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Abstract—Robots inevitably fail, often without the ability to
recover autonomously. We demonstrate an approach for enabling
a robot to recover from failures by communicating its need for
specific help to a human partner using natural language. Our
approach automatically detects failures, then generates targeted
spoken-language requests for help such as “Please give me the
white table leg that is on the black table.” Once the human
partner has repaired the failure condition, the system resumes
full autonomy. We present a novel inverse semantics algorithm
for generating effective help requests. In contrast to forward
semantic models that interpret natural language in terms of robot
actions and perception, our inverse semantics algorithm generates
requests by emulating the human’s ability to interpret a request
using the Generalized Grounding Graph (G3) framework. To
assess the effectiveness of our approach, we present a corpus-
based online evaluation, as well as an end-to-end user study,
demonstrating that our approach increases the effectiveness of
human interventions compared to static requests for help.

I. INTRODUCTION

Robotic capabilities such as robust manipulation, accurate
perception, and fast planning algorithms have led to recent
successes such as robots that can fold laundry [15], cook
dinner [1], and assemble furniture [11]. However, when robots
execute these tasks autonomously, failures often occur, for
example failing to pick up an object due to perceptual am-
biguity or an inaccurate grasp. A key aim of current research
is reducing the incidence of these types of failures, but
eliminating them completely remains an elusive goal.

When failures occur, a human can often intervene to help
a robot recover. If the human is familiar with the robot, its
task, and its common failure modes, then they can provide
this help without an explicit request from the robot. However,
if a person is unfamiliar with the robotic system, they might
not know how to help the robot recover from a failure.
This situation will occur frequently when robots interact with
untrained users in the home. Moreover, even trained users
who are deeply familiar with the robot’s capabilities may
experience problems during times of high cognitive load, such
as a human supervising a large team of robots on a factory
floor.

We propose an alternative approach to recovering from the
inevitable failures which occur when robots execute complex
tasks in real-world environments: when the robot encounters
failure, it verbally requests help from a human partner. After
receiving help, it resumes autonomous task execution. The
contribution of our paper is a family of algorithms for for-
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Fig. 1. A robot engaged in assembling an IKEA LACK table requests help
using natural language. A vague request such as “Help me” is challenging for
a person to understand. Instead, this paper presents an approach for generating
targeted requests such as “Please hand me the black table leg that is on the
white table.”

mulating a pithy natural language request so that a human
without situational awareness can render appropriate aid.

Generating natural language requests for a robot is challeng-
ing because the robot must map from perceptual aspects of the
environment to words that a person will understand, in novel
environments that are not available at training time. Template-
based methods for generating requests do not take into account
the ability of a person to understand the request, while existing
work in referring expression generation assumes access to a
symbolic representation of the environment, including ambigu-
ous spatial relations such as “near” or “under” which may not
be directly computed from the robot’s perceptual system [13].
We propose an algorithm that addresses this problem by
searching for an utterance that maximizes the probability of
a correspondence between the words in the language and the
action the robot desires the human to perform, making use
of a probabilistic model of a person’s language understanding
faculty [22]. When understanding language, the robot maps
from linguistic symbols to low-level motor actions and per-
ceptual features that the robot encounters in the environment.
In this paper, we invert that model, mapping from a desired
low-level motor action that the robot would like the human to
execute to a linguistic description. Inverting the model requires
developing a novel algorithm for generating help requests and
adapting the request to the specific environment. By modeling
the probability of a human misinterpreting the request, the
robot is able to generate targeted requests that humans follow
more quickly and accurately compared to baselines involving
either generic requests (e.g., “Help me”) or template-based
non-context-specific requests (e.g., “Hand me the <part> ”).

As a test domain, we focus on a human-robot team assem-
bling IKEA furniture, shown in Figure 1. We evaluate our
approach using a corpus-based experiment with Amazon Me-



chanical Turk as well as a real-world user study. The corpus-
based approach allows us to efficiently test the performance
of different algorithms. The user study assesses whether we
have met our engineering goals in the context of an end-
to-end system. Our evaluation demonstrates that the inverse
semantics language generation system improves the speed and
accuracy of a human’s intervention when a human-robot team
is engaged in a furniture assembly task and also improves the
human’s subjective perception of their robotic teammates.

