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ABSTRACT

We aim to enable robots to act intelligently in complex environments not explicitly de-

signed around them. In order to do so, robots can simplify decision making by forming

hierarchical abstractions of their world, and planning within those representations. How-

ever, in reality, the types of abstractions robots are able to build are often poorly aligned

with the planning problems they must solve, which limits how useful those abstractions can

be in efficient decision making. For example, autonomous agents struggle in many real world

scenarios, particularly when their environments are large, cluttered with obstructions, or

beset by uncertainty. These factors often imply that decisions made at higher levels of ab-

straction may not be easily refined to low level plans, leading to backtracking during either

search or execution. In this thesis, we consider contributions which improve the efficiency

and quality of long-horizon hierarchical planning in robotics. Specifically, we propose ap-

proaches which explicitly reason about the imperfections of the abstractions available to

robots during planning, and show how those methods can improve performance on a variety

of tasks and environments.

There are three primary settings for which we make contributions in this thesis. First,

we will consider the problem of solving tasks in partially revealed environments, wherein our

abstract plans cannot be known to be feasible until we attempt execution because the world

is not fully known at planning time. To solve this problem, we first develop a high level

3



planning representation which recognizes that actions that enter unknown space can either

succeed or fail with some probability. The first contribution of this work is then to learn to

predict the feasibility and cost of actions within that abstraction from visual input. We also

describe a method for planning which uses these predictions, and we are able to show that

our approach can generate plans that are significantly faster at completing tasks in unknown

environments experimentally when compared with heuristic driven baselines. Next, we will

discuss work in Task and Motion Planning (TAMP), where the world is fully known, but

the problems require complex interaction with the environment to the point that we must

intelligently guide search in order to find plans efficiently. We build upon our work in the

first setting by once again learning to predict the outcome and cost of different sub-tasks

within a TAMP abstraction. We further contribute a novel method to guide search in this

setting for plans which minimize cost given our learned predictions, and demonstrate the

ability to find faster plans than established TAMP approaches both in simulation, and on real

world robots. In our final problem setting, we consider attempting to solve TAMP problems

in real world, large-scale environments. To do this, we define an approach for constructing

tractable planning abstractions from real perception using hierarchical scene graphs, ensuring

that when we refine our abstract plans within these representations, the low-level trajectories

still satisfy the given task’s constraints. A major contribution of this work is an approach

for planning efficiently in these domains by pruning provably superfluous information from

the world model. The unifying aim of the work in this thesis is to develop approaches which

enable robots to solve complex tasks in large-scale, real world environments without human

intervention. To that end, across all contributions, we demonstrate experimentally on real

robots the importance of accounting for imperfections in hierarchical abstraction during

planning.

Thesis supervisor: Nicholas Roy

Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

The field of robotics research has made significant progress toward the goal of producing au-

tonomous agents which can move within and influence the world around them. Automation

in manufacturing has spurred massive gains in efficiency in our ability to produce products

as varied as automotive parts and consumer electronics. Beyond the factory, robotics has

enhanced our ability to explore our universe, from the bottom of Earth’s oceans to the sur-

faces of other planets. We use robots to help doctors conduct complex surgeries, search and

rescue teams find people lost in the wilderness, and large companies move billions of dollars

of products around massive warehouses. Our roads are now populated by self-driving cars,

improving the safety and efficiency of travel for millions of people.

There are, however, limitations to what modern robotics is currently capable of, and we

can see this in the common characteristics of commercial robots. For the most part, a robot

operating in the real world (i.e., not in a research lab) falls into one of three categories: 1)

the robot is constrained to act in an environment carefully tailored to its design; 2) it is

tasked with solving a relatively specific, well-scoped task; or 3) a human is responsible for

its remote operation. Stated differently, if a robot is capable of making decisions for itself,

either the robot’s environment is simple and well understood, or it is specialized to one

specific problem. Often both are true. These restricted operating conditions are necessary

for a number of reasons, but in general, as the variability of a robot’s environment and the

complexity of its assigned task increase, the more difficult it becomes for an autonomous

agent to make and execute decisions. As a result, when we want to use robotics to solve
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problems in the real world, we often either need to take great care to control the environment,

make sure the problem is simple (and ideally repetitive), or make the decisions for the robots

ourselves.

There are many cases where these limitations are reasonable, and still enable real-world

robots to provide value. There are classes of problems where robust, repetitive motion is

all that is needed (like manufacturing), and areas where careful supervision is required (like

surgery). There may always be domains where we want a human in the loop to aid in decision

making, not because the robot is incapable of reasoning, but because the human may want

to express particular desires. However, the reality expressed in the previous paragraph is

obviously quite limiting in the types of tasks we can solve with robots. Some problems can be

constrained to tailored environments or simple tasks, but many more can not. Furthermore,

there are many instances where it is undesirable, or impossible, for a human to control

a robot directly. For tasks like cooking or cleaning, arguably the whole goal of having

a robot do these things is to free the human to spend their time on more intellectually

stimulating, or otherwise enjoyable activities1. If a human is required to operate or oversee

the robot to complete these tasks, we have failed to accomplish the primary purpose of using

a robot in the first place. Similarly, there are situations, like an underwater rescue mission,

where communication with a robot is infeasible, and the agent must be fully autonomous

to accomplish its goal. Finally, there are tasks that we would hope a robot could perform

better than any human ever could, like working in a mine, putting out a fire, or constructing

a building.

Imagine, for example, a robot tasked to make coffee in an unfamiliar building. This is

a common example in robotics research (popularized in part by Leslie Pack Kaelbling), and

is difficult for an autonomous agent for a number of reasons. First, the robot must build

a representation of its environment from different sources of perception. This model of the

world must be accurate, while at the same time be useful for decision making. Second, it

must use that representation to reason about how it should explore its environment in order

to find the ingredients required for making coffee. Once it has found these ingredients, the

agent needs to solve the multi-modal problem inherent in manipulating multiple objects in a
1Some would argue that cooking itself is enjoyable, but that is outside the scope of this thesis.
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potentially cluttered environment. Finally, it must do all of this quickly, both in terms of time

spent thinking and time spent acting, or risk becoming obsolete as a human decides to make

coffee themselves. This motivating task combines elements of reasoning in the presence of

uncertainty, executing complex manipulation plans, and acting in real-world environments.

The goal of the work in this thesis is to develop approaches which enable robots to solve

complex tasks in large-scale, real world environments without human intervention.

1.1 Reasoning Abstractly

Often times, when we are considering how we might improve how a robot behaves in certain

scenarios, it is instructive to imagine how we as humans think and act in the same settings.

As a human, when faced with the task described above, it is intuitive to break down the

problem into a set of possible actions, which can reduce the space of everything one could

do into a few discrete options. In this case, we would expect that a human would reasonably

conclude that to make coffee, they should first travel to the kitchen. Upon arrival, they

might then look in different cupboards in order to find coffee beans, considering actions like

“open the cabinet” or “pick up an object”, and so on.

Making discrete decisions in this type of problem relies on the idea of an “Abstraction”,

and this comes naturally to humans. We can define an abstraction as a representation

of reality which does not contain all possible information about the world, but instead

trades some of that information for a simpler structure that is efficient for planning and is—

hopefully—still a useful model of the real problem. Abstractions exist hierarchically, and for

any domain there are low levels of abstraction which contain more fine-grained information,

and higher levels which discard some of that information. In our coffee making example,

reasoning at a low-level of abstraction might require thinking in terms of placing one foot in

front of the other, or even considering the continuous path through space our body takes,

and the muscle movements required to follow that trajectory. Thinking exclusively at a

low level presents a challenging problem for a robot, particularly as both the complexity of

the task and scale of the environment grow. For a high degree-of-freedom robot, finding a

fine-grained trajectory which takes the agent from its current position to one where it has
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done everything needed to make coffee is a very long-horizon problem, with a very high

branching factor. In other words, it has to make many decisions, each of which has many

(possibly infinite) options. These challenges compound when the world is partially observed.

Attempting to produce a low-level trajectory through unseen space requires reasoning about

every possible configuration of the world, which is generally intractable.

Alternatively, if we were to consider the walk to the kitchen as one distinct action, as

opposed to a chain of many, we can greatly reduce the number of decisions needed to solve

the full problem. Under the assumption that our robot has the ability (either learned or

programmed) to navigate hallways safely, how exactly we plan to reach the kitchen is not

critical to the feasibility and cost of our overall plan. Moreover, by thinking in terms of high

level decisions first, we can avoid having to consider finding a low-level plan in unknown

space until it has been observed. Humans often reason at this high level, only refining our

abstract decisions to full trajectories when we execute a plan, thus simplifying our decision

making.

Reasoning at a high level of abstraction in this way has a long history in artificial intel-

ligence research. As an example, let us consider the classic AI problem of a robot playing

chess. To play chess in the real world, a robot needs some mechanism of observing the board

state, picking up game pieces, and placing them in legal positions. However, given a robot

which can reliably do these things, it is a waste of time to consider the act of physically

moving pieces around the board when deciding what moves to make. If we want to design

a chess playing agent, it is more efficient to describe the world as an 8x8 grid, with 32 to-

tal pieces and known dynamics (see Figure 1.1) [1]. This clearly is a useful abstraction for

chess as it is simple, and perfectly describes the relevant components of the problem. Great

progress has been made in AI in these exact types of scenarios (e.g., the Alpha Zero line

of work from Google Deepmind). Modern solutions to decision making problems like chess

generally involve collecting a large amount of data in simulation, then using a few different

models trained on this data to guide decision making. Specifically, Alpha-Zero uses experi-

ence from self-play to learn both a value function over board states, as well as a policy for

the optimal action in a given state. The agent can then use these learned functions to guide

search within the chess planning abstraction, leading to very compelling results [2].
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Figure 1.1: A visualization of how we might build an abstract planning representation for
the problem of a robot playing chess. At the lowest level, our agent might take in an
RGB image from its perspective. Using that input, we can detect individual pieces, along
with their relative positions on the board, using modern computer vision techniques. From
these detections we can construct our abstract representation, which ignores all information
unrelated to playing chess, and organizes the information we keep into a form that enables
efficient planning.

On its face, playing chess sounds a lot harder to most people when compared to walking

down a hallway and making a cup of coffee. If I ask you to either make me a cup of coffee

or win a game of chess against a grandmaster, which would you say is more difficult? Yet,

while we have been able to produce agents that easily outperform the very best human chess

players, these approaches have so far struggled to make it onto real-world robots. Why

is that? To gain insight into this question, we should look closely at the strategies which

have gained traction in chess-like domains. As mentioned above, one successful approach in

classical AI involves a combination of policy learning and planning. Next, we will consider

each of these approaches to decision making, and how they work in the context of robotics.

1.2 Making Decisions Within an Abstraction: Plans vs.

Policies

In robotics literature, there are two basic strategies for how an autonomous agent might make

decisions within an abstraction. Most of the work in this thesis is framed as a planning

problem, where an agent has some model of the world in a particular state, and a set of

actions that, when taken, change the state of that world in a predictable way. To find a

plan, the agent searches for the sequence of actions that will put its representation of the

21



environment in some desired state according to its models. This action sequence is referred

to as a plan, and can be executed from the robot’s current state.

An alternative approach to searching for a plan is to act according to some predetermined

policy. Whereas a plan is a sequence of actions that transitions the world from a single initial

state to a goal state, a policy is a function which maps each possible world state to an action

which (hopefully) progresses toward the goal. Therefore, unlike a plan, a policy identifies

which action is taken from any world state. Recently, there has been great progress in the

space of learning policies to guide autonomous decision making. When applied to robotics

problems, approaches like Reinforcement Learning (RL) [3]–[5] and Behavior Cloning (BC)

[6], [7] have enabled robots to develop standalone skills such as locomotion of a legged robot

or dexterous manipulation [8], [9]. Policy-based approaches can be widely applicable in that

they do not always require a model of the world, meaning that an agent can reason about

taking actions that are difficult to model or are partially observed. Moreover, once the policy

is formed, the agent does not have to spend time “thinking” when attempting to execute the

skill.

Unfortunately, while policy based methods can be very effective in shorter horizon tasks,

they often struggle as the horizon length grows. Consider again the coffee problem, and

imagine watching a human make coffee. At the outset, the human might start walking in a

particular direction, which may or may not lead to the kitchen. As more actions are taken,

it becomes difficult to identify what steps ultimately contributed to accomplishing the goal.

How do we assign credit for taking a step vs. picking up the coffee beans? The best action

at the outset may be to walk toward the kitchen, however, the robot might not appear to

be materially closer to its goal after doing so if the kitchen is not in view. Chess is a very

long horizon problem, yet policy based approaches can be effective in that setting. Notably

however, for a chess playing agent, our abstraction perfectly matches reality, meaning we

are able to easily acquire a mountain of data through self play in simulation. This data

is a cheap and effective training signal that allows an agent to learn which board states

are likely to lead to positive game outcomes, even if that outcome is many moves away.

While the quality of simulation tools in robotics has improved in recent years [10], [11],

this is only true in certain settings, and we cannot always assume that the data collected
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in simulation is a useful representation of the real world for long-horizon decision making.

Conversely, collecting real data on robots can be very expensive. Large companies may be

able to learn to manipulate objects using a farm of robot arms, but that is not possible in

many settings. Without access to a significant amount of training examples, policy based

approaches struggle as planning horizons grow.

Another reason we might not want our agents to make decisions solely through learned

policy is due to the hope that we have to develop robots which are useful in a number of

different contexts. Chess playing agents need only worry about chess, so we can design an

abstraction that removes any information that might be irrelevant to its task and learn a

single value function to approximate the value of a world state to guide planning. However,

we want our robots to be able to adapt to different tasks without the costly step of retraining

our models (and potentially having to collect an entirely new dataset). Even if we are able

to learn effective policies for specific skills, reasoning about when and how to deploy those

skills may still be best decided via planning. Policy-based RL and BC approaches certainly

have a large part to play in the future of robotics, but in the context of certain long-horizon

decision making problems, their limitations imply they cannot stand alone.

The work in this thesis therefore is focused on planning for decision making. When we

plan, we use a model of the world to consider how sequences of actions will affect progress

toward an agent’s goal. However, planning in the context of robotics problems has its own

set of challenges. Planning efficiency is one such limitation. While policy based approaches

can reason quickly, planning involves looking forward many steps in time. Therefore, the

computational complexity scales with the size of the environment, the length of the given

task, and the breadth of available actions. We will explore the challenges of planning in a

robotics context in the following section.

1.3 Hierarchical Planning and Downward Refinement

As we hinted at above above, planning within hierarchical abstractions in a robotics setting

presents several additional challenges which are not always present in classical AI problems.

In the case of playing chess for example, we defined a hierarchical abstraction where, at the
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highest level, the agent considers moving one of the pieces on the board to a legal position. If

this game is played with a real robot in the real world, the agent will then physically pick up

the piece, following a planned trajectory to eventually place it in the proper square. Notably,

for our chess playing robot, we can be certain that when it considers making a move, that

move can be made2. A piece is never obstructed by another such that it cannot be grasped,

and the target square is always open. Because of this, we can develop a plan fully in our

high-level abstract representation, and only consider finding a low level plan when it is time

to execute a move. In practice, the first action of the highest level plan might be making a

single move: “rook to F6”. Refining this action at a lower level of abstraction could result in

a plan like this: “move hand to rook,” “grasp rook,” “move hand to F6,” and “release rook.”

Finally, the lowest level plan for this action would correspond to the arm’s trajectory in

joint space which execute those commands. This is known as top-down planning, and is not

always possible in a robotics setting. If we try to find coffee by traveling down a hallway,

there is no guarantee that the coffee is reachable, or even present in the kitchen at all, and

we should consider what our next action would be in case the first action is unsuccessful.

Similarly, when our robot reaches the kitchen, we know that not every mug in the cupboard

is immediately graspable. If we try to pick up something in the back of the shelf, we may

first need to move other objects out of the way, or risk knocking things over.

These examples illustrate the fact that many useful abstractions in a robotics context

do not (and in fact often cannot) maintain the property of downward refinement, which is

the idea that a solution found at one level of abstraction is valid at all lower levels[12]. For

example, downward refinement holds when planning to explore a particular region of space

is still feasible when we try to compute the necessary robot trajectory. Forming abstractions

that do not have this property implies that relevant information was removed during their

creation. If we treat our coffee making task like a game of chess, and plan in a top-down

manner, we may see degraded search performance in the form of backtracking (sometimes

worse than planning without the abstraction) [12]. There are a number of cases in robotics

(planning in partially revealed environments, Task and Motion Planning, etc.) where the
2This is true under the assumption that the chess playing robot is constructed such that the entire board

is within reach of its manipulator.
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Figure 1.2: A visualization of how robotics tasks do not maintain the property of downward
refinement in their abstractions. On the left, we see the chess playing robot preparing to
make a move, and we can be confident that this move can be made. Conversely, in the center
we consider a robot going either left or right down a hallway on its way to make coffee. Which
of these actions will succeed is unclear, and the agent should account for potentially needing
to backtrack at planning time. Finally on the right we see a crowded cupboard. If our robot
attempts to grasp a mug in the back of the shelf without moving other objects out of the
way first, it will knock over those obstructions, leading failed plans.

downward refinement property of an abstraction does not hold in general. Most available

paths in a building do not lead to a kitchen, and the majority of potential grasps in a crowded

cupboard do not yield collision free robot configurations. Planning naively in these types of

problem settings can lead to inefficient planning, and sub-optimal solutions.

The goal of hierarchical planning is to produce a plan which is consistent across all

increasingly complex layers of hierarchy before acting. In the case of attempting to pick

up a coffee mug, this might entail first deciding which cup to grasp, then how to grasp it,

and finally the trajectory that takes the robot from its initial configuration into one where

it is holding the mug. However, as we have discussed, if the cupboard is particularly full,

many potential grasps are infeasible, and trajectories that take the robot to the valid ones

might bring the robot into collision with different obstacles along the way. Depending on the

setting, if we consider high level actions naively, our planner will have to backtrack up the

hierarchy frequently to find a feasible solution. Moreover, there are settings (like in partially

revealed environments) where refining a plan to the lowest level is impossible without actually

executing the action. In these cases, the robot will have to physically backtrack when a plan

fails.

If the hierarchical planning problem is so difficult, how then are humans able to act
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quickly and reliably in the world? Returning to the coffee making example, we observed

that humans often plan at a high level of abstraction before refining their decisions into

low level motor actions. However, unlike many robotic systems, humans have some learned

intuition about what actions are actually feasible, and which elements of the world are even

relevant to a given problem. If placed in an unfamiliar building for example, most humans

would reason that coffee is found in a kitchen, and so should not enter offices or classrooms

to find their target. When planning to pick up an object, a human knows that if they see the

mug blocked off in the back of a shelf, they will need to move obstructing objects out of the

way before attempting a grasp. On the whole, humans are able to form efficient abstractions

from perception, then, from experience, make predictions about when to trust which actions

in those abstractions are both useful and feasible. The intuition that enables a human to

plan and act quickly in such a massively complex problem is something which we would like

to bestow upon our robots.

1.4 Contributions

The motivation behind this thesis is as follows. Hierarchical abstraction is necessary for

enabling efficient planning in complex robotics problems. However, the abstractions we can

build given the limitations of a real-world robot are inherently imperfect, and important

properties like downward refinement do not always hold. As a result, the solutions returned

by higher levels of a planner are often found to be invalid when refined at a lower level, leading

to backtracking, wasted computational effort, and failed plans. The central idea of this

thesis is this: we can improve the efficiency of hierarchical decision making for real

world robotics by explicitly reasoning about the imperfections of our abstractions

during planning. We can identify when we have discarded potentially relevant information

in the process of forming our hierarchical representation, and use this information to learn,

either online or from experience, properties about our abstractions. These predictions, such

as which high-level actions can be refined at a lower level, or which objects in the robot’s

environment are relevant to its task, allow us to reason about when we can trust our planning

abstractions, and therefore guide efficient search within them. In the following chapters, we
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present research which proves this idea across several different robotics settings, each of

which we briefly introduce below.

Decision Making in Partially Revealed Environments: In Chapter 3 we address

the problem of planning in the presence of uncertainty; in particular, we consider problems

where a robot must solve some task in a previously unexplored environment. In such settings,

abstract plans cannot be refined until the robot attempts to execute them because the world

is not fully known at planning time. As a result, if the decision of which action to take is

made naively, our robot may waste effort exploring regions of the environment irrelevant

to its task, forcing the agent to physically retrace its steps at execution time. Building off

work in Stein, Bradley, and Roy [13], we first define high-level actions derived from the

environment and the given task itself, forming an abstraction which reduces the horizon of

the search problem, but which we know does not satisfy the property of downward refinement.

To overcome the imperfections of our abstraction, we attempt to estimate how each action

contributes to our agent’s progress towards completing its task. As the map is revealed,

we predict the cost and the probability of success of each action from images captured by

the robot and an encoding of that action using a trained neural network. In this work

we consider complex tasks with temporal constraints, creating a difficult search problem.

We propose a stochastic planning approach which uses our learned predictions to guide the

search for the minimum-expected-cost plan. Moreover, our learned model is structured to

generalize across environments and task specifications without requiring retraining. Over

several different environments, varying in scale from a handful of rooms, up to the size of a

building on MIT’s campus, we demonstrate an improvement in total cost in both simulated

and real-world experiments compared to a heuristic-driven baseline. The contributions in

Chapter 3 were originally published in Bradley, Pacheck, Stein, et al. [14], and presented at

the International Conference on Robotics and Automation in 2021.

Learning to Guide TAMP: In Chapter 3, we address planning in a setting where we

can not confirm the feasibility of an abstract plan until attempting to execute it; however,

there are many instances in robotics where we can refine our solutions to a low-level at
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planning time. In Chapter 4, we consider the problem of efficient hierarchical decision

making in TAMP, where solutions take the form of high-level actions parameterized by low-

level trajectories. Recent work in TAMP has enabled a new class of algorithms to better take

advantage of off-the-shelf black-box samplers and solvers to find solutions to sub-problems

in an abstract plan, such as motion between configurations, or inverse kinematics solutions.

However, not all sub-problems are equally valuable, and many high-level plans turn out

to be infeasible at a low level depending on the geometry of the scene. Existing planners

typically rely on heuristics to determine which sub-problem to attempt to solve next, unable

to reason about the expected cost of doing so in the broader context of the full plan until they

attempt to actually solve the sub-problem directly. As such, these methods often attempt

to solve sub-problems which are unlikely to succeed, leading to back tracking at planning

time and wasted computational effort. We propose a novel approach for solving TAMP

problems, utilizing learned models trained from experience to inform when to attempt to

solve potentially expensive sub-problems using an encoding of the geometry of the scene.

We take advantage of existing highly optimized planners by learning representations that

can be integrated with existing abstractions to guide search in long-horizon TAMP domains.

We test our approach in two simulated domains, as well as on a real Panda robot, showing

improvement in planning and execution time compared to a heuristic driven baseline. The

work in Chapter 4 was originally published in Bradley and Roy [15], and presented at the

International Symposium of Experimental Robotics in 2023.

Hierarchical Planning in Hierarchical Scene Graphs: We demonstrate in Chapter

4 a planning approach which can reduce the time required to find a plan in many TAMP

settings. However, as tasks become more complex and the scale of environments grow, how

we build our planning abstraction becomes increasingly important. Recent work in the con-

struction of 3D scene graphs has enabled mobile robots to build large-scale metric-semantic

hierarchical representations of the world [16]. These detailed models contain information

that is useful for planning, however an open question which remains is how best to derive

a planning domain from a 3D scene graph that enables the efficient computation of exe-

cutable plans. Including elements from a scene which are irrelevant to a successful plan into
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our planning abstraction can lead to high branching factors during search, and therefore

inefficient reasoning. In Chapter 5, we present a novel approach for defining and solving

TAMP problems in large-scale environments using hierarchical scene graphs. We describe a

method for building sparse problem instances which enables scaling planning to large scenes,

and we propose a technique for incrementally adding objects to that domain according to

online feedback during planning time so as to minimize spending computation on irrelevant

elements of the scene graph. Finally, we define a tri-level hierarchical planner to efficiently

produce plans within our abstraction. In this way, we again use low-level information (here

in the form of feedback from the scene’s geometry), to guide hierarchical decision making.

We evaluate our approach in two real scene graphs built from perception, including one

constructed from the KITTI dataset. Furthermore, we demonstrate our system in the real

world, building our representation, planning in it, and executing those plans on a real robotic

mobile manipulator. These contributions were originally published in Ray, Bradley, Carlone,

et al. [17], and presented at the International Symposium of Robotics Research 2024.

Over the next few chapters, we will discuss approaches to robotic planning which attempt

to identify how to effectively guide high level search with low level information efficiently in

a task agnostic way. First however, we will discuss the existing body of research in the field

of robotics that is related to and built upon by the novel contributions of this thesis.
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Chapter 2

Background and Related Work

We aim to enable our robots to solve complex tasks set in large, real-world environments.

This involves addressing complications introduced by the scale, configuration, and uncer-

tainty of the environment. In this thesis, we frame decision making as a hierarchical planning

problem. Recent work in solving these types of problems is broad, and the space of relevant

literature spans across a number of different research areas. In this chapter, we discuss hier-

archical planning, focusing on the settings of 1) Task and Motion Planning (TAMP), 2) large

scale planning problems, and 3) partially revealed environments. In particular, this chap-

ter will provide useful background to the original research presented in later chapters. We

also discuss existing planning approaches, and identify the shortcomings which motivate our

contributions. To that end, we first define the hierarchical planning problem, highlighting

where different planning approaches may be necessary depending on the problem setting.

2.1 Hierarchical Planning

In order for a robot to traverse and interact with its environment, commands must be sent to

its motors, which serve to produce changes in the robot’s configuration, moving it through

the world. With this in mind, the goal of a robotics planning problem is to solve for a

minimal cost trajectory in joint space for a robot to follow which satisfies some specified

goal. A notable subfield within the larger umbrella of robotic planning research is motion

planning. Stated formally, a motion planning problem [18] for a robot with d-degrees of
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freedom can be modeled as the search for the optimal trajectory of a point representing the

robot’s configuration through a d-dimensional configuration space Q ⊆ Rd [19]. A satisfying

trajectory brings the robot from its initial configuration to one of a set of goal configurations,

where obstacles can be represented within Q as inadmissible configurations. The simplest

way to attempt to solve a motion planning problem is by discretizing Q, and searching for a

path through the resulting graph using search techniques like Dijkstra’s algorithm or A∗ [20],

[21]. These approaches have a known worst-case complexity of O(branching-factordepth),

and therefore suffer struggle as the horizon length of a problem grows. More sophisticated

approaches like sample-based motion planning [22], [23] and trajectory optimization [24],

[25] can be more efficient in practice, though are still impacted as dimension and depth of

search increase.

We are interested in solving problems where the robot must not only move through the

world, but potentially alter the state of that world as well. This might mean that our agent

is required to solve subtasks in a particular order, pick up objects, or otherwise directly

interact with its environment. Unsurprisingly, this complicates our problem definition sig-

nificantly, as the parameters and constraints of the motion planning problem for navigating

from configuration A to configuration B may vary greatly from the parameters for doing so

while holding an object (e.g., the robot’s gripper may be constrained to be in contact with

said object such that it is securely grasped). The point in a plan where the agent’s con-

straints change (in this case, when the object is grasped) define a different planning mode. In

Multi-Modal Motion-Planning (MMMP) problems, the intersection of configurations where

the constraints for two modes are satisfied define hyper-planes in configuration space—think

of the subset of configurations where a robot successfully grasps an object on a table—which

are often of lower dimension than the configuration spaces of either mode. This implies that

the probability of sampling configurations from these mode switches is identically zero, and

so we cannot hope to do so naively with traditional motion planning techniques [19].

In practice, we can solve these kinds of problems by making discrete decisions of which

planning modes the robot will switch between, intentionally sampling configurations on these

transition manifolds, and treating the search for trajectories between these points as separate

motion planning problems [19]. This strategy defines a planning abstraction which naturally
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exists in a hierarchy. At the highest level, we solve discrete decision making problems (e.g.,

which object to grasp, what surface to place it on, etc.), and use those solutions to guide

the search for lower level parameters like configurations and trajectories. The form of the

interplay between solutions to the higher- and lower-level problems is one feature which

separates different approaches to hierarchical planning.

2.1.1 Top-Down Planning

The simplest strategy for a hierarchical planning problem is to solve for a plan at the highest

level of abstraction first—i.e., choosing which transition manifolds to consider—and only

solving for the low-level trajectory during the execution of that plan. This is appealing for a

number of reasons, chief among them being it can be difficult in certain settings to construct

abstractions where a planner can produce useful low-level trajectories efficiently. The earliest

examples of robots planning in the real world, for example the SHAKEY robot, took this

approach out of necessity [26]. At planning time, SHAKEY considered abstract actions (e.g.,

which room to navigate to), and only determined if its decisions were actually feasible when

attempting to execute those actions.

A common formalism for encoding discrete planning problems—such as those found at

the highest planning hierarchies—is the Planning Domain Definition Language (PDDL) [27]1.

In a PDDL problem, a state I is a set of facts, where each fact is an instance of a boolean

function called a predicate p(x̄) ∈ P , which is parameterized by a tuple of symbols x̄ =

[x1, . . . , xk] from a given set of symbols2 x ∈ O. Each symbol xi is a discrete element of a state

variable. Transitions between states are defined by actions a(x̄) ∈ A (also parameterized

by symbols) which are expressed as two sets of predicates: preconditions Pre(ai) and effects

Eff(ai). An action’s preconditions determine if an instance of that action can be applied

from a particular state I, and its effects define the set of facts that are added (Eff+(ai)) or

removed (Eff−(ai)) from the state I. One special case of an effect is to increase a metric of
1SHAKEY utilized a STRIPS style planning approach, which is similar to PDDL [26]
2Commonly, the elements x ∈ O are referred to as objects. However, some subset of these objects may

refer to actual physical objects in a scene (e.g., a block on a table), while others represent something like a
region or trajectory. To disambiguate the overloaded object term, in Chapter 5 we choose to refer to these
elements as symbols, and note the discrepancy here.
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cost, allowing us to compare the relative value of two plans. A planning domain is composed

of lifted sets of predicates P and actions A, and a problem instance P = (P ,A,O, I0,G)

combines a domain with an initial state I0 and a set of goal states G, parameterized by

symbols O. If the current state is in the set of goal states, the problem is solved. Below we

see a simple example of a PDDL action for moving from one room to another:

:action moveRoom

:parameters (?x - robot ?r1 - room ?r2 - room)

:precondition (and (inRoom ?x ?r1))

:effect (and (inRoom ?x ?r2)

(not (inRoom ?x ?r1))

(increase (total-cost) 1))

Solutions to planning problems encoded in PDDL take the form of a sequence of parameter-

ized action instances π = [a1(x̄1), a2(x̄2), ..., an(x̄n)], where the state after taking each action

satisfies the precondition of the following action [19]. If the effects of the final action in a

plan π result in a state contained in the goal set, the plan solves the problem. A range of

solvers [28], [29] have been developed to solve tasks specified in PDDL.

We note that, in the moveRoom action shown above, there is no reference to how the

robot will move between these rooms. Therefore, if such a path does not exist in reality,

the plan will not be executable. If a decision made by a top-down planner is invalid, the

robot will be forced to physically backtrack and choose a different path. SHAKEY was

unable to refine a high-level plan to low-level trajectories during planning in part because,

at the time it was being developed, algorithms for low-level motion planning were not yet

efficient enough (nor were on-board computers powerful enough) to be used on a real robot.

Over the intervening decades however, great progress has been made in the space of motion

planning. Notably, low-level motion plans can now be solved at incredibly high rates on

CPUs [30], meaning it is not always necessary to delay the process of refining high-level

plans to low-level trajectories. However, there do remain certain robotics problems where it

is still challenging to do anything but plan in a top-down manner. One such case is in the

presence of uncertainty, particularly when a robot is required to act in an environment that

it has only partially explored. We consider relevant approaches for solving these types of
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problems later on in section 2.3.4.

