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ABSTRACT

This paper presents our solution for enabling
a quadrotor helicopter, equipped with a laser
rangefinder sensor, to autonomously explore and
map unstructured and unknown indoor environ-
ments. While these capabilities are already com-
modities on ground vehicles, air vehicles seeking
the same performance face unique challenges. In
this paper, we describe the difficulties in achiev-
ing fully autonomous helicopter flight, highlight-

ing the differences between ground and heli- Figure 1: Our quadrotor helicopter. Sensing and computatio
copter robots that make it difficult to use algo- components include a Hokuyo Laser Rangefinder (1), laser-
rithms developed for ground robots. We then de- deflecting mirrors for altitude (2), a monocular camera (3),
scribe our solutions to the key problems, includ- an IMU (4), a Gumstix processor (5), and the helicopter’s
ing a multi-level sensing and control hierarchy, a internal processor (6)

high-speed laser scan-matching algorithm, EKF
data fusion, and a high-level SLAM implementa-

tion. Finally, we show experimental results that
illustrate the helicopter’s ability to navigate ac-

curately and autonomously in unknown environ-
ments.

1 INTRODUCTION

Micro Aerial Vehicles (MAVS) are increasingly being
used in military and civilian domains, including surveiitz
operations, weather observation, and disaster relietiaoar
tion. Enabled by GPS and MEMS inertial sensors, MAVs thate
can fly in outdoor environments without human intervention
have been developed [1, 2, 3, 4]. ) .

Unfortunately, most indoor environments and many parts  In this work, we present our quadrotor helicopter system,
of the urban canyon remain without access to external posshown in Figure 1, that is capable of autonomous flight in
tioning systems such as GPS. Autonomous MAVs today argnstructured indoor environments, sych as the one showr] in
thus limited in their ability to fly through these areas. Tra- Figure 2. The system employs a multi-level sensor procgssin
ditionally, unmanned vehicles operating in GPS-denied enbierarchy designed to meet the requirements for contgpéin
vironments can rely on dead reckoning for localization, buthelicopter. The key contributions of this paper are:
these measurements drift over time. Alternatively, simult
neous localization and mapping (SLAM) algorithms build a i | board f bl | with
map of the environment around the vehicle while simultane- les only on onboard sensors for stable control without
ously using it to estimate the vehicle’s position. Although rqumng prior maps of the enqunment. ]
there have been significant advances in developing accu- 2- A high-speed laser scan-matching algorithm that al-
rate, drift-free SLAM algorithms in large-scale environmte lows successive laser scans to be compared in real-time
these algorithms have focused almost exclusively on ground  to provide accurate velocity and relative position infor-
or underwater vehicles. In contrast, attempts to achiege th mation.
same results with MAVs have not been as successful due to 3. A modified 2D SLAM algorithm that handles the 3D
a combination of limited payloads for sensing and computa- motion of the vehicle;

tion, coupled with the fast, unstable dynamics of the aiti-veh . i i . o
cles. After discussing related work in Section 2, we begin in

Section 3 by analyzing the key challenges MAVs face when
*Email addressegfabachrac, ruijie, nickray@mit.edu attempting to perform SLAM. We then describe the algo-

igure 2: Autonomous flight in unstructured indoor environ-
ments

1. Development of a fully autonomous quadrotor that re-




rithms employed in our system, highlighting the key en-cessful [16]. Many algorithms exist that accurately laoali
abling technologies that were developed to accomplish mapground robots in large-scale environments. Unfortunately
ping with a MAV. Finally, we demonstrate our helicopter nav- mounting equivalent sensors onto a helicopter and using ex-
igating autonomously in 3 different unstructured indoorien isting SLAM algorithms does not result in the same success.
ronments. The requirements and assumptions that can be made with fly-
ing robots are sufficiently different from those that can be

2 RELATED WOR.K made with ground robots that they must be managed differ-
In recent years, autonomous flying robots has been agntly.

