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Abstract— The problem we investigate is how an autonomous,
mobile agent can search for a hidden, moving target efficiently.
A good control strategy will plan more informative sensing
of the world, allowing the agent to find the target quickly.
Searching for moving targets typically involves planning over
probability distributions, or beliefs, that characterize the possi-
ble locations of the target. Most motion strategies choose actions
that reduce the uncertainty of the current belief by maximizing
the predicted information gain of the next action, but computing
good multi-step plans is usually computationally intractable [1]
due to the high dimensionality of the action and belief spaces.

In this paper, we describe a novel algorithm for generating
search plans using dynamic action spaces. The algorithm
clusters a particle filter description of the current belief at each
point in time, and uses search to compute a trajectory through
the clusters in order to maximize information gain. This model
allows us to efficiently compute finite-horizon multi-step plans
in extremely high dimensional problems. We show preliminary
results for an unknown target tracking problem.

Appeared in the Proceedings of the American Control
Conference (ACC 2006). Minneapolis, June 2006.

I. INTRODUCTION

The problem we investigate is how an autonomous, mobile
agent can search for moving opponents efficiently. A good
motion planner will generate plans that allow the agent to
gather as much information as possible, narrowing the space
of possible locations for the opponent as quickly as possible.
At the same time, a good planner should incorporate the
cost of moving around the environment, producing plans that
trade off the gain from sensing against the cost of acting.

There are a number of applications of intelligent motion
controllers for search and exploration, including military
target surveillance for unmanned vehicles and homeland
security surveillance in populated environments. Addition-
ally, search problems have gained research attention in the
health care domain for patient tracking and monitoring,
especially for eldercare. Finally, good motion strategies for
information gain are essential for autonomous agents build-
ing environmental models, such as mobile robots building
maps autonomously.

Planning good motion strategies for search and exploration
can be computationally intractable. Modern target tracking
techniques generally rely on probabilistic techniques to esti-
mate the likelihood of target locations, such as the Kalman
filter or the particle filter. As sensor data is acquired, at
each point in time, probabilistic inference algorithms provide
a full probability distribution, or belief, over the space
of possible target locations. The advantage to probabilistic
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inference is that the posterior probability distribution of
the target location is usually robust to sensor noise and
motion uncertainty, allowing for reliable inference of the
target location over time.

The disadvantage to using probability distributions for
planning, however, is the computational intractability of
computing plans based on the full distribution. The planning
problem grows exponentially with the size of the input
space (the space of distributions of target locations), which
also grows in complexity with the size of the underlying
state space (the space of actual possible target locations).
However, not incorporating the probability distribution into
planning process, or not planning at all, can lead to poor
performance. Figure 1 shows an example search problem,
where a hidden agent enters from the right, and can pass
either above or below the small island obstacle before
heading to one of the three goals. The mobile agent starts
to the left of the obstacle, and must find the target before
the target reaches the goals. The agent must make motion
planning decisions based not only on its current location, but
also on the relative likelihood that the target passes above or
below the island obstacle.
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Fig. 1. An example search and track problem. The hidden target enters
from the right, and is headed to one of the three goals (A, B or C), but the
sensor does not know which goal. The mobile sensor’s goal is to detect the
target before the target reaches its goal.

Figure 2 shows two example trajectories using a simple
greedy strategy to search for the next most likely location of
the target, and failure to incorporate knowledge of the full
probability distribution into the planner leads to suboptimal
trajectories. In the upper panel (1-3), the agent causes the
posterior distribution to split into three modes; this means
that there are three distinct areas where the target can be,
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Fig. 2. Two examples of bad motion planning. The solid blocks are
obstacles, the open circle is the mobile agent, and the small particles are
samples drawn according the distribution of possible target locations at each
point in time. In the upper series of panels, the search trajectory causes
the posterior distribution to split into three distinct modes, making the
search problem harder. In the lower series of panels, the two modes are
approximately equal in information gain, and so the controller oscillates
between the two modes as the modes move away.

making the target detection substantially harder. In the lower
panel (4-6), the agent’s control does not recognize that it is
oscillating between two approximately equal modes in the
distribution.

Computing good motion plans is a planning and control
problem in the high-dimensional space of possible prob-
ability distributions, or possible beliefs. If the underlying
state space is discretized into n possible states, then the
space of possible beliefs (the input space to the planner)
has dimensionality n − 1. If the underlying state space is
continuous, then the input space is potentially of infinite
dimension. The challenge is how to compute good control
actions in this very high dimensional problem space.

