
Simultaneous Tracking and Rendering:
Real-time Monocular Localization for MAVs

Kyel Ok, W. Nicholas Greene, and Nicholas Roy1

Abstract— We propose a method of real-time monocular
camera-based localization in known environments. With the
goal of controlling high-speed micro air vehicles (MAVs), we
localize with respect to a mesh map of the environment that can
support both pose estimation and trajectory planning. Using
only limited hardware that can be carried on a MAV, we
achieve accurate pose estimation at rates above 50 Hz, an order
of magnitude faster than the current state-of-the-art mesh-
based localization algorithms. In our simultaneous tracking
and rendering (STAR) approach, we render virtual images
of the environment and track camera images with respect to
them using a robust semi-direct image alignment technique.
Our main contribution is the decoupling of camera tracking
from virtual image rendering, which drastically reduces the
number of rendered images and enables accurate full camera-
rate tracking without needing a high-end GPU. We demonstrate
our approach in GPS-denied indoor environments.

I. INTRODUCTION

We are interested in fast monocular vision-based camera
pose estimation that can track MAVs in known GPS-denied
indoor environments. We would like to achieve localization
performance of laser-based [1] or RGBD-based [2] algo-
rithms using a single camera that is both lightweight and
power-efficient.

State-of-the-art monocular vision-based localization algo-
rithms that track cameras in real-time are insufficient to
support autonomous MAV navigation due to difficulties in
managing viewpoint changes and inferring free space. Most
single camera localization algorithms [3]–[6] utilize image-
space descriptors [7], [8] where the descriptors in a camera
frame are matched against a database of descriptors with
known 3D locations. While image-space descriptors are dis-
criminative, they are fundamentally based on a 2D projection
in the camera image and are not repeatable under large
changes in the viewpoint [9]. Such viewpoint dependency
is often not a significant issue on ground vehicles restricted
by roads and constrained in elevation [10]–[12] or human-
taken photos sharing similar viewpoints [5] but the problem
worsens for MAVs unconstrained in space. More importantly,
a sparse point-cloud map is not informative in inferring free
space for planning a collision-free trajectory.

A few monocular vision-based localization approaches
utilize colored mesh maps [13], [14] which suffer less from
viewpoint changes and also contain spatial occupancy, but
are computationally intractable on MAVs. These previous
approaches track the camera pose by searching for the virtual
camera, guided by a differentiable image-space similarity

1Authors are from the Robust Robotics Group, CSAIL, MIT
(kyelok, wngreene, nickroy)@csail.mit.edu

Fig. 1: STAR algorithm tracking the camera pose (red) with
respect to a synthetic keyframe (blue) rendered using a
colored mesh of an indoor environment.

metric, that renders the most similar virtual image. The
search process requires repeatedly re-rendering virtual im-
ages for each camera image until the most similar image is
found. As a result, the state-of-the-art mesh-based algorithm
[13] tracks at 2 Hz using a high-performance GPU difficult
to carry on a MAV.

We propose simultaneous tracking and rendering (STAR)
for high frame-rate localization that drastically reduces the
number of rendered images. We do not require rendering
synthetic images multiple times per frame, but in fact, only
render a new synthetic image after sufficient motion. This
reduction comes from decoupling camera tracking from syn-
thetic image rendering where instead of rendering the most
similar image, we render any image that overlaps with the
current view and use it as a keyframe to track future camera
images with. This notion of keyframe-based localization also
allows relocalization, i.e., recovering from failed localization,
by searching for a candidate keyframe in proximity. This kind
of relocalization has not been previously demonstrated by the
mesh-based localization algorithms [13], [14] that rely on a
good initial estimate on the pose.

