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Abstract: Our goal is to enable robots to interpret and execute high-level tasks
conveyed using natural language instructions. For example, consider tasking a
household robot to, “prepare my breakfast”, “clear the boxes on the table” or
“make me a fruit milkshake”. Interpreting such underspecified instructions re-
quires environmental context and background knowledge about how to accom-
plish complex tasks. Further, the robot’s workspace knowledge may be incom-
plete: the environment may only be partially-observed or background knowl-
edge may be missing causing a failure in plan synthesis. We introduce a prob-
abilistic model that utilizes background knowledge to infer latent or missing plan
constituents based on semantic co-associations learned from noisy textual cor-
pora of task descriptions. The ability to infer missing plan constituents enables
information-seeking actions such as visual exploration or dialogue with the hu-
man to acquire new knowledge to fill incomplete plans. Results indicate robust
plan inference from under-specified instructions in partially-known worlds.
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1 Introduction

We envision collaborative robots in homes, factories, and workplaces that can be instructed to per-
form high-level tasks such as clearing an area, preparing a meal or performing a complex assembly
task. Natural language instructions from a human are often incomplete and require environmental
context and background knowledge about how activities are performed to fully determine a plan
of actions to execute. Further, the robot may be asked to perform novel tasks for which the pre-
determined knowledge may be insufficient.

Consider a scenario where a human instructs the robot to “prepare breakfast”. The robot must recog-
nize an under-specified command and ask the human, “what do you want for breakfast?”” Receiving
a response, “get me cereal and a fruit”, the robot must proceed with the breakfast preparation task
by bringing a cereal, a bowl and a fruit, and placing these items on a table. In doing this, it has to
resolve the term ‘fruit’ to an appropriate object present in its environment, e.g. an apple. Addition-
ally, the robot may be expected to know that milk is typically needed for cereal and hence determine
where to retrieve it from. Accomplishing this simple task requires procedural knowledge, relational
reasoning, and the ability to acquire new facts and concepts, see Figure 1.

Contemporary instruction following models [1, 2, 3, 4] relate input instructions with actions associ-
ated with perceived entities in the scene. These models lack the ability to incorporate abstract rela-
tional knowledge in the grounding process. Alternatively, symbolic reasoning systems [5, 6, 7, 8, 9]
incorporate background knowledge while reasoning about appropriate plans for the agent. How-
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Figure 1: Illustration of semantic relational model and inference of an executable symbolic plan. A probabilistic relational model is learnt
using knowledge from relational and taxonomic databases and instruction sheets for household tasks. The natural language input from the
human and workspace knowledge provide only sparse evidence for the relational model. A symbolic plan comprising action sequences and
their parameters must be inferred for plan execution (e.g. a sequence of four putting actions), and need to be adapted to current environment:
as the perceived world model does not contain an instance of milk, its most likely region is inferred (e.g. fridge) to inform exploratory motion.

ever, these approaches are typically non-probabilistic and do not directly integrate context from the
current world state while reasoning about feasible plans.

The contribution of this work is a probabilistic model that enables a robot to infer symbolic plans
from natural language commands in scenarios where the workspace is partially observed or the
robot’s background knowledge is insufficient. We observe that background conceptual knowledge
encompassing semantic attributes, relationships, affordances etc. can be used to infer “missing”
plan constituents (such as action subjects or goal locations) based on statistical correlations and tax-
onomic affinities. The model incorporates a probabilistic relational model over symbolic knowledge
learned from noisy textual descriptions and taxonomic data bases. Reasoning over the entire space of
knowledge is computationally infeasible. We adopt an online context-driven approach that hypoth-
esizes missing knowledge components by integrating evidence from the language instruction and
visual observations of the world state. The ability to infer latent plan components enables the robot
to take information gathering actions such as visual exploration or or engaging in dialogue with the
human to replenish its knowledge gap and enable plan synthesis. This work contributes towards
language grounding models that are more robust towards incomplete world knowledge, enabling
robots to make inferences or seek information about missing plan elements.

2 Preliminaries and Problem Formulation

We consider a robot operating in a workspace populated with a set of objects O and capable of
executing a motion trajectory p;. Each object is associated with a pose, a geometric model and a
semantic class label estimated using a perception system. The human operator communicates with a
robot using natural language utterances A; conveying instructions or factual knowledge relevant for
the task. Following [10], we adopt a (first order) logic representation for workspace knowledge cap-
turing the semantic properties and relationships that are true for the robot’s environment. Formally,
let C' denote a set of constants associated with semantic entities such as a box, cup, tray, breakfast
etc. that can potentially exist in the environment. Let L denote logical predicate symbols that ex-
press an attribute for an entity or relationships between entities, such as On( -, - ). Predicates from L
when propositionalized over constants from C form the set of “instantiated” predicates X;. An ex-
ample of instantiated predicate is On(block, table). Finally, a “grounded” predicate is an instantiated
predicate whose arguments correspond to physical objects in the robot’s workspace.