area of increasing research interest. Many capabilitiee ha
been developed for autonomous operations in outdoor envis-1 Payload
ronments, including high-speed flight through cluttered en  MAVS have a maximum amount of vertical thrust that
vironments|[[2], helicopter acrobatids [3], autonomousdtan they can generate to remain airborne, which severely limits
ing, terrain mapping [4], coordinated tracking and plagnin the amount of payload available for sensing and computation
of ground vehicles [1], etc. These systems typically take adcompared to similar sized ground vehicles. This weight lim-
vantage of GPS measurements for state estimation, which ait@tion eliminates popular sensors such as SICK laser scan-
not available indoors. ners, large-aperture cameras and high-fidelity IMUs. bbte
While some authors [5, 6] have demonstrated indooindoor air robots rely on lightweight Hokuyo laser scanpers
flight using GPS simulated from motion capture systems, wenicro cameras and/or lower-quality MEMS-based IMUs, all
seek to develop flying robots that are able to operate auef which have limited ranges and fields-of-view and are nois-
tonomously while carrying all sensors used for localizatio ier compared to their ground equivalents.
control and navigation onboard. Other authors [7, 8] use a Unlike ground vehicles, air vehicles are unable to mea-
small number of ultrasound sensors to perform altitude consure odometry directly; most SLAM algorithms need these
trol and obstacle avoidance. Their helicopters are able taneasurements to initialize the estimates of the vehiclgs m
take-off, land and hover autonomously; however, they do notion between time steps. Although one can obtain relative po
achieve goal-directed flight. sition estimates by double-integrating acceleration meas
There have been numerous efforts to fly helicopters auments, lightweight MEMS-based IMUs are often subject to
tonomously indoors using monocular camera sensors. [9iases that can cause the accelerations to drift very quickl
performed visual servoing over known Moire patterns to ex-as shown in Figure| 3(a). We must therefore obtain rela-
tract the full 6dof state of the vehicle for control, while [10] tive position estimates measurements by using either lvisua
detects lines in a hallway, and [11] tracked edges in office enodometry|[17] or laser scan-matching [18, 19] algorithms.
vironments with known structure. While these authors have Finally, despite the advances within the community,
demonstrated autonomous flight in limited indoor environ-SLAM algorithms continue to be computationally demanding
ments, their approaches have been constrained to envirosven for powerful desktop computers, and are therefore not
ments with specific features, and thus may not work as welimplementable on today’s small embedded computer systems
for general navigation in GPS-denied environments. [12] exthat can be mounted onboard indoor MAVs. The computa-
tracted corner features that are fed into an EKF-basediisio tion can be offloaded to a powerful groundstation by trans-
SLAM framework, building a low-resolution 3D map suffi- mitting the sensor data wirelessly; however, communigatio
cient for localization and planning. However, an externatm bandwidth then becomes a bottleneck that constrains sensor
tion capture system was used to simulate inertial sensdr reaoptions. Camera data must be compressed with lossy algo-
ings. rithms before it can be transmitted over wifi links, which add
This paper builds on our previous work in [13], where we noise and delay to the measurements. This noise partigularl
present a planning algorithm for a laser-equipped quadrotoaffects feature detectors which look for high frequencyinf
helicopter that is able to navigate autonomously indoots wi mation such as corners in an image. Additionally, while the
a given map. Here, we extend the work by developing a sysdelay can often be ignored for slow-moving, passivelylstab
tem that is able to navigate, localize, build maps and erplor ground robots, helicopters have fast and unstable dynamics
autonomouslyvithouta prior map. making control under large sensor delay conditions impossi
Recently,[[14, 15] designed helicopter configurations thable.
were similar to the one presented in [13]. [14] scan-matche > D .
successive laser scans to hover their quadrotor helicopter” ynar_mcs ) _
while [15] used particle filter methods to globally localize ~ The helicopter’s fast dynamics result in a host of sens-
their helicopter with a precomputed map that was generateild, estimation, control and planning implications for thee
by a ground-based robot. However, none of these papers haticle. Filtering techniques such as Kalman Filters arerofte
presented experimenta| results demonstrating the ahn'jity used to obtain better estimates of the true vehicle state fro

stabilize all 6dof of the helicopter autonomously using the noisy measurements. Smoothing the data generates a cleaner

onboard sensors. signal, but adds delay to the state estimates. While delays
generally have insignificant effects on vehicles with slgw d
3 MAV-SPECIFIC CHALLENGES namics, the effects are amplified by the MAV's fast dynamics.