Given a rendered keyframe, we track camera images
against it using a robust semi-direct image alignment tech-
nique. This real-to-virtual image tracking is similar to the
trackers in RGBD SLAM systems [15] that align RGB
images with the projection of an incrementally updated 3D
representation of the environment. The main difference in
STAR is that a RGBD sensor is only required for the offline
map building, allowing the online tracking to perform with a



single camera. Additionally, by building a map incrementally
from a temporally coherent sequence of images, the SLAM
problem minimizes the need to align images with dramat-
ically different brightnesses or the need to align partially
incomplete depth maps, problems that only occur at loop
closures, if they ever occur. In contrast, localization may
require dealing with images taken under illumination condi-
tions that were never encountered during map construction,
and can require localizing in an incomplete part of the mesh.
In STAR, we overcome such challenges by correcting for a
global illumination difference and re-weighting local flaws
caused by rendering with an incomplete mesh.

The main contributions of our STAR algorithm are: 1)
achieving an order of magnitude faster tracking rate than the
current state-of-the-art monocular mesh-based localization,
2) removing the need for a high-end GPU difficult to carry on
a MAV, 3) being able to recover from localization failure in
a mesh map. We demonstrate STAR in indoor environments,
such as the room shown in Figure 1.

In the following sections, we describe STAR in more detail
and provide experimental results on tracking fast-moving
cameras in indoor environments.

II. SIMULTANEOUS TRACKING AND RENDERING

Given an undistorted monocular camera image It at each
time step t, we are interested in finding the current camera
pose TW

t ∈ SE(3) with respect to the world frame of
reference W . We leverage a geometrically accurate prior map
M of the environment and occasionally render a synthetic
camera image Is and a corresponding depth map Id at a
desired keyframe pose TW

k in the world.
Then, we can reduce the camera tracking problem to two

parallel processes: the first process compares the current
camera image against a synthetic keyframe image and finds
the camera pose Tk

t with respect to the keyframe camera

Tk
t = f(Is, Id, It) (1)

and the second process simultaneously renders synthetic
keyframe images given a prior map and a candidate pose

Is, Id = f(M,TW
k ). (2)

The first image alignment process runs at full camera-rate
while the second keyframe rendering process only generates
new synthetic images as the current camera leaves the view
of the previous reference frame. Thus, each iteration we
update the camera pose TW

t , via a pose composition TW
t =

TW
k Tk

t , and only change the keyframe camera as needed.
In this section, we discuss the details of the two parallel

processes and describe how we choose the keyframe pose
TW
k to realize a robust localization system.

A. Semi-Dense Tracking

Given our ability to easily re-generate nearby keyframes,
we choose semi-dense direct alignment as our tracking
method for its speed and robustness in tracking with a small
baseline between images. Our semi-dense tracker directly
aligns a camera image It with a synthetically rendered

(a) Rendered Synthetic Image (b) Rendered Depth Image

(c) Undistorted Camera Frame (d) Residual Image

Fig. 2: Synthetic grayscale image (a) and depth image (b)
rendered at the estimated camera pose are shown. Comparing
to the input camera image (c), the images are visually aligned
indicating successful tracking. Despite the large difference
in the appearance of the images, our semi-dense alignment
can correct for a global illumination and weigh down noisy
regions shown as dark pixels in the residual image (d).

keyframe image Is by minimizing the photometric error
between the two. Using the geometry imposed by the depth
image Id of the keyframe camera, we can back-project each
pixel u = (u, v) in the keyframe image to a 3D point pk

in the keyframe coordinate frame by pk = π−1(u, d) =
dK−1ū where K is a pre-calibrated pinhole camera matrix,
d = Id(u) is the depth of the pixel, and ū is a homogeneous
vector ū = (u, v, 1). To compute the photometric error,
each of the 3D points must be transformed to the current
camera coordinate frame by the relative transformation Tk

c ,
i.e., pc = Tc

kp
k, then uncalibrated and projected into the

camera image It by uc = π(Kpc) where the projection
function π(p) = (x/z, y/z) also includes dehomogenization.
Then, the per-pixel photometric error between the current
image and the keyframe image is

e(It, Is, Id,u) = It(u)− Is(π(KTc
kπ

−1(u, Id(u))). (3)