II. RELATED WORK

Traditional methods for generating language rely on a
dedicated language-generation system that is not integrated
with a language-understanding framework [10, 17]. These
approaches typically consist of a sentence planner combined
with a surface realizer to guide decision making of what to say,
but contain no principled model of how an instruction-follower
would comprehend the instruction [21, 7, 2, 19]. These models
assume access to a formal symbolic representation of the
object to be referenced and its properties and relations to
other options [13]. Our approach differs in that it generates
language by inverting a module for language understanding.
This inversion is required to generate physically grounded
language about a particular environment that maps to the
robot’s perceptual data and communicates it to a human
partner. Furthermore, our approach generates references to
objects, as well as actions, unlike much previous work which
focuses on objects and sets of objects.

Some previous work has approached the generation problem
by inverting a semantics model. Golland et al. [8] use a
game-theoretic approach combined with a semantics model to
generate referring expressions. Our approach, in contrast, uses
probabilistic grounded semantics, biasing the algorithm toward
shorter sentences unless a longer, more descriptive utterance
is unambiguous. Goodman and Stuhlmüller [9] describe a
rational speech-act theory of language understanding, where
the speaker chooses actions that maximize expected global
utility. Similarly, recent work has used Dec-POMDPs to model
implicatures and pragmatics in language-using agents [23, 24]
but without focusing on grounded, situated language as in
this paper, and without implementing an end-to-end robotic
system. There is a deep connection between our models and
the notion of legibility and predictability for grasping and
pointing, as defined by Dragan and Srinivasa [4], pointing
toward a unified framework for grounded communication
using language and gesture.

Our approach views the language generation problem as
inverse language understanding; a large body of work focuses
on language understanding for robots [14, 5, 12, 16]. Of
these previous approach, we chose to invert the G3 framework
because it is a probabilistic framework which explicitly models
the mapping between words in language and aspects of the
external world, so metrics based on entropy may be used to
assess the quality of generated utterances.

Cooperative human-robot activities, including assembly,
have been broadly studied [25, 20, 3, 6]. These architectures

function conditions satisfied(` – list of conditions)
1: q ← World state
2: for all c ∈ ` do
3: if c not satisfied in q then
4: a← generate remedy action(c) . See Section III-B
5: generate help request(a) . See Section IV
6: while c not satisfied do
7: if time ≥ 60 then . wait up to 60 seconds
8: return false
9: return true

function executive(g – goal state)
1: repeat
2: p← symbolic plan(g) . p – list of actions
3: f ← true . f – are we finished?
4: while p 6= ∅ do
5: s← p[0] . first plan step
6: if conditions satisfied(s.preconditions) then
7: s.execute()
8: if not conditions satisfied(s.postconditions) then
9: f ← false

10: else
11: f ← false
12: p.retire(s) . s succeeded; remove it from p

13: until f . no actions failed

Fig. 2. An executive algorithm generates robot actions and help requests.

permit various granularities of human intervention through a
sliding autonomy framework. A failure triggers the replay of
video of the events preceding failure, from which the human
must obtain situational awareness. By contrast, in our approach
the robot diagnoses the failure and leverages natural language
to convey to the user exactly how the problem should be
resolved.

III. ASSEMBLING FURNITURE

Our assembly system consists of a team of KUKA youBots,
which collaborate to assemble IKEA furniture, originally
described in Knepper et al. [11]. The robots receive assembly
instructions encoded in a STRIPS-style planning language. A
centralized executive takes as input the symbolic plan and
executes each plan step in sequence. Each symbolic action
corresponds to a manipulation or perception action to be
performed by one or two robots. Assembling an IKEA LACK
table requires constructing and executing a 48-step plan. All
of the steps are autonomously executable under the right
conditions, and the team can assemble the table in approx-
imately ten minutes when no failures occur. Since perception
is not a focus of this paper, we employ a VICON motion
capture system to track the location of each participating robot,
human and furniture part during the assembly process. In our
experiments, failures occurred at a rate of roughly one every
two minutes, mostly due to mechanical problems, such as
grasping failures, perceptual issues, such as a part not being
visible on VICON, and planning failures, such as a robot
failing to find a path to reach its goal due to obstacles. When
the robots detect a failure, one of the robots requests help
using one of the approaches described in Section IV. Figure 2
shows the algorithm used to control the robots and request
help.



TABLE I
SUMMARY OF COMMON FAILURES AND THE SYMBOLIC GROUNDINGS

USED TO FORM A HELP REQUEST.