2.1.2 Task And Motion Planning

In problem settings where we are able to build an accurate model of the world, naive top-down

approaches often produce sub-optimal plans in robotics settings. As discussed in Chapter

1, planning abstractions in robotics problems often fail to satisfy the property of downward

refinement. Therefore, many modern hierarchical planning approaches will attempt to refine

their high-level plans into low-level trajectories before attempting to execute them. Research

in this direction falls under the umbrella of Task and Motion Planning (TAMP), which

augments the MMMP problem with non-geometric actions [19].

The TAMP problem jointly considers elements of high-level task planning [31], [32] and

low-level motion planning [33] in an attempt to solve hybrid discrete/continuous, multi-modal

planning problems [19]. As discussed above, each motion-planning sub-problem within the

larger TAMP problem is differentiated by its constraints; we can therefore view TAMP as a

hybrid constraint satisfaction problem [19], implying that any solution to one sub-problem

must also be careful to not violate the constraints of another. Most TAMP methods take

one of two approaches, either solving the full set of constraints jointly or treating each sub-

problem individually. In the first approach, the problem is written as one large constrained

optimization problem (typically a Mixed Integer Program), where discrete components such

as which block to pick up are represented by integers, and the trajectory optimization is

real-valued [19], [34], [35]. These joint optimization strategies have certain advantages,

as satisfying a single optimization solves the entire problem. However, such approaches

are often limited in that certain aspects of the problem may not be easily differentiable,

efficiently reusing computation can be difficult, and it might not always be straightforward

to incorporate off-the-shelf external samplers or solvers [19].

The primary alternative approach is to consider solving for sets of parameters that satisfy

small groups of constraints, and combine the solutions into actions and plans. For example,

we can sample a block placement on a platform that is free of collisions, then confirm

it is positioned so that there exists a kinematically feasible configuration to execute such

a placement. Approaches that break up the problem in this way can take advantage of
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external tools that are optimized for specific sub-problems (e.g, Fast Downward for the

discrete decision making problem, efficient inverse-kinematics solvers to find collision free

high-dimensional configurations, or neural networks to sample stable grasps) [19], [36], [37].

In order to solve TAMP problems, we need a method of specifying the task to our robots.

Top-down planning approaches utilize PDDL to encode their planning domains, however the

continuous nature of TAMP problems makes discretizing and encoding a planning problem

directly in pure PDDL infeasible. For certain actions, preconditions may include facts that

are either cumbersome or impossible to add to the domain. For example, it is unclear how

one would enumerate all possible configuration objects for a 20-DOF robot without creating

a potentially intractably large problem. To account for this, Garrett, Lozano-Pérez, and

Kaelbling [36] define PDDLStream. PDDLStream problems augment PDDL encodings with

object generators called streams s ∈ S, which allow the planner to represent sub-problems

relevant to the problem. Streams consist of: sets of (1) input and (2) output objects, (3)

domain predicates which must be true in the input, (4) action predicates to be certified if

the queried stream is successful, and (5) an external function that is called when the stream

is queried. When an action has a precondition which can only be certified by a stream, that

stream can be queried in an attempt to solve the associated sub-problem, and determine if

said precondition can be certified to be true. In this way, we can define a discrete planning

problem in PDDL, and add the solutions to continuous sub-problems to that domain as

needed. We consider encoding TAMP in PDDLStream in greater detail in Chapter 4.1, and

refer the reader to Garrett, Lozano-Pérez, and Kaelbling [36] for a more detailed description.

Different TAMP techniques can be further classified into one of three categories [19]. 1)

Sequence first strategies solve for an abstract plan and then attempt to solve for the param-

eters which would produce a concrete plan. These approaches are most like the top-down

strategy discussed earlier. However, if we have a mechanism for backtracking during plan-

ning, we can search for new high-level plans when refinement fails [38]–[40]. 2) Satisfaction

first approaches flip this idea on its head by solving select sub-problems first, then using

those concrete parameters in the search for high-level action plans [41]–[43]. For example,

we can solve for various grasps on a number of objects, any of which might be used in a

plan which moves the object. If a complete plan cannot be found with the given parameters,
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more sub-problems can be incrementally solved for new ones. These approaches can struggle

in cluttered environments, where many objects in a scene are irrelevant to the final plan. 3)

Finally, we can interleave the search for high-level plans and low-level parameters, and thus

exploit the advantages of each strategy [36], [37], [44].

There are several TAMP solvers that have been developed to use PDDLStream to define

TAMP problems, some of which we have already touched on. One general approach is to

optimistically assume that any time a stream is needed to certify an action predicate, it can be

queried successfully, then generate abstract plans π, which contain actions that have unknown

parameters as a result of this assumption. The approach outlined in Garrett, Lozano-Pérez,

and Kaelbling [36] is an interleaved method, where we can define certain “pre-discretized”

elements, as well as those sub-problems for which it is more efficient to delay solving. Ren,

Chalvatzaki, and Peters [37] similarly encode TAMP problems in PDDLStream, however,

search through potential plan skeletons using stochastic search. Regardless of the strategy

however, TAMP remains a complex planning problem. As proven in Vega-Brown and Roy

[45], TAMP is P-SPACE complete, and so great care must be taken to plan intelligently.

Recent research has attempted to overcome the inherent difficulty of TAMP by guiding

decision making with learning.

2.1.3 Learning to guide TAMP

There has been significant recent progress in improving planning for TAMP problems using

learned models. Most relevant to the work in this thesis are those contributions which at-

tempt to accelerate search from experience [46]–[53]. Some learn explicitly which components

of a given domain are relevant for a particular TAMP problem, though do not further guide

search within their reduced domain [49], [50]. Kim, Kaelbling, and Lozano-Pérez [51] learn

an action sampling distribution for geometric motion planning problems, but do not take

advantage of off-the-shelf samplers or solvers. Kim and Shimanuki [48] learn a Q-function as

a heuristic to use in search for a geometric TAMP problems, however do not learn to bind

the continuous parameters of its actions. Closely related, Khodeir, Agro, and Shkurti [53]

specifically score the relevance of streams within the PDDLStream framework, and improve

search for stream-plans. However, they do not consider the search for an action’s param-
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eters. Finally, the work in Xu, Ren, Chalvatzaki, et al. [46] learns a feasibility predictor

from images to accelerate stochastic tree search [37]. However, this work does not predict

costs, and thresholds the predicted feasibility to bound branches in search. This can lead to

planning failure if a feasible branch is below the defined threshold.

We address the problem of guiding TAMP in Chapter 4. In the following section, we

consider how we can build the representations needed for hierarchical planning on a real-

world robot.

2.2 Building Hierarchical Planning Abstractions

In order to make decisions on how to act in the world according to the approaches considered

in Section 2.1, a robot must have access to some sort of representation of its environment,

which it can then use to derive a planning abstraction. In many problems considered by the

AI planning community—chess is one of these—the planning abstraction can be defined by

hand[1]. However, a robot operating in the real world may be required to deduce its planning

representation from information it receives from its sensors. Robotic mapping can be used

to create useful representations of an environment from sensor measurements [54]. The term

useful in the above sentence can mean different things depending on the robot’s capabilities

and the requirements of any potential assigned tasks. In the context of planning, a map is

useful insofar as it allows a robot to efficiently solve for an executable plan to move through

and interact with the space it represents.

The type of environmental representation appropriate for a particular robot therefore

depends in part on the way it perceives the world, i.e., the sensors available to it, as well

as the task it is trying to accomplish. Consider a robot equipped with sensors that are able

to determine the distance to obstacles within direct line of sight. Hardware like LIDAR

or SONAR are examples of such specialized sensors that provide this information and are

common in the field of robotics [55]. Similarly, range information can be extracted from depth

cameras (RGB-D), or even a calibrated stereo camera system. Tools such as these are well-

suited to build dense geometric representations of the world which store information relevant

for avoiding obstacles during navigation. However, we are interested in giving our robots
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tasks beyond simple navigation, and so a representation of free space may be insufficient

for producing useful planning models. To build more detailed maps, we require perception

systems which can identify relevant non-geometric, semantic information in a given scene.

Recent progress in the area of deep learning has enabled real-time object detection and

semantic segmentation of camera images [56], [57], which in turn has made possible the

building of hybrid metric-semantic maps online [16].

2.2.1 Metric Representations

One of the most common map representations used in robotics (and one of the first hypoth-

esized) is the occupancy grid. Developed by Elfes and Moravec in the 1980’s, occupancy

grid mapping is a technique to convert depth measurements into a dense representation of

obstacles in the world [58]–[60]. Occupancy grids probabilistically represent the world as a

discretized grid, where each cell is either free space, occupied by an obstacle, or unobserved.

An advantage of this representation is that it is well understood both how to construct and

plan through such a grid [20], [21]. Furthermore, because a grid can explicitly represent

unknown space, it is possible to generate plans through an occupancy grid which can be use-

ful for navigation through partially explored environments. In fact, the work in Chapter 3

takes advantage of this property. In higher dimensions, volumetric models [61], point-clouds

[62], and 3D meshes [63] are all ways to perceive and represent the observed free space of an

environment. However, simple occupancy information is not sufficient if we want our robots

to be able to solve complex tasks beyond navigation.

In order to enable our robots to solve more complex tasks, we must include information

beyond simple geometry when building our maps. For example, we can further augment an

occupancy grid with semantic labels (e.g., whether a light is on or off or the color of a block)

to form a Labeled Transition System (LTS). We delve deeper into the semantics of an LTS

in Chapter 3.1.1, but LTS can be thought of as an occupancy grid, where each element in

that grid has some semantic marker associated with it. Like an occupancy grid, this label

could indicate that the cell is occupied by an obstacle, however a cell might also have other

labels. For example, if our cameras detect coffee beans within a particular grid cell, we

apply a coffee beans label to that cell in the LTS. Beyond two dimensional representations,
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we can add semantics to volumetric [64] and mesh [65] representations. These types of hybrid

semantic-geometric abstractions allow a robot to represent tasks such as moving to particular

semantic regions in a map (perhaps in some specific order). They are particularly useful for

the kind of top-down planning approaches discussed in section 2.1.1, and later in Chapter 3.

However, if we want our robot to be able to reason about actions in higher dimensions (for

example, actually moving an arm to pick up the coffee beans) we must construct hierarchical

world models to enable hierarchical planning methods.

2.2.2 Hierarchical Mapping

In order to utilize hierarchical planning approaches discussed in Section 2.1, our planning

domains must contain both high-level abstract elements (like objects), as well as low-level

geometric information. The primary aim of Simultaneous Localization and Mapping (SLAM)

research is to accurately estimate a robot’s trajectory through space from sensor input, and

so build a factor graph of landmarks and poses which are optimized using bundle adjustment

[66]. The goal of accurate map building is somewhat, but not perfectly, aligned with our

interests, which are to build a detailed hierarchical representation that is useful for planning.

For example, one line of research in the SLAM community includes object detections as well

as metric information in the map representation [67], [68]. These objects can be useful for

the purposes of localizing an agent within its map, but also identifying elements in a scene

a robot may be able to manipulate or otherwise interact with.

There have been focused efforts in the direction of hierarchical map building for the pur-

poses of planning. Early work in hierarchical mapping set out to combine low-level dense

metric maps with higher-level topological representations [54], [69]. Using these topo-metric

abstractions, hierarchical planners can solve navigation problems first quickly in the topologi-

cal layer, then refine solutions to trajectories in the dense, metric level. In higher dimensions,

there has been substantial recent work enabling construction of information-rich 3D scene

graphs, initially introduced by Armeni, He, Gwak, et al. [70]. Subsequent work focused on

building 3D scene graphs from real-world sensor data [71], real-time performance [72], [73],

and improving the higher-level abstractions [74], [75]. The strong performance of foundation

models on open-vocabulary tasks (e.g., Large Language Models such as ChatGPT [76]) has
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led to a series of works on combining open-vocabulary language embeddings with 3D scene

graphs [77]–[79]. These open-vocabulary works all feature object navigation or retrieval tasks

executed on real robots, although the task structure is simple and the focus is on mapping

natural language to an object grounded in the scene graph.

These maps often have a semantically labeled metric mesh at the lowest level, with higher

levels of abstraction layered on top. One notable representation with this structure are Hydra

scene graphs, presented in detail by Hughes, Chang, and Carlone [16]. The specific layers of

a Hydra scene graph are as follows:

1. Metric/Semantic Mesh: The lowest level of a Hydra scene graph is a triangular

mesh, where nodes are labeled according to semantic class predicted by on-board se-

mantic segmentation predictions.

2. Objects and Agents: The second layer is composed of objects and agents (such as

humans or robots), generated by identifying and clustering regions of homogeneously

labeled mesh elements. If a cluster is large enough (and fits the definition of a known

object), that object is included in this layer.

3. Places and Structures: Structures define elements in the scene like walls, which

divide free space. Places conversely represent clustered regions of free space, indicating

where a robot may be able to safely travel. Edges connecting place elements imply

traversability (though this is not always the case in practice).

4. Rooms: Levels 4 and 5 of the scene graph contain information relevant to higher levels

of connectivity. For indoor environments, at level 4 we cluster places into rooms.

5. Buildings: We can further cluster connected rooms in buildings. These regions can

be used to guide hierarchical planning. Notably, there are versions of Hydra where the

higher levels of abstraction are not defined by hand, but are more adaptable, allowing

the framework to be used in a variety of settings (including outdoors) [75].

In the following section, we introduce research related to planning efficiently within 3D scene

graphs.
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2.2.3 Planning in Large Scale Environments Using Scene Graphs

Scene graphs, such as Hydra, are useful representations which can allow agents to encode

large environments. In order to use these models for planning, there has been recent work

focused on deriving structured planning domains from 3D scene graphs. Agia, Jatavallab-

hula, Khodeir, et al. [50] derive a PDDL representation for task planning from scene graphs.

The amount of data contained within a scene graph representing a large environment can be

quite significant. Therefore, the richness of data stored in a scene graph can be overwhelming

to a planner, and so the authors utilize the graph’s hierarchy to sparsify their representa-

tion and make planning tractable. Specifically, the authors remove all symbols that are not

related to an element specified in the agent’s goal (or related higher-level symbols) in order

to prune the planning domain. For example, if the robot is tasked to go to a particular

place, all other places are removed, as are rooms or buildings that the given place is not in,

etc. Due to this aggressive pruning, the approach used by Agia, Jatavallabhula, Khodeir,

et al. [50] is only guaranteed to produce valid solutions for very specific planning domains,

and it is unclear how to extend this approach to a more general set of planning tasks. Dai,

Asgharivaskasi, Duong, et al. [80] present a method for grounding natural language com-

mands in LTL formulae, leveraging the hierarchy of the scene graphs to accelerate planning.

Unfortunately for both of these approaches, scene graphs built in the real world may not

satisfy the property of downward refinement [12], breaking many of the assumptions in sym-

bolic task planning. The existence of low-level geometric constraints means that aggressive

pruning and downward planning approaches lead to plans which cannot be executed in the

real world. In Chapter 5, we address this by deriving TAMP representations from scene

graphs, and consider how we can reduce the size of these domains while accounting for the

imperfections in the scene graph abstraction.

There has recently been additional work in accelerating TAMP. Some efforts focus on

identifying superfluous elements in scenes which would otherwise distract search. Silver,

Chitnis, Curtis, et al. [49] learn to predict which symbols are relevant to a particular TAMP

problem. Khodeir, Sonwane, Hari, et al. [81] and Vu, Migimatsu, and Bohg [82] both address

PDDLStream’s poor scaling as the number of objects grows, with Khodeir, Sonwane, Hari, et
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al. [81] proposing a algorithm that guides the search through task skeletons based on failures

by the motion planner and Vu, Migimatsu, and Bohg [82] introducing a more intelligent

method for instantiating streams. Meanwhile, Khodeir, Agro, and Shkurti [53] and Bradley

and Roy [15] learn to guide search through predictions of relevance or feasibility. These

approaches are complementary to the work presented in Chapter 5, though learning in large

scene graph suffers from issues of generalization. Outside of learning based approaches,

Srivastava, Fang, Riano, et al. [39] attempt to guide TAMP from failed motion plans, much

like we do in Sec 5.2.4, however do so by adding additional goal conditions, an approach

that can struggle certain settings, but can be complementary to our own. In Chapter 5, we

propose an approach to pruning large-scale scene graphs which enables efficient planning in

these domains.

2.2.4 Deriving Abstractions over Actions

So far in this section, we have discussed research related to forming hierarchical abstractions

of a robot’s environment to enable efficient planning. However, we have not yet considered

how the actions the robot can take in those environments are derived. There is a long history

of research in defining abstractions over actions for robot planning problems [83]. Often, in

representations like PDDL, these abstractions are defined by hand, and correspond to the

capabilities of robot [19]. However, recent work has shown that deriving an action set from

the environment according to some predefined rules can lead to more efficient planning[13].

We often take this approach in this thesis. More recently, there has been work in the direction

of autonomously generating symbolic representations from low-level robotic skills [1], [84].

In this way, an agent can use experience to shape its world model, and define how it can act

within that model. Though we do not use this approach in this thesis, these strategies are

complementary to our own, and can be incorporated in future work.

2.3 Planning in Partially Revealed Environments

The work discussed in Section 2.2 aims to enable an agent to build a detailed map as it

travels. However, until the entire world has been observed, there will be areas for which
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the robot does not yet have an accurate model. In this section, we provide background and

related work to the research presented in Chapter 3, wherein we address the question of

hierarchical planning in partially revealed environments.

Planning in the presence of uncertainty is a ubiquitous problem in robotics. Every part

of the robotic system is, in some way, affected by the reality that we cannot know the true

state of the world, nor can we know how our actions will affect that state exactly. No sensor

can give an agent instantaneous and complete knowledge of its environment at every point

of time; robots can only observe what is in direct line of sight and within some limited

range. Laser range sensors, RGB cameras, and other instruments may only be reliable up to

a certain distance, and none of these “see” through physical obstructions like walls. Even if a

robot’s sensors are perfectly noise free, and detect everything within their range exactly, there

will inevitably be regions of the environment where the robot has incomplete information.

Despite this, we still want our robots to make informed decisions even when the world is not

fully known.

2.3.1 Modeling Planning Under Uncertainty as a Partially Observ-

able Markov Decision Process (POMDP)

The problem of autonomously acting within unknown environments can be formulated as

a Partially Observable Markov Decision Process (POMDP)—a generalization of an Markov

Decision Process (MDP) [85]. In an MDP, an agent knows exactly the state of the world,

what actions it can take for each state, and the possible outcomes of each action in each

state. The defining characteristic of a POMDP however, is that the agent does not have full

knowledge of the state of the world at all times, and so must maintain a belief of the true

state based on its observations [85]. The belief at a particular state bt(s) can be defined as

the probability that s represents the true state at a given time. The belief is a sufficient

statistic for all past observations and the initial prior belief state of an agent, meaning the

distribution encodes all information needed to act under uncertainty [85], [86].

A POMDP can be written as an n-tuple: (S,A, T ,R,O,Ω, γ, b0), each element of which

we define below:
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1. State S: The state may represent both the internal state of the robot Q, and the state

of the world, usually represented by a map M, such that S = {M×Q}. Depending on

the robot, a robot’s state can have many components such as various joint angles and

velocities, or be as simple as a pose in 2D space. The state of the map, which can be

continuous or discretized (like an occupancy grid), does not change with actions. However,

our belief about the map does change with each observation, hence decisions are made

with respect to the belief.

2. A Actions: The actions available to the robot at any given instance. An action takes

the robot from one state to another with some probability. In many robotics problems,

the action set is some low-level control, like changing the steering angle or velocity. We

might also consider higher-level abstract actions. This will be discussed in greater detail

in Chapter 3. In solving a POMDP, the robot will attempt to find the optimal action for

a given state with respect to some objective function.

3. T Transition Probability: The probability that taking a certain action will result in the

robot being in a given state. For example, if a wheeled robot is directed to make a turn,

there may be some probability that the wheels will slip, and the robot will end up in a

different state than what was intended.

4. R Reward: The reward (sometimes formulated as a cost) is an element in the agent’s

objective function that the autonomous agent is maximizing (or minimizing in the case

of cost) to solve the POMDP. Rewards can be given for taking certain actions, or for

reaching intermediate states. We can also define the reward such that the optimal plan a

robot can find is the one that reaches the goal in the shortest possible time.

5. Ω Observation: An observation is all information that an agent receives about the world

at a given time. The observation contains information about the state of the world, and

is generated probabilistically according to some known distribution. For the case of a

discretized state-space such as an LTS, an observation contains information about which

cells in the grid are occupied by obstacles.

6. O Observation Probability: The conditional observation probability represents the prob-
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ability that a given observation correctly represents the world. The uncertainty of which

observation is generated can come from noise in the sensors, though in this work we

are primarily concerned with incomplete observations received by a mobile robot. For

example, if the robot receives an observation from a laser-range sensor, it only has infor-

mation about the environment that is in direct line of sight from the sensor. Obstacles

occlude whatever is behind them, so measurements of the occluded region would have a

conditional observation probability of zero.

7. γ Discount Factor: A scalar value 0 ≤ γ ≤ 1, which accounts for the present value of

future rewards. The discount factor is relevant when we attempt to compute the relative

rewards (or costs) of different sequences of actions. A high discount factor implies that

future and present reward are valued similarly. In our work, we do not discount future

reward at all, and so set γ = 1.

8. b0 Initial Belief: Our prior for the initial state of the world. In a setting with perfect

local sensing, this would be represented by certainty over observed space. Without any

additional information, we would conversely have a uninformed prior over all unobserved

space.

To “solve” a POMDP, the agent searches for the best action it can take in a given state,

with the goal of optimizing some objective function. The expected cost of an action under

the optimal policy can be computed recursively using the Bellman Equation [87]:

Q∗(bt, at ∈ A(bt)) =
∑
bt+1

P (bt+1|bt, at)
[
R(bt+1, bt, at) + γ min

at+1∈A(bt+1)
Q(bt+1, at+1)

]
(2.1)

where P (bt+1|bt, at) is the probability of reaching belief bt+1 taking action at from belief bt,

and R(bt+1, bt, at) is the expected cost (or negative reward of doing so).

Eq. (2.1) is often referred to as doubly exponential, and is extremely challenging to com-

pute. Over a given planning horizon T , the complexity grows exponentially first over the

available actions at each step. The same is true for fully observable MDPs, however, in a

POMDP, we must also account for the partial observability of the problem. At each step,

we consider an action not only for all previous actions, but also for all possible histories
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of observations (action observation pairs). As a result, any problem which we frame as a

POMDP can become generally intractable as action and observation spaces grow.

2.3.2 Solving POMDPs Exactly and Approximately

Work on solving navigation and exploration tasks in uncertain environments using POMDPs

dates to the mid-1990’s [85], [88], [89]. Due to the computational challenges of solving

POMDPs however, most techniques established through 1990 were too inefficient to be used

on anything beyond very simple cases (2-5 states at most) [90]. In 1994, Cassandra, Kael-

bling, and Littman pushed the field forward when he published his work on the “Witness

Algorithm,” which is capable of solving POMDPs in environments with up to 16 states ex-

actly [91]. This size of state space is obviously quite limiting, and so approximate methods

for solving POMDPs are often used in practice. Approaches like point based value iteration

[92] and Q-learning [88] are a few such methods. Despite these advancements however, as

the size of environments expands beyond simple toy examples, these methods are no longer

tractable for a robot operating in real time.

Recent efforts have been made to approximate POMDPs using stochastic search to solve

problems of a larger scale in an any-time manner. One class of approaches involves solving

smaller problems which yield a policy similar to the solution to the full POMDP. DESPOT

(and its derivatives) search a set of randomly sampled scenarios, which helps alleviate the

problems associated with solving POMDPs in high-dimensional state-spaces [93]. The algo-

rithm finds an approximately optimal policy by simulating the execution of all policies in the

belief tree of sparsified samples. Another class of online solver similarly uses Monte-Carlo

Tree-Search (MCTS) style stochastic search to sample actions, state transitions, and obser-

vations to find the highest value action sequence [94]. POMCP is designed for discrete state

and action spaces, while POMCPOW is specifically designed to handle continuous state,

action, and observation spaces [95]. While each of these methods returns an estimate of

the best action after a search budget has been exceeded, the quality of that solution de-

creases as the problem becomes more complex. Therefore, long-horizon planning using these

approaches is still difficult, particularly as state, action, and observation spaces grow.
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2.3.3 Navigation In Partially Revealed Environments

While a major goal of this thesis is to enable solving long-horizon planning problems, work in

navigating short-horizon navigation problems can be insightful. Recently, progress has been

made in searching for collision-free paths through partially explored environments, wherein

an autonomous agent must reason about unknown space at a small scale. Karaman and

Frazzoli [96] navigate unknown random forest environments by making strong assumptions

about the environment distribution. Since they know the locations of trees in their forests

are generated by a homogeneous Poisson process, and know the dynamics of their agent

(modeled after a bird at high-speeds), the authors are able to bound collision probabilities

for given speeds. Some recent work has instead focused on using a dynamic action set [97] or

boundaries between free and unknown space [98], [99] for navigation/exploration of unknown

environments.

If the distribution over states is not known, learning can be used to estimate the expected

cost [100] of actions in unknown space. Most literature that uses learning to explore unknown

environments focuses on short time horizon planning. Richter et al. [101] learn to solve an

approximate POMDP for navigation of unknown environments, yet restrict their planning

horizon to only a few time-steps. In Richter and Roy’s later work [102], the authors leverage

supervised learning to estimate the collision probabilities of trajectories that enter unknown

regions of the map in order to navigate structured environments more quickly. Though

predictions are limited to short-term trajectories, these publications were inspirational in a

number of ways. First, the authors utilize a discrete action set of 50 different actions as an

action-centric abstraction for planning. Second, approximations are made to the Bellman

equation to allow it to be factored into components (such as collision probability) that can be

estimated via learning. The key takeaway is that we can plan abstractly in a robotics context

more efficiently if we can predict in what context our abstract actions will be refinable.

Stein, Bradley, and Roy [13] build upon the approach in Richter and Roy [102], making

progress in planning to minimize cost in navigating partially explored environments, now

over longer planning horizons. To make tractable predictions about the unknown portion of

the environment, the authors factor the Bellman equation to evaluate expected cost of an
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action in terms of the high-level decisions available to an agent, and the high-level outcomes

that result. Specifically, they define subgoals in the plans they generate as frontiers—the

boundaries between free and unknown space in a dense map representation—and consider

attempting to reach the final goal beyond each of these frontiers as a separate high-level

action. By reformulating the equations for planning hierarchically in terms of these high-

level actions—for which they learn the costs and probabilities of success—and outcomes,

the agent can navigate intelligently in partially revealed environments without the need

to enumerate all possible configurations of unknown space. The authors take a top-down

planning approach by only refining to a low level trajectory during execution, but are still

able to perform well by utilizing their learned models to predict when an action can be

refined to a executable trajectory, and the cost of doing so. Such approaches demonstrate

improved navigation in partially revealed environments, but make assumptions which make

solving more complex tasks impossible. We attempt to address these limitations in Chapter

3.

2.3.4 Solving Complex Tasks Under Uncertainty Using Temporal

Logic

In Stein, Bradley, and Roy [13], the authors focus on the task of goal-directed navigation only.

As a result, the only outcomes the system considers when choosing a particular high-level

action are whether the frontier of interest will or will not lead to the unseen goal. For more

complex tasks, single goal locations may no longer make sense, and planning intelligently to

achieve specifications with such non-markovian goals requires considering both a different

planning abstraction and approach. One approach for specifying more complex tasks to a

robot is with Linear Temporal Logic (LTL) [103], which allows a user to define goals where

the robot may be required to satisfy various subtasks.

Temporal logic synthesis has been used to generate provably correct controllers for solv-

ing LTL based problems, although predominantly in fully known environments [104]–[108].

Recent work has looked at satisfying LTL specifications under uncertainty [109], [110], yet

these works are restricted to small state spaces due to the general nature of the POMDPs
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they handle. Other work has explored more restricted sources of uncertainty, such as sce-

narios where tasks specified in LTL need to be completed in partially explored environments

[111]–[115] or by robots with uncertainty in sensing, actuation, or the location of other agents

[116]–[119]. Ayala, Andersson, and Belta [111] introduce a method for a robot to explore

an environment while not violating an Syntactically Co-Safe Linear Temporal Logic (scLTL)

specification until it has found a path to satisfy the specification. This method uses a heuris-

tic based on the specification and known space to decide where to travel next. However, it

does not incorporate information about what could be in unknown space to minimize the

cost of fulfilling the specification, resulting in suboptimal plans in general. Sarid, Xu, and

Kress-Gazit [112] explore an environment while satisfying a specification and, as more of the

environment is revealed, replan to incorporate newly discovered areas into the specification,

though the cost of satisfying the specification is not considered. In Lahijanian, Maly, Fried,

et al. [113], given a specification and a map of an environment, the authors plan a path to

satisfy the specification and re-plan when they encounter unexpected obstacles. When these

robots plan in partially explored environments, they take the best possible action given the

known map, but either ignore or make naive assumptions about unknown space. This leads

to inefficient planning as the robot may frequently be forced to backtrack depending on the

orientation of unobserved space. In Chapter 3, we attempt to address this by learning when

we can trust our abstract actions to be feasible.

To minimize the cost of satisfying LTL specifications, other recent works have used

learning-based approaches [120]–[123], yet these methods are limited to relatively small,

fully observable environments. Littman, Topcu, Fu, et al. [120] demonstrate a formalism for

building a MDP from an LTL specification that enables Q-learning to provably converge.

Toro Icarte, Klassen, Valenzano, et al. [123] present a method for decomposing an LTL

specification into subtasks, which can then be learned using separate Deep Q-networks and

combined in new specifications. Li, Vasile, and Belta [124] demonstrate learning in contin-

uous manipulation environments, but are similarly restricted to fully observable domains.

Sadigh, Kim, Coogan, et al. [125] and Fu and Topcu [121] apply learning to unknown environ-

ments and learn the transition matrices for MDPs built from LTL specifications. However,

these learned models struggle to generalize to new specifications and are demonstrated on
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relatively small grid worlds. Paxton, Raman, Hager, et al. [126] introduce uncertainty during

planning, but limit their planning horizon to 10 seconds, which is insufficient for the speci-

fications explored here. Similarly, Carr, Jansen, and Topcu [127] synthesize a controller for

verifiable planning in POMDPs using a recurrent neural network, yet are limited to planning

in small grid worlds. In the next chapter, we address the limitations of these strategies, and

introduce a novel approach for learning to guide hierarchical planners to solve long-horizon,

complex tasks in partially revealed environments.
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Chapter 3

Hierarchical Decision Making in the

Presence of Uncertainty

In this chapter, we consider the problem of hierarchical planning in the case where our world

model is incomplete due to the presence of environmental uncertainty. The particular form

of uncertainty we address here involves scenarios where our robot is capable of building an

accurate map—meaning the perception and dynamics models are very good—but that map

is incomplete. This uncertainty is not due to failures of perception, or inaccuracy in learned

models, but instead is a natural result of the limitations of what is physically possible.

No matter how accurate our perception systems are, for example, no RGB camera can see

through walls. Depending on the task we assign our robot, it may have to reason about

entering and exploring unknown space, and so must account for this type of uncertainty

when making decisions. In this chapter, we consider how to construct planning abstractions

in these cases, accounting for the fact that the actions within our abstractions have uncertain

outcomes.

The specific problem setting we consider in this chapter is as follows: our goal is to

enable an autonomous agent to find a minimum cost solution to multi-stage planning tasks

when the agent’s knowledge of the environment is incomplete — i.e., when there are parts

of the world the robot has yet to observe. As an example, imagine a robot tasked with

extinguishing a small fire in a building. To do so, the agent could either find an alarm to

trigger the building’s sprinkler system, or locate a fire extinguisher, navigate to the fire, and
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put it out. We can represent sequential planning problems like this one in a number of ways,

one of which is by specifying agent’s goal in temporal logic, which has a long history of

being utilized for planning in fully known environments (e.g., [104]–[108]). However, when

the environment is initially unknown to the agent, efficiently planning to minimize expected

cost to solve these types of tasks can be difficult.