In the ground robotics domain, combining wheel odom-This problem is illustrated in Figure 3(b), where we compare
etry with sensors such as laser rangefinders, sonars, or catire normal hover accuracy to the accuracy when the state esti
eras in a probabilistic SLAM framework has proven very suc-mates are delayed b®s. While our vehicle is normally able



0z which provides a Wi-Fi link between the vehicle and a ground
Y i control station, and a lightweight Hokuy/taser rangefinder
) £ for localization. The laser rangefinder provide27a° field-
ze £ v [ ) of-view at40H z, up to an effective range 8tm. We deflect
24 < some of the laser beams downwards to estimate height above
us the ground plane.
4 5 10 ot : 0s The AscTec Hummingbird helicopter is equipped with at-
e X Posion fm) titude stabilization, using an onboard IMU and processor to
@ ®) stabilize the helicopter’s pitch and roll [20]. This tamés t

Figure 3: (a) Ground truth velocities (blue) vs. integradied  nastiest portions of the quadrotor’'s extremely fast, madr,
celeration (red). (b) Comparison of the hover accuracygisin and unstable dynamics [6], allowing us to focus on stabiliz-
PD-control with no delay (blue), PD control withs of delay  ing the remaining degrees of freedom in position and heading
(green). The onboard controller takes 4 inputs,= [ue, wy, us, ug),
which denote the desired pitch and roll angles, overallghru
and yaw velocities respectively. The onboard controller al
to achieve an RMS error dfem, with the delay, the error lows the helicopter's dynamics to be approximated with sim-

increases ta8cm. ple 2"?-order linear equations:
In addition, as will be discussed in Section 4, the quadro-
tor is well-modeled as a simpt*?-order dynamic system it = kpug + by Z = kyuy + by

with no damping. The underdamped nature of the dynamics
model implies that simple proportional control techniqaes
insufficient to stabilize the vehicle, since any delay inskis-
tem will result in unstable oscillations. This effect hagbe

yb = kyuy + by 0 = koug + by Q)

where#? andij® are the resultant accelerations in body coor-

observed experimentally. We must therefore add damping tﬁmates, whilet, andb, are model parameters that are func-

. ons of the underlying physical system. We learn these pa-
the system through the feedback controller, which empha- - ; >Y> . )
sizes the importance of obtaining accurate and timely Statrameters by flying the helicopter inside a Vicdvlotion cap

estimates for both position and velocity. Traditionallypsh ture system and fitting parameters to the data using a least-

: . squares optimization method. We also experimented with a
%/ggftyalsggtrggms for ground robots completely ignore the dynamics model that includes damping terms,

Unlike ground vehicles, a MAV cannot simply stop and §=kyu+ kos+b @)
perform more sensing when its state estimates contain large
uncertainties. Instead, the vehicle will probably be uadbl  However, when fitting this model to the data, we found that
estimate its velocity accurately, and as a result, may pick Uk, ~ 0, confirming pilot experience that the system is un-
speed or oscillate, degrading the sensor measurements fifferdamped. Using the Matl&blinear quadratic regulator
ther. Therefore, planning algorithms for air vehicles mait  (LQR) toolbox, we then find feedback controller gains for
only be biased towards paths with smooth motions, but mushe dynamics model in Equation 1. Despite the model's ap-
also explicitly reason about uncertainty in path planni&®, parent simplicity, our controller achieves a stable hovith w
demonstrated in [13]. 6cm RMS error.
3.3 13D effects To compute the high-precision, low-delay state estimates
needed for such hover performance, we designed the 3-level
. . o : sensing and control hierarchy, shown in Figure 4, distisigui
they can hover at different heights. The visible 2D slice ofing processes based on the real-time requirements of teir r

a 3D environment can change drastically with height and atg o e ‘outputs. This system was designed as a combina-
titude, as obstacles suddenly appear or disappear. HO,WEV?—IP X

if we treat map changes resulting from changes in height andgn of asynchronous modules, building upon the CARMEN

attitude as sensor errors. allowing the map to be undated bot navigation toolkit’s software architecture. We dése
’ g P P Setails of the individual modules next.
account for these changes, we will see that a 2D representa-

tion of the environment is surprisingly useful for MAV flight 5 ENABLING TECHNOLOGIES
5.1 High-Speed Laser Scan-Matching Algorithm