Failed symbolic condition Symbolic request

Part is not visible to the robot. locate part(robot, part)
Robot is not holding the part. give part(robot, part)
Leg is not aligned with the hole. align with hole(leg, top, hole)
Leg is not attached to the hole. screw in leg(leg, top, hole)
Table top is not upside down. flip(top)

Legacy software is in infinite loop. <not detectable>
Risk of hardware damage. <not detectable>

A. Detecting Failures

To detect failures, the system compares the expected state
of the world to the actual state, as sensed by the perceptual
system (line 6 of the executive function). We represent the
state, q, as a vector of values for logical predicates. Elements
of the state for the IKEA LACK table include whether the
robot is holding each table leg, whether the table is face-up or
face-down, and whether each leg is attached to the table. In
the furniture assembly domain, we compute the state using the
tracked pose of every rigid body known to the VICON system,
including each furniture part, each robot chassis and hand, and
each human. The system recomputes q frequently, since it may
change independently of any deliberate robot action, such as
by human intervention or from an unintended side-effect.

Prior to executing each action, the assembly executive ver-
ifies the action’s preconditions against q. Likewise, following
each action, the postconditions are verified. Any unsatisfied
condition indicates a failure and triggers the assembly execu-
tive to pause the assembly process and initiate error recovery.
For example, the robot must be grasping a table leg before
screwing it into the hole. If it tries and fails to pick up a leg,
then the post-condition for the “pick up” action will not be
satisfied in q, which indicates a failure.

B. Recovery Strategy

When a failure occurs, its description takes the form of
an unsatisfied condition. The system then asks the human for
help to address the problem. The robot first computes actions
that, if performed by the human, would resolve the failure
and enable the robotic team to continue assembling the piece
autonomously. The system computes these actions using a pre-
specified model of physical actions a person could take to
rectify failed preconditions. Remedy requests are expressed in
a simple symbolic language, shown in Table I. This symbolic
request, a, specifies the action that the robot would like the
person to take to help it recover from failures. However
these symbolic forms are not appropriate for speaking to an
untrained user. In the following section, we explore a series of
approaches that take as input the symbolic request for help and
generate a language expression asking a human for assistance.

IV. ASKING FOR HELP FROM A HUMAN PARTNER

Once the system computes a symbolic representation of
the desired action, a, it searches for words, Λ, which

S → V B NP

S → V B NP PP

PP → TO NP

V B → flip|give|pick up|place

NP → the white leg|the black leg|me
the white table|the black table

TO → above|by|near|under|with

Fig. 3. Part of the context-free grammar defining the linguistic search space.

effectively communicate this action to a person in the
particular environmental context, M , on line 5 of the
conditions_satisfied function. This section describes
various approaches to the generate_help_request
function which carries out this inference. Formally, we define
a function h to score candidate sentences:

argmax
Λ

h(Λ, a,M) (1)

The specific function h used in Equation 1 will greatly affect
the results. We define three increasingly complex approaches
for h, which lead to more targeted natural language requests
for help by modeling the ability of the listener to understand it.
The contribution of this paper is a definition for h using inverse
semantics. Forward semantics is the problem of mapping
from words in language to aspects of the external world; the
canonical problem is enabling a robot to follow a person’s
natural language commands [14, 12, 22, 16]. Inverse semantics
is the reverse: mapping from specific aspects of the external
world (in this case, an action that the robot would like the
human to take) to words in language. To apply this approach
we use the G3 model of natural language semantics. We build
on the work of Tellex et al. [22], who used the G3 framework
to endow the robot with the ability to follow natural language
commands given by people. In this paper, instead, we invert
the model, to endow the robot with the ability to create natural
language requests, which will be understood by people.

The inference process in Equation 1 is a search over possible
sentences Λ. We define a space of sentences using a context-
free grammar (CFG), shown in Figure 3. The inference pro-
cedure creates a grounding graph for each candidate sentence
using the parse structure derived from the CFG and then scores
it according to the function h. This search space is quite large,
and we use greedy search to expand promising nodes first.

A. Speaking by Reflex

The simplest approach from the assembly executive’s per-
spective is to delegate diagnosis and solution of the problem to
the human with the simple fixed request, Λ = “Help me.” This
algorithm takes into account neither the environment or the
listener when choosing what to say. We refer to this algorithm
as S0.