We parametrize an update to Tc
k ∈ SE(3) as ξ ∈ R6

in the Lie Algebra se(3). We use the exp operator, exp :
se(3)→ SE(3) to map an incremental twist ξ in se(3) to its
corresponding pose in the Lie group SE(3). We minimize
the squared sum of the per-pixel error function

E(ξ) =
∑
i

(It(ui)− Is(π(Kexp(ξ)π−1(ui, Id(ui))))
2 (4)

with Gauss-Newton iterations. We start with an initial esti-
mate of ξ0 and incrementally update with δξt by ξt+1 =
δξt ◦ ξt, where the ◦ operator denotes pose composition in
se(3). The incremental update is then

δξt = −(JTJ)−1JTe(ξ) (5)



where J is the Jacobian J = ∂e(ξ)
∂ξ |ξ=0 and e(ξ) is the error

vector e = (e1, e2, ..., et)
T . The derivation of this Jacobian

is well-known, and more details can be found in [16].
While Eq. 4 is valid for images taken by the same camera

under the brightness constancy assumption, synthetic images
and real camera images are generated by different hardware
under different lighting conditions. Moreover, rendered im-
ages have unmapped regions with no information, e.g. the
ceiling, that are displayed with white pixels as shown in Fig.
2. Due to such differences, the appearance between rendered
images and synthetic images vary both globally and locally.

To correct for the difference in the images, we apply the
illumination adjustment technique introduced in [17] and
refine the photometric error function as

E(ξ) =
∑
i

(α(ei(ξ))− β)2 (6)

where α is a robust error metric that defines the weight for
the contribution of each pixel and β is the global illumination
factor approximated as the median of per-pixel error e. The
α term can help weigh down locally inconsistent regions
while the β term can subtract out the global illumination
difference between the two images. We use the Huber robust
error metric to re-compute the α term each iteration and
modify the update Eq. 5 to also include the weight term.

Finally, to speed-up the tracking process we selectively
track only the pixels that are strong in gradient as done in
[18] and also utilize a Gaussian image pyramid to track from
the coarsest level to the finest level for better convergence.

B. Keyframe Rendering

We use OpenGL to generate synthetic keyframe image Is
and associated depth image Id using a colored triangle mesh.
We do not require a high-performance GPU but can render
images using a software-only implementation of OpenGL,
such as MESA Gallium llvmpipe, or with an embedded
graphics unit such as Intel HD 4400 available on compact
PCs used on modern MAVs [19], [20].

We render a keyframe grayscale image Is by projecting a
colored mesh of the environment into a desired keyframe
camera pose TW

k . The 3D vertices pWi of the mesh are
first transformed into the keyframe camera coordinates pki =
(TW

k )−1pWi by setting the model-view matrix. Then the
vertices are uncalibrated and projected, similar to Eq. 3, and
converted into normalized device coordinates (NDC). This
additional conversion to NDC is necessary for OpenGL op-
erations that expect each coordinate axis mapped to [−1, 1].

An important detail to note is that the projection and
uncalibration in OpenGL are provided by a single perspective
matrix, i.e., glFrustum, which does not allow the use of
a pinhole camera model. Thus, we instead uncalibrate and
orthogonally project in two steps, i.e., undc = P K̃pk by
first applying a modified pinhole camera model

K̃ =


fx 0 −cx 0
0 fy −cy 0
0 0 zn + zf znzf
0 0 −1 0

 (7)

Fig. 3: A synthetic keyframe image (blue) can have as little
as one third of its view overlapped with camera images (red)
without losing the ability to track. The tracked camera image
and the rendered keyframe images are shown in the imaging
plane of each camera wire-frame.

where the third column is negated to correct for OpenGL’s
camera looking down the negative z-axis and the third row
is added to correct for the difference [21] in depth mapping
(clipping depth values z to [zn, zf ] then mapping to [−1, 1])
between the orthogonal projection and the perspective pro-
jection. Then applying the orthogonal projection matrix

P =


2/w 0 0 −1
0 2/h 0 −1
0 0 2

zn−zf
zn+zf
zn−zf

0 0 0 1

 (8)

where w and h are width and height of the image, we can
render a synthetic keyframe image.

