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Abstract: Recovering an unknown reward function for complex manipulation
tasks is the fundamental problem of Inverse Reinforcement Learning (IRL). Often,
the recovered reward function fails to explicitly capture implicit constraints (e.g.,
axis alignment, force, or relative alignment) between the manipulator, the objects
of interaction, and other entities in the workspace. The standard IRL approaches
do not model the presence of locally-consistent constraints that may be active only
in a section of a demonstration. This work introduces Constraint-based Bayesian
Nonparametric Inverse Reinforcement Learning (CBN-IRL) that models the ob-
served behaviour as a sequence of subtasks, each consisting of a goal and a set of
locally-active constraints. CBN-IRL infers locally-active constraints given a single
demonstration by identifying potential constraints and their activation space. Fur-
ther, the nonparametric prior over subgoals constituting the task allows the model
to adapt with the complexity of the demonstration. The inferred set of goals and
constraints are then used to recover a control policy via constrained optimization.
We evaluate the proposed model in simulated navigation and manipulation domains.
CBN-IRL efficiently learns a compact representation for complex tasks that allows
generalization in novel environments, outperforming state-of-the-art IRL methods.
Finally, we demonstrate the model on two tool-manipulation tasks using a UR5
manipulator and show generalization to novel test scenarios.

Keywords: Learning from Demonstration, Inverse Reinforcement Learning,
Tool-use and Manipulation

1 Introduction
Consider the problem of learning a manipulation task from a single demonstration (e.g., see Fig. 1).
Inverse reinforcement learning (IRL) [1, 2, 3, 4] has been demonstrated as an effective technique
for allowing a robot to learn a task from demonstrations. By representing a task as given by a
reward function, a function of state features, IRL has shown how a set of demonstrations can
generalize across multiple environments or variations of the task. However, despite many successes
[2, 4, 5], conventional IRL has also been shown to be data-intensive [6, 7, 8] and has difficulty with
explicitly capturing local properties like alignment or contact constraints necessary for learning the
task [9, 10, 11]. Bayesian Nonparametric IRL (BN-IRL) [12] has provided a path forward towards
learning with considerably smaller number of demonstrations by decomposing a demonstrated task
into a sequence of simpler subtasks, providing superior performance, particularly in large state spaces.

Certain types of robot manipulation tasks represent a new challenge for learning from demonstration,
in that these tasks require planning with complex constraints such as changing alignment, forces,
relative pose etc. Incorporating such abstract constraints [13, 14, 15] is especially important when
generalizing demonstrations of seemingly simple tasks such as assembly or removal to the same
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Figure 1: Training and test procedures of CBN-IRL for a clamp-passing task. Given a single demonstration
collected from a simple straight-pipe environment, CBN-IRL learns subgoals g and local constraints c, such as
co-axial alignment and distance constraints between the clamp and the pipe, via blocked Gibbs sampling. In
testing, the inferred g and c on feature space are used to plan a locally-optimized trajectory in novel environment
(i.e., multibend-pipe environment).

task for more complex objects. Conventional reward function parameterizations [9, 10, 11, 5] do
not explicitly model constraints, especially when the constraints are non-linear or are represented
by low-dimensional manifolds in the state space. The problem of encoding a task entirely in the
reward function is exacerbated when learning tasks from demonstration, as different constraints may
be active at different parts of the demonstrated trajectory, and the activation of specific constraints
may not be fully known or observed [16, 17, 18]. BN-IRL’s decomposition into more subtasks allow
to better represent demonstrations with constraints, but will increase the overfitting.

A number of constraint learning approaches [19, 20, 21, 22, 23, 24, 25] determine constraints that
globally characterize the overall manipulation task. In particular, Englert et al. [26] and Armesto et al.
[21] infer overall task-space constraints for actions such as pushing and door opening in an inverse
optimal control framework. Zhou and Li [23] extract globally valid safety constraints by interleaving
policy learning and logical model checking. Similar to our work, Chou et al. [27] also recover globally
valid constraints on feature space. Ureche et al. [19] postulate force and interaction constraints and
learn constraint-parameterizations from demonstration data. Note that these approaches do not
consider the presence of local constraints that often exist in complex demonstrations. This paper is
closely related to approaches that model both the task partitions and locally-active constraints. For
example, Li and Berenson [16] analyze the geometry around the demonstrated trajectory through
sampling in task space, and then determine the constraints by segmenting and analyzing the feasible
samples. Similarly, Konidaris et al. [18] perform demonstration segmentation using a change-point
detection algorithm followed by learning a local reward function each partition. However, these
approaches treat the subgoal prediction and constraint learning as separate estimation tasks.

