IV-A describes our SE(3)
dense tracking front-end and Section IV-F summarizes our
Sim(3) pose-graph optimization backend, which wrap
around the keyframe depth estimation component that we
consider our primary contribution. In Section IV-B, we
formulate our quadtree keyframe data structure and how we
estimate depth at multiple image scales. Section IV-C out-
lines our hole-filling approach to further increase depthmap
density, while Section IV-D describes the triangulation and
rasterization procedure used to project the variable-resolution
depthmaps back to the native image resolution for tracking
and display. Section IV-E describes the final round of spatial
regularization on the variable resolution depthmaps before
they are incrementally aligned in the Sim(3) pose-graph and
displayed as point clouds.

A. Tracking on SE(3)

We use the coarse-to-fine image alignment method of [14]
for tracking in SE(3) between keyframe Kk and the current
image It, with the addition of a global illumination term
to account for lighting variation between frames as in [22].
With the increased density of our keyframes, we also use all
available pixels for tracking, not just those with high-image
gradient at the finest image scale as in [14].

For each incoming frame It, we estimate Tk
t using

weighted Gauss-Newton optimization with the following
objective function:

E(Tk
t ) =

∑
u∈Ωk

∣∣∣∣∣
∣∣∣∣∣r2
p(u,T

k
t )

σ2
rp(p,Tk

t )

∣∣∣∣∣
∣∣∣∣∣
ε

(2)

where || · ||ε is the Huber norm defined as

||x||ε =

{
||x||22

2ε if ||x||2 ≤ ε
||x||1 − ε

2 otherwise.
(3)



The photometric residual rp is defined as

rp(u,T
k
t ) = Ik(u)− It(π(Kp))− r1/2 (4)

p = Tt
kK
−1π−1(u, Dk(u)) (5)

σ2
rp(p,Tk

t ) = 2σ2
I +

(
∂rp(u,T

k
t )

∂Dk(u)

)2

Vk(u) (6)

where p and σ2
rp(p,Tk

t )
are the projected 3D point and

variance of pixel u from the keyframe into the new frame
assuming inverse depth Dk(u). σ2

I is the user-set pixel inten-
sity noise. The r1/2 term is the median photometric residual
across all pixels and serves to remove global illumination
changes from the cost.

After convergence, we use the newly tracked frame
(It,T

k
t ) to update the depthmap Dk and variances Vk of

Kk as described in the next sections.

B. Depth Estimation using Quadtree Keyframes

With Tk
t computed, (Ik, It) now form a stereo 1 pair

that we use to update Dk. We follow the depth estimation
approach in [13], but perform stereo computations at multiple
resolutions to increase the density of the depthmap without
sacrificing speed (see Figure 3).

For each stereo pair (Ik, It) we compute standard L-level
power-of-two image pyramids that we denote (LIk,

LIt). We
interpret these pyramids as tree data structures, with each
parent pixel (or node) connected to four child nodes at a
finer image scale.

We then transform LIk into a quadtree QIk by identifying
sub-trees of LIk with similar pixel intensities and clipping
them from the tree [23]. We extract the leaf nodes of QIk and
refer to them as qIk. 2 If we let I lk : Ωl → R represent the lth
image level in the full pyramid LIk, node i ∈ qIk comprises a
pixel location ui ∈ Ωli with intensity I lik (ui), where li is the
pyramid level index. We then define a corresponding inverse
depthmap qDk with variances qVk and perform updates on
this representation before projecting the depths back to the
full-resolution Dk (see Section IV-D).

To update the depth qDk(i) for node i ∈ qIk, we check the
magnitude of the image gradient ∇I lik (ui). If the magnitude
falls below a threshold, we skip the update. If the gradient is
sufficient, we search along the epipolar line defined by Tk

t

in image I lit for a matching pixel. 3 Matches are determined
using sum-of-squared-differences (SSD) along a 5-sample
window.

If a match is found, we compute a variance for this
“measurement” according to the noise model in [13] and
perform a Kalman update to qDk(i) and qVk(i). We keep

1Stereo in this case is across pairs of successive monocular images, rather
than simultaneous images from binocular cameras. We follow [13], [14], and
others in using the term “stereo” for this monocular image processing.