When rendering an image, OpenGL implementations use a
Z-buffer (depth buffer) to handle occlusions. Thus, without
any additional computation, we can obtain a depth image
by taking the normalized Z-buffer in [0, 1] and converting it
back to the metric space via inverse orthogonal projection:

zimage =
2zfzn

(zf + zn − (zf − zn)(2zbuffer − 1))
(9)

After rendering is finished, we can asynchronously copy
images in the GPU to local memory using the pixel buffer
object (PBO). For performance reasons, we store the mesh
on the GPU using the vertex buffer object (VBO) and render
the frames using the frame buffer object (FBO).

C. Keyframe Selection

We render a new keyframe image as needed, i.e., when
viewpoints are different, the tracking quality degrades, or a
fixed interval has passed. While image alignment can work
with as little as one third of overlapped regions, as illustrated
in Figure 3, we would like the new keyframe image to
have a significant overlap with upcoming camera images for
reliable convergence. While we could render a keyframe at
an expected future pose TW

t+m, we conservatively choose the
current pose estimate TW

t as a new keyframe pose.
When choosing the current pose estimate TW

t as a
keyframe pose, the accuracy of the estimate does not affect
future tracking performance or accumulate error over time.



Fig. 4: Keyframe cameras (red) are uniformly placed in the
mesh, varying in 6 DoF (only translation shown in this
figure). For each keyframe location, a synthetic image is
generated (shown inside the blue camera wireframe) and
compressed down to a single ORB descriptor. The descrip-
tors generated in this offline pre-processing stage are later
compared online for relocalization.

An image and a depth map is essentially a dense 3D point-
cloud and the role of the keyframe pose is only to segment
out a small portion of the mesh, bounded by the keyframe
camera frustum, to use for tracking. Therefore, errors in the
pose estimate when initializing a new keyframe only result
in suboptimal keyframe location selection and do not largely
affect the accuracy of future estimates.

However, in the case of tracking failure, our estimate TW
t

is significantly different from the true camera position so that
a keyframe generated at the estimated pose is not likely to
have any overlap with incoming camera images. In this case,
we initiate a relocalization procedure to choose a different
keyframe pose, as described in the next section.

D. Relocalization

To recover from tracking failure, we need to find a
keyframe camera capable of producing a synthetic image
that overlaps with the current camera image. We adopt the
approach of SLAM systems [18], [22] that save and compare
past keyframes to the latest camera image for recovery. While
relocalization in such SLAM systems is only possible if the
camera is near a saved keyframe, in the case of relocalizing
in a known map, we need to recover from anywhere in the
map at its full scale.

To improve the scalability of relocalization, we must
bound the number of keyframe locations, bound the on-
line search region, and compress the information in each
keyframe image. First, we can bound the number of potential
keyframe locations by uniformly placing virtual cameras in
the map, as shown in Figure 4, and limiting relocalization
attempts to the discrete set. Then to reduce the search
region, we define a conservative search radius using the latest
velocity estimate and the time since last failure. Lastly, to
compress the information in each keyframe image, we down-
scale the keyframe image to a small patch of size 80 by 64

Fig. 5: A mesh of the Vicon room is constructed using a
RGBD sensor and Kintinuous. The ground-truth odometry
(purple) is provided to reduce errors in the mesh map.

and extract a single ORB [8] descriptor that covers the whole
image. This technique, similar to the GIST-BRIEF loop-
closure method [23], compresses a single keyframe down to
256 bits, significantly reducing the memory requirement and
making online recovery extremely fast; we extract an ORB
descriptor once, and test each keyframe for overlap by com-
puting the hamming distance of two 256 bit vectors. The high
scalability of our similarity metric makes it more suitable
for the large-scale relocalization problem compared to other
image-space similarity metrics, such as mutual information
or normalized information distance (NID), that require the
whole image for each keyframe as well as substantial online
computation, e.g., joint entropy calculation, that cannot be
pre-computed offline.