B. Speaking by Template

As a second baseline, we implemented a template-based
algorithm, following traditional approaches to generating lan-
guage [6, 17]. This approach uses a lookup table to map
symbolic help conditions to natural language requests. These
generic requests take the following form:
• “Place part 2 where I can see it.”
• “Hand me part 2.”
• “Attach part 2 at location 1 on part 5.” (i.e. screw in a

table leg)
Note that the use of first person in these expressions refers
to the robot. Since VICON does not possess any semantic
qualities of the parts, they are referred to generically by part
identifier numbers. Such templates can be effective in simple
situations, where the human can infer the part from the context,
but do not model how words map to the environment, and
thus do not reflect the mapping between words and perceptual
data. In constrained interaction scenarios, the programmer
could hard-code object names for each part, but this approach
becomes impractical as the scope of interaction increases,
especially for referring expressions such as “the part on the
table.”

C. Modeling Word Meanings

This section briefly describes how the G3 framework models
word meanings, which has been previously used to under-
stand language [22]. When understanding language, the G3

framework imposes a distribution over groundings in the
external world, γ1 . . . γN , given a natural language sentence Λ.
Groundings are the specific physical concepts that are referred
to by the language and can be objects (e.g., a table leg or a
robot), places (e.g., a particular location in the world), paths
(e.g., a trajectory through the environment), or events (e.g.,
a sequence of actions taken by the robot). Each grounding
corresponds to a particular constituent λi ∈ Λ, defined by
the CFG parse tree for the sentence. For example, for a
sentence such as “Pick up the table leg,” the grounding for
the phrase “the table leg” corresponds to an actual table
leg in the external world, and the grounding for the entire
sentence corresponds to the actions of a person as they follow
the request. Understanding a sentence in the G3 framework
amounts to the following inference problem:

argmax
γ1...γN

p(γ1 . . . γN |Λ,M) (2)

The environment model M consists of the robot’s location
along with the locations and geometries of objects in the
external world. The computed environment model defines a
space of possible values for the grounding variables, γ1 . . . γN .
A robot computes the environment model using sensor input;
in the domain of furniture assembly, the system creates the
environment model using input from VICON.

To factor the model, we introduce a correspondence vector,
Φ, as do Tellex et al. [22]. Each entry φi ∈ Φ corresponds
to whether linguistic constituent λi ∈ Λ corresponds to the
groundings associated with that constituent. For example, the

λ1

“Pick up”

γ1

φ1

λ2

“the table leg.”

φ2

γ2

Fig. 4. Grounding graph for the request, “Pick up the table leg.” Random
variables and edges are created in the graphical model for each constituent
in the parse tree. The λ variables correspond to language; the γ variables
correspond to groundings in the external world. Edges in the graph are created
according to the parse structure of the sentence.

correspondence variable would be True for the phrase “the
white table leg” and a grounding of a white leg, and False
if the grounding was a different object, such as a black table
top. We assume that γ1 . . . γN are independent of Λ unless Φ
is known. Introducing Φ enables factorization according to the
structure of language with local normalization at each factor
over a space of just the two possible values for φi.

The optimization then becomes:

argmax
γ1...γN

p(γ1 . . . γN |Λ,Φ,M) (3)

After factoring using Bayes’ rule and ignoring constant terms
we have:

argmax
γ1...γN

p(Φ|Λ, γ1 . . . γN ,M) (4)

We factor the expression according to the compositional
syntactic structure of the language Λ, defined by the parse
tree.

argmax
γ1...γN

∏
i

p(φi|λi, γi1 . . . γik ,M) (5)

This factorization can be represented as a directed graphical
model where random variables and edges in the model are
created according to the structure of the language. We refer
to one of these graphical models as a grounding graph.
Figure 4 shows an example graphical model; the details of
the factorization are described by Tellex et al. [22]. The
system factorizes the distribution according to the well-known
hierarchical parse structure of language. When evaluating the
model for specific sentences generated by our CFG, we use the
parse structure defined by the CFG to factor the distribution.
Each factor corresponds to an individual log-linear model for
predicting whether the particular node of the CFG corresponds
to a particular grounding in the external world. Training model
parameters requires an aligned parallel corpus of language
paired with groundings; we describe the training procedure
used for our furniture assembly domain in Section IV-F.