Why is this problem challenging for our robots? Planning in partially revealed envi-

ronments is difficult in part due to the complications associated with reasoning about un-

observed regions of space. Consider our firefighting robot in a building it has never seen

before, equipped with a sensor enabling it to build a map of what it sees. To clarify our

focus, we will assume this sensor provides perfect perception of what is in direct line of sight

from the robot’s current position. Even with this idealized local sensing, the locations of

any fires, extinguishers, and alarms may not be known. Therefore, the agent must consider

all possible configurations of unknown space—including the position of obstacles—to find a

plan that satisfies the task specification while ideally minimizing time spent executing that

plan. As discussed in Chapter 2.3.1, this form of planning under uncertainty is fundamen-

tally a Partially Observable Markov Decision Process (POMDP). We are able to simplify

things in this case by modeling the world as a Locally Observable Markov Decision Process

(LOMDP) [128], a special class of POMDP, which by definition includes our assumption of

perfect range-limited perception. However, planning within even this somewhat simplified

model requires access to a distribution over possible environment configurations, which will

scale poorly as the complexity of the environment increases [85], [88], [129].

Since finding optimal policies for large POMDPs is extremely computationally inten-

sive in general [129], planning to satisfy temporal logic specifications in full POMDPs is

often limited to relatively small environments or time horizons [109], [110]. Thus, many ap-

proaches for solving tasks specified with temporal logic in larger, more realistic scenes often

make simplifying assumptions about known and unknown space, or focus on maximizing

the probability a specification is never violated [111]–[115]. Specifically, recognizing that we

cannot reason about all possible configurations of unknown space, we might be tempted to

assume that anything that has not yet been observed is free space, and immediately test

our full plan for (an optimistic measure of) feasibility. Taking this approach, Ayala, An-
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dersson, and Belta [111] attempt to solve specifications entirely in the known map, and if

that is not possible, are guided by heuristics to a point on the boundary of known space

to explore the environment. The unstated assumption in this technique is that any action

which enters unknown space will succeed, and so the planner does not have to actively plan

over the unobserved potions of the environment. Unsurprisingly, such strategies can result

in suboptimal plans, as they do not recognize that the implicit planning abstraction does not

satisfy the downward refinement property, nor do they consider the likelihood that entering

a particular region of unknown space might fail to lead to the goal.

A number of methods use learned policies to minimize the cost of completing tasks

specified using temporal logic [120], [121], [123], [125], [126]. However, due to the complexity

of these tasks, many are again limited to fully observable small grid worlds [120], [121], [123],

[125] or short time-horizons [126]. Moreover, for many of these approaches, changing the

specification or environment requires retraining the entire system. This is a natural result of

attempting to learn one function to guide the agent’s search for a particular problem. If we

then want to alter the task in some way, either by modifying the environment or changing

the goal, whatever these models have learned may no longer be beneficial. For example,

imagine that you have learned a policy which first finds a fire extinguisher, then leads the

agent to the fire. If you suddenly change your goal to have your robot find a fire alarm,

the learned policy will be inherently useless. Recent work by Stein, Bradley, and Roy [13]

(which we will discuss in more detail later in this chapter) uses supervised learning to predict

the outcome of taking actions through unknown space using the structure and appearance

of the observed part of the environment. However, this work was restricted to goal-directed

navigation and does not consider richer sets of tasks specified with temporal logic.

To address the challenges of planning over a distribution of possible futures that are

impossible to refine at planning time, we introduce Partially Observable Temporal Logic

Planner (PO-TLP). PO-TLP enables real-time planning for tasks specified in Syntactically

Co-Safe Linear Temporal Logic (scLTL)1 [130] in unexplored, arbitrarily large environments.

To do this, we define an abstraction over a given task defined by an scLTL specification and

a partially observed metric-semantic map. Since completing a task in this setting may not
1scLTL specifies tasks that can be accomplished in finite time.
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Figure 3.1: POTLP Overview. Given a specification (e.g., (¬fire U extinguisher) ∧
♢fire), a Deterministic Finite Automaton (DFA) represents the high-level steps needed
to accomplish the task. We can further define subgoals in the agent’s environment with
boundaries between observed (white) and unexplored (gray) space, and regions labeled with
propositions relevant to the task, e.g., extinguisher and fire. Build Abstraction: We define
high-level actions composed of subgoals and transition in task space, defining what the robot
will attempt to do in known and unknown space. Estimate: For each possible action, we
estimate its probability of success (PS) and costs of success (RS) and failure (RF ) using
a neural network. Plan: We compute the expected cost of different sequences of actions
utilizing these estimates within PO-UCT search. Act: The agent selects an action with the
lowest expected cost, and moves along the path defined by that action, meanwhile receiving
new observations, updating its map, and re-planning.

be possible in known space alone, we then define a set of dynamic high-level actions based on

transitions between states in our task abstraction and available subgoals in the map—points

on the boundaries between free and unknown space. We then approximate the full POMDP

model such that actions either successfully make their desired transitions or fail, splitting

future beliefs into two classes. By simplifying the planning problem in this way, we are able to

more easily learn key statistics about the result of taking individual actions; specifically, we

train a neural network from images to predict the costs and outcome of taking each action.

These predictions allow us to avoid worrying about the specific state of the world (e.g.,

where exactly a fire extinguisher is located), and instead reason over only what is relevant

to solving the given task at planning time, such as which direction down the hallway should

be taken to find that extinguisher, irrespective of its exact pose. We use these models to

guide a variant of Monte-Carlo Tree Search (PO-UCT [94]), which enables our agent to find

the best high-level action for a given task and observation. Our model learns directly from

visual input and can therefore be used across different novel environments and generalize
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over multiple tasks without retraining. After solving for the best action, our agent moves

through observed space and continually re-plans as more of the environment is revealed,

ensuring both that the specification will never be violated and that we return the optimal

trajectory if the environment is fully known.

In the remainder of this chapter, we will present our approach for planning hierarchically

in the presence of uncertainty as follows. First, we will discuss the intuition behind learning

over subgoals to guide planning in partially revealed environments. To do this, we will

consider how we might compute the cost of a goal-directed navigation task in this setting,

and derive an equation to simplify that computation to enable tractable planning. We will

then define the abstraction we use to encode the more complex planning problems we are

interested in, next considering how we plan within this abstraction, specifically accounting

for the fact that these high-level actions can fail depending on the unknown parts of the

environment. Finally, we present how we train a neural network to predict the cost and

outcomes of taking actions in this abstraction from visual input. We use these models

to inform our high-level planner about low level information, enabling efficient top-down

hierarchical planning. Once we have defined our approach, we apply PO-TLP to multiple

tasks in simulation and the real world, showing improvement over a heuristic-driven baseline.

3.1 Planning over Subgoals for Complex Tasks

The aim of this chapter is to enable robots to efficiently solve complex tasks in partially

revealed environments. We begin by defining a dense representation of the world, and a

framework for decision making within that representation. We quickly see however that this

presents an intractable planning problem for our agent, and so we propose an abstraction

over actions to simplify the computation of cost for a plan within that abstraction. We

subsequently derive an equation for computing expected cost within our abstraction, and

propose an approach for planning to find the optimal action. First however, we must fully

define the underlying, un-abstracted planning problem.
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3.1.1 Defining our Problem

As discussed above, we can represent the challenge of solving tasks in the presence of uncer-

tainty as a Partially Observable Markov Decision Process (POMDP). Here, we will define

the specific instantiation of a POMDP (written as a Belief MDP) that we consider for this

problem. In Chapter 2.3, we defined a template for POMDPs, which can be re-written as

an n-tuple: P = (B,A, P, R), each element of which we instantiate below. To specify these

terms for a planning problem, we must first describe how we represent the world, as well as

how we communicate a task to our robot.

Labeled Transition System (Encoding the Environment): We use a Labeled Tran-

sition System (LTS) to encode a discretized, metric-semantic representation of the robot’s

environment. An LTS T is a tuple (X, x0, δT , w,Σ, l), where: X is a discrete set of states

of the robot and the world, x0 ∈ X is the initial state, δT ⊆ X × X is the set of possible

transitions between states, the weight w : (xi, xj) → R+ is the cost incurred by making

the transition (xi, xj), Σ is a set of propositions with σ ∈ Σ, and the labeling function

l : X → 2Σ is used to assign which propositions are true in state x ∈ X. An LTS can be

thought of as an occupancy grid, where each element in that grid has some semantic label.

Like an occupancy grid, this label could indicate that the cell is occupied by an obstacle,

though they might also have other labels. An example LTS is shown in Fig. 3.4A where

Σ = {fire, extinguisher, obstacle}, l(x3) = {extinguisher} and l(x4) = ∅ (indicating

the cell is free-space). States x ∈ X are comprised in part by a physical locations, and

labels (like fire or extinguisher) indicate what is present at that location. States can have

multiple labels when applicable, and can be labeled unknown when the space has not yet

been observed. A finite trajectory through an LTS τ is a sequence of states τ = x0, x1, . . . , xn

where (xi, xi+1) ∈ δT . From that sequence, we can generate a finite word ω = ω0, ω1, . . . , ωn

where each letter ωi represents the labels found in the associated state ωi = l(xi). This

finite word allows us to determine how the agent will interact with the world for a given

trajectory. The question of how we might build metric-semantic representations like an LTS

on real robots will be addressed in greater detail in Chapter 5.
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Temporal Logic (Describing the Task): To specify tasks within an LTS, we use Syntac-

tically Co-Safe Linear Temporal Logic (scLTL), a fragment of Linear Temporal Logic (LTL)

[130]. Formulas in scLTL are written over a set of atomic propositions Σ with Boolean op-

erators (negation (¬), conjunction (∧), disjunction (∨)) and temporal (next (⃝), until (U),

eventually (♢)). The syntax for scLTL is:

φ := σ | ¬σ | φ ∧ φ | φ ∨ φ | ⃝ φ | φ U φ | ♢φ,

where σ ∈ Σ, and φ is an scLTL formula. The semantics are defined over infinite words

ωinf = ω0, ω1, ω2, . . . with letters ωi ∈ 2Σ. Intuitively, ⃝φ is satisfied by a given ωinf at step i

if φ is satisfied at the next step (i+1), φ1Uφ2 is satisfied if φ1 is satisfied at every step until φ2

is satisfied, and ♢φ is satisfied at step i if φ is satisfied at some step j ≥ i. For the complete

semantics of scLTL, refer to Kupferman and Vardi [130]. These semantics allow us to assign

our robot tasks which enforce temporal constraints (i.e., we can specify which subtasks

must be accomplished in what order), thus enabling the specification of complex goals. For

example, if we want the firefighting robot to avoid fire until it reaches the extinguisher, and

only then go to the fire, our task can be written as: (¬fire U extinguisher) ∧ ♢fire.

Deterministic Finite Automaton (Representing the Task): We would now like to

consider how our robot might satisfy a given specification, and so seek to define a graphical

representation of the task. Research in temporal logic verification and synthesis provides

insight into this process [104], [105]. A Deterministic Finite Automaton (DFA), constructed

from an scLTL specification, is given by the tuple Dφ = (Z, z0,Σ, δD, F ) [131]. A DFA is

composed of a set of states, Z, with an initial state z0 ∈ Z. Each zi ∈ Z can be thought of

as a point in task space. The transition function δD : Z× 2Σ → Z takes in the current state,

z ∈ Z, and a letter ωi ∈ 2Σ, and returns the next state z ∈ Z in the DFA. The DFA has a

set of accepting states (representing the concept of a “goal” in task space), F ⊆ Z, such that

if the execution of the DFA on a finite word ω = ω0ω1 . . . ωn ends in a state z ∈ F , the word

belongs to the language of the DFA. Stated differently, if we execute the DFA on a word ω,

and that execution ends in an accepting state, then that word satisfies the task specification
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Figure 3.2: A visualization of how a task specification can be converted to a Deterministic
Finite Automaton (top). We then combine it with a Labeled Transition System (bottom)
to form a Product Automaton (right). This representation fully defines the graph an agent
must find a path through in order to accomplish the specified task in the given environment.

for the given initial state. While in general LTL formulas are evaluated over infinite words,

the truth value of scLTL can be determined over finite traces. Fig. 3.2 shows the DFA for

(¬fire U extinguisher) ∧ ♢fire.

Product Automaton (Combining Task and Environment): We would like to be able

to plan to solve a specified task in a given environment, and so require a single representation

in which to find such a plan. A Product Automaton (PA) is a tuple (P, p0, δP , wP , FP ) which

captures the combined behavior of the DFA and LTS. The states P = X × Z keep track of

both the LTS and DFA states, where p0 = (x0, z0) is the initial state. A transition between

states is possible iff the transition is valid in both the LTS and DFA, and is defined by

δP = {(pi, pj) | (xi, xj) ∈ δT , δD(zi, l(xj)) = zj}. When the robot moves to a new state

x ∈ X in the LTS, it transitions to a state in the DFA based on the label l(x). The weights

on transitions in the PA are the weights in the LTS (wP (pi, pj) = w(xi, xj)). Accepting states

in the PA, FP , are those states with accepting DFA states (FP = X × F ). We are able to
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plan directly in the known portion of this representation to satisfy our robot’s task for a

given environment. Figure 3.2 shows how we combine a DFA and LTS to form a PA.

Planning in Partially Observable Product Automata: Remember that our agent will

be tasked with solving complex tasks in environments that have not yet been fully explored.

To represent the problem of planning through a partially revealed PA, we model the world

as a Locally Observable Markov Decision Process (LOMDP) [128], a POMDP [132] where

space within line of sight from our agent is fully observable. Here we define the full tuple of

the associated belief MDP.

1. Beliefs B = {BT × BX × BZ} : We can think of each belief state as distributions over

three entities b = {bT , bx, bz} ∈ B: the environment (abstracted as an LTS) bT , the agent’s

position in that environment bx, and the agent’s progress through the DFA bz defined by

the task. Belief bT ∈ BT defines a distribution over the set of labeled transition systems.

Because we assume known space is perfectly observed, each cell is given a label such as

free, occupied, FIRE, etc. If the cell has not yet been observed, it is labeled unknown,

allowing us to treat bT as a labeled occupancy grid that is revealed as the robot explores.

In principle, we could similarly define uncertainty in the robot’s position in the map,

uncertainty in the given task, or uncertainty in the progress through that task. However,

with our assumption of perfect sensing in the LOMDP formulation, we collapse bx and

bz to point estimates, meaning we know the state of the robot and what it has done in

terms of its given task exactly.

2. Actions A: The set of available actions from a given state in the PA, which at the lowest

level of abstraction are the feasible transitions given by δP . Thus, from any state the

agent has 8 available low-level actions, which move it through its PA.

3. Transition Probabilities P : P (bt+1|bt, at) defines the probability that taking an action

at from belief bt transitions the agent to belief bt+1. For actions in known space, we know

the label of the region the agent is moving, and so know with certainty both its position in

both physical and task space. However, when entering unknown space, while the location
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of the next state is known, the label of that state is not, and depends on the distribution

over environments in the belief.

4. Rewards R: R(bt+1, bt, at) defines the instantaneous reward of taking action at to get

from belief bt to bt+1. Here we formulate reward as a cost, meaning we assign negative

reward according to the weight in the LTS. As a result, the optimal plan will be the one

which transitions the agent to an accepting state in the PA in as few actions as possible.

We assign an arbitrarily high cost to actions which move the agent into a region that is

occupied by an obstacle or which violate the specification, ensuring we never find plans

which lead to a failed plan.

Using the POMDP model, we can represent the expected cost of taking an action using a

belief-space variant of the Bellman equation [132], as derived in Chapter 2.3:

Q(bt, at) =
∑
bt+1

P (bt+1|bt, at)
[
R(bt+1, bt, at) + min

at+1∈A(bt+1)
Q(bt+1, at+1)

]
, (3.1)

where Q(bt, at) is the cost of taking action at given belief bt. This equation can, in theory, be

solved to find the optimal action for any belief. However, given the size of the environments

we are interested in, directly updating the belief in evaluation of Eq. (3.1) is intractable

for two reasons. First, due to the curse of dimensionality, the size of the belief grows

exponentially with the number of states. In the POMDP described above, this corresponds to

the number of cells in the unobserved portion of the map, and is therefore quite large. Second,

by the curse of history, the number of iterations needed to solve Eq. (3.1) grows exponentially

with the planning horizon. Given that each action is is a single transition between adjacent

cells, in large environments with a high resolution, we may require hundreds of actions

to reach our goal. Of course, solving this equation also requires access to a distribution

over all possible environments the agent might encounter, which is impossible to obtain for

any real world setting (as mentioned in Fig. 3.3). For these reasons, planning to satisfy

arbitrary specifications for the POMDP defined above using Eq. (3.1) is intractable for large

environments, and we therefore require a simplifying abstraction.
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Figure 3.3: Attempting to predict the exact orientation of unknown space is an impossible
problem. We cannot assume access to a distribution over possible environments, and even if
we could, there are far to many such configurations to tractably reason about.

3.1.2 Defining an Abstraction over Actions and Outcomes

To overcome the challenges associated with solving Eq. (3.1), in this section we present an

abstraction first over actions, then the outcomes of taking those actions. As was discussed

in Chapter 1, humans do not constrain themselves to plan at the level of moving between

adjacent cells in labeled occupancy grid. Instead, we can recognize that trajectories which

enter unknown space can be grouped by the topology of the environment (e.g., going left or

right down the hallway). We take inspiration from that insight, and notice that the structure

of an LTS allows for the identification of frontiers in our map, each representing a contiguous

boundary between free and unknown space. Similarly, we recognize that humans do not move

through the world aimlessly, but are driven to accomplish some goal. Progressing toward

the robot’s goal requires making transitions in the DFA. For example, given the specification

(¬fire U extinguisher) ∧ ♢fire (as in Figures 3.1, 3.2, and 3.4), the robot must first

retrieve the extinguisher and then reach the fire. Depending on what has been seen by the

robot, some or all of this task might be achievable in the known map, however, if the task

cannot be completed entirely within known space, the robot must reason about acting in

areas that it has not yet explored. As such, our action set is defined by subgoals S in physical
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space and transitions in task space. Specifically, when executing an action, the robot first

plans through the PA in known space to a point on a frontier, and then enters the unexplored

space beyond that subgoal to attempt to transition to a new state in the DFA.

For belief state bt, action asz′z′′ defines the act of traveling from the current state in the

LTS x to reach subgoal s ∈ St at a DFA state z′, and then attempting to transition to DFA

state z′′ in unknown space. Our newly defined set of possible actions from belief state bt is

therefore:

A(bt) = {asz′z′′ | s ∈ St, z
′ ∈ Zreach(bt, s), z

′′ ∈ Znext(z
′)}, (3.2)

where Zreach(bt, s) is the set of DFA states that can be reached while traveling in known

space in the current belief bt to subgoal s ∈ St, and Znext(z
′) = {z′′ ∈ Z | ∃ωi ∈ 2Σ s.t. z′′ =

δD(z
′, ωi)} is the set of DFA states that can be visited in one transition from z′. Each action

therefore represents what the robot does in known space, where it enters unknown space,

and what it attempts to do upon entering unknown space. Fig. 3.4B illustrates an example

of available high-level actions for a given task and environment.

Equation 3.2 defines a set of abstract actions which has the potential to greatly reduce our

planning horizon (solving the specification in Fig.3.4 requires only two sequential successful

actions). However, we have not yet considered how taking one of these actions affects the

agent’s belief according to Eq. 3.1. Let Z(bt+1) refer to bz (the component of the belief

related to progress through task space) at the next time step, and bt+1 ∈ Bz′′ define the

subset of beliefs s.t. Z(bt+1) = z′′. Without loss of generality, we can split future belief

states bt+1 into two classes—futures where a given action is successful, Z(bt+1) = z′′, and

futures where it is not: Z(bt+1) = z′. Note that this abstraction over the belief space does

not exist in general, and is enabled by our assumption of perfect local perception. Under

an optimistic assumption that all actions are successful, every future state falls into the first

bucket. However, this is of course not the case in reality, and by considering the case when

actions fail, we account for the fact that our new action set is not downward-refineable. We
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can represent the Bellman equation with our factored belief accordingly:

Q(bt, at ∈ A(bt)) = PS(bt+1 ∈ Bz′′ |bt, at)
∑

bt+1∈Bz′′

PZ′′(bt+1|bt, at)
[
R(bt+1, bt, at) + min

a∈A(bt+1)
Q(bt+1, a)

]
+

(1− PS(bt+1 ∈ Bz′′ |bt, at))
∑

bt+1 /∈Bz′′

PZ′(bt+1|bt, at)
[
R(bt+1, bt, at) + min

a∈A(bt+1)
Q(bt+1, a)

]
,

(3.3)

where PS(bt+1 ∈ Bz′′ |bt, at) ≡
∑

bt+1∈Bz′′
P (bt+1|bt, at) is the proportion of states in which the

agent successfully reaches the goal after selecting action at from belief state bt. We further

define the following term:

PZ′′(bt+1|bt, at) ≡
P (bt+1|bt, at)

PS(bt+1 ∈ Bz′′ |bt, at)
, (3.4)

which is normalized according to
∑

bt+1∈Bz′′
Pz′′(bt+1|bt, at) = 1. Thus, the first term in

Eq. (3.3) can be thought of as the expected cost over actions that succeed in reaching the

intended state in the DFA times the proportion of actions that succeed (both of which, we

later estimate using learning). Pz′ is defined similarly over states that do not reach the goal.

To ground our thinking briefly, let us attempt to compute the cost of taking a single

action asz′z′′ ∈ A. When executing action asz′z′′ , the robot reaches subgoal s in DFA state

z′, accumulating a cost D(bt, asz′z′′) which can be determined using Dijkstra’s algorithm in

the known map. In Eq. 3.3, this cost exists for both the case where our action succeeds or

fails, so we can pull it outside each summation. Once the robot enters the unknown space

beyond the subgoal, the action has some probability PS(bt+1 ∈ Bz′′ |bt, axz′z′′) of successfully

transitioning from z′ to z′′. Furthermore (remembering to subtract the cost in known space),

each action also has an expected cost of success RS(bt, asz′z′′), and expected cost of failure

RF (bt, asz′z′′) in unknown space such that:

RS(bt, asz′z′′) ≡
∑

bt+1∈Bz′′

PZ′′(bt+1|bt, at)R(bt+1, bt, at)−
D(bt, asz′z′′)

PS(bt+1 ∈ Bz′′ |bt, at)
,

RF (bt, asz′z′′) ≡
∑

bt+1 /∈Bz′′

PZ′(bt+1|bt, at)R(bt+1, bt, at)−
D(bt, asz′z′′)

1− PS(bt+1 ∈ Bz′′ |bt, at)
.

(3.5)
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Figure 3.4: High-level actions. Our agent is attempting to satisfy the specification
(¬fire U extinguisher) ∧ ♢fire with the DFA in (A). The robot (“R”) is in a partially
explored environment with two subgoals s0 and s1 between observed (white) and unexplored
(gray) space that is abstracted into an LTS (B). As the robot considers high-level actions
at different stages of its plan (C), its color indicates belief of the DFA state (according to
(A))). In this rollout, the robot considers action as0z0z1 , and outcomes where it succeeds (D),
and fails (E). If successful, the robot has two actions available and considers as0z1z2 , which
in turn could succeed (F) or fail (G).

Rather than computing these values explicitly, they are estimated via learning given an

encoding of the action and visual input as discussed in Section 3.2. We can now express the

expected instantaneous cost of an action as:

∑
bt+1

P (bt+1|bt, asz′z′′)R(bt+1, bt, asz′z′′) =

D(bt, asz′z′′) + PS(bt+1 ∈ Bz′′ |bt, at)RS(bt, asz′z′′) + (1− PS(bt+1 ∈ Bz′′ |bt, at))RF (bt, asz′z′′).

(3.6)

Evaluating the recursive term: mina∈A(bt+1)Q(bt+1, a) in Eq. (3.3) however, remains particu-

larly difficult to compute.

3.1.3 Estimating Future Cost using High-Level Actions

Computing the sequence of actions with minimum expected cost according to Equation 3.3

requires grappling with evaluating the expected cost after the first action is taken. This

term (mina∈A(bt+1)Q(bt+1, a)) depends upon the agent’s belief at the next time-step bt+1,

the computation of which requires maintaining a distribution over the environment, bT . Of

course, making an informed guess about what unknown space might look like after taking

an action, then taking an expectation over all possible configurations based on that prior is
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infeasible. Instead, we reduce this term by making a simplifying assumption: that we can

estimate the expected cost of future states from the current known map Tknown. As a result,

our belief at time t can now be represented as bt+1 = {Tknown, xt+1, zt+1}, where the second

and third terms represent the position of the robot in physical and task space respectively.

We therefore do not explicitly model the evolution of the map state as we compute the

expected cost of an action, meaning the set of subgoals S available for future actions does

not change after an action is taken.

In order to compute the cost of an action in a sequence, we must know the results of

the actions that came before it. Since we cannot tractably update and maintain a distri-

bution over maps during a complete simulated trial (referred to as a rollout), we instead

keep track of the rollout history h = [[a0, o0], . . . , [an, on]]. A rollout history is defined

as a sequence of high-level actions ai considered during planning and their simulated re-

spective outcomes oi = {success, failure}. This form allows us to determine the belief

bt = {Tknown, xt, zt} as defined above for any t, and therefore the available set of actions

A(bt). During a rollout, the set of available future actions is further informed by actions and

outcomes already considered in h. For example, if we simulate an action in a rollout, and

it fails, we should not consider that action a second time. Conversely, we know a successful

action would succeed if simulated again in that rollout. In Fig. 3.4-G, the robot imagines

its first action as0z0z1 succeeds, while its next action as0z1z2 fails, making the rollout history

h = [[as0z0z1 , success], [as0z1z2 , failure]]. When considering the next step of this rollout,

the robot knows it can always find an extinguisher beyond s0, and there is no fire beyond

s0. To track this information during planning, we define a rollout history-augmented belief

bh = {Tknown, x, z, h}, which augments the belief with the actions and outcomes of the

rollout up to that point. To reiterate, we maintain the history-augmented belief bh only

during planning, to avoid the complexity of maintaining a distribution over possible future

maps from possible future observations during rollout.

Using bh, we also define a rollout history-augmented action set A(bh), in which actions

known to be impossible based on h are pruned, and with it, a rollout history-augmented

success probability PS(bh, asz′z′′) which is identically one for actions known to succeed. Fur-

thermore, because high-level actions involve entering unknown space, instead of explicitly
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considering the distribution over possible robot states, we define a rollout history-augmented

distance function D(bh, asz′z′′), which takes into account the physical location of the robot

as a result of taking the last action in bh. If an action leads to a new subgoal (st+1 ̸= st), the

agent accumulates the success cost RS of the previous action if that action was simulated to

succeed and the failure cost RF if it was not.

By planning with bh, the future expected reward can be written so that it no longer

directly depends on the full future belief state bt+1, allowing us to approximate it as follows:

∑
bt+1

P (bt+1|bt, asz′z′′) min
a′∈A(bt+1)

Q(bt+1, a
′) ≈

PS(bh, asz′z′′) min
aS∈A(bhS )

Q(bhS
, aS) + [1− PS(bh, asz′z′′)] min

aF∈A(bhF )
Q(bhF

, aF ),

(3.7)

where hS = h.append([asz′z′′ , success]) is the rollout history conditioned on a successful

outcome (and hF is defined similarly for failed outcomes). We now combine Eq. (3.6) and

Eq. (3.7) with Eq. (3.3), and represent the full Bellman equation as follows:

Q(bh, asz′z′′) = D(bh, asz′z′′) + PS(bh, asz′z′′)×
[
RS(bh, asz′z′′) + min

aS∈A(bhS )
Q(bhS

, aS)

]
Underline denotes terms
estimated via learning +

[
1− PS(bh, asz′z′′)

]
×
[
RF (bh, asz′z′′) + min

aF∈A(bhF )
Q(bhF

, aF )

]
,

(3.8)

where each term is fully redefined below:

1. bh = {Tknown, x, z, h}: The current history augmented belief of the agent, defined by the

known map Tknown, the agent’s position in physical space x, it’s position in task space z,

and the history of actions and outcomes simulated to this point in the plan h.

2. D(bh, asz′z′′): the cost of traveling from x, the current location of the agent, to a subgoal

s (as specified by an action). For the first action in a rollout, determining this cost is as

simple as planning the shortest cost path through the PA from the robot to the chosen

subgoal. Note this shortest path may require making transitions in the DFA depending on

the action. Since this motion plan occurs entirely within known space, we use Dijkstra’s
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algorithm as a heuristic to calculate this cost. In the recursive part of this cost function, if

the subsequent subgoal is the same as the previous one (e.g., we try to find the fire beyond

the same frontier that we found the extinguisher), we set this value to 0. If however the

subgoal differs from previous one in h, D(bh, asz′z′′) also incorporates the cost of returning

to known space after taking the previous action. We approximate this additional cost

by augmenting D with either RS or RF (depending on outcome), making an implicit

assumption that the cost of returning to known space is approximately the same as the

cost of success or failure of the previous action.

3. PS(bh, asz′z′′): the probability that the chosen action will succeed given the current belief.

4. RS(bh, asz′z′′): the expected cost of success. Suppose the robot successfully transitions to

z′′ via the subgoal specified by action asz′z′′ . Then, with probability PS, we accrue an

expected cost of successfully executing this transition in the unknown space beyond s.

5. RF (bh, asz′z′′): the failure cost. In the event that the agent does not make it’s desired

transition, we say that it instead explores the space beyond the subgoal of interest. With

probability 1− PS, the agent then accumulates the expected cost of trying to make this

transition beyond subgoal s, therefore remaining in z′.

6. Q(bhO
, aO): the future expected cost for outcome O. Whether the robot either succeeds

(O = S) or fails (O = F ) in executing it’s chosen action, this represents the cost of

considering a different action.

This factorization of the Bellman equation presents a much shorter horizon problem then we

previously faced. Moreover, our agent is no longer expected to reason about the distribution

of all possible PAs, thereby reducing the computational complexity of solving for the best

action. As highlighted above, many of these terms are estimated via learning, which will

be discussed in Section 3.2. In the following section however, we more carefully consider

how we solve for the minimum expected cost sequence of actions according to our factored

Bellman equation. This will allow us to guide our decision making within the high-level

abstraction we have defined with the low-level information we pass to our learned models,

enabling efficient hierarchical planning.
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Figure 3.5: A subset of a full search tree with our abstract actions and binary outcomes. We
highlight the different elements of cost, which vary based on the outcome (success or failure)
of a given action. Equation (3.8) compactly represents this cost. For the simple environment
shown here, we can completely enumerate all possible actions and search over their different
orderings. However, as we scale up in task and environmental complexity, computing this
equation exactly becomes difficult.

3.1.4 Planning with High-Level Actions using PO-UCT

Equation (3.8) demonstrates how expected cost can be computed using our high-level actions,

given estimated values of PS, RS, and RF . For example, if our task were simple goal directed

navigation (e.g., find the building exit), the only actions available to agent would be to

attempt to reach this goal beyond each subgoal. For a reasonable set of frontiers, we can

consider every possible ordering of actions, compute the cost of each according to Eq. (3.8),

and solve for the optimal ordering. The work in Stein, Bradley, and Roy [13] demonstrates

this, though even in the experiments highlighted in that work, the approach shows some

limitations. As environments scale, the number of subgoals increase, and the authors relied
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upon heuristics to prune the agent’s action set. In our setting, depending on the task, each

subgoal might be associated with many different actions. Moreover, several actions may

need to succeed for the specification to be satisfied, severely increasing the computational

burden—exponential in both the number of subgoals and the size of the DFA. We see this

expanding tree in figure 3.5.

Instead of attempting this exhaustive search, we adapt Partially Observable UCT (PO-

UCT) [94], a generalization of Monte-Carlo Tree-Search (MCTS) which tracks histories of

actions and outcomes, to select the best action for a given belief using sampling. The nodes

of our search tree correspond to belief states bh, and the actions available at each node are

defined according to the rollout history as discussed in Section 3.1.3. The complete search

procedure is as follows:

1. Tree traversal: Beginning from the root node, we traverse the search tree according the

the UCT equation:

a∗ ← argmax
a∈A(bh)

V (ha) + c

√
2ln(N(h))

N(ha) + 1
, (3.9)

where V (ha) represents the average cost seen at after taking action a from history h.