2An equivalent construction of qIk would be to take Ik and recursively
merge pixel neighborhoods with similar intensities into single pixels defined
at coarser image scales.

3Note that the comparison is performed between the quadtree leaf nodes
of the keyframe image and the full image pyramid for the incoming frame.
We do not need to compute a quadtree representation for the incoming
frame.

track of the number of successful observations for each node
and do not initiate the epipolar search if this number drops
below a threshold (that is we mark the node as “invalid”).

Our approach performs a similar number of stereo com-
putations per keyframe as that of [13], but is able to more
effectively “cover” the keyframe with inverse depth estimates
by representing lower-texture image regions with coarser
resolution pixels. We perform stereo computations at the
image scale appropriate for the available texture, by which
we are able to increase the density of the keyframe depthmap
Dk after projecting the depths in qDk back to full-resolution.

After the inverse depths for each node in the multi-level
depthmap are updated, we attempt to fill the holes in the
depthmap created by invalid nodes as described next section.

C. Hole-Filling

If the stereo computation at node i ∈ qIk has failed repeat-
edly, we may still infer its depth by considering its spatial
neighbors. If the number of successful stereo observations for
the spatial neighbors of i exceeds a threshold, we initialize
qDk(i) to be the mean of the estimates of its neighbors,
weighted by the variance of each estimate, and attempt the
stereo search again at the next incoming frame. This hole-
filling procedure helps to increase the density of qDk and
ensure that as many pixels as possible have depth estimates.
After a round of hole-filling, we project qDk back to the full-
resolution Dk, as described in Section IV-D, which is then
passed to the tracking frontend described in Section IV-A.

D. Triangulation and Rasterization

We perform depthmap updates on the variable resolution
representation qDk to enable spatial regularization and hole
filling, but need to track the next incoming image and
display point clouds using the best full-resolution keyframe
depthmap we can infer so far. Thus, at each timestep, we
take the current variable resolution keyframe depthmap qDk

and recover the native resolution depthmap Dk.
For each pixel u ∈ Ω at native resolution, we approximate

Dk(u) by linearly interpolating among the depth estimates at
nearby quadtree leaves in qDk using a simple triangulation
and rasterization scheme. This kind of interpolation is not
strictly necessary, but assigning the same depth to all full-
resolution pixels corresponding to a leaf node in qDk leads to
unnecessarily quantized or “blocky” depthmaps (this is effec-
tively a piecewise constant approximation versus a piecewise
linear approximation). The interpolation scheme then raises
the question of which quadtree leaves are neighbors to
a particular full-resolution pixel u, and we use a simple
triangulation scheme to determine the neighbors [24].

Given a triangulation of qDk, we linearly interpolate
between the multi-level depth estimates using software ras-
terization accelerated by SIMD instructions to fill in Dk. 4

We compute a new interpolated depthmap for every mapping
iteration to pass to the SE(3) tracker. However, we use a
variational regularizer described in the next section to remove

4Note that we linearly interpolate the depths associated with each node,
not the inverse depths.



outliers and smooth away noise before Sim(3) alignment
and point cloud display.

E. Spatial Regularization

The multi-resolution inverse depthmap qDk computed in
Section IV-B may be corrupted by noise as well as outliers
from false-matches that can degrade map quality. Before
we finalize a keyframe and pass its depthmap to the pose-
graph optimization backend, therefore, we use the first-order
primal-dual optimization algorithm of [15] to remove the
outliers and smooth away noise.