D. Speaking by Modeling the Environment

Next, we describe a more complex model for speaking,
that takes into account a model of the environment, but not



a model of the listener. We compute this model using the G3

framework. The system converts the symbolic action request
a to a value for the action grounding variable, γa ∈ Γ. This
variable, γa, corresponds to the entire sentence; we refer to the
desired value of γa as γ∗a . It then searches for the most likely
sentence Λ according to the semantics model. Equation 1
becomes:

argmax
Λ

h(Λ, γ∗a,M) (6)

To speak using a model of the environment, the robot
searches for language that best matches the action that the
robot would like the human to take. It does not consider
other actions or groundings in any way when making this
determination. Formally:

h(Λ, γ∗a,M) = max
Γ|γa=γ∗a

p(Λ|Γ,M) (7)

With the correspondence variable, this function is equivalent
to:

h(Λ, γ∗a,M) = max
Γ|γa=γ∗a

p(Φ|Λ,Γ,M) (8)

We refer to this metric as S1. Note that while the opti-
mization in Equation 8 does assess the quality of the gen-
erated sentences, it does not actually model the listener’s
understanding of those sentences, because it only considers
those interpretations where the overall action γa matches the
desired action γ∗a . The speaker considers possible sentences
and evaluates them using the G3 framework, selecting the
language that best matches the desired action γ∗a in the
environment.

This optimization considers sentences such as “Pick up the
black table leg on the white table” even though the grounding
for “the white table” is not specified in the symbolic descrip-
tion of the request, because it is added as a disambiguating
expression. We handle this by searching over both sentences
and paired groundings using beam search.

E. Speaking by Modeling the Listener and the Environment

The previous S1 metric scores shorter, ambiguous phrases
more highly than longer, more descriptive phrases. For ex-
ample, “the white leg” will always have a higher score than
“the white leg on the black table” because the corresponding
grounding graph for the longer sentence is identical to the
shorter one except for an additional factor, which causes the
overall probability for the more complex graph to be lower
(or at most equal).

However, suppose the robot team needs a specific leg; for
example, in Figure 5, the robots might need specifically the
leg that is on the black table. In this case, a phrase produced
under the S1 metric such as “Hand me the white leg” will be
ambiguous: the person will not know which leg to give to the
robot because there are several legs in the environment. If the
robot instead said, “Please hand me the white leg that is on
the black table,” then the person will know exactly which leg
to give to the robot.

To address this problem, we augment our robot with a
model of the listener’s ability to understand a request in the
particular environment. Rather than optimizing how well the
language in the request fits the desired action, we minimize
the uncertainty a listener would experience when using the G3

model to interpret the request. This metric, which we refer to
as S2, explicitly measures the probability that the listener will
correctly understand the requested action γ∗a:

h(Λ, γ∗a,M) = p(γa = γ∗a|Φ,Λ,M) (9)

To compute this metric, we marginalize over values of Γ,
where γa = γ∗a:

h(Λ, γ∗a,M) =
∑

Γ|γa=γ∗a

p(Γ|Φ,Λ,M) (10)

We factor the model with Bayes’ rule:

h(Λ, γ∗a,M) =
∑

Γ|γa=γ∗a

p(Φ|Γ,Λ,M)p(Γ|Λ,M)

p(Φ|Λ,M)
(11)

We rewrite the denominator as a marginalization and condi-
tional distribution on Γ′:

h(Λ, γ∗a,M) =
∑

Γ|γa=γ∗a

p(Φ|Γ,Λ,M)p(Γ|Λ,M)∑
Γ′ p(Φ|Γ′,Λ,M)p(Γ′|Λ,M)

(12)

The denominator is constant so we can move the summation
to the numerator:

h(Λ, γ∗a,M) =

∑
Γ|γa=γ∗a

p(Φ|Γ,Λ,M)p(Γ|Λ,M)∑
Γ′ p(Φ|Γ′,Λ,M)p(Γ′|Λ,M)

(13)

Next we assume that p(Γ|Λ,M) is a constant, K, for all Γ,
so it can move outside the summation. This term is constant
because Γ and Λ are independent when we do not know Φ:

h(Λ, γ∗a,M) =
K ×

∑
Γ|γa=γ∗a

p(Φ|Γ,Λ,M)

K ×
∑

Γ′ p(Φ|Γ′,Λ,M)
(14)

The constant K cancels, yielding:

h(Λ, γ∗a,M) =

∑
Γ|γa=γ∗a

p(Φ|Γ,Λ,M)∑
Γ′ p(Φ|Γ′,Λ,M)

(15)

This equation expresses the S2 metric. Note that unlike
the S1 metric, the S2 metric actually uses the G3 framework
to understand the sentences that it generates: computing the
denominator in Equation 15 is equivalent to the problem
of understanding the language in the particular environment
because the system must assess the mapping between the
language Λ and the groundings Γ′ for all possible values for
the groundings (compare with Equation 4).