In this work, we propose Constraint-Based BN-IRL (CBN-IRL) that models a complex demonstration
as a collection of subtasks where each subtask is characterized by a subgoal and a set of local
constraints. Learning from a single demonstration, CBN-IRL can infer the set of local constraints
from state features and regions where the constraints are likely to be active. Without loss of generality,
modelling local constraints allows more complex behaviour to be compactly encoded in different
parts of the state space and reduces the number of subtasks required to model the entire demonstration
relative to previous results. We also provide an efficient inference algorithm to extend BN-IRL’s
Gibbs sampling algorithm to additionally infer local constraints and state space regions where they
are applicable. The nonparametric prior over subtasks and constraints allows the model to expand
with the complexity of the demonstration. We demonstrate how CBN-IRL can be applied to high-
dimensional continuous manipulation tasks and evaluate its performance against other IRL algorithms
in simulated 2D navigation and 5D manipulation domains. We show that CBN-IRL can efficiently
encode and decode locally constrained behaviors that the other baseline approaches cannot reproduce.
Finally, we demonstrate CBN-IRL with two tool-manipulation tasks using a UR5 manipulator.
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2 Background: Bayesian Nonparametric IRL (BN-IRL)
The section presents an overview of the BN-IRL formulation that forms the basis of the model
introduced in this work. For a detailed exposition, we refer the reader to [12].

Conventional IRL aims to recover the reward function for a Markov Decision Process (MDP) defined
by the 5-tuple, (S,A, T,R, γ). Here, the symbols S, A, and γ ≤ 1 denote the state space, the action
space, and the discount factor, respectively. T : S ×A→ Pr(S) is a stochastic transition function
and R : S ×A→ R is a reward function. The robot observes a set of demonstrations represented as
a time-ordered set of observed unique state-action pairs O = {O1,O2, ...}, where an observation
Oi = (si ∈ S, ai ∈ A). Bayesian Nonparametric IRL (BN-IRL) models the observed demonstration
as an MDP but postulates partitioning of the observations into smaller groups and learning a set
of simple reward functions modeling local properties of each group. Formally, each partition is
characterized with a subgoal g and a reward function Rg(si) = 1(si = g). For each time step in the
demonstration, a latent assignment-variable zi ∈ N is introduced to associate the observation at each
time step i with a specific partition of the observed data and corresponding subgoal. The distribution
over assignments from an observation Oi to partition zi is modeled by a DP prior1 to represent a
priori unknown number of subgoals.

BN-IRL infers the most likely set of partitions, the corresponding subgoals, and the assignment-
variables given demonstrations. The joint distribution over the set of observations O, the goals g, and
the partition variables z is expressed as:

p(O,g, z) =

N∏
i=1

p(Oi|gzi)︸ ︷︷ ︸
Obs. Likelihood

p(zi|z−i, η)︸ ︷︷ ︸
DP Partition Prior

JN∏
j=1

p(gj)︸ ︷︷ ︸
Goal Prior

. (1)

Here, gzi , N ∈ N, JN ∈ N, and η ∈ R are the goal assigned in a partition zi, the number of
observations, the number of partitions after obtaining N observations, and the concentration constant
of DP, respectively. The conditional distribution over the assignment-variables is represented as:

p(zi|z−i, η) =

{
mi

n−1+η if 1 ≤ i ≤ K
η

n−1+η Otherwise,

where n, mi, and K are the number of observations, observations in partition i, and partitions,
respectively. The nonparametric DP prior with concentration parameter η characterizes the demon-
stration by a potentially infinite set of partitions enabling the model to expand appropriately with new
observations. The BN-IRL model infers the posterior distribution over the subgoals and partition as-
signments, (g, z), given the demonstration. Subsequently, the maximum a posteriori (MAP) subgoals
for each partition and assignment variables associated with the demonstration are determined as:
(g∗, z∗) = arg maxg,z p(g, z|O). The inference over (g, z) is performed using uncollapsed Gibbs
sampling [29], where zi ∈ S and 1 ≤ k ≤ |S|.