III. EXPERIMENTAL RESULTS

We tested STAR algorithm both offline on the publicly
available TUM RGBD dataset [24] and online in GPS-
denied indoor environments. We used a laptop with 2.7
GHz i7 processor and an Intel HD 4400 embedded GPU
to process the data. While we could use a software-only
implementation of OpenGL for slower sequences, we utilized
the low-cost embedded GPU available on modern MAVs
for higher efficiency. For the monocular camera, we used
a PointGrey Flea3 camera at 640x512 resolution running at
50 FPS. Details of each experiment are shown in this section.

A. Meshing
We generated a colored mesh of each test environment

using a Kinect RGBD sensor. We used the open-source
FastFusion algorithm [25] for the public RGBD dataset and
Kintinuous [15] for other environments. The drift in the
odometry during mesh building often caused the mesh to
be deformed, or created flaws in the texture when closing
the loop. While STAR could track camera poses using
a deformed mesh map, for quantitative analysis, we used
ground-truth Vicon poses to isolate tracking errors from
errors in the map. A mesh map of the Vicon room, built
with the ground-truth, is shown in Figure 5.



TABLE I: Quantitative analysis of STAR

Experiment Distance
Travelled (m)

Position
Error (cm)

Rotation
Error (deg)

TUM Office 21.57 2.13 ± 1.29 0.81 ± 0.36
Single Loop 15.44 14.13 ± 8.44 2.92 ± 2.37
Aggressive 1 19.73 13.79 ± 16.79 3.92 ± 3.98
Triple Loop 36.38 13.09 ± 6.77 3.32 ± 1.48
Aggressive 2 13.98 13.66 ± 8.60 3.73 ± 2.05

B. TUM RGBD Benchmark

We tested STAR on a TUM RGBD sequence [24] captured
in an office environment. We first generated a mesh map of
the environment using both the RGB and depth sequences,
then tracked the trajectory using only the RGB images as the
input to our algorithm. Note that tracking the same images
used to build the mesh simplifies the tracking problem since
there are no photometric differences between the rendered
images and the camera images. However, unmapped areas in
the mesh still create large artifacts in the rendered images.

The simplified tracking problem demonstrates STAR al-
gorithm under an ideal condition with fixed illumination,
identical sensors, and similar viewpoints. These conditions
are possible in a real environment when tracking in a closed
room with controlled lighting and tracking with the same
camera used to build the mesh.

Localization results are shown in Table I, where the mean
translational error is 2.13 cm, and the mean rotational error is
0.81 degrees. While these results are difficult to achieve in a
more realistic scenario, they demonstrate the ability of STAR
to accurately localize the camera in an ideal environment.

C. Vicon Experiment

We evaluated STAR in a Vicon room shown in Figure
5. Using a mesh built with ground-truth odometry, we
tracked a slow camera sequence (Single Loop) and a faster
sequence with rapid rotations (Aggressive 1). After altering
the appearance of the room, we re-mapped and tested two
other sequences (Triple Loop and Aggressive 2).

The localization error of STAR on the sequences is shown
in Table I, where the mean translational error across the dif-
ferent datasets was approximately 14 cm, and the rotational
error was between 3 to 4 degrees. The translational error was
greater along the z-axis (shown in Figure 10), for example,
being 9.43 cm for the Triple Loop sequence, while the error
along the xy-axes were 4.05 cm and 4.09 cm. A similar
pattern was observed for the pitch angle where the error was
approximately double of the other axes. Higher errors along
the z-axis and in the pitch angle are suspected to be the
result of a lack of horizontal edges in the test environment,
observable in Figure 7.