4 SYSTEM OVERVIEW . . As discussed in Section 3.1, we cannot directly measure
_ We addressed the problem of autonomous indoor flight ag,e \av's odometry; instead, we align consecufive scans
primarily a software challenge, focusing on algorithm&eat 4, the Jaser rangefinder to estimate the vehicle’s motion.
than exotic hardware. To that end, we used Oﬁ'th.E"Sha o do this, we developed a very fast and robust laser scan-
hardware throughout the system. Our quadrotor helicoptefyaiching algorithm that builds a high-resolution local map
shown in Figure 1, is the AscTec Hummingbird from Ascend-pageq on the past several scans, aligning incoming scans to

ing Technologies GmBH and is able to carry roughl50g g map at thel0 H z scan rate. This scan-matching algorithm
of payload. We outfitted it with a Gumsgmicrocomputer,

Finally, MAVs operate in a truly 3D environment since

SHokuyo UTM-30LX Laserht t p: / / www. hokuyo- aut . j p
1Ascending Technologies GmBHt t p: / / www. asct ec. de 4Vicon Motion Capture System&t t p: / / www. vi con. com
2Gumstix Verdexht t p: / / ww. gunst i x. com SCARMEN. ht t p: / / car en. sour cef or ge. net
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~0.3Hz faces such as the railings in the environment depicted by Fig
i ure 5(a). Candidate contour merges are scored and stored in a
i MinHeap data structure, which allows the best candidateto b
10-40Hz extracted efficiently. The overall contour extraction aithom
LQS processes a 350-point scan in 0.5ms on modern hardware.
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Figure 4:Schematic of our hierarchical sensing, control and plan-
ning system. At the base level, the onboard IMU and controller
(green) create a tight feedback loop to stabilize the vehicle’s pitch
and roll. The yellow modules make up the real-time sensing and
control loop that stabilize the vehicle’s pose at the local level and @ ©
avoids obstacles. Finally, the red modules provide the high-level )
mapping and planning functionalities. Figure 5: (a) Contours (blue lines) extracted from the raw
laser measurements alongside the raw laser readings (red

. - . ) . ) dots). (b) The resulting likelihood map generated from the
is a modified version of the algorithm in [19], and is a key contours. Darker indicates higher likelihood.

component for closing the loop and performing SLAM on an
air vehicle. The algorithm first generates a local likelidoo
map from past scans, before finding the optimal rigid bodyI
transform that maximizes the likelihood of the current scan
While the scan matching algorithm described below is base
on the original implementation in [19], it required several
modifications to enable it to be used on the MAV. Specifi-
cally, our contributions are:

Once we have the set of contours, we can evaluate the
ikelihood of an alignment between scans. We assume that all
range measurements are taken independently, and we com-
Balljte the likelihood of an alignment as the product of likeli-
hoods for each individual point in the scan. We use a noise
model for the laser scanner that approximates the probabili
of a single lidar pointx, y) as proportional to the distance,

1. Using a drawing primitive, described in Section 5.1.1,d to the nearest contod¥, such thatP(z,y|C) o e~%/),

to generate the local map in real-time. Wh_ereo is a variance parameter that accounts f(_)r the sensor’s

2. Using a different notion of a “local map,” adding scans noise characteristics. We then pre-compute a likelihoagh-m

based on insufficient overlap rather than distance trav¥Vhere each cell represents the approximate log-likelitafod
eled a laser reading occurring at a given location.

3. Using image addition primitives to accumulate the pose Accurately estimating theelocity of the vehicle, where
' 9 9 P POS&mall rounding errors in the position get magnified signifi-

I|kel|hgod map. i , cantly, requires a high resolution likelihood map that cen b
4. Adapting the search window based on the maximunyjifficult to create in real-time. However, if one examines a

expected acceleration of the vehicle. likelihood map, such as the one shown in Figure 5(b), one
5. Developing a different method for obtaining a covari- quickly realizes that for any reasonable valuesofthe vast
ance estimate, described in Section 5.1.3. majority of cells will be zero. So, while conventional meth-
ods compute the value of every cell in the map, and there-
X S i .
511 Local Map Generation fore require at leasD(n*) operations, where is the num-