3 Constraint-based Bayesian Nonparametric IRL (CBN-IRL)
We present Constraint-based BN-IRL (CBN-IRL), a novel extension for BN-IRL, that posits the
presence of local constraints characterizing subgoals constituting a single observed demonstration.

Formally, the sub-demonstration in the ith partition is viewed as a sample from the optimal policy for
an MDP given subgoal and a subset of active constraints, ci : ci(s)→ {1, 0} as well as a subgoal,
gi. Each constraint in an inferred partition places strict restrictions on which states an agent can
visit when the constraint is active. Hence, we define an MDP/(R,T )+(Rg,Tc) that is an MDP for
which R and T are not specified, but IRL provides a subgoal-based reward Rg and a constraint-based
transition function Tc. The problem therefore is to infer the decomposition of the demonstrated
trajectory into smaller partitions and for each partition and estimating the subgoal and associated
constraints that maximize the likelihood of the observed trajectory (i.e. the MDP policy). Note that
CBN-IRL requires a single demonstration that is a set of unique state-action pairs, referred to as
observations O.

Discretized State-Action Space: The CBN-IRL assumes an MDP with a discrete state space.
However, for high-dimensional manipulation problems, a regular discretization of the configuration
space is intractable to maintain, hence we use a sampling-based strategy for state-space discretization.

1BN-IRL uses the Chinese Restaurant Process model of the Dirichlet Process [28].
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Conventional sampling methods often require a large number of
samples to obtain valid states in narrow passages [30]. We address
this issue by combining the sampling and expansion strategy of the
probabilistic roadmap (PRM) [31] and the rapidly-exploring random
trees (RRT) [32], similar to the multi-component rapidly-exploring
roadmap (MC-RRM) [20]. We first generate an initial state-action
graph with node set V and edge set E, G = (V,E), from a guidance
path xg that is a linearly interpolated state path from a start to a
goal including any potential waypoints2. Note that the waypoints
are not required, but fewer waypoints often require longer sampling
time to obtain a well-connected graph. The initial graph consists
of multiple disconnected components V = {V1, V2, ...} due to the
maximum length of edges dmax. We then sample each state ssample
from a Gaussian distribution over xg. The dense sampling near the boundary of objects helps to
keep connectivity in narrow regions with poor visibility [33]. Otherwise, we need a large amount
of samples to obtain a well-connected graph. We then incrementally expand each component Vi
by adding at most dmax ∈ R distanced state snew from a near state snear toward Vi and ssample until
all components are connected |V|= 1 with the desired number of states. We neither eliminate all
states in collision nor zero the transition probability assuming the collision constraint that has to
be learned or observed. Instead, to expedite the learning process in this paper, we sample a part of
collision states (i.e., boundary states) and collision-free states (see Fig. 2). As samples increase, we
get a connected graph from a start to a goal including a variety of paths. As with PRM, our method
samples a roadmap that enables to optimize state paths as the number of states increases and the RRT
guarantees expansion of the roadmap to valid states in narrow state passages.

Learning the subgoals and constraints of this MDP requires the demonstrated trajectory to be
projected onto the state space keeping the topological connectivity. This is accomplished via a
modification to the Dijkstra’s algorithm similar to [34], we can find the shortest path but close to
a demonstrated trajectory on G. We use a weighted transition cost as the current node sc’s path
cost, min∀sk∈E(sc) γd(sc, sk) + (1− γ)d(sk, st), where E returns a list of nodes connected on sc’s
edges, γ is a weight (0 ≤ γ ≤ 1), and d(·, ·) is a distance metric between two states. For our 5D
tool manipulation tasks in Sec. 4, we use a weighted sum of Euclidean position distance and angular
difference between two input poses. st is a reference state on the demonstrated trajectory. We use
grid search to set st in the algorithm to precisely project the demonstration.