While this approach is typically implemented on a GPU
[8], [10], [11], we find that running in a separate thread and
operating on our quadtree-compressed depthmap, our version
runs sufficiently fast for real-time operation on a CPU. After
a new keyframe is triggered (based on the euclidean and
angular distance to the last keyframe), we run our regularizer
for a fixed number of iterations on the outgoing depthmap
before passing it to the tracker and pose-graph optimizer. 5

Assuming qIk contains N nodes, we first arrange qDk into
a vector z =

[
qDk(1) . . . qDk(N)

]T
. We let the vector

ξ ∈ RN denote the regularized solution and minimize the
following convex objective function:

E(ξ) = TVε(ξ) + λ||W(ξ − z)||1 (7)

where TVε(ξ) is the Total Variation-Huber norm, λ is a scale-
factor that sets the influence of the L1 data-term, and W is a
diagonal weighting matrix. The Total Variation-Huber norm
promotes smooth solutions while preserving edges and the
weighted L1 data-term reduces the effect of outliers in z.

5We find that running the regularizer after the depth estimation process is
complete produces better results than applying the regularization in parallel,
before the depths have converged.

(a) Keyframe image. (b) Kinect inverse depthmap.

(c) LSD-SLAM (d) Our approach.

Fig. 4: Our algorithm significantly increases the number of
accurate inverse depth estimates per keyframe compared to
LSD-SLAM [14], a state-of-the-art algorithm for semi-dense
monocular SLAM.

(a) Horizontal Neighbors (b) Vertical Neighbors

Fig. 5: Discrete derivative computation: We approximate
the discrete derivative at node ξi in our multi-level inverse
depthmap using forward-differences with the node’s (a)
horizontal and (b) vertical neighbors.

In the discrete setting, the Total Variation-Huber norm is
defined as

TVε(ξ) = ||Dξ||ε (8)

for an appropriate discrete gradient operator D : RN → R2N

that captures the horizontal and vertical derivatives for the
multi-scale ξ.

If ξ was defined on a regular grid at a single scale, D could
simply be the sparse matrix that implements the standard
horizontal and vertical forward differences:

(∇ξ)hi,j = ξi+1,j − ξi,j (9)

(∇ξ)vi,j = ξi,j+1 − ξi,j . (10)

In our case, we must modify D such that the horizontal
and vertical derivatives are approximated on our variable-
scale ξ. As shown in Figure 5, each element of ξ corresponds
to a square region of pixels at full-resolution. We approxi-
mate the derivative in each direction by simply averaging the
forward differences between a node and the nodes bordering
its square region:

(∇ξ)hi =

 1

|N h(ξi)|

|Nh(ξi)|∑
j=1

N h
j (ξi)

− ξi (11)

(∇ξ)vi =

 1

|N v(ξi)|

|Nv(ξi)|∑
j=1

N v
j (ξi)

− ξi, (12)

where N h(ξi) and N v(ξi) denote the horizontal and vertical
neighbors of ξi, respectively.

The diagonal weighting matrix W = diag (w1, . . . , wN )
incorporates the depth uncertainty into the data term and is
defined as

wi =

{
0 if no stereo match found

1√
qVk(i)

otherwise. (13)

To derive the update equations to minimize (7), we first
compute F ∗ (the convex conjugate of TVε(ξ)) using the dual
variable q =

[
qT1 . . . qTN

]T ∈ R2N :

F ∗(q) =
ε

2
qTq− δQ(q), (14)



(a) Desk dataset.

(b) Bench dataset.

Fig. 6: We demonstrate the quality of our reconstructions on
several datasets recorded using a handheld camera: (a) shows
the final point cloud map from a small desk scene, while (b)
shows the map from an outdoor bench area. All processing
was performed in real-time on a consumer laptop.

where we utilize the indicator function

δQ(x) =

{
0 if x ∈ Q
∞ otherwise

(15)

for the set Q = {q ∈ R2N : ||qi||2 ≤ 1 for i = 1, . . . , N}.
Letting G(ξ) = ||W(ξ − z)||1, the primal-dual update

steps following [15] are given by:

qn+1 = proxαq,F∗(qn + αqDξ̄) (16)

ξn+1 = proxαξ,G
(ξn − αξD

Tqn+1) (17)

ξ̄
n+1

= ξn+1 + θ(ξn+1 − ξn) (18)

for step sizes αξ, αq > 0, θ ∈ [0, 1]. The proximal operators
generalize gradient steps to non-differentiable functions and
are given point-wise by

proxαq,F∗(yi) =

yi
1+αqε

max{1, || yi
1+αqε

||2}
(19)

proxαξ,G
(xi) =


xi − λwiαξ if xi − zi > λαξwi

xi + λwiαξ if xi − zi < −λαξwi

zi if |xi − zi| ≤ λαξwi.