ber of cells along an edge, we developed a likelihood map
To find the best alignment for an incoming laser scan, ongeneration algorithm that exploits the sparsity of the grid
needs a method for scoring candidate poses based on hawap, resulting in a computational complexity@fm) where
well they align to past scans. The first challenge in doingm < n? is the number of nonzero cells.
this is that laser scanners provide individual point measur We created a drawing primitive that explicitly draws the
ments. Successive scans will generally not measure the samenzero likelihoods by sliding a kernel along the pixels of
points in the environment, which means that attempting tdhe input line segment, applyingnaax operator between the
correspond points directly can produce poor results. Howeurrent map value and the kernel’s. Naively using a square
ever, if we know theshapeof the environment, we can eas- kernel, with values set based @« y|C) above would re-
ily determine whether a point measurement is consisteht witsult in cells being modified many times as the kernel slides
that shape. We model the shape of the environment as a setaiong the line; however, one can avoid this problem by using
polyline contours. Contours are extracted from the lassd+e a 1 pixel-wide horizontal or vertical kernel, depending e t
ings by an algorithm that iteratively connects the endoint slope of the line. For lines that are not perfectly horizbnta
of candidate contours until no more endpoints satisfy theor vertical, this kernel must be widened bycos(s), where
joining constraints. The algorithm prioritizes joiningartby s is the slope of the line. Creating the likelihood map with



this primitive simply requires drawing all the line segment 5.1.3 Covariance Estimation

in the extracted contours, which takes aro@fid:s even for . i ] )

extremely largey.5msm resolution likelihood maps. In addition to being very robust, computing the best align-
We create the map from a setloprevious scans, where ment by exhaustive search has the advantage of making it

new scans are added when an incoming scan has insufficiefSY [0 obtain a good estimate of the covariance by exam-

overlap with the current set scans. This creates a locally adn'ny the shape of the pose likelihood map around the global

curate sliding window where the map contains the recent higoPtima. This estimate of the covariance is important when

tory around the vehicle, and ensures that all motions withiﬁNet;]nte(?r?tithe relg%’:e pOSCIitIOI’] ?’g“g‘?‘teg thezseWh'l
this map will be registered to it in a consistent manner. Foill the aata usion , as described in Sec . e

example, if the vehicle is hovering in one place, the map willthe entire pose likelihood map has many local maxima, it is

o ; ; iy usually a fairly smooth bell shape in the immediate viciity
not change, and the position estimates will be drift-free. the global optima. If the environment surrounding the vighic

has obstacles in all directions, such as in a corner, the-alig

ment of scans will be highly constrained, resulting in a very
5.12 Scan-to-Map Alignment peaked likelihood map. On the other hand, if the environment

does not constrain the alignment, the map will be nearly flat
The second task is to find the best rigid body transformat the top.
(z,y, 0) for each incoming scan with respect to the precom-  while one could directly fit a multi-variate Gaussian to
puted likelihood map. Many scan-matching algorithms usehe 3D pose likelihood map, for simplicity, we compute the
gradient descent techniques to optimize these values. Howovariance in rotation separately from translation. Fansr
ever, since the 3D pose likelihood space is often very complijation we look at the 2D slice of the pose likelihood map at the
cated, even for fairly simple environments, gradientdesise  gptimal rotation. We then threshold this 2D map at 9h&"
subject to local optima. We chose to use a very robust, if popercentile, and fit an ellipse to the resulting binary imakfee
tentially computationally inefficient, exhaustive seaover a  area and orientation of this ellipse is used as our estinfate o
grid of possible poses. In addition to being extremely rébus the measurement covariance. For the rotation portion, wle fin
computing the likelihoods for the entire grid of poses aow the score of the best translation for each rotation, andveco
us to easily determine the uncertainty of our match. the width of the resulting bell shaped 1D curve.