Subgoals and Constraints: We now formalize the notion of subgoals and constraints estimated
by the CBN-IRL framework. We use a set of predefined generic spatial features (f ∈ RM ) for
representing the world state, assuming the robot knows the geometry of environment. In particular,
we only incorporate coordinate-free features such as minimum distance from obstacles. A subgoal
can be a set of features that can be generalized to new environment. Note that, as in [12], we also
limit the possible subgoals mapped from features by selecting the nearest ergodic state satisfying
constraints. Each constraint operates on the feature space to denote valid and invalid regions of the
state space. In details, we define a feature-wise simple-constraint, ci, which is computed from the
ith feature and used to check if a feature, f i ∈ f falls within a bound ζ ∈ R of an expected feature
value f̂ i: ci :| f i − f̂ i | −ζ ≤ 0 → {1, 0}. In practice, we estimate f̂ i as the average of observed
features associated with the same partition. The free parameter ζ is determined empirically in order
to maximize the similarities from demonstrations and can also be used to control the tightness of
constraints. A constraint can be viewed as a Boolean function of defined over the feature space.
Formally, a constraint c is a conjunction of active simple-constraints at a given partition such that all
simple-constraints are satisfied: c = c1c2 · · · cK . K denotes the number of features used to define c.

CBN-IRL induces an MDP/(Rg,Tc) with an unknown reward function Rg for subgoal g and a
constraint-dependent transition Tc for an active constraint c. The presence of active constraints
disallows transitions into state space regions that violate the indicated constraints. Hence, the
constraint-dependent truncated stochastic transition function Tc can be constructed as:

Tc(s, a, s
′) =

{
0 if c(s′) = False

T (s, a, s′)/Σs′′T (s, a, s′′) Otherwise,
(2)

2For the pipe environments in Sec. 4, we linearly interpolated a start, any states on the edge or inflection
point on each pipe, and a goal to generate a guidance path xg , where we set |xg|= |O|.
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where T (s, a, s′) is a transition probability function with
∑
s′ T (s, a, s′) = 1, and s′′ ∈ {s|s ∈

S, c(s) = True} denotes the subset of states that satisfy the constraint.

Inference: We now detail the process of trajectory generation as solving a sequence of MDPs
given the same state-action spaces but different subgoals. Note that the subgoals and constraints
are latent variables θ = {(g1, c1), (g2, c2), ...} in the model. We assume that the subgoals g are a
subset of the states observed in an expert demonstration and that the expert demonstration satisfies
all task constraints. The joint distribution of a new state-action trajectory of length l, Onew =
{(s0, a0), (s1, a1), ..., (sl, al)}, and a demonstration, O, can be represented as:

p(Onew,O) = p(Onew|O)p(O) =

∫
θ,z

p(Onew|θ, z)︸ ︷︷ ︸
Likelihood

p(θ, z|O)︸ ︷︷ ︸
Subgoals &

-Constraints Likelihood

p(O)︸ ︷︷ ︸
Prior

. (3)

The set of latent variables (θ, z) are inferred from a demonstration by inferring the MAP estimate of
the likelihood of subgoals, active constraints for each partition, and assignment variables associated
with the demonstration: (θ∗, z∗) = arg maxθ,z p(θ, z|O). Direct inference is intractable since
the joint space of latent discrete partition assignment variables and the set of constraints (θ, z) is
combinatorially large and also greater than that BN-IRL due to additional inference over constraint
variables. Building on [12], we adopt approximate MCMC inference using Blocked Gibbs Sampling,
which iteratively samples (g, c) and z by conditioning on the other observed variables. After running
Gibbs sampling, the empirical mode of the samples θ1:t and z1:t will have converged to values that
approximate the true values of the latent parameters as the number of sampling iterations t→∞ and
the Markov chain producing samples is ergodic according to Theorem 1 in [12]. We describe the
sampling updates of z and θ below.

Partition Likelihood: The conditional probability distribution of a partition zi given the other
partitions, z−i, observations, O, and goals and constraints, θ, can be expressed as:

p(zi|z−i,θ,O, η) ∝ p(Ozi |θzi)︸ ︷︷ ︸
Likelihood

p(zi|z−i, η)︸ ︷︷ ︸
DP Prior

, (4)

where Ozi are the observations assigned to zi and depend on the subgoal and local-constraint pair θzi
for that partition. The likelihood represents the likelihood that an agent acting optimally under the
current constraints and seeking the estimated subgoal generates the observations as:

p(Ozi |θzi) = p(ai|si, gzi , czi) =
eαQ

∗(si,ai,Rgzi
,czi )∑

j e
αQ∗(si,aj ,Rgzi

,czi )
. (5)

Here, hyperparameter α represents the degree of confidence in the expert’s ability to maximize
reward and Q∗ denotes the optimal Q-function for the MDP with reward function Rg and the
constraint-conditioned truncated transition function Tc.