II. DYNAMIC TARGET TRACKING

The problem of our mobile agent is to find a moving target
as quickly as possible. We assume that the mobile agent
and the target occupy the same (x, y) space; without loss of
generality we will neglect orientation. We assume that the
agent operates by issuing some control action u that causes
its own position to change, and it then receives some (binary-
valued) observation z that indicates whether the agent can
detect the target or not. Once the agent has inferred (from
the sequence of observations) that it has detected the target,
the agent declares that it has found the target and the search
problem ends.

If we model the motion of the agent, target and the target
detection observations probabilistically, we can compute a
probability distribution for the locations of the agent and
target at time t, at and xt respectively, from the sequence
of actions u0, u1, . . . , ut and observations z0, z1, . . . , zt:

p(at,xt|zt, ut, zt−1, ut−1, . . . , z0, u0). (1)

If we assume that the states of the agent and target are
Markovian and we make use of some basic rules of proba-

bility, we can factor this distribution into

p(at,xt|zt, ut, zt−1, ut − 1, . . .) = (2)

ηp(zt|xt,at)

∫∫
p(xt|xt−1) p(at|ut,at−1) ·

p(xt−1,at−1|zt−1, ut−1)dxt−1dat−1.

In this equation, p(zt|xt,at) is the probabilistic model of
the detection observations, p(xt|xt−1) is the motion model
of the target, p(at|ut,at−1) is the motion model of the agent
and η is a normalizer. Note that we have factored the motion
models of the agent and target to reflect conditional indepen-
dence, i.e., we assume that the target moves independently of
the agent. If the two models are dependent, we would simply
have a more complex, joint motion model. This equation
for the posterior distribution, a special form of the general
Bayes’ filter [2], gives a recursive way to update the current
belief over agent and target location by incorporating a new
control and observation into the previous belief.

We do not have a closed form representation of the exact
posterior distribution p(xt,at|zt, ut). A common approach
to representing posteriors in tracking problems is to the
Extended Kalman Filter approximation [3], however, the
EKF assumes that the distribution can be well-approximated
by a single Gaussian distribution, and the filter computes the
maximum a posteriori mean and covariance. An examination
of the data (such as the posterior distributions shown in
figure 2) for the target tracking problem indicates that
the EKF is likely to provide a poor approximation as the
distribution contain several modes.

Instead we will represent the posterior distribution using
the non-parametric model of particle filtering, in which the
posterior is approximated by a set of sample states that are
distributed according to the distribution p(at,xt|z

t, ut). We
will use an algorithm called Importance Sampling [4], [5],
which assumes knowledge of a proposal distribution that we
can easily sample from and is reasonably “close” to the
desired target distribution to be sampled (in this case, the
posterior of equation 2); the assumption is that the target
distribution can be evaluated for a given state but cannot be
easily sampled. The basic process is to generate a proposal
set of samples {xi} according to the proposal distribution
q(x). (Again without loss of generality we will temporarily
ignore the agent position a for clarity.) Each sample is
assigned an importance weight

wi =
p(xi)

q(xi)
(3)

where q(xi) is the probability of sample x
i according to the

proposal distribution and p(xi) is the probability of sample
x

i according to the target distribution. The weighted samples
are then resampled according to their weights, and in the
limit of an infinite number of samples, the sample density
will converge to the target distribution density[5].

In the case of Bayesian filtering, we have access to samples
from the prior distribution which can be propagated through
the motion model to become a proposal distribution for the
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The full Importance Sampling algorithm for Bayesian filter-
ing is given in table I.

Input: Particle set pt−1 = {x0
t−1

,x1
t−1

, . . . ,xn
t−1

},
control ut, observation zt.

1) Sample from proposal distribution:
• ∀xi

t−1
: sample x

i
t according to p(xt|ut,xi

t−1
)

2) Compute importance weights for each particle:
• ∀xi

t : wi = p(zt|xi
t)

3) Sample from n particles from {xi
t} according to weights {wi}

to generate pt = {x0
t ,x1

t , . . . ,xn
t }

TABLE I
IMPORTANCE SAMPLING FOR BAYESIAN FILTERING.