While this exhaustive search might initially seem hope- .

lessly inefficient, if implemented carefully, it can be done 5.2 EKF Data Fusion ) . N
very quickly. Much of the search time is incurred by trans- ~ The scan matcher outputs the estimated vehicle position
forming the laser scan to the desired pose. However, if wéz,y,t), so to compute the full state estimate, including the
hold ¢ constant, for a given point, the set of likelihoods asso-velocities, we use an EKF to fuse the scan matcher estimates
ciated with each translation is the square window surrmundi With the acceleration readings from the IMU. This has sdvera
the point in the likelihood map. This means that the likeli- advantages over directly using the position estimates from
hood for all translations can be computed from a single transthe scan matcher and their derivatives to control the vehicl
formation. These windows can be accumulated into the posélthough the IMU readings drift significantly and are there-
likelihood map for an entire scan using the optimized imagdore not useful over extended time periods, they are useful
addition functions available in the Intel Performance Rrim over short time periods, allowing us to improve our estimate
tives® which provide a factor of speedup. of the vehicle’s velocities. However, the wireless link and

The optimized exhaustive search implementation make§Can maicher processing adds a variable delay to the mea-
our method considerably faster than a naive implementatiorEWements* which can cause problems for controlling the ve-
however we must still ensure that the search area is not to@ic/€- In our EKF formulation, we perform the measurement
large. Since we do not have wheel odometry with whichupdates asynchronously, while the motion model prediction

to initialize the scan matching, we assume that the vehicl§teP iS performed on a fixed clock. This allows us to cleanly
moves at a constant velocity between scans. The range gterpolate the state estimates that are used in the feledbac
poses that must be searched over can then be selected baSggtroller. _ ,
on the maximum expected acceleration of the vehicle, which  OUr filter is a standard EKF, implemented using the open
means that at high scan rates, the search volume is mana%?élurce KFilter library. We use the filter to estimate the posi-
able. ions, velocities, and accelerations of the vehicle, alwith

: : . : the biases in the IMU, resulting in a large state vector. Find
in mlnyon;rn? F{Li”}ﬁ”;a“z;"tmg ;J es se oﬁﬁgﬁ S;f ?gl'(g%kg&%x_ ing gooq variance parameters by hand would be a very time_-
imafeI;/ 5m8.t0 searc.h over the approxirhateiﬁ 000 can-  consuming and error-prone task. Instead, we learn the vari-

didate poses in the search grid to find the best pose for al nce parameters using the method described in [21]. By fly-

. . - = 1ng the helicopter with the state estimation process rumimn
incoming scan. Scans that need to be added to the likelihoo motion capture system, we obtain ground-truth values with

map are processed in a background thread, allowing pose es hich to compare our state estimates. This allows us to run

mae;tk:on to continue withoutimpeding the real-time procegsi stochastic gradient descent to find a good set of variance pa-
path. rameters. The parameter-learning algorithm results in EKF

6Intel Performance Primitivesit t p: / / ww. i nt el . com "KFilter. ht t p: / / kal man. sour cef or ge. net
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state estimation that provides significantly improved gelo times alaser beam reflects off, or passes through, the tell. |

ity estimates compared to the variance parameters chosen pgrticular cell has been hit many times, the algorithm gace

hand, as shown in Figure 6(b). very high confidence that the cell is occupied. However gf th
helicopter changes heights, and the cell becomes partef fre

space, this confidence is no longer warranted. Unfortupatel
the laser must pass through the cell at least as many times as
it was hit before the algorithm will be convinced that the cel
is actually now free, resulting in a very slow adaptationhef t
map. Hence, we modified the map representation to cap the
maximum confidence for each grid cell, allowing it to change

- e _ from occluded to free (and vice-versa) more rapidly.
T o With these modifications, we are able to create large scale

=}
o

Y position {m)
=
velocity (més)

=}
o

@ ®) maps of the environment such as those shown in Section 6.

. . . " . The algorithm usually take$ to 2 seconds to process in-
Figure 6: (a) Comparison between the position estimated bi ming laser scans, allowing it to be run online, but is not

the onboard sensors (green) with ground truth measuremen gitable to be directly incorporated into the real-timetooin

(blue). (b) Comparison of the ground truth velocity (blue) ; ; P
: . oop. Instead, the GMapping algorithm periodically senals p
with the estimate from the EKF before (green) and after (red ition corrections to the data fusion EKF. Since the pasitio

optimization. corrections are delayed significantly from when the measure

. . : ent upon which they were based was published, we must
e e o s ggcoun o s dlay i e ncorporate th corection
ground-truth state estimates recorded by the motion captu 's is done by retroactively modifying the appropriate po-

svstem. and found that the estimates originating from thrsition in the state history. All future state estimates &ient
Y X 9 9 ?ecomputed from this corrected position, resulting in glbb
laser range scans match the ground-truth values closely