(20)

After convergence, we copy ξ back to qDk and rasterize
the solution to obtain the smoothed depthmap Dk, which
is then incrementally aligned with overlapping keyframes

Fig. 7: We validate our monocular SLAM pipeline on
challenging benchmark datasets captured using a Microsoft
Kinect [25]. The fr3/structure texture far dataset
shown above demonstrates our algorithm’s ability to produce
dense reconstructions through low-texture image regions.

in our pose-graph optimization backend and displayed (see
Section IV-F).

F. Pose-graph Optimization on Sim(3)

Similar to our SE(3) tracking front-end, we use the robust
image and depth alignment method of [14] for generating
constraints in our Sim(3) pose-graph G = (V, E) in order
to estimate the optimal keyframe poses SWk and point cloud.

When keyframe Kk is finalized, it is added to V and a
set of potential neighbor keyframes C ⊆ V \Kk is generated
through a search of predecessors in V and an appearance-
based loop-closure detector [26].

For each Kj ∈ C, transforms Sjk,S
k
j ∈ Sim(3) linking

Kk and Kj are computed using the Sim(3) tracking method
described below. If Sjk and Skj are consistent with each other,
they are added to the constraint set E . G is then refined online
using an open-source optimization package [27] to produce
the optimal keyframe pose SWk , which we use to project Dk

into the world frame W .
Tracking on Sim(3) is achieved using weighted Gauss-

Newton optimization as in Section IV-A, with the cost
function from 2 modified to include the residual rd between
the two depthmaps:

E(Sjk) =
∑
u∈Ωk

∣∣∣∣∣
∣∣∣∣∣r2
p(u,S

j
k)

σ2
rp(p,Sj

k)

+
r2
d(u,S

j
k)

σ2
rd(p,Sj

k)

∣∣∣∣∣
∣∣∣∣∣
ε

(21)

rd(u,S
j
k) = [p]

−1
z −Dj(π(Kp)) (22)

p = SjkK
−1π−1(u, Dk(u)) (23)

σ2
rd(u,Sj

k)
= J2

kVk(u) + J2
j Vj(π(Kp)) (24)

Jk =
∂rd(u,S

j
k)

∂Dk(u)
, Jj =

∂rd(u,S
j
k)

∂Dj(π(p))
. (25)

V. EVALUATION

We evaluated our tracking and reconstructions qualita-
tively using video captured from a handheld camera as well



Relative Inverse Depth Error [%]

Dataset [14] Ours

fr2/desk 19 17
fr3/long office household 31 20
fr3/nostructure texture near withloop 8.5 6.2
fr3/structure texture far 4.4 2.7

TABLE I: For each keyframe, we compute the inverse depth
error relative to the corresponding value from the Kinect
across all pixels with valid estimates. The results from each
dataset are averaged across all keyframes and across 10
trials. Our multi-level approach achieves more accurate depth
estimates on all four datasets.

Average Keyframe Density [%]

Dataset [14] Ours

fr2/desk 18 26
fr3/long office household 16 23
fr3/nostructure texture near withloop 20 41
fr3/structure texture far 37 63

TABLE II: We compute the fraction of pixels in each
keyframe with inverse depth estimates that are within 10
percent of the corresponding values from the Kinect depth
frames. The results for each dataset are averaged across all
keyframes and across 10 trials. Our multi-level approach
significantly increases the number of accurate inverse depths
per keyframe.

quantitatively on publicly available benchmark datasets [25].
Our implementation was based off the LSD-SLAM source
code 6. All processing was done in real time on a consumer
laptop with an Intel Core i7 processor with 8 GB of RAM.
All metrics were computed using the raw inverse depthmaps,
however, we set a maximum depth threshold for display
purposes.