The average time taken to estimate the camera pose for
all the sequences was under 20 ms, being able to track the
50 FPS camera in real-time. Shown in Figure 6, the average
time for tracking a frame in the Aggressive 1 sequence was
14.42 ms, and the Single Loop sequence was 18.17 ms.
The variations in the tracking time were dependent on the
amount of texture in the sequences, e.g., Aggressive 1 had

Fig. 6: Timing results for Aggressive 1 using an embedded
GPU and Single Loop using Gallium llvmpipe software
renderer. Software rendering is sufficient for slow moving
sequences, but has difficulties dealing with fast rotations. It
can be observed that some areas in the Aggressive 1 sequence
contains more keyframe generation due to fast rotations.

fewer gradient pixels to track on, where the camera was
often looking at scenes that were not completely mapped
in the mesh. The average rendering time for the Aggressive
1 sequence was 21.55 ms using the embedded GPU, while
the rendering time for the Single Loop sequence was 190.36
ms using the MESA Gallium llvmpipe software renderer.

D. Comparison to the state-of-the-art

Despite using an incomplete and imperfect mesh, STAR
accurately estimated camera trajectories, with similar perfor-
mance to the state-of-the-art localization methods [4], [6],
[13]. In this section, we discuss how a direct comparison to
these methods is difficult due to differences in the datasets
and the validation method.

Lynen et. al [6] combined sparse features with an IMU [6],
achieving a mean translational error of 17 cm and a mean
rotational error of 0.32 degree in a large scale environment.
While the rotational error is much smaller than the error
of STAR, it is difficult to directly compare the results as
the dataset used by Lynen et al. were restricted to roads,
e.g. captured on a bicycle or along the sidewalk, without
exercising the full range of 6 degrees of freedom (DoF)
motion. The dataset used to evaluate the algorithms were
also deliberately within moderate view-point changes of the
original dataset used to build the map.

Moreover, the feature-based localization of Lim et. al [4]
achieved varying results on different datasets, with 10.8 cm
translational error and 1.6 degree rotational error being the
run with the highest success rate of 95%. While Lim et. al
exercised the full range of all 6 DoF, a direct comparison
to STAR is difficult due to error metrics basing on only
the successful attempts. In our STAR implementation, no
estimates were rejected, with the worst translation error being
53.19 cm. This design choice, which increased the mean
error, was to later do the rejection (reduction) in an filtering
framework fusing in an IMU.



Fig. 7: The Aggressive 1 sequence, where the first row shows the camera images and the second row shows rendered images
at the estimated poses. Despite the imperfections in the mesh, shown as white holes in the rendered views, renderings at our
pose estimates accurately match the camera images, indicating successful camera tracking. Refer to https://groups.
csail.mit.edu/rrg/star for the full sequence.

Lastly, the most recent mesh-based localization work [13]
reported a RMS translational error of 3.73 to 7.42 cm, and
a RMS rotational error of 0.35 to 0.91 degrees with a 93%
success rate. Comparing to this method is also difficult due
to the dataset being captured on a ground-based vehicle (3
DoF only), the trajectory for map-building being the same
trajectory for tracking, and the dataset being processed frame
by frame offline1.

In terms of timing, STAR performed over 25 times faster
than the 2 Hz tracking rate reported by the state-of-the-art
mesh-based localization method [13], and did similar to the
23 to 37 ms [4] and 24.5 ms [6] of feature-based methods.

E. Relocalization Experiment

We tested our relocalizer on the Aggressive 1 sequence,
where 100 different locations were queried for the closest
match within a fixed search window of 2 meters. Some
representative matches are shown in Figure 8 where the
relocalizer accurately retrieved a keyframe with an average
distance of 45 cm to the query frame. However, due to
perspective differences in the recovered keyframe and the
camera image, recovering the pose with direct alignment
was successful 73% of the time. When successful, recovery
took a nearly constant 0.21 ms average time for checking
approximately 700 nearby keyframes. This extremely cost-
efficient keyframe query allowed us to broaden the search
region when required. However, in the case of failure, recov-
ery took an arbitrarily long amount of time, until the camera
left the regions where the relocalizer deterministically failed
to find a keyframe with a significantly similar viewpoint. We
also experimented with NID as the similarity metric: it took
on average 2440 ms, and the average distance was 147 cm.