N(h) is the visitation count of the current node having been reached via h, and N(ha)

represents the number of times action a has been taken from the current node. c is an

exploration constant, intended to balance exploiting what the search has seen thus far,

and exploring new parts of the tree. Upon selecting an action a, we sample an outcome

o according to the Bernoulli distribution parameterized by PS. We then continue this

traversal process until we sample an outcome we have not yet observed.

2. Expansion: Upon sampling a new outcome, we augment the history with the sampled

action and outcome hao, and add a new node to our tree representing this history.

3. Rollout: Next, we identify every action which might be taken from this new node, and do

the following. 1) randomly sample an action from A(bh) and outcome according to PS,

accruing cost by RS or RF depending on that outcome. Note, we also sample the actions

weighted by their likelihood of success as a heuristic. We continue sampling actions and

outcomes until the specification is satisfied (or we run out of actions).
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4. Back Propogation: We then update the statistics of all nodes in the full history. Specifi-

cally, we tabulate the number of times each node has been visited, and the average cost

of all such histories.

Search continues in this manner until a pre-specified timeout is reached, and we return

the optimal action sequence to our agent to execute. PO-UCT search prioritizes the most

promising branches of the search space, avoiding the cost of enumerating all potential histo-

ries. By virtue of being an anytime algorithm, PO-UCT also enables budgeting computation

time, allowing for faster online execution as needed on a real robot. Once our agent has

searched for the action with lowest expected cost, a∗sz′z′′ , it generates a motion plan through

space to the subgoal associated with the chosen action. While moving along this path, the

agent receives new observations of the world, updates its map, and replans (see Fig. 3.1

and Algorithm 1). Because our agent is constantly updating it s map and replanning, we

are guaranteed to never take an action which violates our specification (or collides with an

obstacle). Moreover, as the map is revealed, assuming the task can be solved, eventually

our agent will observe enough of the environment that a goal state can be reached entirely

within known space.

Algorithm 1 PO-TLP
Function PO-TLP(θ): // θ: Network Parameters

b← {bT0 , bx0 , bz0}, Img← Img0
while True do

if bz ∈ F then // If in accepting state: SUCCESS
return SUCCESS

a∗sz′z′′ ← HighLevelPlan(b, Img, θ,A(b))
b, Img← ActAndObserve(a∗sz′z′′)

Function HighLevelPlan(b, Img, θ, A(b)):
for a ∈ A(b) do

a.PS, a.RS, a.RF ← EstProps(b, a, Img | θ)
a∗sz′z′′ ← PO-UCT(b,A(b))

return a∗sz′z′′
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Figure 3.6: Neural network inputs and outputs. Estimating PS, RF , and RS

for action asz0z1 : attempting to reach an exit while avoiding fire.

3.2 Learning Transition Probabilities and Costs

In order to plan according to the approach outlined above, we rely on values for PS, RS, and

RF for arbitrary actions asz′z′′ . Computing these values explicitly from the belief (as defined

in Section 3.1.2) is intractable, so we train a neural network to estimate them from visual

input and an encoding of a selected action.

3.2.1 Encoding a Transition

A successful action asz′z′′ results in the desired transition in the DFA from z′ to z′′ occurring

in unknown space. However, encoding actions directly using DFA states would result in

a model that requires retraining from scratch every time we want to change the agent’s

task specification. Instead, we define an encoding that represents formulas over the set

of propositions Σ. These formulas, which we represent in negative normal form [133], are

defined over the truth values of Σ, and thus generalize over any specification written with Σ

in similar environments.

To progress from z′ to z′′ in unknown space, the robot must travel such that it remains in

z′ until it realizes changes in proposition values that allow it to transition to z′′. We therefore
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define two n-element feature vectors [ϕ(z′, z′), ϕ(z′, z′′)] where ϕ ∈ {−1, 0, 1}n, which serve

as input to our neural network. The first vector defines the predicates which must hold to

remain in z′, while the second gives those which must hold to transition to z′′ For the agent

to stay in z′, if the ith element in ϕ(z′, z′) is 1, the corresponding proposition must be true

at all times; if it is −1, the proposition must be false; and if it is 0, the proposition has no

effect on the desired transition. The values in ϕ(z′, z′′) are defined similarly for the agent

to transition from z′ to z′′. Fig. 3.6 illustrates this feature vector for a task specification

example. These vectors fully encode the information needed to define a transition, without

requiring information specific to a task. Because this representation is not dependent on the

whole task, we are able to utilize the same network with different task specifications, as long

as the agent has been trained on data with the relevant predicates.

3.2.2 Network Architecture and Training

Our network takes as input a 128×512 RGB panoramic image centered on a subgoal, the

scalar distance to that subgoal, and the two n-element feature vectors ϕ describing the

transition of interest, as defined in Section 3.2.1. The input image is first passed through an

image encoder of 4 convolutional layers, each followed by a batch normalization operation, a

ReLU activation function, and a max-pooling operation. Next, we concatenate the feature

vectors and a vector containing the distance to the subgoal to each element (augmenting

the number of channels accordingly), and continue encoding jointly for 8 more convolutional

layers. Finally, the encoded features are passed through 5 fully connected layers, and the

network outputs the properties required for Eq. (3.8)—PS, RS, and RF .

We trained our network using the Adam optimizer in Pytorch with default parameters

over 100k steps with a batch size of 256 and using roughly 300k training samples for each

environment. The learning rate begins at 0.004 and decreases by a factor of 0.9 every

5k steps, which regularizes the network and reduces over-fitting. We trained a few dozen

different network architectures with variations on the number and size of the layers, and

found minimal impact on the network’s effectiveness. The output of the neural network has

three dimensions, for each of the three desired outputs (PS, RS, and RF ); a sigmoid activation

and weighted cross-entropy loss is used to predict the success probability PS, while a linear
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activation and a squared error loss is used for the two regression outputs RS and RF . Loss for

the success cost is only applied when a plan through a subgoal leads to the desired transition

and the loss for the failure cost is only applied when it does not (Eq (3.10)).

An additional consideration of our training procedure is that the effective cost of mis-

classifying a subgoal is variable and strongly depends on a number of factors. For example,

if an action constitutes the only route to the goal, then the penalty for mis-classifying this

action as unlikely to succeed is very high. The robot may be forced to explore every other

option before returning. By contrast, mis-classifying in the other direction (a false positive)

is therefore of relatively low cost. Computing the relative importance of correctly classifying

an action would require solving the full Bellman equation and is therefore too expensive to

compute. Instead, we utilize the approach in Stein, Bradley, and Roy [13], and provide a

heuristic for computing this misclassification cost wM at training time. For actions which

do not lead to the goal, improper classification results in the exploration cost RF described

above, which is roughly the cost of exploring the space beyond the chosen subgoal. For

actions that do lead to the goal, the robot might have to consider every other possible

action, potentially traversing across the entire map before returning; therefore, the penalty

is the cost of traveling to the furthest point beyond a subgoal that does not lead to the goal

and back. The computed costs are then used as weights for the cross-entropy loss used to

train the classifier. This heuristic makes intuitive sense: actions which are successful are

naturally more important to correctly classify than those that do not. Finally, we also use

class reweighting to compensate for the asymmetry in the proportion of actions that do and

do not succeed. Below we characterize the fully the Partially Observable Temporal Logic

Planner (PO-TLP) loss function:

LPOTLP = wMLWCE(PS, P̂S, wC) + wCPS(RS − R̂S)
2 + (1− PS)(RF − R̂F )

2, (3.10)

where wM represents the mis-classification cost, wC is the class reweighing term, and LWCE

is the weighted cross-entropy loss:
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Figure 3.7: A depiction of how we compute training data from the underlying map. For
the action of attempting to find a fire extinguisher while avoiding the fire, we identify the
the frontier at the bottom will lead to a successful action, while passing through the one at
the top will fail to do so. As such, we compute the cost of success by finding a path to the
nearest extinguisher for the lower action, and the cost of failure for the higher upper one.
Note that the cost of failure might require exploring the entire map, which we approximate
by planning to the furthest region geometrically. We simultaneously compute the values for
attempting to find the fire directly.

LWCE = −wCPS log(P̂S)− (1− PS) log(1− P̂S). (3.11)

The labels for RS and RF are only relevant for successful or unsuccessful actions respectively.

Therefore, in the above equations we only penalize them in those instances.

3.2.3 Collecting Training Data

To collect training data, we navigate the robot through environments using an autonomous,

heuristic-driven agent in simulation, and teleoperation in the real world. We assume the

agent has knowledge of propositions in its environments, so it can generate the feature

vectors that encode actions for subgoals it encounters. As the robot travels, we periodically

collect images and the true values of PS (either 0 or 1), RS, and RF for each potential

action from the underlying map. Figure 3.7 visualizes how we compute these values from

the underlying map.
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Figure 3.8: A comparison between our planner and the baseline for 500 simu-
lated trials in the Firefighting environment with the specification (¬fire U alarm) ∨
((¬fire U extinguisher) ∧ ♢fire). The robot (“R”) learns to associate green tiling with
the alarm, and hallways emanating white smoke with fire (A), leading to a 15% improvement
for total net cost for this task (B). Our agent learns it is often advantageous to search for the
alarm (C), so in cases where the alarm is reachable, we generally outperform the baseline
(highlighted by the cluster of points in the lower half of B). Our method is occasionally
outperformed when the alarm cannot be reached (D), though we perform better in the ag-
gregate and always satisfy the specification.

3.3 Experiments

To demonstrate the effectiveness of our approach, we perform experiments in both simulated

and real-world environments. The planner from Ayala, Andersson, and Belta [111] solves a

similar type of planning-under-uncertainty problem to those of interest in this paper, and

likewise uses boundaries between free and unknown space to define the set of high-level

actions available to the agent as it explores an occupancy grid world (albeit with a non-

learned selection procedure and no visual input). Therefore, we compare the total distances

traveled using each method.2

3.3.1 Firefighting Scenario Results

Our first environment is based on the firefighting robot example, simulated with the Unity

game engine [134] and shown in Fig. 3.8. The robot is randomly positioned in one of two

rooms, and the extinguisher and exit in the other. One of three hallways connecting the

rooms is randomly chosen to be a dead end with an alarm at the end of it, and is visually

highlighted by a green tiled floor. A hallway (possibly the same one) is chosen at random
2To be more comparable with our approach, our baseline modifies [111] by directly planning to regions

in the LTS pertaining to transitions in the DFA and re-planning before reaching a subgoal at the same rate
as our planner.
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to contain a fire, which blocks passage and emanates white smoke. We collect data in this

environment by running our baseline planner over a few dozen trials, periodically collecting

labels for abstract actions defined by subgoals and predicates in the scene. We use this data

to train our network to learn to associate the visual signals of green tiles and smoke to the

hallways containing the alarm and the fire, respectively.

We test with four different task specifications—using the same network without retraining

to demonstrate its reusability:

1. (¬fire U alarm)∨ ((¬fire U extinguisher)∧♢fire): avoid the fire until the alarm

is found, or avoid the fire until the extinguisher is found, then find the fire. To complete

the task, the robot has the option of using either the fire extinguisher to fight the blaze,

or simply pulling the alarm.

2. ¬fire U (alarm ∧ ♢exit): avoid the fire until the alarm is found, then exit the

building. Here we require the robot to find the alarm, removing the option of using

the extinguisher.

3. (¬fire U extinguisher) ∧ ♢(fire ∧ ♢exit): avoid the fire until the extinguisher is

found, then put out the fire and exit the building. In this case the robot must evacuate

the building after extinguishing the fire.

4. ¬fire U exit: avoid the fire and exit the building. Simple goal-directed navigation,

where our robot (perhaps rationally) is instructed to leave the building.

Over ∼3000 trials across different simulated environments and these four specifications,

we demonstrate improvement for our planner over the baseline. Fig. 3.8 gives a more in-

depth analysis of the results for specification 1. In Table 4.1 we compare the average cost

and percent savings (with standard error) of the baseline and our proposed planner.

While our approach does not always outperform the baseline, it does in expectation for

every specification, while still completing the task in every instance. Fig. 3.8B compares the

cost incurred by both planners over ∼500 trials for the first specification. For this task our

method outperforms the baseline by 15% in total net cost. Fig. 3.8C and D highlight two

instances of the environment, and the paths taken by our agents in satisfying the specifi-

cation. Although not shown in this figure, we also compare our approach to the policy of
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Table 3.1: Simulated Results in Firefighting Environment

Task Average Cost Percent Savings
Specification Known Map Baseline Ours Net Cost Per Trial (S.E.)

1 187.0 264.6 226.9 15% 14.4% (1.3)
2 392.1 696.0 461.2 34% 28.4% (1.0)
3 364.3 539.3 471.3 13% 6.1% (1.3)
4 171.2 269.1 203.3 25% 14.6% (1.0)

simply selecting the action with the highest estimated probability of success. In all cases,

this greedy approach was outperformed—2.4 times the cost on average—by our planner as it

fails to account for cost, leading to oscillations between actions in regions where the learning

is uncertain.

3.3.2 Delivery Scenario Results in Simulation

We scale our approach to larger simulated environments using a corpus of MIT academic

buildings containing labs, classrooms, and offices, all connected by hallways. Our dataset

allows us to build occupancy grids, which we use to construct 3D simulations as shown in

Fig. 3.9. In a case of simulation imitating life, simulated “professors” are located randomly

in offices, “graduate” students in labs, and “undergraduates” in classrooms, which have dif-

ferently colored walls in simulation. In order to provide our agent with a learnable signal,

rooms that are occupied by delivery targets have their (simulated) lights turned on whereas

other rooms are not illuminated. We also illuminate hallways.

Our agent must deliver packages to three randomly placed individuals in these environ-

ments: one each of a professor, graduate student, and undergraduate. We give the robot

the specification ♢professor ∧ ♢grad ∧ ♢undergrad; instructing it to deliver a package to

each individual in any order. Our agent is able to learn from the environments visual cues

to navigate more efficiently. Over 80 simulations across 10 environments, the mean per-trial

cost improvement of our agent compared with the baseline is 13.5% (with 6.1% standard

error). Our net cost savings, summed over all trials, is 7.8%. Fig. 3.9 illustrates our results.

We should note that, as with the Firefight scenario, we are careful to separate maps used

for training from those used for testing.
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Figure 3.9: A) Visual scenes from our Delivery scenario in simulation. The rooms which
can contain professors, graduate students, and undergraduates are colored differently and
illuminated when occupied. B) A comparison between our approach (left) and the baseline
(right) for one of several simulated trials for the task ♢professor ∧ ♢grad ∧ ♢undergrad.

3.3.3 Delivery Scenario Results in the Real World

Finally, we extend our Delivery scenario to the real world using a Toyota Human Support

Robot (HSR) [135] with a head-mounted panoramic camera [136] in environments with

multiple rooms connected by a hallway. The robot localizes and updates its map with a lidar

and the hector_slam package [137], and streams images from a head-mounted panoramic

camera [136]. The robot must deliver a package and a document to two people, either

unordered (♢DeliverDocument ∧ ♢DeliverPackage) or in order (♢(DeliverDocument ∧

♢DeliverPackage)). As in simulation, rooms are illuminated only if occupied. When the

robot enters a room, the occupant specifies which object they need delivered, prompting a

replan using an updated LTS of the environment.

These experiments were run in MIT academic buildings. Specifically, data were collected

in Building 1, where different lights in rooms down a hallway were turned on or off depending

on if a delivery target was in the room. Data were collected in this setting over a dozen trials.

We tested our approach in a different building entirely, moving to MIT’s building 36 (shown

in Fig. 3.10). We ran 5 trials for each planner spanning both specifications and 3 different
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Figure 3.10: A comparison between our approach (A-D) and the baseline (E) for our real-
world Delivery scenario. Our agent (blue dot) correctly predicts actions likely to fail (e.g.,
dark rooms in A) and succeed (e.g., completing a delivery in an illuminated room in B). Once
the robot identifies delivery actions that lead to DFA transitions in known space, it executes
them (C-D). Conversely, the baseline fully explores space before completing the task (E).

target positions in a test environment different from the one used to collect training data.

We show improved performance over the baseline in all cases with a mean per-trial cost

improvement of 36.6% (6.2% standard error), and net cost savings, summed over all trials,

of 36.5%. As shown in Fig. 3.10, the baseline enters the nearest room regardless of external

signal, while our approach prioritizes illuminated rooms, which are more likely to contain

people.

The fact that we were able to learn a useful signal with such limited data in the real world

highlights the benefits of our approach. We would expect that less data efficient methods

would have struggled with the limited dataset, as well as the change in setting.

3.4 Discussion

In this chapter, we presented a novel approach to enable a robot to solve complex tasks in

partially revealed environments. We model the underlying planning problem in this setting

as a POMDP, which is particularly difficult to solve in large environments and complex task

specifications. To enable efficient planning, the proposed method defines an abstraction over

actions in physical and task space. Specifically, each abstract action designates what the

robot will do in known space, where it will attempt to leave the known map, and what

it intends to accomplish in unknown space. This abstraction allows us to represent tasks

expressed to our agent in temporal logic as much shorter-horizon planning problems than
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they would otherwise be. However, the partially observable nature of the environment means

that we cannot be certain any of these actions can be refined into a concrete plan.

Humans are an existence proof that predictions of feasibility and cost can be made in

these settings from sensor input (in our case, vision), and that those predictions can lead to

better decision making. Even when placed in an unfamiliar building, a human would know

that, for example, hallways connect faraway regions of space, and classrooms are unlikely

to contain coffee beans. We therefore define simple supervised learning problems to allow a

robot to make predictions of the outcomes and costs of our abstract actions from panoramic

visual input. We are careful to structure the inputs to our learned model such that it does

not require re-training if the goal specification changes. Starting from the Bellman equation

(Eq. (3.1)), we recognize that grouping future beliefs into two categories (success or failure

of the current actions) allows us to derive a method to compute the optimal policy over

actions for our robot to try given our network’s predictions. However, even in our simplified

representation, the resulting equation (Eq. (3.8)) is too expensive to tractably compute

exactly.

To address this computational intractability, we adapt a stochastic search approach to

our setting, which allows us to identify the lowest cost action in expectation for a given

scene. We use our learned predictions to guide this search, therefore spending less time

considering actions which are unlikely to succeed, or which are of prohibitive cost. Our

planner is therefore able to reason about which abstract actions are likely to be refinable

into a concrete plan at execution time, thus enabling it to account for the imperfections

inherent in our planning abstraction. Once we have determined the best action according

to our predictions, our agent computes a low-level trajectory in known space, and begins

to travel down that path. As the agent travels, it receives new observations, allowing it to

update its map, and potentially providing more information for its learned models. After a

short period (on the order of a couple seconds), our agent uses this new information to re-

plan from scratch, potentially choosing a new action. This planning loop continues until the

robot completely satisfies the given goal specification (as highlighted in figure 3.1). Because

our agent reveals the map as it travels, it is guaranteed to eventually satisfy any specification

it is given, even if the learned predictions are misguided.
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We demonstrated the effectiveness of our approach in three different settings. First, we

considered a simulated environment of a building on fire. Our agent was given visual cues

to identify where in the building it might find a fire extinguisher or an alarm, and learned

to make predictions about the outcome and costs of different actions from visual input.

The primary insight from these experiments was that our model was able to make useful

predictions to guide search in this setting, even when we changed the goal specification. We

then investigated how our approach scales to larger environments by testing our method in

a simulated version of MIT academic buildings. We were still able to show improvement

over the heuristic driven baseline in this setting for a given delivery task. Finally, we showed

that our planner was useful in real world settings by implementing it on a Toyota HSR and

testing it in building 36 at MIT. After training in a different section of campus, we showed

that even in the real world with limited data, we are able to find efficient plans using our

method.

Of course, despite the improvements we saw experimentally, there are some limitations

to our approach, the impacts of which we outline here:

• Inaccurate Abstraction: One assumption we make in the training of our models

is that we have access to ground truth labels for the feasibility and cost of different

actions. Specifically, the labels for probability of success and cost of success are quite

easy to attain given the ground truth map. Determining if an action might be success-

ful is as simple as attempting to find a path to the appropriate labeled region in the

map through the chosen frontier, and the associated cost can be determined from the

length of that path. However, to get the cost of failure, we make an approximation.

As outlined in section 3.2.3 and figure 3.7, RF is computed by planning to the furthest

region reachable in unknown space beyond the chosen frontier. However, there are

many factors which may make this an incorrect estimate. One the one hand, there

may be many branching paths through unknown space that make full exploration sig-

nificantly more costly than planning to a single point. On the other hand however, in

practice we often see an agent begin down a particular path, only to receive new infor-

mation and reverse course upon re-planning. One way to more accurately estimate this

value would be to track the actual experienced exploration cost using online learning
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methods, however it is unclear if this would lead to any observable improvement in

planning.

• Instantaneous predictions: Another aspect of our planning approach which is some-

what limiting is the information our networks use to make predictions. As presented

in section 3.2, our network is passed a vectorized representation of what the robot is

trying to do in known space, as well as a camera image centered on the chosen subgoal.

This image is a snapshot in time, and may not capture everything about the region

the robot is considering exploring. Imagine for example the robot is traveling down a

hallway, and sees an exit sign along its path. We would rightly expect it to predict

that an action which attempts to find an exit in this direction has a high probability

of success. However, as soon as the robot passes this sign, the next time it makes a

prediction it will not have the same visual cue. As a result, the agent might lower

its estimate of success. The worst case outcome here is that the predicted probability

becomes so low that the agent changes its mind at the next planning cycle and reverses

course.

In general, non-local information may be relevant to decision making. Beyond the

case described above, imagine our robot encounters a map of the environment it is

in. We would like there to be some way for it to incorporate this information into its

decision making. One potential way to include non-local information into our network

predictions would be to include some method of either memory or message passing (or

both) into our model architecture. For example, if we were to encode the environment

as a Graphical Neural Network (GNN), and store images in the nodes, we might have

a way to keep track of information across large distances [138]. The use of GNNs in

scene encoding will be discussed further in the next chapter.

• Planning cost: A major contribution of this work is the ability to reduce long-

horizon planning tasks into much more tractable problems. However, one limitation

of the manner in which we compute costs in larger environments is the impact these

calculations have on planning time. Specifically, in our simulated delivery experiments

(section 3.3.2), we noticed that as the number of frontiers increase, the impact of
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computing the D value in equation 3.8 became limiting. Even with our stochastic

planning approach, once the number of frontiers surpassed around 20, we were not

able to expand enough of the search tree to outperform the baseline planner by much.

It should be noted that we are even solving a simplified planning problem, as our agent

is not considering geometrically how it will execute its actions. If we were to plan in

the higher dimensional space needed to reason about grasps and arm trajectories, the

planning problem would become even harder. In the next chapter we will consider

how we can overcome the challenges of planning in known space for high-dimensional,

complex tasks.

The novel research in this chapter demonstrates an ability to efficiently plan hierarchically

in partially observed domains. In the scenarios considered here, the nature of the problem

forces our agent to utilize a top-down planning approach. In general, this top-down strategy

is susceptible to making decisions which lead our agent down dead-end paths, causing back-

tracking. However, by informing our high-level planner of information initially not included

in the higher levels of abstraction (panoramic RGB input), we are able to better guide

decision making, leading to significant improvement over uninformed planning approaches.

We note that the limitations listed above are largely candidates for improvement. The

method by which we collect data, architect our learned models, or compute trajectories

in known space are all choices which may be made differently. In the next chapter we

build upon the insights of this work to attempt to overcome the challenges of planning in

known space for high-dimensional, complex tasks. Later on, in Chapter 5, we address the

challenges of exploding environment complexity. Finally, we will consider opportunities for

future work in Chapter 6, notably imagining how recent progress in foundation models might

be incorporated into our approach.
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Chapter 4

Learning Feasibility and Cost to Guide

Task and Motion Planning

In the previous chapter, we demonstrated an ability to solve complex planning problems

in partially-revealed environments, using a top-down hierarchical planning approach guided

by visual input. However, we made a few notable assumptions when defining our planner

that simplified the planning problem in some key ways. Critically, though we considered

tasks where our robot had to “pick up” a fire-extinguisher or “deliver” a package to a human,

the sub-problem of actually solving for each low-level trajectory executed by our agent was

greatly simplified. We assumed we could grasp anything if we navigated to it, and deliver

any package if the robot was in the vicinity of the target. As a result, we could abstract

away much of the complexity of planning in high-dimensional domains, and solve for the cost

of executing actions in known space with discretized grid search. Of course, this approach

is not always feasible in reality, as the computational complexity of the combined task and

motion planning problem is in general greater than that of sequential motion planning [19].

This is at least in part due to the fact that there are many contexts where the geometry of

a given scene limits which actions are immediately feasible. Just as high-level actions which

enter unknown space can fail, so too might those in known space. Grasps could be infeasible

due to an obstruction, passageways may be too narrow to find a plan, or a platform might

be too cluttered to find a valid place to put an object. Much in the same way that we could

not easily refine the exploratory actions during planning, attempting to solve for low-level,

87



high-dimensional trajectories naively in this context is also computationally challenging.

Despite considering multi-step planning specifications, another key assumption we made

in the development of our Partially Observable Temporal Logic Planner (PO-TLP) was to

treat the task purely as a sequential motion-planning problem (as defined in Chapter 2.1).

As a result, our planner never had to consider how our robot’s interaction with the world

might affect anything beyond the agent itself (e.g., activating the alarm did not put out the

fire, which could have affected how the agent then traveled to the exit). PO-TLP relied on

the fact that we could train a network with (among other things) local sensory input, and

make predictions of feasibility and cost for all future actions just as effectively as for the

next action to take. For tasks beyond navigation however, any decision the robot makes can

(and often does) have an impact on the environment itself. For example, if the robot moves

one object to a new location, then attempts to grasp another object which was previously

obstructed, the fact that the first object was moved clearly affects the feasibility of the second

action. In this case, if we rely on an image of the scene to predict feasibility, or otherwise

fail to account for the updated state of the world before acting, our agent would be unable

to predict how moving the obstruction would impact its plan.

Consider, for example, a mobile robot attempting to “cook” multiple objects in a kitchen

environment. Solving this problem hierarchically involves considering both the discrete se-

quence of actions (e.g., “pick up object ‘A’, navigate within the room, then place ‘A’ on a

new platform”), and the constrained continuous and discrete parameters of those actions (a

reachable grasp on A, a collision-free trajectory to move between configurations, a platform

to place on). Problems of this nature can quickly become computationally challenging as the

task complexity increases. The more objects the robot is assigned to ‘cook’, the longer the

task horizon grows, the wider the breadth of options becomes, and the more sub-problems

must be solved [19]. Moreover, as more objects are moved, the impact of constraints shared

between sub-problems (e.g., one moved object impacting the placement of another) also be-

come greater [19]. In this chapter, we build upon the intuition we found useful in partially

revealed domains, and again aim to learn models to guide search to refine high-level, ab-

stract plans, this time accounting for the increased complexity of Task and Motion Planning

(TAMP).
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One common approach for solving TAMP problems like the one described above involves

defining external approaches for solving for specific sub-problems in a task (e.g., a sampler

to find feasible grasps or collision-free motion planner for trajectories between robot configu-

rations). As discussed in Chapter 2.1.2, a TAMP solver will then alternate between finding a

plan at each level of the hierarchy. At the upper level, the planner returns discrete high level

plans composed of abstract actions, then finds the continuous parameters of those plans by

solving the relevant sub-problems [19], [36] at the lower level. In this approach, there is an

implicit assumption that any task plan found at the upper level of the hierarchy might be

feasible, and so it is worthwhile to try to solve its associated sub-problems. This is unfortu-

nately not always true in reality. Imagine a robot attempting to pick up a mug at the back

of a cluttered shelf. No matter how many grasps are sampled, there may be no trajectory

which avoids all potential collisions with obstructing objects. Unsurprisingly, if a problem

instance is particularly constrained (e.g., the object we are trying to grasp is buried behind

many obstructions), high-level plans which do not consider moving those objects first may

ultimately be infeasible. Often times TAMP solvers may attempt to refine infeasible high-

level plans numerous times, failing to find a valid solution before a sub-problem is ultimately

abandoned.

Clearly, a major challenge in this strategy is determining when to attempt to solve a

particular sub-problem that is a part of one high-level plan, versus spending computation

time solving a different sub-problem contained within a separate, potentially more feasible,

plan. Even with clever approaches such as the adaptive algorithm in Garrett, Lozano-Pérez,

and Kaelbling [36] or the Monte-Carlo Tree-Search (MCTS) based planner proposed in Ren,

Chalvatzaki, and Peters [37], due to the combinatorial nature of task planning, coupled with

the complexity of motion planning, problems can become computationally intractable very

quickly as state and action spaces grow [19]. Particularly in problem settings where the

chosen black-box samplers or solvers fail frequently (e.g., attempting to place an object on

a cluttered platform), repeated failed queries to these solvers can cause planning times to

balloon. This follows the intuition we built in the previous chapter. In instances where

the principle of downward refinement is a bad assumption in general, we would expect

hierarchical planning to be less efficient when done naively. Unfortunately, knowing ahead
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of time which sub-problems have feasible (or optimal) solutions is as hard as the original

planning problem itself. There is no practical way to avoid occasionally attempting to solve

sub-problems that do not actually have feasible solutions, but we would like to be able

to identify ahead of time the expected cost of doing so, and subsequently guide search to

minimize wasted computational effort.

If we as humans are able to make predictions about which objects we can pick up, and

where we can feasibly place them, so too should our robots. There has been significant recent

progress in accelerating planning for TAMP problems using learned models. Most relevant

to this work are contributions which attempt to accelerate search from experience [46]–[53].

Many of these approaches learn to either ignore certain parts of a problem domain, or guide

the search for high-level plans, but do not address how to learn within the planning process

itself to accelerate finding continuous action parameters. Those that do [46] often require

thresholds to prune search tree branches based on pre-trained feasibility predictions, which

can perform will in aggregate across many planning problems, but lead to failures in certain

cases with no way to recover. Moreover, given the fact that simply finding a satisfying

solution is so difficult in these settings, often times considering metrics like execution time

is an afterthought.

Our objective is to find plans which solve TAMP problems efficiently, both in terms of

wall-clock time spent searching for the plan, as well as with respect to the time it takes

to execute the plan on a robot. To that end, we propose an approach for learning to

predict the outcome and cost of solving particular sub-problems used by existing TAMP

algorithms, then use these models to accelerate planning. As in Chapter 3, the models

we learn allow us to predict when the downward refinement property of our abstraction

holds, and how expensive the refined plan is expected to be. In this chapter we propose

two contributions. The first is a method to compute the expected cost of attempting to

solve the relevant sub-problems within a high-level plan in a TAMP problem. Specifically,

for each sub-problem (like grasp sampling or inverse kinematics) relevant to our robot, we

train a model to predict outcomes (either success or failure) and costs (in both planning and

execution time) for different inputs. This contribution is inspired by the work in Chapter

3. Second, we propose a novel stochastic planning approach to better take advantage of
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Figure 4.1: A) A Panda agent is tasked with grasping the block highlighted in green. B-
C) A naive abstract plan might be to grasp the green block directly, ignoring some or all
potential obstructions. When the sub-problems associated with these plans are attempted,
computation will be wasted solving for motion plans that are infeasible due to collision. D)
Instead, our approach utilizes learned models to guide planning by taking into account the
feasibility and expected cost of sequences of sub-problems. As a result, our agent efficiently
finds a plan which moves the relevant obstructions first.

our ability to estimate these outcomes and costs to accelerate planning. Our planner uses

the learned model’s estimates to guide search, then takes advantage of the UCT algorithm

to account for potential inaccuracies in our models online. We propose a method by which

our models can be evaluated to return the expected cost of a grounding and executing a full

high-level plan, without having to immediately solve each sub-problem, enabling our planner

to reason about potentially re-solving upstream sub-problems during search.