Subgoals and Constraints Likelihood: The conditional likelihood of a subgoal with the associated
local-constraint, θj = (gj , cj), given a specific partition z can be expressed as:

p(θj |z,O) ∝ p(Oj |θj , z,O−j)p(θj |z,O−zj ) =
∑
i∈Ij

p(Oi|θzi)︸ ︷︷ ︸
Likelihood

p(θj)︸ ︷︷ ︸
Prior

, (6)

where Ij = {i : zi = j}. Joint inference over subgoals and local constraints is computationally
expensive due to the combinatorially large space of constraints since a constraint is a conjunction
of any subset of potential simple-constraints. However, the inference complexities are not directly
comparable with that of BN-IRL due to the convergence of Gibbs sampling. We also reduce the
complexities by sampling subgoals from the set of observations assigned to the given partition. We
exclude simple-constraints defined by a feature that is not consistent at any given time window.
The coordinate-free features (e.g., distance from objects) allows constraints that can generalize
to new goals. We then limit the class of constraints considered to either be a conjunction of all
simple-constraints or the empty set representing no constraints: cj =

∏
{k|fk∈fc} c

k
j or ∅.

The likelihood is calculated as in the previous section. The runtime efficiency of model inference
is improved by pre-computing the Q∗ values for each subgoal and constraint combination (gi, ci).
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As the sampling process requires re-estimation of the valid feature range, f̂kj , used to compute
constraints based on partition assignments at each update, it is hard to pre-compute Q∗ as previously
done. To resolve these issues, we pre-compute a list of potential expected feature values, F =

{f̂k,1, f̂k,2, ..., f̂k,M}, from a discretized feature space, where M is the resolution and the extent
of the space (f̂k,1, f̂k,M ) is obtained from the minimum and maximum value of features in the
demonstration O, respectively. CBN-IRL then pre-computes Q per potential constraint defined from
each feature-mean in F . During the sampling, CBN-IRL selects a pre-computed Q from the closest
pre-computed feature-mean as Q∗. CBN-IRL finally predicts a current partition z of a current state s
and then predicts the maximum likelihood of action a given the current z and the empirical mode of
samples (θ∗, z∗): z∗, a∗ = arg maxzi,a p(a|s, gzi , czi). In practice, we hold zi until reaching gzi .

Trajectory Planning for Robot Manipulation: Finally, we address the problem of generating
a continuous trajectory to attain the set of inferred subgoals constituting the overall task while
respecting the inferred local constraints. Formally, we seek a smooth trajectory x = {s1, ..., sl}
that minimizes the sum of displacements, while satisfying a set of constraints. At jth partition,
we formulate a constrained optimization problem, minx={s1,...,sl}

∑l−1
t=1 ‖st+1 − st‖2 subject to

s1 = initial state, sl = gi, and ∀k ckj (s) =| fk − f̂kj | −ζ ≤ 0. In this work, we solve the problem
by using an optimization-based planner, TrajOpt [35].

4 Experimental Setup
2D Navigation Tasks: As a preliminary test, we evaluated CBN-IRL and four baseline meth-
ods, such as MaxEnt [4] and Deep-MaxEnt IRL [6], with respect to their ability to reproduce the
demonstrated trajectory both within the same simulated environment and in novel environments. We
developed this testbed as an environment of OpenAI Gym [36], a reinforcement learning toolkit.
Fig. 3 shows the first environment requires the agent to move from a start location to a goal location
without colliding with the wall (black) while keeping a certain distance from the wall. For training,
we collected an expert trajectory that satisfies all task constraints and projected it onto a uniform-
randomly sampled graph (‖V ‖ = 5, 000). In testing, each method then produced a trajectory on the
graph. Performance was measured by the loss (i.e., Dynamic Time Warping (DTW) in [37]) between
generated and demonstrated trajectories.