The advantage to the particle filter method for tracking is
that arbitrary distributions such as those in figure 2 can be
easily represented; additionally, there are fewer restrictions
on the prediction and measurement models. The two major
disadvantages to particle filtering involve the complexity of
the particle set, that is, the number of particles required to
accurately represent the distribution. Firstly, the complexity
of the particle set is exponential in the number of variables
being tracked; in our example of agent and target position
tracking, we have a small number of variables and therefore
do not pay a heavy penalty in our problem. Secondly, the
number of samples required to approximate the posterior
distribution depends on the divergence between the proposal
and target distributions; the greater the divergence between
the two distributions, the more samples are required to
accurately represent the target distribution. However, in the
case of Bayesian filtering for real-world dynamical systems,
the proposal distribution offered by the motion model is
frequently a good approximation to the posterior, and the
number of particles can be kept fairly low.

III. MOTION PLANNING FOR TARGET TRACKING

Given that we are using probabilistic inference to compute
a posterior over possible locations of the target, we can
use decision theory to choose good measurements. Decision
theory phrases the problem as one of choosing measurements
that maximize information, where the information gain is the
change in the entropy of the posterior distribution, H(p) =∫

x
p(x) log p(x)dx. Because we are using a non-parametric

representation of a continuous distribution, however, the
entropy cannot be easily computed; we approximate the
information gain with the relative change in variance of the
distribution. Our agent must therefore choose trajectories that
minimize the posterior variance of the set of particles.

This planning problem suffers from computational com-
plexity in that we must compute a plan based on the current
belief (probability distribution) as represented by our particle
set, rather than a single state estimate. The cost of planning
grows exponentially with the horizon length (the number of
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Fig. 3. An example particle set and the resulting clusters.

actions considered in the plan). As a result, we are unlikely to
be able to compute trajectories consisting of a long sequence
of actions. A second pressure on the search depth is that
evaluating the expected information gain of any particular
trajectory will require integrating over a set of possible obser-
vations that will also grow exponentially with the trajectory
length. Careful consideration of the appropriate action space
is required in order to ensure that useful trajectories can be
generated with relatively short sequences of actions.

Input: Particle set pt = {x0
t = (x0

t , y0
t ), . . . ,xm

t = (xm
t , ym

t )}

1) Initialize:
clusterst = {}

2) while p is not empty:
a) Choose x

i
t from pt at random

and remove pt = pt\xi
t

b) Initialize cluster: c = x
i
t

c) Find all remaining particles in range of x
i
t and add to

cluster center
∀xj

t ∈ pt:
if ||xi

t − x
j
t || < rsensor

c = c + x
j
t

count = count + 1

d) If cluster contains more than one particle, compute
cluster centroid and retain cluster
if count > 1

cx = cx/count
cy = cy/count
clusterst = {c} ∪ clusterst

TABLE II
THE CLUSTERING ALGORITHM.

Dynamic Action Spaces

Many planning processes assume a static action space.
For example, kinematic motion planners assume discrete
waypoints constructed using a visibility graph, randomized
sampling or grid-based discretization, with a static set of
actions to connect the waypoints. The planning process is
then a search for an optimal sequence of actions that will
transition the agent from the start state through an appropriate
set of waypoints to the goal. However, a complete set of
static waypoints and actions is less useful when planning
with probability distributions; the probability mass obeys
a principle of locality. For example, if the current belief
has little or no probability mass near a waypoint, then
the waypoint and associated actions should be temporarily
pruned from the planning problem. We can then rely on
some lower-level motion planner to compute trajectories
between waypoints, allowing the search process to consider
trajectories only between points with information gain.



Clustering Algorithm

In order to generate a set of candidate actions (and
associated waypoints), we use the fact that the particle filter
representation of the posterior gives us a potential set of
waypoint samples directly from the sample states. At each
time step we divide the particle set into clusters consisting
of particles that are mutually within the sensor range of
the agent, rsensor. The centroid of each cluster constitutes
a potential destination waypoint during the search process.
Table II describes this clustering algorithm. Note that outliers
(clusters of only one particle) are ignored.

Constrained
Action Space

Valid cluster

Min cluster distanceUUV
Position

Forbidden
ClusterSpace

4

2

3

1

Fig. 4. The action selection process. The cluster centroids are sorted by
distance to the agent, and then the closest cluster centroid in each range is
kept as a valid waypoint for the search, eliminating other cluster centroids
in the same range from the search process.