This chapter is organized as follows. We first outline how we build a planning abstraction

for TAMP problems using PDDLStream, highlighting how approaches which do not account

for the infeasibility of abstract plans struggle in many classical TAMP problems. Second,

we derive how we estimate and refine online the expected cost of grounding and executing

an abstract action plan using these predictions. Then, we describe the construction and

training of simple models offline to predict the outcome and costs of individual sub-problems

in a TAMP domain. Next, we demonstrate how this cost estimate is incorporated into a

novel planner to more efficiently guide search. Finally, we implement our approach using
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the PDDLStream framework defined in [36], and demonstrate an improvement in planning

time on two different, simulated platforms over a heuristic driven baseline, as well as on a

real robot [37].

4.1 An Abstraction for Task and Motion Planning

As discussed in Chapter 2, the combined TAMP problem jointly considers elements of high-

level task planning [31], [32] and low-level motion planning [33] in an attempt to solve hybrid

discrete-continuous, multi-modal planning problems [19]. Solutions for TAMP problems take

the form of a sequence of parameterized actions π = [a1, a2, ..., an] that define a plan, where

parameters satisfy each action’s constraints [19]. One approach for representing a TAMP

problem—which we use in this work—is an extension of the Planning Domain Definition

Language (PDDL) called PDDLStream [36].

A PDDLStream problem (P,A, S,O, I,G) is specified as sets of predicates P , actions A,

streams S, objects (referred to elsewhere in this thesis as symbols) O, an initial state I, and

a goal state set G. The initial and goal states of a PDDLStream problem are sets of facts:

instances of boolean functions called predicates p(x) ∈ P , which are parameterized by tuples

of objects x ∈ O. For example, the fact that certifies if the robot is at a given pose is an

instantiation of the predicate AtPose ?p, and is either true of false for different pose objects

?p. Actions a ∈ A are defined by two sets of predicates: preconditions and effects, and are

parameterized by object tuples x. For a given input x, if the preconditions evaluate to true,

the action is legal, and the effects specify which facts will change value in the subsequent

state. Below we see a PDDL encoding for a pick action:

:action pick

:parameters (?o - obj ?p - pose ?g - grasp ?q - conf ?t - traj)

:precondition (and (iskin ?o ?p ?g ?q ?t)

(atpose ?o ?p)

(handempty)

(atconf ?q)

(canpick)
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(not (usedGrasp ?o ?p ?g))

(GraspAtPose ?g ?p)

)

:effect (and (atgrasp ?o ?g)

(canmove)

(not (atpose ?o ?p))

(not (handempty))

(increase (total-cost) 100))

For certain actions, preconditions may include facts and objects that are either cumbersome

or impossible to add to initial state I. For example, one of the preconditions for the pick

action defined above is a collision-free configuration ?q which grasps the chosen object. The

fact (IsKin ?o ?p ?g ?q ?t) indicates that ?q is kinematically feasible and collision free. If

a solution to the task exists, in order to guarantee it can be found by a PDDL solver, we might

attempt to enumerate all possible feasible configuration objects for all possible grasps (or at

least a discrete subset of these which reasonably covers the configuration space). However,

for a 20-DOF robot (e.g., a PR2), doing so without creating a potentially intractably large

problem is impossible. To account for this, PDDLStream problems include object generators

called streams s ∈ S, which allow a planner to represent potentially relevant sub-problems,

such as identifying relevant robot configurations, without tabulating all solutions. Streams

consist of sets of (1) input and (2) output objects, (3) domain predicates which must be

true in the input, (4) action predicates to be certified if the queried stream is successful, and

(5) an external function that attempts to solve a specific sub-problem when the stream is

queried. The stream that certifies the precondition (IsKin ?o ?p ?g ?q ?t) is given below:

:stream inverse-kinematics

:inputs (?o - obj ?p - pose ?g - grasp)

:domain (and (IsPose ?o ?p) (IsGrasp ?o ?g))

:fluents (AtPose)

:outputs (?q - config ?t - trajectory)

:certified (and (IsConf ?q) (IsTraj ?t) (IsKin ?o ?p ?g ?q ?t))

When an action has a precondition which can only be certified by a stream, that stream
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can be queried in an attempt to solve the associated sub-problem, and determine if said

precondition can be certified. The inverse-kinematics stream above takes in an object, its

current pose, and a valid grasp (relative end-effector position) of that object. The :fluents

field specifies addition inputs, in this case, all AtPose facts in the current state 1. When

queried, the stream calls an IK solver (written in some other language like Python or C++)

which returns two new objects: a collision free configuration ?q and a short trajectory ?t

which represents the closing of the gripper on the object of interest. If the sub-problem is

successfully solved, the stream certifies that ?q is a robot configuration, ?t is a trajectory,

and that ?q and ?t are collision free when object o is at position ?p for grasp ?q. In that

case, the new objects are added to the domain, (IsKin ?o ?p ?g ?q ?t) is added to the

state I, and the precondition to the pick action is satisfied. Conversely, if the sub-problem

is not solved, the fact is not certified, the action’s preconditions are not met, and it cannot

be included in a valid plan.

It is precisely this automatic generation of the objects—only when they are useful to

solving the sub-problems in a potentially complete task plan—that is the power of interleaved

TAMP solvers like PDDLStream. Note, however, that though a stream might produce a valid

solution for its inputs, that output may still not be useful to the overall problem. The IK

stream for example requires a grasp as an input, but many sampled grasps, and corresponding

objects, may never lead to a collision free configuration depending on the object’s pose, or the

positions of other objects in the scene as specified by the fluents. A stream may therefore

need to be queried many times with potentially many different inputs before generating an

solution which jointly satisfies all constraints in a TAMP problem. We refer the reader to

[36] for a more detailed description.

PDDLStream encodings define a hierarchical planning problem, and there are several

solvers that have been developed for TAMP problems specified in this way. The simplest

approach requires defining the level of a fact, which corresponds to the number of chained

sub-problems that would need to be solved in order to certify said fact. For example, the level

of the IsKin fact would be 2, considering a grasp needs to be sampled (defined by a different
1Fluents are an artifact of the PDDLStream software, which allows us to pass an unspecified number of

arguments to a stream.
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stream) in addition to the IK stream. Starting with level-0, we can first attempt to certify

all facts at the given level, then attempt solve the PDDL problem from the resulting state.

If that attempt fails, we increase the level, and try again. This is the approach defined in the

Incremental algorithm [36], [38], and has two negative side effects: 1) spending time solving

sub-problems which are ultimately irrelevant to any plan, and 2) therefore producing many

irrelevant facts, which makes the discrete search for plans more computationally expensive.

More sophisticated approaches improve on the Incremental approach by delaying the

step of solving sub-problems by optimistically assuming that any time a stream is needed to

certify an action predicate, it can be queried successfully. In practice, these approaches add

what can be referred to as optimistic-objects to the planning domain according to the current

level, which correspond to the outputs of streams if their associate sub-problems were to be

successfully solved. Then, PDDL solvers generate abstract plans π, which are composed of

actions that may be parameterized by these optimistic-objects. For a given abstract action

plan π, we can generate the sequence of sub-problems s that must be solved to ground the

optimistic parameters in π: referred to as the stream-plan ψ. If each s ∈ ψ is able to be

solved for satisfying output objects, then the concrete action plan solves the original TAMP

problem [36], [37]. Unsurprisingly, this optimistic assumption struggles in certain settings;

in particular when many of the sub-problems in a scene are infeasible. In such scenarios,

optimistically assuming any abstract plan can be refined to a concrete one leads to solvers

spending time unnecessarily attempting inherently infeasible sub-problems. In the following

section, we will highlight a scenario where this is the case, and consider how we can estimate

cost to guide search in TAMP.

4.2 Reformulating the Task and Motion Planning Prob-

lem

A principal challenge in solving TAMP problems is determining which of a set of abstract

action plans (found at higher levels of the hierarchy) we should attempt to ground to concrete

parameters. If we spend computation on the “wrong” action plan, we waste time solving
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sub-problems that are infeasible, or otherwise irrelevant to a complete plan. Therefore, our

planner must decide in some way which plan it should attempt to ground, and so we need a

method to compute and compare the expected costs of different high-level plans.

For the sake of grounding this discussion, let us imagine a simple task, wherein a table

top manipulator is trying to move one of three differently sized blocks from one platform

to another (similar to the setting highlighted in figure 4.1, but more specifically that in

figure 4.2). We will assume our agent has certain skills, for example, the ability to pick up

objects, place them down, and move between robot configurations. The sub-problems the

robot must solve to execute those actions and accomplish its task are to sample grasps and

placement poses, solve Inverse Kinematics problems, and to compute motion plans between

configurations using an RRT solver [23]. The full domain and stream file for this scenario can

be found in Appendix A.1. We task our robot with grasping the smallest block, constrained

to only use top-down grasps. In Figure 4.2-A, we can see that the red block obstructs any

attempts to pick up the smaller target (green) block due to its position (the blue block is

irrelevant), and so may need to be moved out of the way. Next, we compare two possible

abstract plans our agent might consider (visualized in Fig. 4.2 and expanded below). The

first (see π1 below) would be to pick up the green object directly, then place it on the goal

platform. Here we see this abstract action plan, and corresponding sub-problem sequence

(bolded values indicate parameters that must be solved for):

Action Plan π1

1. Move(conf1, conf2, traj1)

2. Pick(obj2, grasp1, conf2, pose1, . . . )

3. Move(conf2, conf3, traj2)

4. Place(obj2, grasp1, conf3, pose2, . . . )

Sub-problem Sequence ψ1

1. grasp1 = Grasp(obj2)

2. conf2 = IK(obj2, grasp1, pose1)

3. traj1 = RRT(conf1, conf2)

4. pose2 = Place(obj2, surface2)

5. conf3 = IK(obj2, grasp1, pose2)

6. traj2 = RRT(conf2, conf3)

As we can see, we have to solve 6 individual sub-problems to fully parameterize this action

plan. Another option would be to first move the red block out of the way, then move the
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green block (π2):

Action Plan π2

1. Move(conf1, conf2, traj1)

2. Pick(obj2, grasp1, conf2, pose1, . . . )

3. Move(conf2, conf3, traj2)

4. Place(obj2, grasp1, conf3, pose2, . . . )

5. Move(conf3, conf4, traj3)

6. Pick(obj1, grasp2, conf4, pose3, . . . )

7. Move(conf4, conf5, traj4)

8. Place(obj1, grasp2, conf5, pose4, . . . )

Sub-problem Sequence ψ2

1. grasp1 = Grasp(obj2)

2. conf2 = IK(obj2, grasp1, pose1)

3. traj1 = RRT(conf1, conf2)

4. pose2 = Place(obj2, surface2)

5. conf3 = IK(obj2, grasp1, pose2)

6. traj2 = RRT(conf2, conf3)

7. grasp2 = Grasp(obj1)

8. conf4 = IK(obj1, grasp2, pose3)

9. traj3 = RRT(conf3, conf4)

10. pose4 = Place(obj1, surface2)

11. conf5 = IK(obj1, grasp2, pose4)

12. traj4 = RRT(conf4, conf5)

For this second action plan, the associated sub-problem sequence is much longer. As a result,

most TAMP solvers—which rely on heuristics based in part on plan length—will be heavily

incentivized to spend time searching for parameters for the first plan, which moves the green

block directly. However, due to the geometry of the scene, we can see the plan which moves

the red block first is far more likely to lead to a concrete plan despite its length. We visualize

the two scenarios in figure 4.2. How can we better represent the true cost of grounding an

abstract plan in order to better guide search?

The total time it takes for the robot to solve a given task can be split into time spent

thinking and time spent acting. Our objective is therefore to find plans which solve TAMP

problems efficiently, both in terms of wall-clock time spent searching for the plan, as well as

with respect to the time it takes to execute the plan on a robot. In Chapter 3, we considered

a problem where the feasibility and cost of executing a plan was uncertain, but planning

itself was inexpensive (on the order of a few seconds or less). Conversely, in TAMP, we often

consider the execution of a plan to be predictable, while the act of finding a good plan itself
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Figure 4.2: A) A table-top manipulator is tasked with holding the shorter green block, but
the red block obstructs its grasp. B) By moving the red block out of the way, we can pick
up the green one. Center) We visualise a subset of each stream plan. Notably, grasping
the green block directly as in ψ1 is a shorter plan, however attempting to find a collision
free configuration for any sampled grasp is infeasible. Heuristics in TAMP approaches will
nevertheless encourage search to attempt to ground this plan as it is shorter than ψ2. We
would like use geometric information to guide search to be more efficient.

might take several minutes. The source of this extra cost lies in attempting to solve the

relevant sub-problems. For example, each attempt to solve an inverse kinematics problem

might take around half a second, and the timeout for a motion planning problem (using the

RRT) might be set to 2 or 3 seconds. Thus, if our search attempts to solve for many different

motion plans, any of which may fail, search time will be a significant contributor to the sum

of planning and execution costs. We can therefore model attempting to solve a sub-problem

in the same way we did executing actions in unseen space in Chapter 3; whereas before we

refined an abstract plan by taking the action, now we do so by solving the sub-problem

sequence. In both cases, there is uncertainty regarding feasibility: “does this hallway lead to

the fire-extinguisher” → “does the IK problem have a valid solution” , and cost: “how much

time will it take to reach the extinguisher” → “how long will it take to find the trajectory

between these configurations.”

98



With that in mind, we once again recognize that we can split the outcomes of actions

into cases where we either succeed or fail to solve a given sub-problem. Taking inspiration

from the work in Chapter 3, the cost of attempting to solve a single sub-problem can be

written as follows:

Qp(ψt) = PStRSt + (1− PSt)RFt , (4.1)

where Qp(ψt) is now the cost of solving sub-problem t in sub-problem sequence ψ. As before,

PSt is the probability an action succeeds, and in this case that means solving a sub-problem.

However, now RSt refers to the cost of successfully solving the sub-problem in wall-clock

time, and RFt represents the cost of attempting to find a solution and failing. Note that we

no longer include the D term, as the entirety of the action occurs in “known” space.

4.3 Computing the Cost of Solving and Executing an Ac-

tion Plan

The above equation defines the expected cost of attempting to solve a single sub-problem in

a sequence. In order to evaluate the expected cost of a sequence of sub-problems ψ, we must

consider the subsequent costs both in the case where we solve the sub-problem (we attempt

to solve the next one in ψ), and when the attempt fails. In Chapter 3.1.3, we derived from

the Bellman equation a method to estimate the cost of a sequence of stochastic actions with

binary outcomes, and re-state that equation here:

Q(bh, asz′z′′) = D(bh, asz′z′′) + PS(bh, asz′z′′)×
[
RS(bh, asz′z′′) + min

aS∈A(bhS )
Q(bhS

, aS)

]
+
[
1− PS(bh, asz′z′′)

]
×

[
RF (bh, asz′z′′) + min

aF∈A(bhF )
Q(bhF

, aF )

]
,

(4.2)

There are three notable differences between the equation above from Chapter 3, and the

cost we are trying to compute for finding concrete values of abstract action plans. First, this

is not a Partially Observable Markov Decision Process (POMDP) in that we know exactly
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our subsequent state if an action succeeds or fails. Thus, we do not reference the notion

of a belief state. Second, we note that the sequence of actions (in this case solving sub-

problems) has already been determined by the high-level planner, meaning we always know

which sub-problem we will attempt to solve next if we succeed in solving the current one.

These two differences remove the need to take a minimum over the costs of future actions:

minaS∈A(bhS )Q(bhS
, aS ≡ Qp(ψt:T ). Finally, the third difference is that if we fail to solve a

sub-problem, the full sequence might still be feasible if a different solution was found to a

sub-problem up-stream. For example, if we fail to find a motion plan between two robot

configurations, we can re-sample a grasp on the chosen object, which might yield a different

configuration for which a valid trajectory does exist. Therefore, the cost of failing to solve

a particular sub-problem must involve re-solving the sub-problems from step 0 up to that

point in the plan: minaF∈A(bhF )Q(bhF
, aF ≡ Qp(ψ0:T ) We re-write Equation 3.8 here with

our new notation, recursively representing the expected planning cost Qp of stream plan ψ,

beginning at step t until the final step T , as:

Qp(ψt:T ) = PSt(RSt +Qp(ψt+1:T )) + (1− PSt)(RFt +Qp(ψ0:T )), (4.3)

where Qp(ψt:T ) represents the total cost (in seconds) it would take to solve each sub-problem

st ∈ ψ (but not yet execute any generated trajectories), beginning at step t in the plan.

Because we are no longer taking the minimum of a set of actions, we should be able to re-

formulate this equation without requiring recursive values. Notice that Qp(ψ0:T ) ≡ Qp(ψ0:t)+

Qp(ψt:T ), meaning that the term Qp(ψt:T ) exists on both sides of our equation. We can

manipulate Eq. 4.3 algebraically, and re-write our expected cost:

Qp(ψt:T ) = (RSt +Qp(ψt+1:T )) +
1− PSt

PSt

(RFt +Qp(ψ0:t)). (4.4)

Due to the stochastic nature of some external solvers, certain sub-problem can be queried in-

finitely many times, and may eventually yield a successful output, particularly given different

inputs. Eq. 4.4 represents this intuition, as the expected planning cost for a particular step in

the recursion is simply the cost of solving a sub-problem, plus the number of times we expect

to fail to solve st, times the expected cost of each failure. The ratio 1−PSt

PSt
represents one less
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than the expected number of attempts before success in the geometric distribution param-

eterized by PSt (assuming independent samples). Finally, we can unroll the recursive steps

in our computation, and write the expected cost of successfully solving each sub-problem in

ψ as follows:

Qp(ψt:T ) =
∑
τ∈t:T

(
RSτ +

1− PSτ

PSτ

(RFτ +Qp(ψ0:τ ))

)
. (4.5)

Notably, we have not yet considered the cost of executing the plan. In our formulation,

this cost is only relevant for complete plans, as we do not begin execution until we find a

full concrete plan. We introduce an additional term RM , to represent the cost of executing

any motion plans generated by solving a given sub-problem. The total cost of execution

is therefore Qe(ψt:T ) =
∑

τ∈t:T RMτ . Finally, we add the planning cost Qp to the cost of

executing all generated trajectories in a plan, Qe, to recover the total cost of planning and

execution Q:

Q(ψt:T ) = Qp(ψt:T ) +Qe(ψt:T ). (4.6)

Using Eq. (4.6), we are able to estimate the expected future cost of planning and execution

from any point in a given ψ. In the following section, we discuss how we learn the terms

needed to compute Eq. (4.6).

4.4 Learning to Model External Functions

A major challenge for efficient TAMP strategies is the very thing that makes planning pos-

sible at all: the separation of the abstract discrete plan and the low-level geometric plan.

The high-level planner is intentionally spared the challenge of reasoning about low-level ge-

ometry, which enables it to produce candidate abstract action plans quickly. However, a

side effect of this is that these plans may be geometrically infeasible, often in a way that is

obvious to a human observer. Consider again the case of moving blocks from one platform to

another. Given enough experience, we should be able to reason that any plan which grasps

the shorter green block is unlikely to succeed, or will at least be very costly to find. This
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Figure 4.3: An example of how we decompose a scene (a) into inputs for our various learned
models. First we vectorize the local information that is relevant for a particular sub-problem
(b). Then, we embed the global information into a Graphical Neural Network (GNN) [138]
(c). After message passing, we concatenate the global feature vector of the graph with the
local information and pass that through an Multi-Layered Perceptron (MLP) to generate
the properties used to compute cost (d).

intuition is what leads us to our approach. If we can inform the higher levels of abstraction

about low-level information that is relevant for planning, we can improve upon naive decision

making. By learning to predict the feasibility and costs of solving different sub-problems,

we can compute Eq. (4.6) and guide search for a concrete action plan.

We train offline separate models for each sub-problem associated with a stream s ∈ S

in a domain, mapping an individual stream’s inputs to estimates of the outcome and costs

of querying for and executing the associated sub-problem. Each model has two types of

input: local information that is defined in the domain of the stream (e.g., the start and

goal configurations passed to a motion planner), and global information (e.g., the poses and

dimensions of other objects in the scene). Global information, derived from a scene graph, is

embedded in a Graphical Neural Network. The GNN is composed of a node model, an edge

model, and a global model, each of which shares the same architecture: two fully connected

layers of size 128, with leaky ReLU activation after the first layer. For each object in our

scene graph, we pass the pose and dimension features through two fully connected layers,

outputting a node feature vector that is N x 128. We similarly embed the edge features (the

translation between two objects), drawing edges according to which objects are supported

by the same surface, then perform one message passing step between the node and edge

models. Next, we pass each node through the global model, and concatenate the softmax of

the output with the vectorized local stream information. We pass this vector through a 4
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layer MLP to produce the model’s output.

Given local and global information, each network produces four outputs: PS; the prob-

ability of solving the sub-problem for the given inputs, RS; the expected cost of solving

the sub-problem successfully in wallclock-time, RF ; the expected cost of failing to solve the

sub-problem, and RM ; the expected time it would take to execute any motion plan output

(if a sub-problem does not generate a trajectory, we set this value to 0). With these four

properties, we have the ability to compute the expected cost of attempting to solve, then,

if successful, execute any trajectory generated by a given sub-problem. We compute the

cross-entropy loss to train the probability output, and the mean squared error for regress-

ing the cost predictions. All models were trained using the Adam optimizer (with default

parameters) over 10 epochs with a batch size of 32. The labels for our four outputs can be

generated by tracking the outcome and costs each time a stream is queried during search. In

this way, we can generate training data by running any PDDLStream based planner. Figure

4.3 depicts a representation of the network modeling an inverse kinematics solver.

There is one additional subtlety to the training process that we must note. So far, we

have considered the problem of attempting to predict the outcome and costs of actions given

particular inputs (e.g., predicting our four values for an inverse kinematics problem given

an input object, pose, and grasp). However, as we have mentioned, for longer sub-problem

sequences, the inputs to a given sub-problem may not themselves yet have been solved for,

in which case we do not have a full set of inputs. We would still like our models to be able

to make predictions in this instance, and be able to do so with incomplete information. To

do this, we pass along with all input a value which represents a flag: zero if the input value

is unknown, and one if it is known. Additionally, in the case where the value is unknown,

we pass a vector of zeros, appropriately sized, instead of the true value. For example, if

we do not yet know the Pose of an object we intend to grasp, we will pass our IK model a

vector of seven zeros along with a single zero as a flag. In this case our model recognizes the

absence of a true pose, and returns the expected values of our outputs for the chosen object

and grasp for an unknown pose.

In order for our models to be able to make reasonable predictions in these cases, we

must present them with relevant data at training time. Therefore, during data collection we
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Figure 4.4: A) The root node in our tree represents a set of sub-problem sequences Ψ,
and each child is a sample ψ from that set. For all subsequent nodes, the available actions
consist of attempting to solve a sub-problem, in this case: G: sample grasp, Pl: sample stable
placement, IK: solve for kinematically feasible configuration, and M: solve for collision free
motion plan. B) At each node, we use learned models to predict the feasibility and costs of
attempting to solve all remaining sub-problems in the sub-tree. C) We use these predictions
to estimate the expected cost of finding satisfying solutions for the remaining steps in ψ from
each node using eq. (4.6), defined in Sec. 4.3.

record how often a sub-problem would have full or partial inputs during search. Then, during

training, we intermittently “block out” particular input values according to the observed

frequency. By carefully weighting our training data in this way, we ensure our models see

partial input prediction problems with the same regularity that they would expect at test

time and are still able to make useful predictions when faced with such scenarios.

4.5 Planning with our Models

We now have a collection of learned models as well as an equation to estimate the cost of

solving a full sub-problem sequence using the predictions made by those models. In Chapter

3, we formulated search for the optimal action plan as a stochastic search problem using

Partially Observable UCT (PO-UCT), and we may be tempted to re-use that approach

here. However, there are some subtle differences which allow us to do better than planning

purely with our learned models. Notably, in order to refine an abstract action in Chapter 3,

our robot would have to travel potentially large distances into unknown space. As a result,

we would fully plan using our predictions of feasibility as the dynamics model in task space,

then take an action and re-plan. However, in the TAMP formulation, we can attempt to

solve a sub-problem comparatively quickly, and so have the ability to do so as a part of the

search for a concrete plan. In eTAMP [37], the authors propose using Progressive Widening
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for Upper Confidence Bounded Trees (PW-UCT) [139], [140] to search for parameters that

satisfy the constraints of an action plan. We build upon this approach for our planning

algorithm, using our models to guide search, and so outline it briefly here.

4.5.1 Searching for Abstract Stream Plans

The first step in our approach is to generate several abstract action plans π ∈ Π — sequences

of actions which would represent a successful plan if all preconditions are met — from a

PDDLStream problem using a top-k planner [141]. As mentioned in Section 4.1, some or all

of an action’s preconditions may be certifiable only by a stream. However, during the search

for abstract action plans, we do not explicitly attempt to solve the sub-problems associated

with those streams, as this would be prohibitively expensive. Instead we solve for abstract

plans π, and compute the associated stream-plan ψ for each. Given a set of k stream plans

ψ ∈ Ψ, we can begin to attempt to search for these parameters.

One approach for this search would be to simply query Equation (4.6) for each stream plan

given the initial state of the problem, and guide search using these estimates only. However,

during search in non-trivial domains, we may need to consider different potential solutions to

the same sub-problem (e.g., sample multiple different grasps on a block). Because the output

of a sub-problem may depend on its input, there can and will be different cost and feasibility

estimates for the same step in a stream-plan depending on the parameters that are passed

to the model (which depend on the solutions to upstream sub-problems). Therefore, when a

new solution to a sub-problem is found, we can update our predictions for the remainder of

a stream plan for a more accurate estimate. As we progress in our search for the parameters

of a plan, some predicted values will vary, and so too will the remaining estimated expected

cost. The differences in estimates can help us guide search, and we account for the associated

uncertainty with PW-UCT.

4.5.2 Searching within Stream Plans

There are four distinct steps in a PW-UCT search problem (as there were for our PO-UCT

in Chapter 3). The first is selection, where the existing tree is navigated according to the
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UCT heuristic (Eq. (4.7)) to find a node to expand. Next, in the expansion phase, a child

from the selected node is generated and appended to the tree. In the simulation step, we

continually add nodes from the newly expanded child until either an expansion fails, or we

successfully reach our goal. Finally, we update the statistics (total node visits and accrued

reward) of all visited nodes via back-propagation. This process is repeated until a solution is

found.

Our tree is built as follows. At the root node (level 0), the available actions correspond

to selecting one of the stream plans returned by the top-k planner. After this choice, each

level-1 sub-tree is associated with different evaluations for that stream plan. Each level in

a sub-tree corresponds to a specific stream, and each node in a level to a solution of the

associated sub-problem. Because sub-problems can be re-solved and potentially produce

novel results, there are infinitely many actions from each node (although a tree will only get

as deep as the length of a stream plan). Refer to Figure 4.4 for a depiction of a growing

search tree.

4.5.3 Guiding Search with Learned Cost

During traversal from the root to a leaf in the selection phase, the UCT equation (4.7) is

used to choose the next node:

argmax
vi

Q(vi) + c

√
2ln(N(v))

N(vi) + 1
, (4.7)

where vi represents a child of node v, N(v) denotes the number of times a node has been

visited, and Q(vi) gives the online estimated value of a particular child.

The UCT equation (4.7) relies on an estimate of Q in order to guide search. In eTAMP,

the authors propose a heuristic based on the depth of the search tree, and accrued reward [37].

Such heuristics, while potentially useful, require domain knowledge, may necessitate tuning,

and cannot adapt to different streams within a plan. Implicitely, they assume all unsolved

sub-problems are feasible, which we have demonstrated is an unreasonable assumption in

most robotics problems.

Instead, we use our learned models, applied to each step of the remaining stream plan,
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to more efficiently estimate Q and guide search. We evaluate Eq. (4.6) for each visited node

in order to get an estimate for remaining expected cost. Specifically, we use the negative of

the final output from Eq. (4.6) as the estimate for Q. If, in the application of Eq. (4.6), we

encounter a stream input that has not yet been solved for, we pass the model a zero-vector

of the same shape (along with a flag in the input) in its place to make a prediction without

that information, and remove any associated edges in the scene-graph GNN embedding (as

discussed in Section 4.4).

If the node selected by our learned UCT estimation is a leaf node (meaning it has no

children), the associated sub-problem is attempted, and, if solved, a new node is added to

the tree. Then, we re-query our learned models for the remaining sequence of streams in

ψ, using any new output generated by solving the previous sub-problem, and compute the

learned Q-value for the new node given those new inputs. From there, the simulation and

back-propagation steps are taken, and selection begins again. By growing the tree in this

way, we are biased to evaluate sub-problems that are determined by our learned cost to be the

most likely to lead to a satisfying plan in the shortest amount of time, balancing exploiting

high value branches, and exploring new solutions to account for potential inaccuracies in the

learning.

4.5.4 Progressive Widening with Learned Cost

One additional challenge in stochastic search for continuous parameters is the question of

when we choose to compute a new solution to a sub-problem rather than expanding the

search tree from an existing solution at a child node. As mentioned previously, each stream

could be called infinitely many times and potentially produce new outputs. For example,

each time a grasp sampler is queried, we should expect it to return a new grasp object.

As such, during tree traversal, we must decide at each node if we are going to query the

stream for a new set of groundings for its output and create a new child node, or if we are

going to select a child node with an existing assignment. If we rely on the standard UCT

heuristic, we would always sample new nodes during the selection phase of tree traversal,

due to the fact that each new action has never been tried before. To avoid this problem,

traditionally, PW-UCT search defines a formula for sampling new child nodes based on a
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pre-set schedule [139], [140]. In Ren, Chalvatzaki, and Peters [37], this decision is governed

by the progressive-widening inequality [140]: N(v)α > (N(v) − 1)α, where N(v) represents

the number of visits to a node v, and α is an exploration constant. If the condition is true,

then a new child node is created from node v by querying the associated stream. If not, and

multiple children exist from a particular node, the UCT equation (4.7) selects the next node

as described above.

We propose one further alteration to PW-UCT, taking advantage of our ability to es-

timate the expected cost of the remaining sequence of streams. Instead of relying on the

progressive-widening heuristic as in Ren, Chalvatzaki, and Peters [37], we simply consider

the act of sampling a new node as another action in Eq. (4.7). If the UCT heuristic for

querying the current stream again—according to the estimated cost from (4.6)—is higher

than that of any the available children, we do so, and add a new child to the current node.

This allows us to completely forgo the need to rely on the hand-tuned progressive-widening

heuristic, and guide our search purely through the predictions of our learned models. Be-

cause the exploration factor in Eq. (4.7) ensures we will eventually re-sample every node, we

retain the guarantee that we will eventually expand our search breadth with this method.

It should be noted that we also use this approach to decide when to query a new stream

plan ψ from the root node. In that case, the new plan that is selected is the one with the

lowest estimated cost of those in Ψ. As a result, we are able to explore the highest value

(lowest cost) stream plans first, and only consider new ψ’s when the value of exploration

is high as determined by UCT. Once a full sequence of sub-problems has been successfully

solved, we have found a concrete plan which satisfies the original TAMP problem, and can

begin execution. In the next section, we demonstrate the benefits of using our approach

experimentally.
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4.6 Experimental Results

Table 4.1: Experimental Results: All units in seconds (% cost reduction)

Kitchen Domain Unpack Domain Real Domain
Cost ↓ (↑) eTAMP Ours eTAMP Ours eTAMP Ours
Plan Time 98.3 39.5 (60%) 105.8 54.3 (49%) 66.7 26.2 (61%)

Motion Time 86.4 82.1 (5%) 46.7 46.0 (1%) 21.3 20.9 (1%)
Total Time 184.6 121.7 (34%) 152.6 100.4 (34%) 88.0 47.1 (46%)
Expansions 149.8 55.2 (63%) 707.2 125.9 (82%) 91.2 11.0 (88%)

To highlight the capabilities of our learned planner, we implement our approach in two

simulated scenarios, as well as on a real robot. To make comparison straight-forward, the

simulated experiments use two problem settings tested in eTAMP ; specifically, their ‘kitchen’

and ‘unpack’ domains [37]. We compare our planner against the heuristic-driven planner de-

fined in eTAMP, using the hand-defined parameters, tuned for each environment as specified

by the authors. In each instance, we demonstrate that our planner is able to out-perform the

baseline [37] in both planning time and the number of search nodes expanded, while finding

plans of equivalent motion cost as shown in Table 4.1.