In practice, evaluating the S2 metric is expensive because of
the language understanding computation in the denominator.
We therefore consider only the best k sentences produced
by the S1 metric, and then re-evaluate them using the S2

metric. This optimization may remove candidate sentences that
the S1 sentence scores with a low score, but also removes
many obviously incorrect sentences and significantly increases
overall inference speed.



“Help me” (S0) “Help me.”
Templates “Please hand me part 2.”
G3 S1 “Give me the white leg.”
G3 S2 “Give me the white leg that is on the black table.”

Hand-written “Take the table leg that is on the table and place it in
the robot’s hand.”

Fig. 5. Scene from our dataset and the requests generated by each approach.

F. Training

We trained the model for understanding language following
the same procedure as Tellex et al. [22]. We collected a new
dataset of natural language requests given by a human to
another human in the furniture assembly domain. We created
twenty-one videos of a person executing a task involved in
assembling a piece of furniture. For example, one video shows
a person screwing a table leg into a table, and another shows a
person handing a table leg to a second person. Each video has
an associated context consisting of the locations, geometries,
and trajectories of the people and objects, produced with
VICON. We asked annotators on Amazon Mechanical Turk
to view the videos and write a natural language request they
would give to ask one of the people to carry out the action
depicted in the video. Then we annotated requests in the video
with associated groundings in the VICON data. The corpus
contains 326 requests with a total of 3279 words. In addition
we generated additional positive and negative examples for the
specific words in our context-free grammar.

V. EVALUATION

The goal of our evaluation was to assess whether our algo-
rithms increase the effectiveness of a person’s help, or in other
words, to enable them to more quickly and accurately provide
help to the robot. To evaluate whether our algorithms enable
a human to accurately provide help compared to baselines,
we use an online corpus-based evaluation. We conducted a
real-world user study to assess whether our leading algorithm
improves the speed and accuracy of a person’s help to a team
of autonomous robots engaged in a real-world assembly task.

A. Corpus-Based Evaluation

Our online evaluation used Amazon Mechanical Turk
(AMT) to measure whether people could use generated help
requests to infer the action that the robot was asking them
to perform. We presented a worker on AMT with a picture
of a scene, showing a robot, a person, and various pieces of
furniture, together with the text of the robot’s request for help.
Figure 5 shows an example initial scene, with several different

TABLE II
FRACTION OF CORRECTLY FOLLOWED REQUESTS

Metric % Success 95% Confidence

Chance 20.0
“Help me” Baseline (S0) 21.0 ±8.0
Template Baseline 47.0 ±5.7
G3 Inverse Semantics with S1 52.3 ±5.7
G3 Inverse Semantics with S2 64.3 ±5.4
Hand-Written Requests 94.0 ±4.7

requests for help generated by different algorithms, all asking
the human to carry out the same action. Next, we showed
the worker five videos of a human taking various actions
in the scene in response to the requests. We asked them to
choose the video that best matched the request for help. We
chose actions to film based on actions that would recover from
typical failures that the robots might encounter. A trial consists
of a worker viewing an initial scene paired with a request for
help and then choosing a corresponding video.

We created a dataset consisting of twenty trials by construct-
ing four different initial scenes and filming an actor taking
five different actions in each scene. We present results for the
four automatic methods described in Section IV, as well as a
baseline consisting of hand-written requests which we created
to be clear and unambiguous. Figure 6 shows the four initial
scenes paired with handwritten help requests. For the “help
me” and hand-written baselines, we issued each of the twenty
generated requests to five subjects, for a total of 100 trials.
We issued each request in the template and G3 approaches to
fifteen users for a total of 300 trials. We assumed the robot had
accurate perceptual access to the objects in the environment
and their locations using the VICON system. Results appear
in Table II.

Our results show that the “Help me” baseline performs at
chance, whereas the template baseline and the G3 inverse
semantics model both improved performance significantly.
The S1 model may have improved performance over the
template baseline, but these results do not rise to the level
of statistical significance. The S2 model, however, realizes a
significant improvement, p = 0.002 by Student’s t-test, due to
its more specific requests, which model the uncertainty of the
listener. These results demonstrate that our model successfully
generates help requests for many conditions.

Most failures occurred due to ambiguity in the language,
even in sentences generated by the S2 model. For example,
many people confused “the white leg that is near the black
table” with “the white leg that is under the black table.” Adding
more prepositions, such as “next to” would address this issue
by enabling the algorithm to generate more specific referring
expressions that more accurately match people’s expectations.