0D nsi ; ; -

= : g onsistent state estimates. By incorporating the SLAM cor-
both position and velocity. Throughout thenin flight, the o004 after the fact, we allow the state estimates to be pr
ahverage d|st_a|_||j|ce between tr:e wo dpgsmon estimates /vxsas legessed and published with low enough delay to control the
that 1.5¢m. e average velocity difference wag)2m/s, : o ; ; ;

with a standard deviation di.025m/s. The vehicle was MAV, while still incorporating the information from SLAM

: = . . , : to ensure drift-free position estimates.
not given any prior information of its environment (i.e., no . .
map). However, since all the walls in the room were con-5.4 Planning and Exploration

stantly within the laser’s field-of-view in this experimetite Finally, to achieve full autonomy, we require a high-level
SLAM module was not needed to eliminate drift. planner that enables the helicopter to either explore oremov
5.3 SLAM towards a desired goal autonomously. While exploration has

We made use of the publicaly available implementation®€en Well-researched in ground robotics, differenceséetw
of the GMapping [22] algorithm that is available in the air and ground vehicles, as discussed in Section 3.1, equir

OpenSlam repositafy which performs slam in 2D. Despite us to make different considerations when deciding where to

the fact that the helicopter operates in the full 3D environ-9° N€xt. In particular, the need to constantly provide asintr

ment, the algorithm works surprisingly well and serves as aflgnals to the helicopter means that while we s_eek to e_xplore
proof of concept for implementing SLAM on a MAV. he environment, we must ensure that the helicopter is able

GMapping is an efficient Rao-Blackwellized particle fil- © femain well-localized and estimate its velocity. We use
ter which learns grid maps from laser range data. We chos? modified definition of fr(_)ntlers, [23] to choose positions in
it due to its outstanding accuracy, real-time performaand, e€ space where the helicopter should fly to next such that
its ability to handle changes to the 2D map that occur dudt EXPlores previously unexplored regions in the environme
to changing height and attitude, as discussed in Section 3.3/ €xtend this concept by seeking to find a frontier pose that
While the algorithm worked reasonably well out of the box, aXimizes both the amount of unexplored space that is ex-
we made modifications that improved its performance whe?€Ctéd to be explored and the ability of the helicopter to lo-
used in 3D environments on a MAV. The motion model forCallze itself. The pIanner_then uses_the best fron_tler Goids
the particles in the GMapping algorithm was based on a starf'd cOmputes a path using dynamic programming.
dard motion model for ground robots with wheel odometry. 6 EXPERIMENTSAND RESULTS
However, since we use estimates computed by the laser scan
matching module, we modified GMapping’s motion model to
propagate the particles using the uncertainties computed
the scan-matching module.

In addition to the motion model, we modified the map rep

We integrated the suite of technologies described above
o perform autonomous navigation and exploration in un-
structured and unknown indoor environments. In this
_section, we present results demonstrating that the sys-

: P m is capable of fully autonomous operation in a va-
resentation so that the map gets updated rapidly in respon%‘l%ty of indoor environments. To get a full picture of

to changes in height. The algorithm computes the probgbilit Ur system in action, we suggest that the reader also

h hgri i i r fr n the number of. , . .
that each grid cell is occupied or free based on the numbe view the videos taken of these experiments available at:

80penSlamht t p: / / opensl am or g http://groups.csail.mt.edu/rrg/videos. htn.



http://openslam.org
http://groups.csail.mit.edu/rrg/videos.html

(b) Map of MIT Stata Center, 3rd Floor. (c) Map of MIT Stata Center, basement.

Figure 7: (a) Map of the first floor of MIT’s Stata center consted by the vehicle during autonomous flight. (b) Map of a
cluttered lab space with significant 3D structure. (c) Mapafistrained office hallway generated under completelyreuntmus
exploration. Blue circles indicate goal waypoints clickedhuman operator. Red line indicates path traveled basdteon
vehicle’s estimates.