We also evaluated generalization performance by comparing CBN-IRL with BN-IRL in 1,000
randomized sinusoidal passages (= h · sin(wθ + θ0)) encompassed by left/right walls, uniform-
randomly sampled (h,w, θ0) in 0.5 ≤ h ≤ 3, 0.5 ≤ w ≤ 3, and −π ≤ θ0 ≤ π. Each method is
trained on a single demonstrated passage. We generated a path that keeps a certain distance between
two passage walls to measure performance against. We used as many features as possible: distance
ratio between two walls and distances from start, goal, and four edges of left/right walls (∈ R7).

5D Tool Manipulation Tasks: Next, we evaluated our framework with simulated and real-world
scenarios in continuous large-state space using a UR5 manipulator. We formulated two tool-
manipulation tasks, screwdriver insertion and clamp-passing tasks, by compactly sampling discretized
state-action space and learning subgoals and local constraints from an expert demonstration. The
following state-space features were used in the experiment:

• Progress: Path length from the pipe opening to the clamp state s scaled by the total length (∈ R),
• Distance from Pipe: Distance between the clamp state s and the nearest pipe center spipe normalized

by the sum of distances from the start s0 and spipe (= d(s, spipe)/(d(st, s0) + d(st, spipe)) ).
• Center Alignment: Euclidean position distance from a state to the pipe centerline (∈ R),
• Relative Orientation: Angular displacement between the clamp and the pipe orientation (∈ R),
• Collision: A binary feature indicating collision between the clamp and the pipe (∈ {0, 1}).
The estimated goals and constraints are used in a constrained optimization TrajOpt [35] to determine
the low-level continuous trajectory of the robot. The robot’s perception system included a wrist-
mounted Intel RGB-D camera. The 6DOF pose of the multibend-pipe was determined using Iterative
Closest Point (ICP) between the depth point cloud and the prior geometric model of the object.

5 Evaluation
2D Navigation Tasks: We show the benefit of modelling constraints by learning to reproduce a
non-linear trajectory in a 2D semi-circular obstacle environment, as shown in Fig. 3 Top. BN-IRL
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Figure 4: Left: Comparison with four baseline given a semi-
circular demonstration where training and testing environments
are identical. Right: Generalization performance in 1,000 ran-
domized sinusoidal path environment. CBN-IRL results in con-
sistently small DTW distances from demonstrations regardless
of the number of subgoals determined by η in DP.
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Figure 5: Screwdriver insertion and clamp-passing experiments. A UR5 robot successfully placed tools by
selectively activating the inferred subgoals and local constraints in each novel environment that requires strict
co-axial orientation constraints around the space of target objects.

inferred two subgoals but failed to keep a consistent distance from the obstacle. On the other hand,
CBN-IRL also found two subgoals but was able to produce an expert-like trajectory by limiting
its actions to stay close to the obstacle. Note that we lowered the tightness of constraints due to
the coarse resolution of discrete graph. Fig. 4 Left shows CBN-IRL always resulted in the lowest
dissimilarity (i.e., DTW distance) from the demonstration regardless of the number of subgoals. By
increasing the number of subgoals (by increasing a parameter η), BN-IRL was able to reduce the
dissimilarity from the expert demonstration. Note that we set training and testing environments are
identical to show the representation power of constraints. This indicates the constraints are able to
capture a type of property in demonstrations that cannot be easily represented by reward functions.
Conventional IRL methods resulted in significantly lower performance due to the limitation of reward
function or the single demonstration. Note that these baselines used the same features as in CBN-IRL.

Next, we show the generalization performance by comparing with BN-IRL in randomized sinusoidal
passages, as shown in Fig. 3 Bottom. An agent is given a single demonstration of a passage, and then
is given a new shape and its initial state and told to repeat the task. Fig. 4 Right shows CBN-IRL
resulted in lower average dissimilarity than BN-IRL. Regardless of the number of subgoals, CBN-IRL
was able to produce consistent results using the learned constraints, whereas BN-IRL resulted in the
higher dissimilarity given η = 0.01 and 10, which recovered 2 and 16 subgoals, respectively. The
simple reward structure from BN-IRL with few subgoals is not enough to draw sinusoidal curves,
though more subgoals decrease the dissimilarity. This emphasizes the fact that the subgoal-only
model requires significantly more subgoals to reproduce complex demonstration.