4.6.1 Kitchen Domain

In the ‘kitchen’ domain, we consider a simulated PR2 robot, shown in figure 4.5 with five

available actions: pick up an object, place an object on a platform, move between configu-

rations, cook an object, and clean an object. An object is cleaned when placed on the sink

and cooked when placed on the stove. The agent is then tasked to first ‘clean’, then ‘cook’

all blocks initially placed on a table, being careful to avoid overcrowding any platform. We

consider four distinct sub-problems, specifically a grasp sampler, a stable placement sampler,

an inverse kinematics solver, and an RRT motion-planner between configurations. The full

domain and stream files for this setting are presented in Appendix A.2.

For this task, most action plans considered by the planner are feasible, though deciding

which sub-tree to explore in search is difficult. Notably, the order in which blocks are moved
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Figure 4.5: A comparison between the total cost of planning and execution of the baseline
planner [37] and our learned TAMP planner for 1600 trials in the ‘kitchen’ domain. Each
point in the scatter-plot represents the outcome of a single trial. The images on the right
demonstrate potential failure modes in this domain. If the first few blocks are placed poorly
on the stove, it may be impossible to safely place all four blocks there without risking
collision. Our approach allows us to predict when a block placement will lead to failure later
in a plan, reducing the time spent planning in these sub-trees.

is generally irrelevant to the feasibility and cost of the problem. Therefore, at the root

node, our learned models predict approximately the same cost for each possible sequence

of sub-problems ψ. However, as the search tree grows in depth, and blocks are added to

the final platform, we are able to improve upon naive search by considering how cluttered

the surface is, and if a particular sampled pose is feasible. Because we are able to more

accurately estimate the cost of querying our solvers as more sub-problems are solved, we can

guide search to select the sub-problem in the tree that is most advantageous to re-sample.

In this domain, we ran 1600 trials for both the baseline planner [37] and our learned

planner (trained on 100 trials worth of data collected by running the baseline planner),

initializing each trial with a new random seed. We recorded both the planning and execution

time, and plotted these values for the individual trials (along with their sum) in Fig. 4.5

and Table 4.1. As shown in the table, we demonstrate a mean reduction in total time of

approximately 63 seconds (a 34% improvement). We demonstrate that our approach can

find plans of similar execution time to the baseline with fewer average node expansions (150

vs 55). This domain highlights the importance of updating our predictions of cost as well as

feasibility when determining which streams are actually evaluated in TAMP solvers, even in

contexts where most abstract plans are potentially feasible.
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4.6.2 Unpack Domain

In our second environment, we consider a table-top manipulator with the ability to pick

and place objects on different platforms. As before, to pick or place an object our agent

must sample grasps or placement poses, find collision-free configurations, and compute safe

trajectories between these configurations. One additional difference in this domain from the

“kitchen” scene is that we define separate streams for motion planning while the robot’s

hand is empty, and when it is holding a block. In this domain, our goal is simply to move

a specified object from one platform to the other. However, depending on the configuration

of the other objects in the scene, this may not be immediately feasible. To solve the task,

the robot must determine which objects must be moved out of the way before it can safely

pick up the target object, then find a plan which does so.

Whereas in the ‘kitchen’ domain, nearly every high-level plan could be valid depending

on the object groundings, in the ‘unpack’ domain, many of the abstract action plans returned

by the top-k planner are infeasible depending on the orientation of the blocks in the scene.

For example, if the taller blue block sits beside the green block, the planner will be unable to

find a configuration to grasp the green block without coming into collision with the blue one.

As such, any calls to our IK solver will fail, and the ability to reason about which queries to

to an external planner will or will not succeed can be very impactful in terms of accelerating

planning. We highlight a few examples of this in Fig. 4.6.

During training, over 200 trials, we considered instances with either one, two, or three

blocks in the scene, with the initial poses of the blocks randomly selected (but closely clus-

tered). We then evaluated our planner for the case of three blocks, running 400 trials for

both the baseline planner [37] and our learned planner. Once again, we recorded both the

planning and execution time, and plotted these values for the individual trials in Fig. 4.6

and Table 4.1. As shown in the table, we demonstrate a mean improvement in total time

of approximately 52 seconds (a 34% reduction in total time). In addition to comparing the

wall-clock time of planning and execution in this environment, we also highlight the differ-

ence in the number of nodes expanded by our planner vs the baseline planner. We average

approximately 126 nodes expanded per search, whereas the baseline explores on average 707
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Figure 4.6: Comparing the total cost of planning and execution for 400 trials in the ‘unpack’
domain, where once again each point in the scatter-plot represents the outcome of a single
trial. We also highlight some example scenes, where we show the feasibility predictions given
by our IK model for attempting to grasp each block on the first platform. As more blocks
are cleared, the predicted likelihood that we can successful find a collision-free configuration
to grasp the green block increases.

nodes per trial. We might expect that by expanding fewer nodes, we produce less efficient

plans. On the contrary however, our execution time is approximately the same as for the

baseline (in fact we show a slight improvement), indicating that our approach is able to avoid

spending computation in stream plans that are infeasible without diminishing plan quality.

We further compare our approach to one (not included in the table) which uses predicted

feasibility as a threshold to prevent the planner from exploring low-probability actions [46].

In that work, the authors report an improvement of 63% over the same baseline in terms

of motion planning time only in the ‘unpack’ domain, which does not include time querying

the top-k solver for Ψ. Using our approach, we found a savings of approximately 67% in

this metric. Moreover, because this approach thresholds certain sub-trees from ever being

considered, the planner fails to find any plan ∼ 8% of the time, whereas we found no failures

over 400 trials. We do note that we did not re-implement and test this approach ourselves,

and are relying on the reported values.

4.6.3 Real World Experiments

Finally, we implement our planner on a real Panda manipulator (see figures 4.1 and 4.7),

testing a modified version of the ‘unpack’ problem, where the robot is tasked with grasping

a particular block in a crowded grouping, potentially having to remove obstructions before it
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Figure 4.7: Here we highlight four (4) example initial configurations for our real world
experiments. Notice the RealSense camera affixed to the Panda robot, enabling real time
updates to pose estimation of the blocks.

can safely reach its target. A Panda arm is equipped with a parallel gripper, and a RealSense

camera, which it uses to identify objects, their positions, and their shapes prior to planning.

We define grasp and placement samplers, as well as an RRT motion planner, and an IK

solver as the relevant sub-problems. See Appendix A.1 for the full domain and stream files

used for this experiment. We trained our models for each sub-problem on data from 100

simulated trials, then test on the real robot.

Across 10 real world trials, we compare our planner to the baseline approach for identical

initial conditions. For each trial, first the robot identifies the blocks in the scene and their

poses. Then, we search for a plan to grasp the selected block using our approach. Finally

the agent executes this plan, using the mounted camera to account for perception errors

during execution as needed. In each trial, our planner outperforms the baseline with respect

to planning time and nodes expanded, while producing plans that are of equivalent quality

in terms of motion cost. An example of this scenario is shown in Fig. 4.1 and Fig. 4.7, and

we report the results of the trials in Table 4.1.

It is notable that our learned models for this real experiment were trained in simulation.

This is possible in part because the method by which we encode our scene is purely based

on the scene graph representation defined in section 4.4, where each node only contains

vectorized information related to an object. Alternatively, if we had informed our models

with image data, it would be much more difficult for our models to generalize from the sim

environment to the real world.
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4.7 Discussion

In this work, we proposed a novel approach for planning in long-horizon TAMP problems. In

our method these abstract plans come from a PDDLStream encoding of a TAMP problem,

which separates discrete decisions like: “which block should the robot pick up” from low-level

continuous ones such as: “how should the robot pick that block up.” The insight of these

kinds of approaches is that we should delay attempting to solve for low-level trajectories until

a high-level plan which might solve the full problem is found. In general, this is a good idea;

solving sub-problems in TAMP can be expensive, and we do not want to waste time solving

ones that will never be useful to a full plan. However, we often encounter circumstances

where the geometry of the scene implies that many sub-problems are infeasible, for example:

trying to place an object on a crowded table.

What makes traditional planners inefficient in these contexts is the fact that they make

an implicit assumption that we can potentially refine every high-level plan to a low-level

trajectory. In reality, we should be able to learn from experience which sub-problems are

likely to fail depending on their parameters, and the associated costs of attempting to solve

them. Building upon the intuition of our PO-TLP from Chapter 3, we propose learning

models to guide search to refine high-level, abstract plans, allowing us to reason about the

imperfection within our TAMP abstraction. A major difference in the approach in this work

is that we attempt to minimize both the cost of execution and of planning, which has a

far greater impact on TAMP problems. To that end, we derived an equation (Eq. (4.2)) to

use these models to compute the total cost of attempting to ground, then execute a given

abstract plan.

The underlying problem in this work is not a POMDP as we saw in Chapter 3. Therefore,

we do not need to account for uncertainty in the same way, and are more easily able to solve

this equation efficiently over a set of several abstract action plans. As we attempt to search

for concrete action plans, we can repeatedly re-solve for the expected total cost from each

node in our search tree, updating our learned predictions (and therefore cost estimates)

as upstream sub-problems are solved. A major contribution of this work is our stochastic

planner, which executes this search, and guides our agent to attempt to solve sub-problems
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which are components of plans that are on the whole more likely to succeed (and be of lower

cost) than alternatives.

We demonstrated that our strategy is effective across various problem settings, achieving

improved performance with respect to planning time across three domains, including one

on a real Panda robot. In the first simulated environment, we showed that our planner

is able to succeed in settings where most high-level plans are potentially refinable, though

early choices of action parameters affects that feasibility greatly. We then considered a

domain where many high-level plans are certain to be infeasible depending on the initial

scene geometry, and were able to show our approach outperformed heuristic driven baselines

there as well. Finally, we showed our method can be implemented on a real robot and

produce low-cost plans efficiently.

As expected, though we saw impressive results experimentally, there are several limita-

tions to our approach, which we discuss below:

• Limitations in learning: in order to make predictions about the feasibility and costs

of different actions, we utilize a GNN to encode the geometry of the scene to our learned

predictors. Our network takes in a vectorized representation of objects, which was

useful for understanding properties relevant to the settings we considered. However,

this encoding did discard information which might be relevant to other problems, such

as semantics, which could require visual input to deduce. In order to make predictions

from visual input at future steps of a plan, we would need some way of updating the

original image of the scene to incorporate the actions the robot plans to take. There

has been some work in this space [142], though we do not address it here. Future work

might also consider how we might address the issue of learning models which generalize

across environments, which we discuss in greater detail in Chapter 6.

• Limitations in planning: Our planner uses its learned models to guide search for

grounding abstract plans, but makes no effort to use those models to aid in finding

those candidate plans in the first place. This leads to a “warm-up period” where the

first several seconds of planning are spent finding abstract plans, many of which our

models quickly identify as very expensive, and so are largely ignored. Work by Khodeir,
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Sonwane, Hari, et al. [81] has a method for using feasibility predictions to guide search

for the abstract plans, which we can incorporate into our approach for a more efficient

overall planner.

• Limitations in execution: Our planner makes a few key assumptions, principally

that any plans which are found are executable. In the simulated scenarios we consid-

ered, this was a reasonable assumption. However, using the real robot, we found errors

in perception led to failed execution rather frequently. Specifically, we saw grasps

where the block slipped from the gripper, the gripper hit the intended block during

the grasp, or another block was knocked to a different location during pick-up, leading

to a failed future grasp. As a result, we were forced to utilize the RealSense camera

during execution to get an update on the target block’s pose, which improved execution

significantly, but was still imperfect. If failure of a found plan is possible, we should

account for it in our computation of cost. This is certainly possible, and is one avenue

for future work.

The novel research in this chapter demonstrates an approach for efficient decision making

in TAMP domains. TAMP problems require a solution method which breaks down the

problem hierarchically, separating discrete decisions like which object to grasp from the

continuous parameters grounding high-level actions. This hierarchical approach is necessary,

as solving the full TAMP problem at once is too complex for sufficiently interesting tasks,

however it introduces a challenge where the high-level planner is divorced from the low-level

information which determines if its decisions are ultimately feasible. To account for this, we

learn properties related to these high-level actions (in the form of feasibility and cost of their

sub-problems), which allow our planner to explicitly reason about the imperfections of its

planning abstraction.

We have shown this general approach to lead to more efficient planning now in two

different settings. First in partially observed environments (Ch. 3), and now here in the

domain of TAMP. However, we have not yet considered how we can build our planning

abstractions directly from perception, nor have we addressed the implications of increasing

scale on our planners. Unsurprisingly, these elements introduce challenge to our system
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which must be addressed. In the next chapter, we look at these two factors, extending

TAMP to real-world, building scale mobile manipulation.
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Chapter 5

Building and Planning within

Large-Scale Hierarchical Abstractions

The goal of the work in this thesis is to develop approaches which enable robots to solve

complex tasks in large-scale, real world environments autonomously. Over the previous two

chapters, we proposed a pair of related approaches for planning in different settings. For

each problem we learned how to accelerate planning within imperfect abstractions, first for

the case of complex tasks in partially revealed environments (Chapter 3), then in high-

dimensional Task and Motion Planning (TAMP) problems (Chapter 4). Notably however,

each approach for planning we have discussed so far can be limited by environmental com-

plexity. In Chapter 3, as the maps grew in size, we spent proportionally more time planning

trajectories at the lowest level, leading to fewer nodes expanded in the search tree, and worse

plans. We addressed planning in known space to some degree in Chapter 4, where the TAMP

abstraction enabled greater planning efficiency. However, we saw that as we added more ob-

jects to the scene, the branching factor of search increased proportionally. In either case,

eventually the space of possible plans becomes too large to search effectively in a reasonable

timeframe. If we want to extend our TAMP work to larger, more complex environments, we

need a way to build abstractions from perception that lead to tractable planning problems.

The work in this chapter therefore aims to enable autonomous agents to solve large-

scale TAMP problems in real-world environments. As discussed in Chapter 4, in order to

solve a TAMP problem efficiently, an abstract planning domain is needed, which accurately
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represents the robot’s environment and the available actions. We did not address in the

previous chapter how we can build these abstractions on a real robot, and so consider that

problem in part here. Recently, significant progress has been made in the area of generating

hierarchical metric-semantic representations of the world using 3D scene graphs [72], [73].

These environmental abstractions lend themselves well to large-scale planning problems, as

they are capable of storing both higher-level abstractions such as objects along with the

connectivity of regions needed for task planning, as well as the low-level metric information

required to check kinematic feasibility of different actions. The incentives when building

these representations align with including as much information as possible into the scene

graph. Every object included in the scene makes our graph more accurate, and thus a

better representation of reality for any downstream use. Similarly, the higher the resolution

with which we can represent the environment, the better chance an agent has to localize

accurately.

However, as a planning problem instance grows in the number of objects and regions, so

too does the complexity of finding a plan. TAMP is PSPACE-Hard [45], so problems can

become computationally intractable very quickly as the sizes of the state and action spaces

grow [19]. To create tractable planning problems when converting a 3D scene graph into a

planning domain, it is critical to leverage the graph’s structure and identify which elements

of the environment are potentially relevant to the given planning problem. Consider, for

example, a robot responding to a Chemical, Biological, Radiological, Nuclear, and Explo-

sive (CBRNE) scenario, receiving instructions to inspect and neutralize dangerous objects

scattered in a large area, represented as a scene graph. Let us stipulate that our robot can

pass near an object only after it has neutralized and cleared it, and that the robot may be

instructed to avoid particular regions entirely. Depending on the geometry of the scene and

the specified goal, for the set of tasks available to the agent, only a subset of these dangerous

obstacles and regions may ultimately be relevant to finding a plan. However, for a robot

building a scene graph representation from perception, it is not at all obvious which elements

of the graph should be added to a planning domain to ensure a valid plan for can be found

and executed a priori.

Previous approaches to the problem of inferring a task-relevant planning domain have
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Figure 5.1: An illustration of how we derive and encode tasks in our planning representation
from a 3D scene graph. (A) An isometric view of a Hydra scene graph generated from the
KITTI dataset, giving an insight to the scale of the environment. (B) A simplified version
of this scene, where the agent is tasked with either visiting Place 6 while avoiding Place 1,
or visiting Place 5. We see that Place 5 is partially obstructed by a suspicious object, so the
agent must consider either avoiding it (green trajectory), or inspecting and neutralizing the
object (blue trajectory) to reach its goal. (C) A mobile robot (which we used to build our
scene graphs) executing a plan in the real world, inspecting an object in the top frame, and
moving an obstruction out of its path on the bottom.

relied on representations of connectivity in the scene graph to prune superfluous elements [50],

however, these efforts have been limited to specific kinds of task planning problems. The

reason for this is that the pruning approaches employed by these methods often remove

information necessary for checking the geometric feasibility of plans, or they implicitly limit

the types of goals that can be specified. For example, Agia, Jatavallabhula, Khodeir, et

al. [50] consider pruning all elements which are not specifically referenced in the goal or do

not have an “ancestor” which is so referenced. This leads to a very sparse graph, which

is unfortunately only useful for tasks and environments where all navigation actions are

assumed to be geometrically feasible. Alternative approaches for reducing the planning

problem size involve attempting to learn the relevance of planning objects, then incrementally

adding objects to the domain according to the learned relevance score until the problem is

solvable [49]. Unfortunately, this approach requires training on numerous similar planning

problems, and is difficult to generalize to tasks at large scales in the real world.

In this chapter, we propose a novel approach to both enable and accelerate TAMP in

large environments (Fig. 5.1). Our first contribution is a three-level hierarchical planner

for planning in large domains derived from 3D scene graphs. Specifically, we define 1) a
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high-level discrete planner which reasons over a carefully pruned planning domain, 2) a

mid-level navigation planner which utilizes the structure of the scene graph to accelerate

planning over long distances, and 3) a low-level planner which solves for trajectories, guided

by the abstract plans found at the higher levels. Subsequently, we present the formulation

of a sufficient condition for removing symbols from a planning problem while maintaining

feasibility, which can greatly reduce computation when planning. This condition shows that

many of the places in a 3D scene graph can be ignored when formulating planning problems

that factorize according to our three-level hierarchy. We then introduce a technique for

reasoning about whether the sparsified domain matches the original intent of the planning

task, which reveals extra constraints that must be imposed on the motion planner. Finally,

we develop a method to further accelerate planning by incrementally identifying objects in

the scene as relevant during search according to how the geometry of the scene affects the

feasibility of certain high-level plans.

As stated above, the contributions of this chapter allow a robot to solve mobile manipula-

tion tasks in large environments. Specifically, we address task and motion planning problems

where the robot does not have a complete description of the world ahead of time. As such,

we not only have to worry about how to build a model of the world from real perception,

but we must also ensure that our representation is not so large and full of detail as to make

planing difficult. The techniques described here are therefore focused on building an abstract

model that allows efficient TAMP without sacrificing completeness. Our planner enables an

agent to take in a complex command specified in the Planning Domain Definition Language

(PDDL) and return a plan to execute a series of actions which satisfy that goal efficiently

over long horizons. These actions can be as simple as goal directed navigation, or as intri-

cate as inspecting objects, or moving them across large distances. The approach presented

here is most useful as the complexity of both the given task and the environment grows, as

we are able to ignore information in the scene which is irrelevant to finding a good plan.

In the following sections, we show the effectiveness of our contributions by demonstrating

faster planning when compared to a baseline across two hand-crafted domains, two scene

graphs built from real perception and planning in simulation, and finally a real-world mobile

manipulation task on a Spot robot.
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5.1 Task and Motion Planning in 3D Scene Graphs

In this section, we introduce how we encode TAMP problems, review the 3D scene graph

structure that we leverage for grounding planning problems, and finally propose a CBRNE-

inspired planning domain as an example of formulating a planning problem based on a 3D

scene graph.

5.1.1 Task and Motion Planning Preliminaries

We introduced the concept of TAMP in Chapter 2.1.2, and further discussed some of its

challenges in Chapter 4. Here we briefly re-define a few terms (and introduce several new

ones) that are particularly relevant to the contributions presented later in this chapter. Given

the scale and density of information in 3D scene graphs, many planning approaches will

represent the problem of decision making within them as a top-down task planning problem.

As previously discussed, a common formalism for encoding task planning problems is the

PDDL. In a PDDL problem, a set of facts defines astate I, where each fact is an instance

of a boolean function called a predicate p(x̄) ∈ P . Each predicate is parameterized by a

tuple of symbols x̄ = [x1, . . . , xk] from a given set of symbols x ∈ O, where each symbol xi

is a discrete representation of a state variable. Actions a(x̄) ∈ A define how we transition

between states, and are also parameterized by symbols. These parameters are expressed as

two sets of predicates: preconditions Pre(ai) and effects Eff(ai). Preconditions determine if

we can take an action from a particular state I, while effects define the set of facts that are

added (Eff+(ai)) or removed (Eff−(ai)) from the state I when that action is taken. As before,

we define a planning domain by a lifted sets of predicates P and actions A. We further define

a problem instance P = (P ,A,O, I0,G) by combining a domain with an initial state I0 and

a set of goal states G, parameterized by symbols O.

Solutions to PDDL problems take the form of a sequence of parameterized action in-

stances π = [a1(x̄1), a2(x̄2), ..., an(x̄n)] [19]. For any action sequence, there is a corresponding

sequence of states Iπ = [I0, I1, I2, ..., In], leading from the initial state to a goal state that

can be constructed from each action’s effects. We will use the fact that only a subset of
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state symbols are needed for each action to enable a factorization of the planning problem in

Section 5.2.1. For an action plan π, its corresponding state plan Iπ is valid if Ii ∈ Pre(ai+1)

for i = 0, ..., N − 1, and IN ∈ G. A range of solvers [28], [29] can solve tasks specified

in PDDL, and any state plan found by such a solver is valid by construction. A feasible

planning problem is one for which there is a valid solution.

The continuous nature of TAMP problems, coupled with the scale of environments we

consider here, make discretizing and encoding a planning problem directly in pure PDDL

difficult. Those approaches that attempt to do this do not attempt to solve for low-level

trajectories at planning time, and instead assume the can be refined later. This assumption

allows for efficient planning, but simply does not match reality; there are many instances

where the geometry of the scene might might certain actions infeasible. We therefore again

use PDDLStream [36], as we did in Chapter 4 to represent and solve TAMP problems. As

stated in the previous chapter, a PDDLStream problem instance (P ,A,S,O, I0,G) repre-

sents the discrete search portion of a TAMP problem in PDDL, as a set of predicates, actions,

symbols, initial state, and set of goal states, but also introduces the notion of streams s ∈ S,

which can query external solvers (e.g. a motion planner) during search to produce new

symbols and facts within the problem instance. Streams make the problem encoding more

efficient, as they obviate the need to crete an object and evaluate the predicates for all

possible continuous values of a symbol. PDDLStream solves1 problems by first finding an

optimistic solution that satisfies the domain’s symbolic constraints – a task skeleton – and

then attempting to solve for feasible continuous parameters. We once again refer the reader

to Garrett, Lozano-Pérez, and Kaelbling [36] for a detailed description of PDDLstream.

In a TAMP problem, each symbol xi can represent a continuous value (e.g., a pose), and

the grounded parameters of an action depend on these values. From these parameters, we

can derive a motion sequence, which specifies how a robot executes an action. For example,

from an action plan composed of a sequence of move actions, the corresponding motion

sequence would be composed of the trajectories that were solved for by the motion planner

and describes the continuous values of the parameters x̄i for each move action. Executing

that sequence involves multiple calls to a trajectory controller, where two motion sequences
1Specifically, the PDDLStream adaptive solution algorithm.
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Figure 5.2: Two examples of a Hydra Scene Graph from different environments. One the left
we see an isometric view of a scene graph built outdoors over a large length scale. At the
lowest level we see the metric semantic mesh, upon which we cluster places and objects to
form higher levels of abstraction. On the right is a top-down view of the places and objects
of scene graph built in Building 45 at MIT. Both examples were built with a Spot robot.

are equivalent if they result in the agent acting identically.

5.1.2 Building 3D Scene Graphs from Perception

We desire robots which are able to build planning representations entirely from real world

perception. We assume our robot is equipped with a prior model of its own state and a

motion controller, as well as the ability to use its sensors to build a dense geometric model of

its environment and the objects in it. To derive a discrete, symbolic model of the geometry,

we take advantage of recent work in 3D scene graph mapping [72] that infers a discretization

of the geometry and the objects in the geometric model. While our approach is compatible

with a range of scene graph implementations, our definition of a 3D scene graph, directly

based on Hydra [72], [75], consists of several layers of increasing abstraction (see Fig. 5.1).

Each layer consists of a collection of nodes representing location and other attributes, with

edges connecting nodes within the same layer representing relative spatial constraints and

edges between different layers representing an inclusion relationship. The lowest layer of the

hierarchy is a semantically-annotated mesh of the scene geometry. The next layer contains

objects and their locations identified by a semantic image segmentation. The places layer

represents navigable regions of the environment based on semantic and geometric properties

of the mesh. Places are clustered into groups based on geometric and semantic information,

and these groups become nodes in the higher-level regions layer (e.g., rooms in an indoor

environment). Hydra can construct this map representation in realtime from RGBD sensor
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data while accounting for odometry drift, enabling large scale, consistent, and information-

rich maps.

Previous work on 3D scene graphs has mainly focused on indoor uses. These repre-

sentations rely on the Generalized Voronoi Diagram (GVD) [143] to generate places, an

abstraction of 3D spatial connectivity, which are not well suited for ground robot naviga-

tion. We use an alternate formulation of 2D places in our navigable scene graph, where each

place represents a 2D polygon with consistent terrain classification, representing an area the

robot may traverse (Fig. 5.1B). As the resolution of the places is much coarser than the

mesh resolution, planning over sequences of places can be much faster than planning over

the mesh itself, while still retaining important geometric information. In section 5.3.4, we

pilot a Spot robot around MIT’s building 45 and build a Hydra scene graph. Figure 5.2

highlights the different layers of the resulting representation.

5.1.3 Inferring the Planning Domain from Scene Graphs

Given a Hydra scene graph, we are now able to introduce a framework for deriving a TAMP

problem instance. We will use this abstraction to to demonstrate the salient aspects of

solving planning problems based on large-scale environments. In general, we define a symbol

x ∈ O for each node in a scene graph, as well as a symbol corresponding to the robot. This

means each object, place, region, etc. are all represented as symbols which can be combined

to form predicates in the domain. Specifically, we define six classes of predicates, derivable

from a Hydra scene graph, to include in our problem and which may be relevant for planning:

1. Type information derived from the nodes of the graph, where each node corresponds

to a unary predicate: (Configuration ?c), (Place ?p), and (Object ?o), etc.

2. Agent or object predicates that define the state of the robot and objects: (AtConfig

?c), (AtPlace ?p), (AtRoom ?r), etc.

3. Connection predicates defined by edges in the same level of the graph: (Connected

?n1 ?n2).
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4. Inclusion predicates indicating edges connecting nodes of different levels of the graph:

(PoseInPlace ?c ?p), (PlaceInRoom ?p ?r), etc.

5. Preconditions of actions that are certified by solving a stream’s associated sub-problem.

For example, a move action may require that a trajectory has been found between two

configurations: (Trajectory ?c1 ?t ?c2).

6. Finally, problem-specific predicates defined by the user to specify goal states and prob-

lem constraints such as which places to visit or which objects to collect.

As a running example, we define an example problem using these predicates, motivated

by CBRNE scenarios, which we name the “Inspection Domain.” In this setting, an agent

can be commanded to visit or avoid certain places, and inspect and neutralize objects that

have been marked as suspicious. The robot cannot move past a suspicious object until it

has been inspected and neutralized, which may mean (depending on geometry) that certain

navigation actions are infeasible without first inspecting select objects. We therefore define

the problem specific predicates: (VisitedPlace ?p) which indicates the current and past

places the robot has visited, and (Safe ?o) or (Suspicious ?o) which identifies whether

an object has been inspected or not. Goal specifications in this domain can include positive

or negated facts based on these predicates. The agent’s available actions are to move between

poses in connected places, and to inspect objects from appropriate poses (for simplicity we

do not separate the inspect and neutralize actions). Note that only the move action need be

parameterized by a place symbol, which we present here:

:action move

:parameters (?p1 ?p2 ?c1 ?c2 ?t)

:precondition (and

(Trajectory ?c1 ?t ?c2)

(PoseInPlace ?c1 ?p1)

(PoseInPlace ?c2 ?p2)

(Connected ?p1 ?p2)

(AtPose ?c1)

:effect (and (AtPose ?c2)
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(not (AtPose ?c1))

(VisitedPose ?c2))))

This instantiation of the move action allows the agent to navigate between its current place

p1 and any place p2 that is connected to p1 in the scene graph, and updates the state

to note the agent’s current pose and that p2 has been visited. We refer to this problem

representation as the direct encoding of the Inspection domain. We further define streams

for sampling poses for inspecting and neutralizing objects, sampling poses in a specific place,

and planning motion between two poses in order to find feasible continuous parameters for

a given abstract plan. Any valid plan is composed of these actions, which at execution time

are converted into a motion sequence of FollowPath(ti) and InspectObject(oi) primitives

for paths ti and objects oi. Later, we will also consider additional Pick and Place actions,

which are defined in Appendix A.3.

The direct encoding of the problem has one major drawback: moving between places

that are not physically near each other necessitates chaining together potentially many move

actions, which requires motion planning in many short segments between neighboring places.

For simple navigation, planning in short segments can actually aid in the efficiency of long-

distance motion planning. However, relying on a general task planner to construct long-

horizon action sequences, any segment of which may be invalidated by the low-level geometry,

leads to very inefficient planning in practice. Consider, for example, the case demonstrated

in Fig. 5.3, where our agent is given a complex specification, one element of which requires

picking up object O105. This necessitates that the robot navigate near the object, however

any path which might do so is obstructed by object O110.

In many TAMP planning abstractions, there is no a priori logical connection in the

PDDL problem between a trajectory and the objects which might interfere with it. This is

a direct result of the separation between high-level task planning and low-level geometric

planning. As a result, choosing the right object to inspect in order to unblock a path is

difficult for the task planner; the longer the sequence of move actions needed to reach a goal

state, the more potential plans the solver must consider. In the case of the problem in figure

5.3, the segment of the full plan the agent finds to reach O105 consists of approximately

thirty (30) actions. As far as the high-level planner is concerned, changing any of these
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Figure 5.3: A visualization of a high-level plan derived from our Direct encoding, attempting
to solve a subset of a task specification in the MIT building 45 environment. On the left we
see the first plan proposed by the high-level PDDL planner. However, this plan is obstructed
by O110, and so we must consider different plan skeletons. Because the task planner cannot
be certain if a different sequence of Move actions might lead to success, we may have to
consider many different abstract plans before attempting one which moves the obstruction
out of the way. On the right, we highlight a few such superficially different plans.

(i.e., moving to a different place) constitutes an entirely new plan which might succeed. The

planner does not know why the original plan failed, and therefore must check each new plan

for feasibility, no matter how superficially similar. Given the sheer number of different ways

an agent might navigate to the object of interest, it might take many planning iterations

before we even consider moving obstructing objects out of the way (as shown in Fig. 5.3).

This is especially problematic in large scene graphs, where any problem has a relatively long

horizon, particularly as we consider increasingly complex goal specifications (Sec. 5.3). In the

following section, we propose a new planning abstraction which reduced the depth of search

required to find plans in these settings, as well as an approach to address its imperfections.

5.2 Scalable Scene Graph Planning

Our objective is to both enable and accelerate solving TAMP problems in large environments.

One associated challenge is that the number of symbols created by a scene graph can quickly

overwhelm the ability of the planner to reason efficiently due to increasing branching factor,

and the depth of search needed to find plans. However, we notice that the vast majority

of planning domains, and the world in general, tend to factor into sequence of navigation
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actions punctuated by periodic object-centric actions. This factorization allows us to identify

a subset of symbols relevant for object interaction, and a subset needed to move from place to

place, potentially simplifying search. We therefore propose a planning formulation that aligns

with the scene graph hierarchy and naturally divides the planning problem into a high-level,

task-relevant planning problem such as finding a sequence of manipulation actions, mid-level

coarse navigation planning between locations, and low-level continuous trajectory planning

between points.