1discussed in personal communication

Fig. 8: Keyframes returned by our relocalizer are shown
in orange, where each keyframe is connected to the query
camera frame shown in green. For all of the queries, a
perceptually similar keyframe was successfully found.

Using a single ORB descriptor in the relocalizer was several
orders of magnitude faster, and returned a closer keyframe.

F. Office Experiment

In addition to the Vicon room, we tested STAR in a larger
indoor environment with changes in illumination. Due to the
varying illumination from nearby windows, there was a sig-
nificant difference between the camera images and rendered
keyframes. Moreover, small objects in the scene created
occlusions, reducing the coverage of the mesh. While we
do not have a ground-truth trajectory for this sequence, the
similarity between the camera images and renderings at the
pose estimates indicate successful tracking. Representative
frames are shown in Figure 9 for qualitative assessment.

https://groups.csail.mit.edu/rrg/star
https://groups.csail.mit.edu/rrg/star


Fig. 9: RRG Office sequence shown for qualitative analysis. Due to changing illumination from the windows, there is a
significant difference between the camera images and the rendered keyframes. Furthermore, there’s a person in the sequence
dynamically affecting the environment. Our algorithm is able to reject these areas for robust tracking.

(a) TUM Office Trajectory
(b) Aggressive 1 Trajectory (c) Triple Loop Trajectory (d) Aggressive 2 Trajectory

(e) Translation (f) Translation (g) Translation (h) Translation

(i) Rotation (j) Rotation (k) Rotation (l) Rotation

Fig. 10: The trajectory estimated by STAR (blue) and the ground-truth (red) are shown for various sequences.



IV. CONCLUSIONS

We have proposed Simultaneous Tracking and Rendering
where we can localize a monocular camera given a mesh map
of the environment. We achieved similar speed and accuracy
to the state-of-the-art feature-based localization methods with
a mean translational error of 14 cm and a mean rotational
error less than 4 degrees, while using a planning-capable
and view-independent mesh map. We improved the speed
of mesh-based localization by more than 25 times compared
to the current state-of-the-art. With real-time tracking using
a planning-capable mesh map, STAR takes a step toward a
fully autonomous monocular vision-based MAV.

ACKNOWLEDGMENT

This research was funded by the ONR under MURI
N00014-10-1-0936, the ARO MAST CTA and Draper Labs
under the DARPA FLA program. Their support is gratefully
acknowledged.

REFERENCES

[1] A. Bry, A. Bachrach, and N. Roy, “State estimation for
aggressive flight in GPS-denied environments using
onboard sensing,” in IEEE International Conference
on Robotics and Automation (ICRA), 2012.

[2] M. F. Fallon, H. Johannsson, and J. J. Leonard, “Effi-
cient scene simulation for robust monte carlo localiza-
tion using an RGB-D camera,” in IEEE International
Conference on Robotics and Automation, 2012.

[3] T. Sattler, B. Leibe, and L. Kobbelt, “Fast image-
based localization using direct 2D-to-3D matching,”
in Computer Vision (ICCV), 2011 IEEE International
Conference on, 2011.

[4] H. Lim, S. N. Sinha, M. F. Cohen, M. Uyttendaele, and
H. J. Kim, “Real-time monocular image-based 6-DoF
localization,” The International Journal of Robotics
Research, 2015.

[5] Y. Li, N. Snavely, D. Huttenlocher, and P. Fua,
“Worldwide pose estimation using 3D point clouds,”
in Computer Vision–ECCV 2012, 2012.

[6] S. Lynen, T. Sattler, M. Bosse, J. Hesch, M. Pollefeys,
and R. Siegwart, “Get out of my lab: Large-scale, real-
time visual-inertial localization,” in Robotics: Science
and Systems, 2015.

[7] D. G. Lowe, “Distinctive image features from scale-
invariant keypoints,” International journal of com-
puter vision, 2004.