Once the particle set has been clustered, we further prune
the clusters based on relative distances to the agent. Clusters
are sorted according to the distance to the agent, and the
closest cluster centroid of radius r is considered as a valid
waypoint in the trajectory search. All clusters closer than
radius r are then eliminated from the set of valid waypoints.
The process is then repeated with the next closest cluster
of radius r′. Figure 4 shows three steps of the clustering
process, resulting in three waypoints being selected for the
first step of the search process.

Search

Once the set of actions (cluster centroids acting as trajec-
tory waypoints) has been constructed, we use a conventional
search process as outlined in table III. The major bottleneck
of the search process is determining the posterior distribution
after each potential action. There is no closed-form solution
for computing this distribution, so we simulate the agent and
particle motion and agent observations along the trajectory.
The particle weights are then updated and the particles re-
sampled to arrive, at time t+1, a hypothesized posterior p̂t+1.
This particle set is then reclustered to form the action space
for the following step of search. The process operates to
some maximum depth (a maximum number of actions), and
the information gain of a particular sequence of actions (or
waypoints) is computed with respect to the final distribution.

Input: Particle set pt = {xi
t} and current recursion depth depth

1) Generate waypoint set {ci} from particle set {xi
t} using

clustering and selection algorithm in table II as shown in
figure 4.

2) For each waypoint c
i:

a) Simulate agent motion to waypoint ci
t and generate new

potential particle set p̂t+1 during motion
b) Incorporate simulated measurements and compute

weights of p̂t+1

c) Resample p̂t+1 according to weights
d) If depth = max depth

Return information gain of p̂t+1

else
gain(ci) = step 1) with (p̂t+1, depth + 1)

3) Return argmax
c

gain(c)

TABLE III
THE SEARCH ALGORITHM.

Measurement Updates and Resampling

During the search process, the particle filter treats the
motion to a cluster centroid as a single action. As a result,
the particle weights are not updated with measurements or
resampled until some time has passed. The advantage is that
the search process is accelerated, as the process of simu-
lating observations and resampling the weighted particles
is the slowest part of the search process. However, a low
measurement update rate during the search can lead to two
problems: firstly, the predicted information gain at the end
the trajectory will not be accurate. Secondly, if the particle
weights are updated but the particles are not resampled, then
a phenomenon known as “particle death” can occur where, as
the result of accumulating a long sequence of observations,
none of the particle weights has any reasonable probability
mass. Regular resampling has the effect of ensuring that
probability mass is retained by the set of particles. However,
the appropriate rate at which the importance weights need
to be updated and resampled is an open question. Figure III
shows the results of different resampling rates. In the upper
figure, the particle filter is only resampled at the end of
each action, resulting in a trajectory that causes the agent
to split a mode of a distribution (figure III(a), second panel).
Even though the algorithm search process allows the agent
to recover from this problem (figure III(a), third panel), an
alternative action selection may have contained the mode and
therefore further decreased the uncertainty in the location of
the contact.

In contrast, if we update the particle weights and resample
ten times along each potential trajectory, the search process
identifies the trajectory in figure III(b) as having higher
information gain; as a result, the agent does not split the
mode but instead constricts the location of the mode.

IV. EXPERIMENTAL RESULTS

We performed preliminary experiments to compare differ-
ent search strategies. We assume that the agent has a fixed
detection radius of .9 distance units, and the relative speed
of the agent compared to the target is 1.75 units/time step.
We assume that the agent motion model is deterministic, the
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target motion model is uniform probability towards one of
the three goals shown in figure 1. With 75% probability the
target moves over the top of the barrier in the middle of the
scene (Scenario 1), and 25% probability through the narrow
channel under the barrier (Scenario 2). Gaussian noise is
added to each action taken by the target. We assume that
the observation model consists of binary observations (target
detected/undetected) with accuracy 90%. The particle filter
estimation process used 1,000 particles.

Fig. 5. Average time to detection for the different algorithms. In scenario 1
(light coloured bars) the target takes the (higher probability) upper route, and
in scenario 2 (dark coloured bars), the target takes the (lower probability)
lower route. The base case is the direction with maximum single-step
information gain. Note that each run was stopped at 500 iterations. Each
result is the average of 20 trials.

The baseline strategy maximizes single-step information
gain, but does not perform any prediction or measurement
updates in computing the information – the agent simply
moves to the location where a single observation would cover
the maximum probability mass. The search algorithms search
for full trajectories with search depth of 1, 2 and 3 actions to
maximize information gain, and increased resampling refers
to performing measurement updates and particle resampling
10 times between path waypoints.