Specifically, instead of requiring a PDDL planner to find paths through the places in

the scene graph at the discrete symbolic level, we reduce the depth of the planning horizon

at the highest level by reasoning only over places that are directly relevant for achieving

the goal. Then, a coarse navigation planner plans through the 2D places layer to create an

abstract motion plan composed of a sequence of subgoals. Finally, a fine-grained motion

planner is guided by the navigation plan subgoals through the places layer, quickly finding

motion plans over large distances. We discuss this in Sec. 5.2.1.

By focusing each layer of our tri-level planner hierarchy on specific types of actions, we

can prune irrelevant symbols within each layer and simplify the corresponding problems by

reducing the branching factor of search (Sec. 5.2.2). Critical to our approach is that the

proposed factorization must not limit the types of problems that can be solved, nor pro-

duce plans which violate intended constraints. To that end, we show a sufficient condition

for symbols to be removed from each planning problem while maintaining feasibility, then

show how to reason about whether the resulting motion plans adhere to the original spec-

ification (Sec. 5.2.3). Finally, in Sec 5.2.4, we consider an additional heuristic that enables

optimistically ignoring objects that are irrelevant due to scene geometry.

5.2.1 Hierarchical Planning

Here we describe our tri-level planning approach. At the highest level of abstraction, our

planner must reason about which objects to interact with, which regions to avoid, and which

destinations the robot should move to. As discussed previously in section 5.1.3, the most

straightforward encoding of planning motion through a scene graph would closely mirror the

connectivity of the graph, modeling the move action as a transition between two places that
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Figure 5.4: A visualization of a high-level plan derived from our Relaxed encoding, attempt-
ing to solve a subset of a task specification in the MIT building 45 environment. On the
left we see the first plan proposed by the high-level PDDL planner, and the attempt by the
lower levels to refine it to a motion plan. However, as before, this plan is obstructed by
O110, and so we must consider different plan skeletons. In the Direct setting, our planner
was burdoned by long planning horizons. We have solved that problem here, but now face a
relality where the branching factor of our search has greatly increased. Specifically, any time
we consider a move action, we could consider transitioning to any Place in the scene graph.
Now, when the first attempt to reach the target object fails, the next set of plan skeletons
will likely be to move to some other place, then a place near the object. This is because
two Move actions are still potentially of lower cost then a sequence of Move, Pick, Move,
Place, Move. On the right, we highlight a few such plans. In order to avoid considering
these redundant options during search, we consider pruning the planning problem instance
at the highest level of abstraction.

share an edge in the graph. However, as the scale of the environment increases, this direct

encoding results in very long horizon plans that are expensive for the general-purpose PDDL

planner to find.

Instead, we propose a more general move action: moveRelaxed. This action takes place

p1 and p2 as parameters, in addition to initial and final poses c1 and c2 and a trajectory

symbol t. The action’s effect moves the robot’s pose from c1 to c2, and marks p1 and p2 as

visited. Notably however, there is no requirement the two places are “connected” in the scene

graph. For example, consider the task in Fig. 5.4 where the robot begins in Place P1105, and

must eventually reach place P2249 to pick up object O105. A motion sequence corresponding

to a plan to move through dozens of specific places can be equivalent to a sequence generated

from a plan to move from P1105 to P2249 directly, meaning the high-level planner need not

explicitly plan to move through the full scene graph. Extrapolating this approach to larger
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scenes and more complex goals has the potential to vastly reduce planning horizons, although

it imposes certain constraints on the lower-level planners that will be addressed at length in

Section 5.2.3. The encoding of moveRelaxed is shown here:

:action moveRelaxed

:parameters (?p1 ?p2 ?c1 ?t ?c2)

:precondition (and (Trajectory ?c1 ?t ?c2)

(PoseInPlace ?c1 ?p1)

(PoseInPlace ?c2 ?p2)

(AtPose ?c1)

:effect (and (AtPose ?c2)

(not (AtPose ?c1))

(VisitedPose ?c2))

Abstract plans produced by the high-level planner using this new action do not initially

contain information about how the robot moves from the start to end poses. Instead, they

optimistically contain trajectory symbols with continuous parameters that must be filled in

by the lower-level planners. In order to do this efficiently, we rely on the 3D scene graph

to accelerate motion planning. To find a motion plan between two configurations c1 and c2,

we plan through the places layer of the scene graph, finding a sequence of places that leads

from c1 to c2 and which respects the connectivity of the scene graph. Planning navigation

at this level of abstraction enables us to take advantage of Euclidean distance heuristics to

accelerate planning, while allowing for the constraints of the task (e.g., avoiding a particular

place) to be encoded simply.

At the lowest level of abstraction, the planner generates a kinematically-feasible path for

the robot to follow based on the reference path from the mid-level planner. This path can

be generated efficiently by first considering an optimistic path that connects the waypoints

on the reference path and ignores obstacles. Any segments of this path that are rendered

infeasible by obstacles or violations of kinematic constraints can be re-solved by a planner

that considers obstacles, such as RRT [23]. Better alignment between which edges are present

in the scene graph and kinematic feasibility for the robot leads to better performance of this

heuristic.
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Remember that the primary challenge associated with the Direct encoding was the long-

horizon nature of the induced planning problem. Our new relaxed encoding successfully

reduces the planning depth significantly for the high-level planner, though unfortunately

introduces a different problem. While in the direct case, the agent could only take move

actions between adjacent places, now the high-level planner can consider moving between

any two places as a valid action. Unsurprisingly, this greatly increases the branching factor

of search, particularly as the number of viable Places increases. We highlight this scenario on

the right side of figure 5.4. Due to the fact that our abstraction is imperfect (many high-level

actions are infeasible at a low level), we must explicitly account for these imperfections to

plan efficiently. In the following sections, we propose a method for pruning the planning

domain at the highest level to address these issues. After describing our pruning approach,

we visualize our tri-level planner in the real world in Fig. 5.7. The full Domain and Stream

files for the relaxed encoding of the Inspection domain can be found in Appendix A.3.

5.2.2 Removing Redundant Symbols

To address the problems associated with a large branching factor, we consider reducing the

size of the planning instance by pruning Place symbols that are not relevant to a given

planning problem. Unfortunately, identifying symbols that do not impact the solution is in

principle as hard as solving the problem itself, and naively removing places from a problem

instance might render the problem infeasible. In this section, we characterize a set of places

that we know can safely be removed from the problem before planning given the semantics

of moveRelaxed. We begin by defining a set of symbols that are redundant for a particular

goal specification.

Definition 1 (Redundant Symbol). For a set of domain actions A and specific goal G, a

symbol x is redundant if both of the following hold:

1. For every valid plan π where x parameterizes an action, there is another valid plan π′

with equivalent motion sequence, where x is not an action parameter.

2. No action precondition or goal, expressed in negative normal form, contains a universal

quantifier that can be parameterized by x.
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The intuition behind this notion of redundancy is that 1) if any plan involving the symbol

yields a motion sequence that can be rewritten without the symbol, the symbol is redundant,

and 2) if we solve a planning instance where a redundant symbol has been removed, the plan

must remain valid in the original problem. Note that this definition of redundancy is general

for any planning domain, although we will use this definition specifically for place symbols

that become redundant given the moveRelaxed action. Importantly, removing redundant

symbols preserves the feasibility of a planning problem.

Proposition 1 (Removing Redundant Symbol Preserves Feasibility). Consider a feasible

planning instance R = (P ,A,S,O, I0,G). For a redundant symbol x ∈ O, we define a

related instance R′ = (P ,A,S,O′, I ′0,G ′) where x has been removed, i.e., O′ = O \ x and I ′0
contains all facts in I0 except those parameterized by x, and similarly for G ′. Let ΠR denote

the set of valid plans for R. Then, ΠR′ ⊆ ΠR and ΠR′ ̸= ∅. (Proof deferred to Appendix

B.1.)

The requirements for a symbol to be redundant are quite strong (every plan that uses a

symbol must have an alternate plan that does not use the symbol and still results in the

same motion sequence), but many places in the Inspection Domain have this property given

the semantics of moveRelaxed. Removing these places from our task planner’s domain,

assuming the motion planner is still aware of them, enables the solver to more efficiently find

valid plans that are guaranteed to have also been valid in the un-pruned problem. Moreover,

the ability to prune these elements does not restrict the type of goals we are able to specify

to our agent, preserving expressivity, while enabling planning at a larger scale.

Proposition 2 (Redundant Places). Consider a problem instance in the Inspection Domain

with no quantifiers that can be parameterized by a place in the goal. A place p is redundant

if no facts parameterized by p appear in the initial or goal states, or if (not (VisitedPlace

p)) appears as a clause in the conjunctive normal form (CNF) of the goal specification.

(Proof deferred to Appendix B.2)

We have now identified a potentially large (depending on the sparsity of the goal specification)

set of place symbols that can be ignored in the Inspection domain. Our explicit method of

defining our problem’s initial state is as follows:
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Remark 1 (Problem Initialization). In light of Proposition 2, we only include the following

places when instantiating a problem in the Inspection domain: 1) the initial place that the

robot is in and 2) any place that appears in the goal. A place p that parameterizes a negated

fact (not (VisitedPlace p)) that appears as a clause in the CNF of the goal specification

can also be removed.

We have shown that for the Inspection domain, redundant places are very easy to identify.

We would like to apply the same idea to similar domains, without needing to reason from

scratch about redundancy. We now characterize a sufficient condition on the planning domain

structure for places to be redundant. Let Pstatic denote the set of predicates that do not

appear as effects of any action (i.e., they can only be set in the initial state). Let Fstatic

denote the set of facts that correspond to parameterizations of Pstatic. Intuitively, if a domain

is structured such that a place can only be parameterized by an action if certain facts hold

in the initial state, then it is very easy to check whether a specific place can be used by any

actions.

Proposition 3 (Sufficient Conditions for Ignoring Places). Consider a planning instance

(P ,A,S,O, I0,G), where for all actions aj ∈ A except aj = moveRelaxed, satisfying Pre(aj)

implies that any place parameterized by aj is in Fstatic. In this case, all places that do not

parameterize any facts in Fstatic or the goal are redundant.

For example, if the Inspection domain is augmented with a “report home” action that can

only be executed at a designated set of places, then these places (and no others) need to be

added to the problem instance. Fig. 5.5 illustrates how we prune the planning domain in

practice.

5.2.3 Execution Consistency

While our decision to use moveRelaxed to model motion between distant places enables faster

planning, it creates a mismatch between the discrete and continuous parts of the problem. In

the example in Fig. 5.6, consider that the robot was also instructed to avoid place P1153. The

ability to include a constraint on the goal states of the form (not (VisitedPlace P1153))

requires further constraints on the mid- and low-level planners. Executing moveRelaxed
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Figure 5.5: A visualization of the initial pruned high-level planning domain for the given
goal specification. We overlay this domain over the original scene graph to highlight its
reduction. Removing provably redundant places greatly simplifies the planning problem.

from the initial place may involve following a trajectory that takes the robot through place

P1153, even if the goal specifies that P1153 should not be visited. Technically this is still a valid

solution to the pruned planning problem since place P1153 never appears as a parameter to

the moveRelaxed action (and therefore (VisitedPlace P1153) is not an effect), but clearly

the domain with a relaxed movement action does not fully capture the intent of the original

planning domain.

To formalize the discrepancy between what happens when the robot executes a motion

sequence and the constraints that we expect a planning problem to impose, we introduce

the concept of a verifier function. A verifier function maps motion sub-sequences to sets of

PDDL domain facts, and “verifies” which additional domain facts would be implicitly true

as a result of the agent executing a motion sequence, even if actually adding these facts

to the problem instance during the solving process is undesirable computationally. Given

a verifier V , the facts that hold at each step when executing a motion sequence may be

different than expected in the original plan. We denote the facts that would be added by

such a verifier applied to the motion sequence associated with ai as V (ai), and term this

sequence of expanded states the V -extended state plan.
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Figure 5.6: A visualization of the initial mid-level planning domain for the given goal spec-
ification. In this domain, there is little incentive to prune places, as they do not materially
slow the search for solutions to goal directed navigation sub-problems. Notice however that
we do remove one place: P1153. This place is referenced in the goal as one that we should
avoid, and so we remove it as an option at this level to ensure any plans we find are execution
consistent. This is how the concept of verifier functions are implemented in practice.

Definition 2 (V-Extended State Plan). For an action plan π = [a1, ..., an], its corresponding

state plan Iπ = [I0, ..., In], and verifier function V , the V-extended state plan for state Ik is

I ′1 = I1 ∪ V (a1), and I ′k = Ik ∪
(
I ′k−1 \ Eff−(ak)

)
∪ V (ak).

The extended state I ′k is the state at step k as experienced by the verifier. I ′k is composed

of the facts Ik in the initial plan, plus any extra facts that were present in the previous

extended state I ′k−1 other than those removed by action ak, plus any facts that would be

returned by a verifier applied to action ak. As discussed in Sec. 5.1.1, any state plan found

by a search algorithm is valid by construction. However, a state plan that is subsequently

augmented with the extra facts that would be produced by a verifier might not be valid.

Consider a verifier Vplace that takes a motion sub-sequence µ, and returns a VisitedPlace

fact for each place that intersects with the agent’s position while executing µ. For a place

p and a trajectory t to be followed by the motion primitive FollowPath(t), we denote p ∩ t
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the section of t that intersects with p. We can then define a verifier as

Vplace(µ) = {(VisitedPlace p) | p ∩ ti ̸= ∅ for FollowPath(ti) ∈ µ}. (5.1)

If the motion sequence associated with the action plan would result in the agent visiting a

place that we do not expect, then the Vplace-extended state plan would include a VisitedPlace

fact that may conflict with the goal. If we care about the robot’s motion respecting the prob-

lem’s constraints on visiting certain places, then we need to prove that the Vplace-extended

state plan is a valid solution to the planning problem for any instance of the planning domain.

From this idea, we define the concept of execution consistency, which requires that solu-

tions to the planning problem are still valid after considering the facts from a verifier.

Definition 3 (Execution consistent). A domain is execution consistent with respect to ver-

ifier V if, for every valid plan π, the V-extended state plan is valid.

A domain is trivially execution consistent for the empty verifier V (·) = ∅, as the extended

state plan is equal to the original plan. A domain is also execution consistent if the range

of V applied to each motion subsequence µi corresponding to action ai is limited to facts in

Eff(ai). In other cases, a domain can still be execution consistent for a verifier that would

introduce new facts if the planner is carefully crafted. In defining a planning domain for

any task, we seek to have it execution consistent with respect to any defined verifiers. If a

domain is not execution consistent, then any properties related to predicates in the verifier

cannot be guaranteed to hold when executing a plan.

In our example, we want to prevent the agent from entering places that it should not, and

so we should show that the Inspection domain is execution consistent with respect to the ver-

ifier Vplace. Recall that Vplace can only introduce new VisitedPlace facts. As VisitedPlace

does not appear in any action preconditions, the only way for a VisitedPlace fact to render a

valid state plan invalid is to conflict with the goal specification. Consider the set of places that

must be avoided to satisfy some goal state: Pavoid = {p | (not (VisitedPlace p)) ∈ G}.

If a place in Pavoid can only be visited by an action that explicitly lists it in the action

effects, then the domain will be execution consistent with respect to Vplace. This can easily

be guaranteed by preventing the mid and low level motion planners from generating plans
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Figure 5.7: Our tri-level planner in a real world environment. A scene graph of the fifth
floor of building 45 at MIT was built using the Spot robot, from which we extract our plan-
ning abstraction for the goal: (and (ObjectAtPlace O27 P909) (VisitedPlace P2700)
(Safe O35) (not (VisitedPlace P1153))), which instructs the agent to move O27 to a
P909, inspect O35, visit P2700, all while avoiding P1153. At the highest level, the task
planner is given a very sparsified version of the scene, as highlighted above. The mid-level
planner plans a path through the places guided by the abstract plan found at the highest
level, avoiding place P1153. Feedback from this level leads to the addition of O28 to the
high-level domain, as O27 would be otherwise unreachable. The low-level planner computes
full trajectories, guided by the path found at the mid-level. The plan produced (and exe-
cuted by the robot) is shown on the right.

that enter places Pavoid \ Pparam, where Pparam is the set of places that appear as param-

eters to the action. Our mid- and low-level motion planners are therefore constrained not

to enter a place which we might want to avoid, unless that place is given as the parameter

to the moveRelaxed action, ensuring execution consistency. Note that the verifier need not

be actually implemented, but the concept can be used to prove execution consistency. We

highlight how we ensure execution consistency in practice in Fig. 5.6.

5.2.4 Ignoring Irrelevant Objects

We have demonstrated the ability to identify and ignore elements of a planning instance

that are redundant when searching for a plan. However, many symbols are not redundant

according to our definition, but might still be safely ignored. Objects which might obstruct

motion, for example, are not redundant because an “inspect” motion primitive will never be

generated for an object that has been removed from the planning instance. Nevertheless,

there are clearly cases when an agent can ignore objects when planning, such as an object

that is not part of an agent’s goal and is far from the agent’s path to the goal. As with

the places, ignoring objects can accelerate planning by reducing the branching factor at the

highest level of search. In contrast to places however, the objects that should be ignored
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cannot be identified from the logical structure of the planning instance alone; the problem

geometry must also be considered.

We propose an incremental approach to further identify relevant symbols. We begin by

including some subset of all symbols OS in the domain of the high-level planner, and then

attempting to solve the planning problem. If this limited problem has a valid solution which

is also a valid solution to the original problem, then we have found a plan. Otherwise, we

incrementally add symbols to the planning problem, and repeat (Algorithm 2). The inner

loop corresponds to solving a TAMP instance with symbols OI . Meanwhile, the outer loop

corresponds to adding more symbols to OI when we fail to find a solution.

The performance of this incremental planning approach depends on three key choices:

which initial symbols are chosen in OS, when new symbols are added to the planning instance,

and how the new symbols Onew are chosen. As long as all symbols are eventually added to

the planning instance, this planning approach will maintain the completeness properties

guaranteed by the chosen PDDLStream solution algorithm [36]. We outline those choices

here:

• The initial set OS should be as small as possible while still including the symbols

necessary to find a plan. In particular, we can begin by including symbols based on the

problem’s logical structure. For the Inspection domain, we include the non-redundant

places identified in Remark 1 and any objects that appear in the goal. In general,

there is a large body of literature dedicated to identifying object relevance, such as

by reachability analysis [144], [145] or learning to predict importance [49], which may

identify more symbols to add to the initial set.

• The choice of symbols to add to the planning instance can be informed by feedback

(Check in Algorithm 2) from failed solutions to sub-problems. We compute this feed-

back as follows. Every time a mid-level motion plan succeeds in finding a path through

the places, we then attempt to solve for the low-level trajectory guided by this path.

This low-level planner first solves for a path with only the objects which are known

to the high-level planner. If such a path exists, we check if it intersects any objects

in the scene that have not yet been added to the domain. If so, and we cannot find
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another path which does not intersect any objects, we save the offending object. Other

approaches to identifying feedback might involve querying language models.

• Finally, at the end of each iteration of attempting to solve sub-problems, we return

to the feedback objects that were saved. Each saved object, which was determined to

be a potential cause of failure, is then added to the planning domain. Specifically, we

add the same facts to the initial state that we would have added had we considered

that object relevant initially. In this case, those are facts like AtPose and Suspicious.

Now that the high-level planner is aware of these objects, it will suggest abstract plans

which include them as parameters (e.g., inspecting the given object to neutralize it).

Finally, we must decide how many task plan skeletons will be checked by Skeletons and

how much time will be spent attempting to solve the continuous subproblems before adding

new symbols to the planning instance. In the Inspection domain, the full problem only has

a solution if the pruned problem has a solution, so we choose to stop iterating through plan

skeletons once we find a solution to the reduced problem. In general, a maximum time must

be set for iterating through plan skeletons (we do so according to the Adaptive approach as

defined in Garrett, Lozano-Pérez, and Kaelbling [36]). Below we present pseudo-code for the

Incremental Object Solver approach.

Algorithm 2 Incremental Object Solver
Input: A, S,O, I, G
Output: A valid plan π or INFEASIBLE
OS ← GetRelevantObjects(O) ; // Objects relevant for non-collision reasons
OI ← OS

OR ← O \OS

while |OI | < |O| do
SkelInfo← [ ]
foreach k ∈ Skeletons(A, S,OI , G) do

T ← SolveSubProblems(k)
Feedback ← Check(T,OR)
SkelInfo.append(Feedback)

if π ∈ SkelInfo is valid then
return π

Onew ← NewObj(SkelInfo)
OI ← OI ∪ Onew

OR ← OR \ Onew

return INFEASIBLE
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5.3 Evaluation

There are three primary axes of complexity for planning problems in large scene graphs.

One is the complexity of the goal specification, the second is correlated to the scale of the

environment, and the third is related to the geometry of the scene (and potential obstructions

therein). We aim to characterize which types of planning problems our planning approach

is well suited for considering these sources of complexity. We compare our encoding of

the Inspection domain to the dense, direct encoding in a variety of different settings. We

conduct tests on four map archetypes – a synthetic small constrained alleyway, a synthetic

10x10 gridworld, a scene graph built from real data in an office environment comprising

557 Places and 28 Objects, and a much larger scene graph built from the KITTI dataset

composed of 17861 Places and 1315 Objects (Figs. 5.10 and 5.8). For each environment,

we test several different goal clauses across different variations in robot and object initial

conditions. Finally, we also implement and test our planner on a Spot robot, which we use

to build and plan in a Hydra scene graph in building 45 at MIT.

To randomize tasks across trials, we define a mechanism for sampling goal specifications

according to an increasing number of clauses in Disjunctive Normal Form (DNF). A goal

with complexity (N, K) is a formula in DNF with N clauses, where each clause has K

conjunctions. For example, for complexity (2, 3), the goal has the form (Or (C1, C2)),

where Ci is a clause consisting of three facts (e.g., And ((Visited P1), (Safe O4), (Not

(Visited P9)))).

5.3.1 Scene Graph Size

First, we investigate the effect of scene graph size on our ability to plan. For this set of trials,

the goal complexity is (N, K) = (3, 3), and we compare planning time for the direct encoding

to the planning time for our planner across the Alley, Hallway, and Office environments. The

results for this comparison is shown in Fig. 5.9-A. Each point on the scatter plot corresponds

to a single trial and different colors correspond to different environment types. Any samples

above the black line indicate that our planner outperforms the dense baseline.
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Figure 5.8: Three of the maps used for evaluation (not shown is the KITTI or building 45
environments). A narrow alley map, a simple 10x10 grid world map, and a scene graph built
from real data collected by a robot in an office environment.

In the small Alley environment, our planner performs about as well as the dense encoding.

This is expected, as there is not much advantage to sparsification in such a small environment.

As we scale up environment size however, the relative performance of our planner improves.

In the 10x10 grid, we see modest improvement as shown by the red points in Fig. 5.9-

A. Scaling environment size even further, with the building-scale scene graph, we see the

baseline planner taking hundreds of seconds to plan, whereas our planner averages in the

tens of seconds. For the sake having a fair comparison, this experiment only considers goals

that involve visiting or not visiting certain places in the scene graph. When we attempted

to introduce object inspection, the dense baseline planner timed out before finding a plan in

almost all instances. Similarly, when testing the baseline in the KITTI scene graphs, it was

also unable to find solutions for goals of any complexity. Our proposed planner experienced

only a modest increase in planning time as the size of the map scaled.

5.3.2 Goal Complexity

Next, we consider the effect of increasing goal complexity on planning time. To do this, we

investigate a series of different goal constructions in the Grid World environment. Specifi-

cally, we run experiments with goal complexity (N, K), for K = 5 and K = 10, and N from

1 to 5. Goal facts are chosen to be either visiting or not visiting specific places. Fig. 5.9-B

presents a plot comparing the complexity of the goal in terms of total unique symbol refer-

enced vs planning time. For less complex goals in this environment, our planner outperforms

the dense planner, up to a crossover point at around 20 unique objects. Advantages from
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Figure 5.9: A) Comparison of the time to solve tasks of comparable complexity across differ-
ent environmental scales for the dense formulation and the proposed sparse formulation. B)
The scaling of our approach with the complexity of the goal specification in the simple 10x10
grid world. As we increase the number of unique PDDL objects in the goal specification, the
problem is no longer sparse, and so it no longer benefits from our approach.

the additional structure in the dense formulation outweigh the gains of our sparser method

when a large percentage of the place symbols are relevant to the goal. Once again, if we

were to introduce obstructing objects, the dense direct encoding baseline is unable to solve

goals of any meaningful complexity. Not included in either of these plots are results on the

KITTI dataset, as the direct encoding never successfully completed a trial in this setting

due to timing out.

5.3.3 Object Obstruction

We now investigate the performance of the incremental object adding algorithm in task

instances where objects not directly listed in the goal must be inspected in order to solve the

task. In other words, the geometry of the scene requires that the planner inspect unspecified

objects before reaching its goal. In this experiment, we give a robot one of two goal types

in a scene graph built from the KITTI dataset (Figs. 5.1 and 5.10): either (Visited Pi)

or (Safe Oj). Given the size of the map, satisfying these goals may require the agent to

traverse a large distance. Perhaps more importantly, the environment shown in Fig. 5.10

contains inflated obstacles, which may be labeled as suspicious. If a low-level path passes

through any suspicious objects on its way, that plan would be invalid, and the robot would

be forced to inspect and neutralize them to find a safe path to the goal. As a baseline, we
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Figure 5.10: An example plan from the KITTI environment. The robot begins in the top
left, and is tasked with inspecting one object (denoted by the red triangle at the end of the
trajectory). Along the way, there are numerous objects potentially blocking the path, so we
must add at least one to its planning domain. After inspecting and neutralizing this object,
the robot can reach its goal.

sample 20 goals in the map shown in Fig. 5.10 using our planner without any of the objects

being labeled as suspicious. In this case, they do not obstruct the agent’s path, and we

find plans in 19 of 20 trials.

Next, we “activate” 13 objects in the scene by labeling them as suspicious. A suspicious

object has an inflated radius that is only safe for the robot to enter after it has been inspected

and neutralized (in the KITTI scene, this radius is large enough to block an entire road as

shown by the blue objects in Fig 5.10). For the agent to inspect the object, it has to find a

pose that is traversable and within range of the object. Then, by taking the inspect action,

the object becomes safe, and can be passed. To highlight the importance of object pruning,

we attempt to solve these same tasks without using our incremental feedback approach for

object pruning (Sec. 5.2.4). Instead, we add all 13 suspicious objects to the scene directly.

Using this encoding, the planner only succeeds in finding a plan in 4 out of 20 trials. In-

specting these solutions further reveals that in all 4 of these successful cases, there was a
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direct path to the goal without inspecting any objects. This result makes sense, as the odds

of sampling the correct object to inspect is low without the benefit of geometric information.

Finally, we test our proposed approach of incrementally adding objects to the planning

instance (Sec. 5.2.4). Our planner solves 12 of the 20 trials, including 9 cases wherein the

agent inspected one or more obstructing objects on the way to its goal. Failure to find

plans resulted when PDDLStream was unable to find sequences of inspection poses on the

correct side of obstructing objects when several such objects needs to be inspected to find a

plan. These failures might be mitigated by integrating the approach proposed in Chapter 4,

though that was not tested here. These experiments further demonstrate the importance of

our proposed approach to sparsifying otherwise dense, long-horizon planning problems. An

example plan, where the agent investigates two objects on the way to its goal is shown in

Fig. 5.10.

5.3.4 Real-World Manipulation

Finally, we demonstrate our planner in a real-world setting (Fig. 5.7), using a Boston Dy-

namics Spot quadruped to build a 3D scene graph in real-time in a university building.

In order to demonstrate that our approach is effective on domains different from “Inspect”,

we implement a “Retrieval" domain, which adds additional Pick and Place actions to the

Inspection domain, enabling the robot to move objects around the environment. The goal

specifies which place an object should be in (e.g., (ObjectAtPlace O1 P3), denoting a goal

state where object O1 is in place P3). For each trial, we structure the environment such that

there is an obstruction preventing the robot from reaching its target object. To solve the

task, the robot must move this obstruction out of the way, before retrieving the specified

object. We encoded pick, place, inspect, and move skills for the robot. The full domain

and stream files are presented in Appendix A.3.

Like the KITTI domain, we rely on our incremental object adding approach to only add

the obstructing object to our high-level planner. Scattered throughout the environment are

a number of different objects (Fig. 5.11), which would lead to an intractable problem if we

were to consider them all. We ran ten trials, each time finding plans, and executing those

plans on the robot. While the planner reliably finds feasible plans, execution often requires
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Figure 5.11: Here we highlight a selection of four real work experiments executed on the
Spot robot in building 45 at MIT. The complexity of the trial was in part given in the goal
specification (above each image), and in part by the environmental setup. In many cases,
objects not specified in the goal had to be identified by the planner as obstructions and moved
out of the way before Spot could accomplish its task. See Fig. 5.7 for the environmental
layout, as well as the final trajectory for the plan in the top left.

several attempts due to failures when executing the Pick skill and Spot’s local planner failing

in certain constrained passages.

5.4 Discussion

In this chapter, we proposed an approach for enabling and accelerating TAMP in large

environments. Until this point in the thesis, we had not yet addressed how our robots build

planning abstractions from real perception, and so here we defined a method for constructing

planning domains from real world Hydra scene graphs. The representations that naturally

derive from this approach fit the requirements for hierarchical planning well. 3D scene graphs

like Hydra are themselves hierarchical, separating higher level abstract elements like objects
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or rooms from lower level geometric information. This provides a natural decomposition for

TAMP approaches, which initially consider the continuous and discrete elements of a plan

separately. However, while the scene graph contains all the information we might need to

solve a plan grounded in real perception, it also includes plenty of details superfluous to an

efficient, accurate planner. There are many elements in a scene which may be irrelevant for

a given goal specification, and so only serve to distract a planner in its search for a concrete

plan.

The first contribution of this chapter is a method for composing a TAMP planning

representation from a Hydra scene graph, and the second is our tri-level planner, which

greatly reduces the planning horizon within that representation (Sec. 5.2.1). Our planner is

organized as follows. At the top level, we consider interactions with objects and other higher-

level abstract concepts, using the Adaptive approach in Garrett, Lozano-Pérez, and Kaelbling

[36] to identify navigation sub-problems that require solutions to ground any abstract plans.

The mid-level planner then uses the Places layer of the scene graph to accelerate the search

for paths through space, while the low-level planner grounds these to continuous trajectories.

If (as is assumed in many previous approaches to planning through 3D scene graphs) we could

rely on the idea that all abstract plans could be refined to concrete trajectories, this planner

would be sufficient. However, we know this is not the case, and given that Hydra scene

graphs can be very rich in information, our planning abstraction will be bogged down by a

tyranny of choice as demonstrated in Fig. 5.4.

To reduce the breadth of possible options for our high-level planner, we proposed a

method for identifying provably redundant elements of a scene graph to remove from its

planning instance. We also proved how the plans we produce from this reduced scene graph

are valid and conform to the constraints of the full planning domain. These proofs hinge

on the fact that while we remove certain elements from our high-level planner’s domain,

they remain usable for the mid and low-level planners, ensuring we do not limit the types of

trajectories our planner can find. We identified that certain other high-level objects (which

are not certain to be redundant), are also potentially too distracting to naively leave in our

high-level planning domain. We further proposed a method for removing these elements from

the planning domain initially, then adding them back upon receiving feedback from the mid

148



and low-level planners that they were a cause of failure for an abstract plan. This incremental

object-adding approach allows us to reduce planning complexity, while still guaranteeing a

plan will eventually be found if a pruned symbol does turn out to be relevant to the planning

problem.

Finally, we demonstrated our approach experimentally across a few different axes. Specif-

ically, we conducted experiments that highlighted how our planner performs as we scale scene

graph size, goal complexity, and geometric constraints in several environments. We tested

our method in two simulated scene graphs, as well as three build from real perception, in-

cluding a scene graph built from the KITTI dataset and real-world execution on a Spot

quadraped. The real world experiments in particular highlight how our method is robust

enough to produce executable plans in noisy, real world scene graphs. However, these experi-

ments do reveal some limitations to our approach, as well as areas for potential improvement,

which we will discuss now.