[8] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski,
“Orb: An efficient alternative to SIFT or SURF,” in
Computer Vision (ICCV), 2011 IEEE International
Conference on, 2011.

[9] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zis-
serman, J. Matas, F. Schaffalitzky, T. Kadir, and L.
Van Gool, “A comparison of affine region detectors,”
International journal of computer vision, 2005.

[10] W. Churchill and P. Newman, “Practice makes perfect?
managing and leveraging visual experiences for life-
long navigation,” in Robotics and Automation (ICRA),
2012 IEEE International Conference on, 2012.

[11] W. Maddern, M. Milford, and G. Wyeth, “Cat-slam:
Probabilistic localisation and mapping using a contin-
uous appearance-based trajectory,” The International
Journal of Robotics Research, 2012.

[12] E. Johns and G.-Z. Yang, “Feature co-occurrence
maps: Appearance-based localisation throughout the
day,” in IEEE International Conference on Robotics
and Automation (ICRA), 2013.

[13] G. Pascoe, W. Maddern, A. D. Stewart, and P. New-
man, “Farlap: Fast robust localisation using appear-
ance priors,” in IEEE International Conference on
Robotics and Automation (ICRA), 2015.

[14] G. Caron, A. Dame, and E. Marchand, “Direct model
based visual tracking and pose estimation using mu-
tual information,” Image and Vision Computing, 2014.

[15] T. Whelan, M. Kaess, H. Johannsson, M. Fallon,
J. J. Leonard, and J. McDonald, “Real-time large-scale
dense RGB-D SLAM with volumetric fusion,” The
International Journal of Robotics Research, 2015.

[16] S. Baker and I. Matthews, “Lucas-kanade 20 years
on: A unifying framework,” International Journal of
Computer Vision, 2004.

[17] T. Gonçalves, A. Comport, et al., “Real-time direct
tracking of color images in the presence of illumina-
tion variation,” in Robotics and Automation (ICRA),
2011 IEEE International Conference on, 2011.

[18] J. Engel, T. Schöps, and D. Cremers, “Lsd-slam:
Large-scale direct monocular slam,” in Computer
Vision–ECCV 2014, 2014.

[19] K. Ok, D. Gamage, T. Drummond, F. Dellaert, and
N. Roy, “Monocular image space tracking on a com-
putationally limited mav,” in Proc. of the IEEE Intl.
Conf. on Robotics and Automation (ICRA), 2015.

[20] M. N. Galfond, “Visual-inertial odometry with depth
sensing using a multi-state constraint kalman filter,”
PhD thesis, Massachusetts Inst. of Technology, 2014.

[21] R. S. Wright, N. Haemel, G. M. Sellers, and B.
Lipchak, OpenGL SuperBible: Comprehensive tutorial
and reference. 2010.

[22] G. Klein and D. Murray, “Parallel tracking and map-
ping for small AR workspaces,” in Mixed and Aug-
mented Reality, 2007. ISMAR 2007. 6th IEEE and
ACM International Symposium on, 2007.

[23] N. Sünderhauf and P. Protzel, “BRIEF-gist-closing
the loop by simple means,” in Intelligent Robots and
Systems (IROS), International Conference on, 2011.

[24] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and
D. Cremers, “A benchmark for the evaluation of
rgb-d slam systems,” in Proc. of the International
Conference on Intelligent Robot Systems (IROS), 2012.

[25] F. Steinbrucker, J. Sturm, and D. Cremers, “Volumetric
3D mapping in real-time on a CPU,” in Robotics and
Automation (ICRA), 2014 IEEE International Confer-
ence on, 2014.


	Introduction
	Simultaneous Tracking and Rendering
	Semi-Dense Tracking
	Keyframe Rendering
	Keyframe Selection
	Relocalization

	Experimental Results
	Meshing
	TUM RGBD Benchmark
	Vicon Experiment
	Comparison to the state-of-the-art
	Relocalization Experiment
	Office Experiment

	Conclusions