A. Qualitative Evaluation

We captured several video sequences using a global shutter
Point Grey Firefly color camera with a resolution of 640x480
pixels and 30 Hz frame-rate. The first small-scale sequence
was recorded in an office area and is shown in Figure 6a.
Note the accurate reconstructions of high-texture regions
around the desk. The second sequence was recorded outside
near a set of benches shown in Figure 6b. The final sequence
was captured inside a laboratory test space and is shown in
Figure 1. These examples show how our multi-level approach
is able to interpolate through low-texture regions such as the
ground and walls.

B. Quantitative Evaluation

We ran our pipeline on four video sequences from the
TUM RGB-D SLAM Benchmarks, which were captured
using a hand-held Microsoft Kinect in a variety of environ-
ments [25] with pose ground truth provided by a motion
capture system. We used the depth frames as a proxy for

6https://github.com/tum-vision/lsd slam

Tracking Accuracy [RMSE]

Pos. [m] Angle [deg]

Dataset [14] Ours [14] Ours
fr2/desk 2.1 0.15 88 4.8
fr3/long office household 2.1 0.65 68 11
fr3/nostructure texture near withloop 0.28 0.22 3.7 2.6
fr3/structure texture far 0.22 0.17 2.3 0.83

TABLE III: The addition of a robust illumination term
in our SE(3) tracker, coupled with the increased
depthmap density, results in improved tracking performance.
LSD-SLAM had particular trouble with fr2/desk and
fr3/long office household and would frequently
lose track of the camera or fail to detect a loop closure,
resulting in increased error. The results for each dataset are
computed across 10 trials.

Average Time per Mapping Update [ms]

Dataset [14] Ours

fr2/desk 16 17
fr3/long office household 13 16
fr3/nostructure texture near withloop 12 15
fr3/structure texture far 14 17

TABLE IV: Our system provides significantly more depth
estimates per keyframe, while maintaining real-time oper-
ation at 30 Hz. Here we present the average run-time per
keyframe update, including depth estimation, hole-filling,
and rasterization for each dataset over 10 trials.

depth ground truth and compare the inverse depth accuracy
(Table I), keyframe density (Table II), tracking accuracy
(Table III), and mapping update time (Table IV) against LSD-
SLAM [14]. We use the first depth frame to initialize our sys-
tem in order to set the global scale factor and ignore the first
5 keyframes to screen out initialization effects. Furthermore,
as both our pipeline and LSD-SLAM are heavily multi-
threaded, performance can vary from run to run based on
differences in keyframe selection and loop closure detection,
so we report metrics averaged over 10 trials for each dataset.

We note that these benchmark videos are challenging
for pure monocular SLAM systems due to the automatic
settings (gain, exposure, brightness, etc.) and rolling shutter
of the Kinect’s RGB camera as well as camera motion.
LSD-SLAM had particular trouble with the first two datasets
(fr2/desk and fr3/long office household) and
would frequently lose track of the camera or fail to detect
a loop closure, leading to increased tracking error over the
10 trials. Our system shows significant improvement over
LSD-SLAM, with a substantial increase in the fraction of
each keyframe with accurate depth estimates, as well as more
accurate tracking, while maintaining real-time operation (See
Figure 4 and Figure 7).

VI. CONCLUSION

We have presented a monocular SLAM algorithm capable
of operating in real-time without GPU acceleration that
significantly improves upon the state-of-the-art in terms of



tracking accuracy, reconstruction accuracy, and reconstruc-
tion density. Our method extends the semi-dense solution
of [14] to produce dense point clouds while being able
to run online at 30 Hz. Our depth estimation component
intelligently distributes resources to image regions with high-
texture while estimating low-texture regions at coarser res-
olutions, achieving a substantial speedup. In addition, this
allows for low-frequency information to be exploited in the
depth estimation. The noisy, multi-level inverse depthmaps
are then smoothed using a variational regularizer before
being triangulated and rasterized back up to the native image
scale and added to a keyframe pose-graph. The increased
keyframe density also improves tracking performance when
combined with a global illumination term to account for
lighting differences between frames.
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