• The Importance of Parameter Selection: One thing that is (perhaps surpris-

ingly) critical in TAMP solvers is the selection and tuning of certain search parame-

ters. Particularly as it relates to the Adaptive algorithm [36], parameters such as the

search/sample ratio (which determines how much time is proportionally spent finding

high level plan skeletons vs. time spent attempting to solve the associated sub-problems

to ground them) greatly impact the efficiency of the planner. For instance, we can set

the maximum for the number of times the planner will attempt to solve a particular

sub-problem. If we choose to only sample 3 different placement poses for example, this

greatly reduces the number of symbols the high level planner can consider, affecting

the problem’s branching factor. However this of course may prevent us from finding

solutions in particularly cluttered environments. These decisions, while impactful, ap-

proximately affect our planner and the baseline we compare to equally, meaning the

experimental improvement we saw is still meaningful, though the actual planning times

might have significant room for improvement.

• Planning Inefficiencies: As mentioned above, we rely on the Adaptive method as

presented by Garrett, Lozano-Pérez, and Kaelbling [36] as our TAMP planner. This
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planner is integrated within our overall tri-level planning approach, as well as the

incremental-object-adding algorithms. However, there is a compelling argument to be

made that the Adaptive method is ill-suited for the types of problems we address in

this work. In particular, the explicit separation between the low-level geometry and

high-level discrete decision making is why our feedback method is necessary in the first

place. Consider instead the approach proposed by Kaelbling and Lozano-Pérez [44]

in Hierarchical Task and Motion Planning in the Now (HPN). In this method, if a

high-level plan fails, the next plan that is tried is one which specifically attempts to

address the source of failure. For example, if a motion plan fails, the next plan will

be one which attempts to move the obstruction out of the way. This behavior is what

we are trying to encourage with our incremental object-adding approach. The HPN

approach is strictly less general (there are implicit assumptions that local information

is all that might be relevant for failure), but there is an opportunity for our feedback

approach to “fix” this. We might consider replacing our use of Adaptive with an HPN

planner (using the same encoding and tri-level-planning structure).

• Execution Failures: During our real world trials on the Spot robot, extensive tuning

of our hand written skills was required before execution of any found plans was possible.

This tuning involved properties such as an imaging stand-off distance to ensure the

semantic segmentation could detect graspable objects in the camera frame, as well as

different parameters in that grasp skill such as: 1) how far from the object the robot

should stand before initiating, 2) how forcefully the gripper should be closed, 3) where

the object should be held in relation to the robot’s body, and 4) how the object should

be released when placement occurs. This sort of fine-tuning is to be expected; believing

that hand-written skills will work out-of-the-box in the real world would be naive at

best.

However, a major reason adaptive skills are required in the first place is due to the fact

that we executed our plans in an otherwise open-loop manor. The planner returns a

grasp position based on the scene graph presented to it, potentially for objects on the

other side of a building, and the robot navigates to that point before attempting the
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skill. This approach requires a very accurate estimate of robot odometry (which the

Spot robot does have), though even then we are required to have the robot potentially

look all around it for the object it is meant to grab in case it is not immediately in its

hand camera frame.

In theory, if execution of our plans were perfect, and if the scene graphs we planned in

were noiseless, there would be no need to adapt the trajectories our planner produced.

Of course, we know this is never the case on a real robot. This brittle modeling

assumption raise an interesting question however. If we are correcting for slight errors

in position and relying on a low-level controller to solve for grasps and trajectories in

real-time during execution, should we be spending computation at planning time to

produce these trajectories in the first place? On the one hand, we want to confirm that

a trajectory exists before beginning execution, however on the other hand, perhaps we

do not need to be as precise with this initial solution, considering it is likely to be

overwritten. Learning when it is necessary to confirm the feasibility of sub-problems is

one approach which might further reduce the computational burden of our approach.

These factors, while limiting, are not insurmountable, and in fact present interesting

opportunities for future work. In the next chapter, we will consider a few different possible

future directions, not only related to the work in this chapter, but also concerning the

research presented in Chapters 3 and 4.
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Chapter 6

Conclusion

The goal of this thesis is to make progress toward the aim of building robots which are

capable of acting intelligently within a complex world. Enabling this kind of behavior on

real world robots requires that an agent make decisions hierarchically within a representation

built from real world sensor input. Unfortunately, the types of hierarchical abstractions

in robotics problems are unavoidably imperfect. One way this manifests is that solutions

at one level of a hierarchy do not always transfer to lower levels. This fact introduces

challenges to planning, leading to backtracking and wasted computational effort. Over the

previous few chapters, we have shown how we can improve hierarchical planning efficiency by

explicitly reasoning about the imperfections inherent to the abstractions available to robots.

Specifically, we have highlighted three domains commonly faced by robots in the real world,

which we briefly summarize below.

In Chapter 3 we addressed the problem of planning in the presence of uncertainty, specif-

ically considering complex goals with temporal constraints, wherein a robot must solve its

task in a previously unexplored environment. We defined a hierarchical representation with

high-level actions derived from the environment and the given task itself, forming an ab-

straction which reduces the horizon of the search problem, but which we know does not

satisfy the property of downward refinement. To address this challenge, we proposed an

approach which learns from visual input to predict the feasibility and cost of executing a

given action. We then used these predictions to guide a stochastic search algorithm, biasing

exploration to regions which are more likely to lead to a low-cost, feasible solution. Notably,
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our learned model is structured to generalize across environments and task specifications

without requiring retraining, and is trained with relatively few training examples. Over

several different environments, varying in scale from a handful of rooms, up to the size of a

building on MIT’s campus, we demonstrated improvement in total cost in both simulated

and real-world experiments compared to a heuristic-driven baseline.

While the contributions in Chapter 3 were useful in sequential navigation problems,

we made some assumptions which make planning in higher-dimensional problems difficult.

Notably, many robotics tasks (particularly in the domain of manipulation), require carefully

thinking about planning through known space in order to interact with the world in cluttered

environments. In Chapter 4, we built upon the work in Chapter 3 to address the challenges

of TAMP. Specifically, instead of learning the success or failure of executing actions in a top-

down manner, we trained models to predict the feasibility and cost of solving sub-problems

in an abstract plan. We used these predictions within a novel approach for search, allowing

us to once again reason about the imperfections in our TAMP abstraction. We were able to

demonstrate improvement across a variety of simulated and real world tasks when compared

to state of the art TAMP solvers.

Finally, we next addressed the challenges presented by environmental scale in TAMP. In

Chapter 5, we proposed an approach to extract planning domains from hierarchical scene

graphs, producing a representation which is overloaded with objects and symbols irrelevant

to the overall task. To alleviate the burden on our planner, we propose a method for

pruning our planning domain of superfluous elements, provably identifying symbols which

can be safely ignored. We also proposed removing objects which may not be redundant

depending on scene geometry, however we account for this possibility by explicitly reasoning

about the the possibility that our new abstraction is imperfect after they are removed. If

an object is determined (via planner feedback) to be needed to solve a task, we add it back

to our domain, and continue planning. We showed our approach to be an improvement over

existing approaches, demonstrating successful planning across a variety of environments at

tasks. Notably, we demonstrated mobile manipulation executed on a Spot robot, executed

at whole building scale.

The contributions made in these areas are a step toward efficient robotic decision making,
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however there are still many opportunities to make progress in this area. The rest of this

chapter is a discussion of potential future (and some ongoing) research, and how we can

build off the contributions presented in this thesis.

6.1 Incorporating Foundation Models into Planning

In Chapters 3 and 4, we presented planning approaches which relied upon learning to make

predictions about the feasibility and cost of refining high-level plans. The problem settings

were different, and so how these predictions were used within a planner varied as well,

however one core principle was consistent between approaches. Regardless of the task, we

were careful to design systems which did not require large amounts of training data in order

to learn the signals we needed to plan.

The motivation behind this is clear, and we discussed it somewhat in Chapter 1. Finding

useful data in robotics can be challenging depending on the setting, though we can collect

some valuable data in simulation of course for certain tasks. In particular, recent work in

Reinforcement Learning (RL) has taken advantage of improved simulation to produce short-

horizon controllers which translate well to the real world. However, regardless of the task,

some real world experience is needed to fine-tune what we have learned in simulation to

match reality. For example, in Chapter 3, our agent was able to reuse its learned models

for different environmental orientations in both simulation and the real world. However, if

we were to have moved our robot outdoors instead of within an MIT academic building,

its models would have been useless. Requiring data across every class of environment is

expensive, and is not always possible.

In the past few years, an increasing subset of the research in robotics has been cen-

tered around the development of foundation models [146]. These networks are of significant

scale—on the order of hundreds of billions of parameters—and require massive amounts of

data. Large Language Models (LLMs) for example are trained on large corpora of textual

information, and are able to be incorporated into robotics planning stacks with some com-

pelling results [147], [148]. Interestingly, while the data requirements to train these models

are massive, little to no real robot data may actually be required, meaning they may be a
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useful tool when robotic data is difficult to acquire.

The early results in this space have primarily been focused on solving problems in a top-

down manner, and have been tested on settings where most actions are feasible. There have

been some efforts toward incorporating foundation models into TAMP frameworks [149],

though less so in the domain of mobile manipulation. One approach which attempts to solve

a similar problem to the one we address in Chapter 3 is presented in Shah, Equi, Osiński, et

al. [150]. There, the authors navigate partially revealed environments by querying a language

model for its best guess of where it should explore given a set of frontiers. Notably however,

the time to find a solution in this approach is very slow (on the order of 30 minutes) for

home sized environments.

Missing in these approaches is the insight we have gained in this thesis, that we can

improve planning efficiency by explicitly reasoning about the imperfections in hierarchical

planning abstractions. Taking advantage of the generalization of foundation models, and

incorporating them within the frameworks presented here, is a promising potential direction

for future research.

6.2 Ongoing Work Augmenting Hierarchical Planning with

Language

In the last section we discussed the possibility of guiding planning within our algorithms

with predictions informed in part by large-scale foundation models. Some steps have already

been taken to this end, though in a somewhat orthogonal direction, building upon the work

in Chapter 5. One downside of our approach in Chapter 5 is its complexity of use. In

order to use our planner, a human operator inspects a Hydra scene graph visually, and

writes a PDDL style goal specification which captures their intent. Consider the scene

graph highlighted in Fig. 6.1. If, for example, we wanted a robot to 1) inspect a particular

object, 2) move a different object to a chosen location, 3) go to a specified place, all while

4) avoiding a different place, the appropriate encoding is as follows: (and (ObjectAtPlace

O0 P0) (VisitedPlace P1) (Safe O1) (not (VisitedPlace P2))), where the assigned
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Figure 6.1: Hydra scene graph built in large scale outdoor environment. On the right, we see
a top down satellite view of the same area, with the traversed regions highlighted in green.
This map was produced by multiple agents fusing their sensor measurements to produce one
large graph, and so we would like to be able to generate multi-agent plans within it.

numbers must match the true values in the graph. Identifying this specification requires

an intimate knowledge of the system. In particular, the operator must pick out the specific

symbol in the scene (of which there may be thousands), associate it with the proper predicate

which can be interpreted by the planner, and format them in a way which conveys the user’s

true intent. Moreover, if the operator wants to specify relational goals such as inspect the

nearest door, or allow for ambiguity bring me any bag, they must refine that desire into a

PDDL encoding themselves.

We can build upon approaches for interpreting hierarchical scene graphs with natural

language to address these challenges. The semantic information in a Hydra scene graph,

along with the structure encoded in edges between different symbols in the graph, can be

used as input to the context of a Large Language Model. If we augment that context

with the planning domain of our robot (defined in PDDL), then the model has access to a

representation of both its environment, and what actions it can take within that environment.

This allows us to design a system where a human operator can give a command in natural

language, and the language model has the information needed to produce a goal specified in

PDDL that the planner can use to produce an executable plan.

In Figure 6.1, we see a Hydra scene graph built from data collected at Camp Buckner,

West Point. The scale of this environment is nearly on the order of a kilometer, and the

graph was build with data fused from multiple different robots. The planner we discussed in

Chapter 5 is not designed for multi-robot planning, nor is it exposed to higher levels of the
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abstraction like regions (e.g., which places exist in roads, forest, etc.). However, with our

LLM encoding, we can query a model (e.g. GPT4-o) to produce PDDL task specifications

for multiple robots for a task dictated in natural language.

Consider the command: “The bag in the shelter and the trash are both suspicious. I need

you two to secure the area. Then rendezvous at the tree in the road.” Given this task, our

system is able to produce goals in PDDL, specific to each robot, which allow to them to plan

to solve and execute this task. Specifically, this command is translated to (and (Safe O54)

(Safe O85) (AtPlace P1034)) for the Spot robot, and (AtPlace P1034) for a Husky. We

are able to extend the capabilities of our planner with this approach, where we essentially

have a foundation model sitting at the highest level of our hierarchical planning system. The

potential for such a system is exciting, and is a compelling area of future research.
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Appendix A

PDDL Domain Encodings

A.1 Unpack Domain

A.1.1 Unpack Domain File

(define (domain unpack)

(: requirements :strips :equality :action-costs)

(: types obj grasp_dir grasp config pose trajectory)

(: predicates

(fixed ?r - obj)

(graspable ?o - obj)

(IsGraspDir ?o - obj ?p - pose ?dg - grasp_dir)

(isgrasp ?o - obj ?g - grasp)

(GraspAtPose ?g - grasp ?p - pose)

(ispose ?o - obj ?p - pose)

(isconf ?q - config)

(istraj ?t - trajectory)

(iskin ?o - obj ?p - pose ?g - grasp ?q - config ?t - trajectory)

(isfreemotion ?q1 - config ?t - trajectory ?q2 - config)
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(isholdingmotion ?q1 - config ?t - trajectory ?q2 - config ?o -

obj ?g - grasp)

(trajcollision ?t - trajectory ?o2 - obj ?p2 - pose)

(issupport ?o - obj ?p - pose ?r - obj)

(atpose ?o - obj ?p - pose)

(atgrasp ?o - obj ?g - grasp)

(handempty)

(atconf ?q - config)

(canmove)

(on ?o - obj ?r - obj)

(holding ?o - obj)

(usedgrasp ?g)

(canpick)

(canplace)

)

(: functions

(total-cost) - number

)

(: action move_free

:parameters (?q1 - config ?q2 - config ?t - trajectory)

:precondition (and (isfreemotion ?q1 ?t ?q2)

(atconf ?q1) (handempty) (canmove))

:effect (and (atconf ?q2)

(not (atconf ?q1))

(not (canmove))

(canpick)

160



(increase (total-cost) 100)

)

)

(: action move_holding

:parameters (?q1 - config ?q2 - config ?o - obj ?g - grasp ?t -

trajectory)

:precondition (and (isholdingmotion ?q1 ?t ?q2 ?o ?g)

(atconf ?q1) (atgrasp ?o ?g) (canmove))

:effect (and (atconf ?q2)

(not (atconf ?q1))

(not (canmove))

(canpick)

(canplace)

(increase (total-cost) 100)

)

)

(: action pick

:parameters (?o - obj ?p - pose ?g - grasp ?q - config ?t -

trajectory)

:precondition (and (iskin ?o ?p ?g ?q ?t)

(atpose ?o ?p) (handempty) (atconf ?q)

(canpick)

(not (usedGrasp ?o ?p ?g))

(GraspAtPose ?g ?p)

)

:effect (and (atgrasp ?o ?g)

(canmove)

(not (atpose ?o ?p))

(not (handempty))

(increase (total-cost) 100)

)

)
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(: action place

:parameters (?o - obj ?p - pose ?r - obj ?g - grasp ?q - config ?

t - trajectory)

:precondition (and (iskin ?o ?p ?g ?q ?t)

(issupport ?o ?p ?r)

(atgrasp ?o ?g)

(atconf ?q)

(graspable ?o)

(fixed ?r)

(canplace)

)

:effect (and (atpose ?o ?p)

(handempty)

(canmove)

(not (atgrasp ?o ?g))

(not (canpick))

(not (canplace))

(increase (total-cost) 100)

)

)

(: derived (holding ?o - obj)

(exists (?g) (and (isgrasp ?o ?g)

(atgrasp ?o ?g)))

)

)

A.1.2 Unpack Stream File

(define (stream unpack)

(: stream sample-place

:inputs (?o - obj ?r - obj)
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:domain (Stackable ?o ?r)

:outputs (?p - pose)

:certified (and (IsPose ?o ?p) (IsSupport ?o ?p ?r))

)

(: stream sample-grasp

:inputs (?o - obj ?p - pose)

:domain (and (Graspable ?o) (isPose ?o ?p))

:outputs (?g - grasp)

:certified (and (GraspAtPose ?g ?p) (IsGrasp ?o ?g))

)

(: stream inverse-kinematics

:inputs (?o - obj ?p - pose ?g - grasp)

:domain (and (IsPose ?o ?p) (IsGrasp ?o ?g))

:fluents (AtPose)

:outputs (?q - config ?t - trajectory)

:certified (and (IsConf ?q) (IsTraj ?t) (IsKin ?o ?p ?g ?q ?t))

)

(: stream plan-free-motion

:inputs (?q1 - config ?q2 - config)

:domain (and (IsConf ?q1) (IsConf ?q2))

:fluents (AtPose)

:outputs (?t - trajectory)

:certified (IsFreeMotion ?q1 ?t ?q2)

)

(: stream plan-holding-motion

:inputs (?q1 - config ?q2 - config ?o - obj ?g - grasp)

:domain (and (IsConf ?q1) (IsConf ?q2) (IsGrasp ?o ?g))

:fluents (AtPose)

:outputs (?t - trajectory)

:certified (IsHoldingMotion ?q1 ?t ?q2 ?o ?g)

)

)
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A.1.3 Kitchen Domain File

A.2 Kitchen Domain

(define (domain kitchen)

(: requirements :strips :equality :action-costs :typing)

(: types arm obj grasp config pose trajectory)

(: predicates

(IsArm ?a - arm)

(Controllable ?a - arm)

(Stackable ?o - obj ?r - obj)

(Sink ?r - obj)

(Stove ?r - obj)

(IsPose ?o - obj ?p - pose)

(IsGrasp ?o - obj ?g - grasp)

(Kin ?a - arm ?o - obj ?p - pose ?g - grasp ?q - config ?t -

trajectory)

(BaseMotion ?q1 - config ?t - trajectory ?q2 - config)

(Supported ?o - obj ?p - pose ?r - obj)

(AtPose ?o - obj ?p - pose)

(AtGrasp ?a - arm ?o - obj ?g - grasp)

(Graspable ?o - obj)

(HandEmpty ?a - arm)

(AtBConf ?q - config)

(IsBConf ?q - config)

(CanMove)

(Cleaned ?o - obj)

(Cooked ?o - obj)

164



(CanOperate)

(On ?o - obj ?r - obj)

(Holding ?a - arm ?o - obj)

)

(: functions

(total-cost) - number

)

(: action move_base

:parameters (?q1 - config ?q2 - config ?t - trajectory)

:precondition (and (BaseMotion ?q1 ?t ?q2)

(AtBConf ?q1) (CanMove)

)

:effect (and (AtBConf ?q2)

(not (AtBConf ?q1)) (not (CanMove))

(increase (total-cost) 200)

(not (CanOperate))

)

)

(: action pick

:parameters (?a - arm ?o - obj ?p - pose ?g - grasp ?q - config ?

t - trajectory)

:precondition (and (Kin ?a ?o ?p ?g ?q ?t)

(AtPose ?o ?p) (HandEmpty ?a) (AtBConf ?q)

)

:effect (and (AtGrasp ?a ?o ?g) (CanMove)

(not (AtPose ?o ?p)) (not (HandEmpty ?a))

(increase (total-cost) 100)

(not (CanOperate))

)
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)

(: action place

:parameters (?a - arm ?o - obj ?p - pose ?g - grasp ?q - config ?

t - trajectory)

:precondition (and (Kin ?a ?o ?p ?g ?q ?t)

(AtGrasp ?a ?o ?g) (AtBConf ?q)

)

:effect (and (AtPose ?o ?p) (HandEmpty ?a) (CanMove)

(not (AtGrasp ?a ?o ?g))

(increase (total-cost) 100)

(CanOperate)

)

)

(: action clean

:parameters (?o - obj ?r - obj)

:precondition (and (Stackable ?o ?r) (Sink ?r)

(On ?o ?r)

(CanOperate)

)

:effect (and (Cleaned ?o)

(increase (total-cost) 50)

(not (CanOperate))

)

)

(: action cook

:parameters (?o - obj ?r - obj)

:precondition (and (Stackable ?o ?r) (Stove ?r)

(On ?o ?r) (Cleaned ?o)

(CanOperate)

)

:effect (and (Cooked ?o)

(not (Cleaned ?o))

166



(increase (total-cost) 50)

(not (CanOperate))

)

)

(: derived (On ?o - obj ?r - obj)

(exists (?p) (and (Supported ?o ?p ?r)

(AtPose ?o ?p))

)

)

(: derived (Holding ?a - arm ?o - obj)

(exists (?g) (and (IsArm ?a) (IsGrasp ?o ?g)

(AtGrasp ?a ?o ?g))

)

)

)

A.2.1 Kitchen Stream File

(define (stream kitchen)

(: stream sample-place

:inputs (?o - obj ?r - obj)

:domain (Stackable ?o ?r)

:outputs (?p - pose)

:certified (and (IsPose ?o ?p) (Supported ?o ?p ?r))

)

(: stream sample-grasp

:inputs (?o - obj)

:domain (Graspable ?o)

:outputs (?g - grasp)

:certified (IsGrasp ?o ?g)

)
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(: stream inverse-kinematics

:inputs (?a - arm ?o - obj ?p - pose ?g - grasp)

:domain (and (Controllable ?a) (IsPose ?o ?p) (IsGrasp ?o ?g))

:fluents (AtPose)

:outputs (?q - config ?t - trajectory)

:certified (and (IsBConf ?q) (Kin ?a ?o ?p ?g ?q ?t))

)

(: stream plan-base-motion

:inputs (?q1 - config ?q2 - config)

:domain (and (IsBConf ?q1) (IsBConf ?q2))

:fluents (AtPose)

:outputs (?t - trajectory)

:certified (BaseMotion ?q1 ?t ?q2)

)

)

A.3 Relaxed Encoding of Inspection Domain

A.3.1 Relaxed Domain File

(define (domain manipulation)

(: requirements :strips :equality)

(: predicates

(Place ?p)

(CTraj ?ct)

(CTrajPl ?ct)

(Object ?o)

(Pose2d ?p)

(AtPose ?p)

(AtPlace ?p)
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(AtObject ?o)

(VisitedPose ?p)

(VisitedPlace ?p)

(VisitedObject ?o)

(ObjectPose ?o ?p)

(ObjectAtPose ?o ?p)

(ObjectAtPlace ?o ?p)

(ObjectPlacementPose ?o ?p0 ?pr)

(LocalPlacementPose ?o ?p0 ?pr)

(ObjectPoseInPlace ?o ?po ?pl)

(HandFull)

(Suspicious ?o)

(Safe ?o)

(Holding ?o)

(Moved ?o)

(CannotMove)

(PutativePlaceMotion ?p1 ?p2 ?tr)

(ConfigurationMotion ?c1 ?c2 ?ct)

(ConfigurationMotionPassLast ?c1 ?c2 ?ct)

(ObjectInspectionPose ?o ?po ?pr)

(ObjectGraspPose ?o ?po ?pr)

(PoseInPlace ?o ?p)

(PutativePoseInPlace ?o ?p)

(NeedPlaceCertificate ?pose)

(NearbyObjectPose ?o ?p)

)
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(: functions

(MoveCost ?t)

(MovePlaceCost ?t)

)

(: derived (AtPlace ?p)

(exists (?pose) (and (AtPose ?pose) (PoseInPlace ?pose ?p))))

(: derived (ObjectAtPlace ?x ?p)

(exists (?pose) (and (ObjectAtPose ?x ?pose) (ObjectPoseInPlace ?

x ?pose ?p))))

(: derived (VisitedPlace ?p)

(exists (?pose) (and (VisitedPose ?pose) (PoseInPlace ?pose ?p)))

)

(: derived (AtObject ?o)

(exists (?p) (and (AtPose ?p) (NearbyObjectPose ?o ?p))))

(: derived (VisitedObject ?o)

(exists (?p) (and (VisitedPose ?p) (NearbyObjectPose ?o ?p))))

(: action inspect

:parameters (?o ?pr ?po)

:precondition (and (AtPose ?pr)

(ObjectPose ?o ?po)

(ObjectAtPose ?o ?po)

(ObjectInspectionPose ?o ?po ?pr)

(not (HandFull))

(Suspicious ?o))

:effect (and (not (Suspicious ?o))

(not (CannotMove))
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(Safe ?o)

(increase (total-cost) 5))

)

(: action pick

:parameters (?o ?pr ?po)

:precondition (and (AtPose ?pr)

(ObjectPose ?o ?po)

(ObjectAtPose ?o ?po)

(ObjectGraspPose ?o ?po ?pr)

(not (HandFull))

(not (Holding ?o)))

:effect (and (not (ObjectAtPose ?o ?po))

(Holding ?o)

(not (CannotMove))

(HandFull))

)

(: action place

:parameters (?o ?pr ?po)

:precondition (and (AtPose ?pr)

(Holding ?o)

(HandFull)

(ObjectPose ?o ?po)

(ObjectPlacementPose ?o ?po ?pr))

:effect (and

(not (Holding ?o))

(not (HandFull))

(Moved ?o)

(ObjectAtPose ?o ?po)

(not (CannotMove))

(increase (total-cost) 1))
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)

(: action place_nearby

:parameters (?o ?pr ?po)

:precondition (and (AtPose ?pr)

(Holding ?o)

(HandFull)

(ObjectPose ?o ?po)

(LocalPlacementPose ?o ?po ?pr))

:effect (and

(not (Holding ?o))

(Moved ?o)

(not (CannotMove))

(not (HandFull))

(ObjectAtPose ?o ?po))

)

(: action movePlace

:parameters (?p1 ?p2 ?c1 ?c2 ?t ?tr)

:precondition (and (PoseInPlace ?c1 ?p1)

(PoseInPlace ?c2 ?p2)

(PutativePlaceMotion ?p1 ?p2 ?tr)

(ConfigurationMotionPassLast ?c1 ?c2 ?t)

(AtPose ?c1)

(not (= ?c1 ?c2)))

:effect (and (AtPose ?c2)

(not (AtPose ?c1))

(VisitedPose ?c2)

(increase (total-cost) (MovePlaceCost ?c1 ?c2)))

)

(: action move
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:parameters (?c1 ?c2 ?t)

:precondition (and (ConfigurationMotion ?c1 ?c2 ?t)

(or (NeedPlaceCertificate ?c1) (

NeedPlaceCertificate ?c2))

(AtPose ?c1)

(not (CannotMove))

(not (= ?c1 ?c2)))

:effect (and (AtPose ?c2)

(not (AtPose ?c1))

(CannotMove)

(VisitedPose ?c2)

(increase (total-cost) (MoveCost ?c1 ?c2)))

)

(: action VerifyPoseInPlace

:parameters (?pose ?place)

:precondition (PutativePoseInPlace ?pose ?place)

:effect (PoseInPlace ?pose ?place))

)

A.3.2 Relaxed Stream File

(define (stream manipulation)

(: stream plan-motion-passlast

:inputs (?c1 ?c2)

:domain (and (Pose2d ?c1) (Pose2d ?c2))

:fluents (Suspicious Safe ObjectAtPose Holding)

:outputs (?tr)

:certified (and (CTrajPl ?tr) (ConfigurationMotionPassLast ?c1 ?

c2 ?tr)))

173



(: stream plan-motion

:inputs (?c1 ?c2)

:domain (and (Pose2d ?c1) (Pose2d ?c2))

:fluents (Suspicious Safe ObjectAtPose Holding)

:outputs (?tr)

:certified (and (CTraj ?tr) (ConfigurationMotion ?c1 ?c2 ?tr)))

(: stream plan-place-motion

:inputs (?p1 ?p2)

:domain (and (Place ?p1) (Place ?p2))

:outputs (?tr)

:certified (and (PutativePlaceMotion ?p1 ?p2 ?tr)))

(: stream sample-inspect-pose

:inputs (?o ?po)

:domain (and (Object ?o) (ObjectPose ?o ?po))

:outputs (?pose)

:certified (and (NeedPlaceCertificate ?pose) (Pose2d ?pose) (

ObjectInspectionPose ?o ?po ?pose) (NearbyObjectPose ?o ?pose)

))

(: stream sample-grasp-pose

:inputs (?o ?po)

:domain (and (Object ?o) (ObjectPose ?o ?po))

:outputs (?pose)

:certified (and (NeedPlaceCertificate ?pose) (Pose2d ?pose) (

ObjectGraspPose ?o ?po ?pose)))

(: stream sample-placement-pose

:inputs (?o)

:domain (and (Object ?o))

:outputs (?po ?pr)
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:certified (and (NeedPlaceCertificate ?pr) (Pose2d ?pr) (

ObjectPose ?o ?po) (LocalPlacementPose ?o ?po ?pr)))

(: stream sample-placement-pose-in-place

:inputs (?o ?p)

:domain (and (Object ?o) (Place ?p))

:outputs (?po ?pr)

:certified (and (NeedPlaceCertificate ?pr) (Pose2d ?pr) (

ObjectPose ?o ?po) (ObjectPoseInPlace ?o ?po ?p) (

ObjectPlacementPose ?o ?po ?pr)))

(: stream sample-pose-in-place

:inputs (?p)

:domain (Place ?p)

:outputs (?pose)

:certified (and (Pose2d ?pose) (PoseInPlace ?pose ?p)))

(: stream certify-pose-in-place

:inputs (?pose ?place)

:domain (and (NeedPlaceCertificate ?pose) (Pose2d ?pose) (Place ?

place))

:outputs ()

:certified (PutativePoseInPlace ?pose ?place))

(: function (MoveCost ?c1 ?c2)

(and (Pose2d ?c1) (Pose2d ?c2))

)

(: function (MovePlaceCost ?c1 ?c2)

(and (Pose2d ?c1) (Pose2d ?c2))

)

)
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Appendix B

Deferred Proofs

B.1 Proof of Prop 1

Consider π ∈ ΠR. If π does not contain any actions parameterized by x, then the same plan

π is also a valid solution for R′. Consider the alternative, where π does contain an action

parameterized by x. By Def. 1, there is another plan π′ with equivalent motion sequence not

parameterized by x, which is a valid solution for R′.

Now that we have shown that ΠR′ is not empty, we need to show that any valid plan

for R′ is valid for R. Consider plan π = [a1, ..., aN ] ∈ ΠR′ with corresponding state plan

Iπ = [I0, ..., IN ]. If the addition of facts F parameterized by x make π invalid, then there

must exist a state Ik such that Ik ∪F /∈ Pre(ak+1), which means that ak+1 is parameterized

by a symbol that did not exist in R′. Only a universal or existential quantifier in Pre(ak+1)

can cause ak+1 to be parameterized by an additional symbol. Adding additional facts cannot

turn an existentially quantified formula from true to false. By Definition 1, ak+1 does not

have any universal quantifiers that can be parameterized by x in its precondition. Thus π

must be valid for R.

B.2 Proof of Prop 2

First note that no actions in this domain have universal quantifiers, so we only need to

check Definition 1.1 to show that a symbol is redundant. Consider a place p such that (not
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(VisitedPlace p)) appears in the CNF of the goal. If p parameterizes moveRelaxed, then

(VisitedPlace p) is in the effects, violating the goal. Since moveRelaxed is the only action

that can be parameterized by a place, no plan can parameterize p and Definition 1.1 is

trivially satisfied.

Next, consider a place p that does not parameterize any initial or goal facts. For any

plan π with an action parameterized by p, let aPk denote an action parameterized by places

P , including p. Plan π′ where aPk is replaced by aP\p
k is also valid, since state plans Iπ and

Iπ′ only differ by a (VisitedPlace p) fact, and no action preconditions or goals involve this

fact. As a result the command sub-sequence corresponding to aPk is also valid for aP\p
k . So,

for any π parameterized by p, we can construct π′ that has an equivalent motion sequence

but does not parameterize p; thus p is redundant.
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