Figure 5 shows the average time to detect the target
for various algorithms. The light coloured bars show the
performance in scenario 1 (high probability) and the dark
coloured bars show the performance in scenario 2. The
search algorithms search for full trajectories with 1, 2 and
3 waypoints to maximize information gain, and increased
resampling refers to additional particle resampling between
path waypoints. In situations where the target is found,
performing search and increasing the search depth appears
to have a mild effect on detection time, although the trend is
not statistically significant (error bars not shown). Note that
the baseline algorithm performs well only when the target is

actually following the high probability trajectory, suggesting
that the baseline algorithm is brittle, as we might expect.

Fig. 6. Number of successful detections for the different algorithms, out
of 20 trials. In scenario 1 (light coloured bars) the target takes the (higher
probability) upper route, and in scenario 2 (dark coloured bars), the target
takes the (lower probability) lower route. Note first that the additional search
depth can help find the target even in the harder scenario 2, but that regular
resampling is key for accurately estimating the posterior distribution.

Figure 6 shows the number of successful target detections
of each algorithm, which highlights the advantage of using
search in this problem domain. In particular, we see that
increasing search depth improves performance in both sce-
narios; again, although the baseline algorithm performs well
in high probability scenarios, it never detects the target in
the low probability scenario. In contrast, searching to depth
3 allows the agent to find the target with equal success in
the high probability case, and some moderate success in the
low probability case. Note that the algorithms fail to find
the target in some trails because we stop each trial after
500 steps. The increased resampling clearly has an effect
in the harder search cases in that low probability modes
can be extinguished more quickly. However, there is still
high variance in the performance at depth 3, suggesting that
deeper search may be useful.

Finally, figure 7 shows a longer run of an example
trajectory, where the motion planning occurs out to depth
3. After each action, the plan is recalculated. Notice that the
planner is careful to minimize the number of mode splits, and
spends time extinguishing complete modes before moving
on. (The depicted trajectory is not smooth as an artifact of
the underlying dynamic controller.)

V. RELATED WORK

The search and exploration problem has been studied
in a number of different contexts. The simplest form of
information gathering is to use a greedy strategy, where



Fig. 7. An example trajectory for a search depth of 3. Notice that the
motion planner attempts to extinguish complete modes before moving on.

the motion planning chooses the single best destination
to take the next measurement [6], [7]. However, we have
shown that the greedy strategy can be improved by planning
longer-horizon trajectories. One of the most general forms
of long-term sequential decision making with uncertainty
is the Partially Observable Markov Decision Process [1]
(POMDPs), but exact algorithms for solving POMDPs are
computationally intractable [8], suffering from complexity
that is potentially doubly exponential in the horizon length
and observation space [9]. More recent efforts to reduce the
complexity of solving POMDPs have used different forms of
approximation, including variants of Principal Components-
based approximations of the belief space [10]. Similarly,
Poupart & Boutilier [11] used a linear model reduction algo-
rithm on the value function directly. More recent efforts have
shown that sampling the belief-space can lead to efficient
computation of good approximate value functions [12], [13],
[14], [15], and in particular Pineau et al. [16] have applied
their PBVI algorithm to specifically the search problem.
The Policy-Contigent Abstraction (PolCA) algorithm [17]
is one of the closest algorithms in spirit to the Dynamic
Action Space algorithm described in this paper, in that
the planning problem is decomposed into a hierarchy of
problems, where different actions are applicable in different
regions of the belief space. However, the PolCA algorithm
assumes a fixed action decomposition a priori, whereas our
action decomposition strategy is dynamic, dictated by the
current state of the particle filter.

VI. CONCLUSION

In this paper we have described an algorithm for a mobile
agent to plan its motion and sensing to minimize the time to

detection of a moving hidden target. The contribution of this
work is to show how planning using search can be made
tractable by dynamic selection of actions, allowing useful
trajectories to be planned even with relatively small search
depths. We showed preliminary results that demonstrated the
practicality of this approach. However, a number of issues
must be resolved in future work, including the particular
action selection algorithm; our clustering approach here
was based on relative distances between particles. Improved
performance may come from more appropriate clustering
approaches. Additionally, further complexity gains may be
had by performing smarter sample propagation, such as using
the unscented Kalman filter [18], which we will study in
future work.
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