B. User Study

In our experiment, humans and robots collaborated to as-
semble IKEA furniture. The study split participants into two
conditions using a between-subjects design, with 8 subjects
in each condition. In the baseline condition, robots requested



Take the table leg that is on the table and
place it in the robot’s hand.

Take the table leg that is under the table
and place it in the robot’s hand.

Take the table leg that is next to the table
and place it in the robot’s hand.

Pick up the table leg that is on the table
and hold it.

Take the table leg that is on the table and
place it on the floor in front of the
robot.

Screw the white table leg into the hole in
the table top.

Screw the black table leg into the hole in
the table top.

Take the white table leg and insert it in
the hole, but do not screw it in.

Move the white table leg over near the
table top.

Take the table top and place it near the
white table leg on the floor.

Take the white table leg that is next to the
table and put it in front of the robot.

Take the black table leg that is next to the
table and put it in front of the robot.

Take the black table leg that is far away
from the table and put it in front of the
robot.

Take the white table leg that is on top
of the table and place it in the robot’s
hand.

Pick up the white table leg next to the
table and hold it.

Take the white table, flip it over, and set
it down in place.

Take the black table, flip it over, and set
it down in place.

Take the white table and move it near the
robot, keeping it upside-down.

Pick up the white table and hold it.
Take the white table, flip it over, and put

it in the robot’s hand.

Fig. 6. The four initial scenes from the evaluation dataset, together with the hand-written help requests used in our evaluation.

help with the S0 approach, using only the words “Please help
me.” In the test condition, robots requested help using the S2

inverse semantics metric. The robots autonomously planned
and executed the assembly on two real robots, and all detected
failures were real. Our goal was to assess the effect of the
choice of help request, made to a user with limited situational
awareness, within an end-to-end system. We chose approach
S0 as a baseline to evaluate the magnitude of this effect. The
accompanying video is online at http://youtu.be/2Ts0W4SiOfs.

We measure effectiveness by a combination of objective
and subjective measures. We report two objective measures:
efficiency – the elapsed time per help request, and accuracy
– the number of error-free user interventions. Taken together,
these measures show how effectively the human’s time is being
used by the robots. We also report three subjective measures
derived from a post-trial survey, as well as their own written
feedback about the system, to gain an understanding of their
view of the strengths and weaknesses of our approach.

1) Procedure: Subjects in each condition were gender-
balanced and had no significant difference in experience
with robots or furniture assembly. To familiarize users with
the robot’s capabilities, we gave them a list of actions that
might help the robots. During preliminary trials, subjects had
problems when handing parts to the robot (called a hand-
off), so we demonstrated this task and gave each user the
opportunity to practice. The entire instruction period lasted
less than five minutes, including the demonstration. During
the experiment, we instructed users to focus on a different
assembly task and only help the robots when requested.

For each subject, the robot team started from the same
initial conditions, shown in Figure 7. Some failures were
inevitable given the initial conditions (e.g., a table top turned
upside down; a part on a table out of the robots’ reach.)
Other failures happened naturally (e.g., a table leg that slipped
out of a robot’s gripper.) When a failure occurred during
assembly, the failing robot addressed the person by saying,
“Excuse me,” and generated and spoke a request for help
through an on-board speaker, distinguishing itself by color

Fig. 7. Initial configuration for the user study. The user is seated behind the
whiteboard in the background.

if necessary. We projected all dialogue on a large screen to
remove dependence on understanding synthesized speech. The
human then intervened in the way they felt was appropriate.

After communicating a help request, the robots waited up to
60 seconds for the user to provide help. If the the environment
changed in a way that satisfied the request, the robot said
“Thank you, I’ll take it from here,” and we counted the
person’s intervention as successful. If the allotted time elapsed,
the robot instead said “Never mind, I’ll take it from here,”
and moved on to a different part of the assembly process.
These instances were recorded as failed interventions. For
each intervention, we recorded the time elapsed and number
of actions the human took in attempting to solve the problem.

Each trial ran for fifteen minutes. Although we tried to limit
experimenter intervention, there were several problems with
the robotic assembly system that required expert assistance.
Experimenters intervened when either of two situations arose:
potential damage to the hardware (19 times), or an infinite loop
in legacy software (15 times). In addition, software running
on the robots crashed and needed to be restarted 5 times. In
the future, we plan to address these issues using methods for
directing requests to the person most likely to satisfy them,
rather than only targeting requests at untrained users.