5D Tool Manipulation Tasks: Next, we evaluate the generalization performance of our framework
in more realistic scenarios toward manipulation tasks in high-dimensional continuous space. Table 1
shows the comparison between CBN-IRL and other four baseline methods in clamp-passing tasks.
We trained each method given a single clamp-passing demonstration in a straight-pipe environment
and then tested each to reproduce a demonstration-like trajectory given uniform-randomly sampled
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Table 1: Comparison of generalization performance in 5D clamp-passing tasks. We trained each method on a
single demonstration of the straight-pipe environment and then tested the performance on novel environments.
The numbers represent the number of successful completions given uniform-randomly sampled 100 initial poses.
Each method with trajectory optimization (TO) shows completion performance in continuous space. The two
pairs of results show when we increase the number of subgoals by setting η = 10−3 and η = 10, where we
inferred 3 and 17 subgoals respectively for BN-IRL and 2 and 8 subgoals for CBN-IRL.

Training & Test Test
XXXXXXXXXMethod

Env.

TO + Human 100/100 100/100 16/100 0/100

TO + MaxEnt [4] 99/100 100/100 39/100 0/100

TO + BN-IRL [12] 100/100 100/100 0/100 0/100 0/100 0/100 0/100 0/100

TO + CBN-IRL 100/100 100/100 100/100 100/100 97/100 98/100 95/100 98/100

100 initial clamp poses in four novel pipe environments: straight, 90◦, 180◦, and multibend pipes.
We produced an optimized continuous trajectory given the learned/designed reward functions and
constraints. For example, TO+Human and TO+MaxEnt are trajectory optimizations with manually-
designed and learned reward functions, respectively. We also attempted to implement a conventional
planning algorithm (i.e., Dijkstra algorithm) as a baseline method. The algorithm succeeded where
a single subgoal could be used and constraints (i.e., collision avoidance) were manually specified,
otherwise it did not succeed.

Our TO+CBN-IRL consistently demonstrates the highest success rates in all environments whereas
TO+BN-IRL failed at all attempts to make the clamp pass through new complex pipes though we
increased the number of subgoals from 2 to 16 by setting η = 10. That is because having a large
number of subgoals does not guarantee a high-resolution model of non-linear curve to pass the various
length of pipes. In other words, many subgoals can be useful to describe a specific problem, but hard
to be generalized to other problems. Manually-specified or learned MaxEnt [4] reward functions
also showed limitations to solve complex passing problems with 180◦and multibend pipes. This
statistical comparison shows learning constraints compactly and efficiently models demonstrations
while generalizing to novel environments.

We finally demonstrated the robustness of CBN-IRL on a real robot, UR5. Fig. 5 shows two
representative tool manipulation experiments3. CBN-IRL learned two subgoals and local constraints
from an expert demonstration on simpler simulated environments: two-hole pegboard and straight
pipe. In the first insertion task, by inferring subgoals and local constraints in new environments, the
robot successfully inserted a screwdriver into the hole while keeping the relative orientation after
reaching the first subgoal on top of the pegboard. Likewise, for the clamp-passing task that requires
strict co-axial constraints between the clamp and the pipe center, the robot activated the constraints
after reaching the entrance of the pipe (i.e., a subgoal) and successfully passed the grasped clamp
through the complex multibend curves without collision. The experiment demonstrated that CBN-IRL
can precisely recover constraints to generalize the learned skills in novel manipulation scenarios.

6 Conclusion
We introduced Constraint-based Bayesian Nonparametric Inverse Reinforcement Learning (CBN-
IRL) that learns local constraints and their activation space from a single demonstration. CBN-IRL
partitions a demonstration into a series of subtasks each represented by a subgoal and set of local
constraints. Our approach increases the expressiveness while maintaining the data efficiency of
BN-IRL. Our method does not require the number of subgoals and constraints to be pre-specified, and
the addition of constraints results in a more compact representation and therefore computationally
efficient approach overall. By adding constraints, our method was able to significantly reduce the
divergence from a demonstration and generalize to new environments without increasing the number
of subgoals. We also showed that CBN-IRL can be extended to high-dimensional tool-manipulation
tasks by projecting the demonstration on discrete space and producing a continuous trajectory via
constrained optimization. Our demonstration showed that CBN-IRL successfully completed the
assigned manipulation tasks.

3A video for the demonstration is submitted as a multimedia extension along with this manuscript.
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