6.1 Autonomous navigation in open lobbies 6.2 Autonomous navigation in cluttered environments

While unstructured, the lack of clutter along the walls in
the lobby environment allowed the 2D map assumption to
We flew the vehicle across the first floor of MIT’s Stata hold fairly well. We next tested our system by flying through
Center. The vehicle was not given a prior map of the environa cluttered lab space (Figure 2, insert of Figure 7(b)), aper
ment, and flew autonomously using only sensors onboard thiag close to the ground. At this height, chairs, desks, mbot
helicopter. In this experiment, the vehicle was guided by glants, and other objects in the area caused the 2D cross-
human operator clicking high-level goals in the map that wasectional scan obtained by the laser rangefinder to vary dra-
being built in real-time, after which the planner planned th matically with changes in height, pitch, and roll. The resul
best path to the goal. The vehicle was able to localize itselfant SLAM map of the environment is shown in Figure 7(b).
and fly stably throughout the environment, and Figure 7(aJThe grey features littered within the otherwise free spaee d
shows the final map generated by the SLAM algorithm at thenote the objects that clutter the environment and are occa-
end of the experiment. During ti8enin flight until the battery  sionally sensed by the laser rangefinder. Despite the rhattte
was exhausted, the vehicle flew a distanc0s. 6. environment, our vehicle was able to localize itself andmai



tain a stable flight fomin over a distance of4.6m, a feat [5] J.P. How, B. Bethke, A. Frank, D. Dale, and J. Vian.

that would not have been possible with a static map assump-  Real-time indoor autonomous vehicle test environment.

tion. Control Systems Magazine, IEEFB(2):51-64, 2008.

6.3 Autonomous exploration in office hallways [6] G-M. Hoffmann, H. Huang, S.L. Waslander, and C.J.

Tomlin. Quadrotor helicopter flight dynamics and con-
trol: Theory and experiment. IRroc. of GNG Hilton
Head, SC, August 2007.

[7] J.F. Roberts, T. Stirling, J.C. Zufferey, and D. Florean
Quadrotor Using Minimal Sensing For Autonomous In-
door Flight. InProc. EMAV, 2007.

[8] S. Bouabdallah, P. Murrieri, and R. Siegwart. Towards

autonomous indoor micro vtol. Autonomous Robots,

Vol. 18, No. 2, March 2005.

[9] G.P. Tournier, M. Valenti, J.P. How, and E. Feron. Esti-
mation and control of a quadrotor vehicle using monoc-

Finally, to demonstrate fully autonomous operation of the
vehicle, we closed the loop with our exploration algorithm,
as discussed in Sectipn 5.4. The helicopter was tasked to ex
plore the hallway environment shown in the insert of Figure
7(c). Once the helicopter took off and began exploring, we
had no human control over the helicopter’s actions as it au-
tonomously explored the unknown environment. The heli-
copter continuously searched for and generated paths to ar-
eas of new information. Figure 7(c) shows the map built
from 7min of autonomous flight, after traveling a distance of

75.8m. ular vision and mog patterns. IfProc. of AIAA GNC,
7 CONCLUSION Keystone, Coloradd006.
In this work, we have developed a quadrotor heIicoptel{lo] N..G. Jphnson. .V|S|on-ass!sted contro’l of a _hoverlng
that is capable of fully autonomous exploration in unstruc-  &ir vehicle in an indoor setting. Master’s thesis, BYU,
tured and unknown indoor environments without a prior map 2008.

relying solely on sensors onboard the vehicle. By reasonin&ll] C. Kemp. Visual Control of a Miniature Quad-Rotor
about the key differences between autonomous ground and air ~ Helicopter  PhD thesis, Churchill College, University
vehicles, we have created a suite of algorithms that acsount __ of Cambridge, 2006. i

for the unique characteristics of air vehicles for estimati  [12] S. Ahrens. Vision-based guidance and control of a hov-
control and planning. Having developed a helicopter plat- ering vehicle in unknown environments. Master’s thesis,
form that has many of the capabilities of autonomous ground __ MIT, June 2008. o _
robots, we believe that there is great potential for futuce e [13] R. He, S. Prentice, and N. Roy. Planning in information

tensions of such platforms to operate in fully 3-dimensiona space for a quadrotor helicopter in a gps-denied envi-
environments. ronments. IrProc. ICRA 2008.

[14] G. Angeletti, J.R. P. Valente, L. locchi, and D. Nardi.
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