2) Results and Discussion: Over the course of the study,
the robots made 102 help requests, of which 76 were satisfied



TABLE III
END-TO-END USER STUDY RESULTS

Objective Metrics Interventions S0 S2 p (t-test)
Intervention time (sec) Non-hand-offs 33.3 25.1 0.092
Error-free interventions (%) All 57.1 77.6 0.039
Successful interventions (%) All 70.3 80 0.174

Subjective Metrics p (Kruskal-Wallis)
Robot is effective at communicating its needs 0.001
Prefer working in parallel with the robot 0.056
Easy to switch between and robots’ task and user’s 0.388

successfully within the 60-second time limit. The most com-
mon request type was the hand-off, comprising 50 requests.

Table III gives results from all metrics. Compared to the
baseline, S2 found a decrease in response time for the human
to complete non-hand-off interventions and an increased rate
of accuracy at performing those interventions. The change in
overall success rate was not statistically significant, probably
because users were permitted to try multiple actions within the
60-second window when the request was ambiguous. Such
retries counted against the accuracy and intervention time
metrics.

Qualitatively, subjects preferred the language generation
system; Figure 8 shows comments from participants in the
study in each condition: even when users successfully helped
the robots in the baseline condition, they frequently com-
plained that they did not know what the robot was asking for.
Two subjective metrics showed statistically significant results.
Users in the S2 condition reported that the robot was more
effective at communicating its needs. They were also more
likely to record a preference for assembling two kits in parallel
as opposed to assembling one kit at a time together with the
robots. These questions were scored on a five-point Likert
scale.

Despite these promising successes, important limitations
remain. First, hand-offs remained difficult for users even after
training. Second, the system required frequent intervention by
the experimenters to deal with unexpected failures. Both of
these conditions might be modified by a more nuanced model
of what help a human teammate could provide. For example,
if the robots could predict that handoffs are challenging for
people to successfully complete, they might ask for a different
action, such as to place the part on the ground near the robot.
Similarly, if the robots were able to model the ability of
different people to provide targeted help, they might direct
some requests to untrained users, and other requests to “level
2” tech support. The different types of interventions provided
by the experimenters compared to the subjects points to a need
for the robots to model specific types of help that different
people can provide, as in Rosenthal et al. [18].

C. Conclusion

The goal of our evaluation was to assess the effective-
ness of various approaches for generating requests for help.
The corpus-based evaluation compares the inverse semantics
method to several baselines in an online evaluation, demon-

“Help me” Baseline

“I think if the robot was clearer or I saw it assemble the desk before, I would
know more about what it was asking me.”

“Did not really feel like ‘working together as a team’ – For more complex
furniture it would be more efficient for robot to say what action the human should do?”

“The difficulty is not so much working together but the robots not being able
to communicate the actual problem they have. Also it is unclear which ones of the
robots has the problem.”

G3 Inverse Semantics with S2

“More fun than working alone.”

“I was focused on my own task but could hear the robot when it needed
help.... However, I like the idea of having a robot help you multitask.”

“There was a sense of being much more productive than I would have been on
my own.”

Fig. 8. Comments from participants in our study.

strating that the inverse semantics algorithm significantly im-
proves the accuracy of a human’s response to a natural lan-
guage request for help compared to baselines. Our end-to-end
evaluation demonstrates that this improvement can be realized
in the context of a real-world robotic team interacting with
minimally trained human users. This work represents a step
toward the goal of mixed-initiative human-robot cooperative
assembly.

Our end-to-end evaluation highlights the strength of the
system, but also its weakness. Robots used a single model
for a person’s ability to act in the environment; in reality,
different people have different abilities and willingness to
help the robot. Additionally we assumed that the robot and
person both had equal perceptual access to the objects in
the environment; in practice many failures may occur due to
the perceptual system not detecting an object, leading to the
robot being unable to generate an accurate help request, or
generating an ambiguous request because it is not aware of
all the distractor objects. Developing a dialog system capable
of answering questions from people in real time could provide
disambiguation when people fail to understand the robot’s
request. As we move from robot-initiated to mixed-initiative
communication, the reliance on common ground and context
increases significantly. Since our models can be expected
to remain imperfect, the demand for unambiguous sentences
becomes less satisfiable. In the long term, we aim to develop
robots with increased task-robustness in a variety of domains
by leveraging the ability and willingness of human partners to
assist robots in recovering from a wide variety of failures.
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