The robot’s knowledge is encoded in terms of instantiated predicates, representing physical con-
cepts and relations derived from perceived entities O. These include semantic types such as
block, table, robot, human etc. or spatial relations such as On(block, table), Left(box, robot) etc. The
space of physical concepts defined over the set of detected objects constitute the perceptual world
state T;. A set of “factual” knowledge predicates denoted by K; includes taxonomic subsump-



tion relations (SubClass(apple, fruit)), mereological relationships (HasA(button, blender), object
affordances (Location(milk, fridge)), unobserved object states (IsUsed(carton)) or abstract attributes
(IsMine(cup)) communicated by a human. The space of factual concepts can expand over time
through observation and interaction. The symbolic knowledge state K also incorporates “proce-
dural” knowledge about complex activities such as cooking, clearing, assembly etc. Procedural
knowledge can be encoded as a refinement relation R that associates a complex task (e.g., making a
milkshake) with a sequence of constituent actions (pouring, mixing, cutting etc.).

We assume that the robot can affect the environment by executing actions such as moving an object
from a source location to a destination, changing the state of a button or opening an articulated ob-
ject. Let A denote the set of symbolic action predicates defined in terms of goals and constraints as-
sociated with the objects affected by the action. For example, Move(cup, table, tray), Push(button),
Open(fridge), Pour(milk, cup) etc., A temporally-ordered sequence of grounded symbolic actions
{ap,a1,...,a,} forms a “grounded” symbolic plan o that accomplishes a high-level task. Let X
denote the space of probable symbolic plans. The robot’s goal is to infer a grounded plan given a
language instruction, background knowledge and the observed world state, denoted as the likelihood
P(o¢|A¢, Yy, K¢). The estimated symbolic plan is provided as an input to a low-level motion plan-
ner to generate a metric trajectory to accomplish the goal. The estimation problem can be stated as:

o; = argminP (o¢|As, Ty, K). (1)
cEX

The estimated symbolic plan can be provided to a low-level motion planner to generate a platform-
dependent trajectory. Note that the robot’s workspace may by partially-known and the language
instruction may be underspecified. The factor P(o:|A, Y+, K;) denotes the likelihood of a sym-
bolic plan given sparse context from visual observations and language augmented with background
knowledge about the workspace.

In this paper, we show how background knowledge can be used to infer latent symbolic knowledge
necessary for plan inference. Further, reasoning over possible plans with the expansive space of
factual knowledge is computationally intractable. We show how evidence from language A; and the
observed world state Y'; can be used to construct a reduced symbolic model for relevant background
knowledge that is amenable to tractable inference. Next, we introduce a probabilistic representation
for semantic knowledge and subsequently present a probabilistic model that leverages the represen-
tation for plan estimation under incomplete world knowledge.

3 Knowledge Representation

The perceived and factual predicates along with the set of possible symbolic actions cumulatively
form the robot’s workspace knowledge X; = {Y; U K; U A;}. Semantic concepts constituting X;
are often statistically correlated. For example, objects may be located in typical locations (milk in
fridge), actions are typically performed on particular objects in certain ways (cutting a vegetable with
a knife or empty boxes typically discarded in trash). Such co-associations allow humans to make
inferences about plan attributes that may not be explicitly stated in the language instruction. We
adopt a Markov logic network (MLN) representation [5] for modeling the probabilistic relationships
between semantic concepts. Next, we briefly review the MLN formulation as applied to our domain.

Let MY - denote a MLN that models the joint likelihood of instantiated predicates derived from L
defined over symbolic entities C. The MLN defines a Markov network with a node in the network
for each instantiated predicate in L. The model assumes a set of formulae F; that are indicative of
probabilistic associations between binary logical predicates in the knowledge state. For example,
the formula, {Vx,y IsEmpty(z) A Carton(z) A TrashCan(y) = Destination(x,y)} encodes the
knowledge that used cartons are likely to be discarded in the trash can. The formulae are proba-
bilistic, each associated with a weight w;, indicative of how strong the association is: the higher
the weight, the greater the difference in the log-probability between a knowledge state where the
formula is true and one that does not [11]. Formulae are indicative of possible correlations between
concepts and hence induce shared factors between instantiated predicates in the induced Markov
network. The likelihood of a possible knowledge state can be expressed as:

'n,1 1
P(X, = z[MY o) H¢z wgy) " = exp (Zw n;(x ) ; 2



Figure 2: Probabilistic model. The variable Y, denotes the metric world state obtained from
visual observations. Let O denotes the detected objects. L denotes predicate symbols and
the variable K; represent factual knowledge. The robot estimates a symbolic plan o+ from
language instructions A; from a human. Up: Grounding plans with incomplete background
knowledge. The variable I'; denotes the (literal) symbolic interpretation of the instruction
using a language grounding model gzyo. Here, L denotes predicate symbols and O de-
notes the detected objects and 6 denote learned weights. A Markov logic network M7 ~
defined a joint distribution over the knowledge state that includes factual knowledge, ground-
ing from language, candidate actions and perceptual context. Given partial observations of
the environment, the relational model can infer “missing” symbols required for plan comple-
tion correlated with the observed workspace entities allowing information gathering actions.
Down: Augmented model for incremental knowledge acquisition. The model estimates a
partition over known and unknown plans, Jf and o' based on whether the input utterance
conveys a novel concept. A language query is generated if an unknown symbol is inferred.
The grounding for the human’s response updates the knowledge state as Ky 1.

where x is a binary vector {0, 1}/ that denotes a truth assignment to all predicate instantiations of
A}, w3 denotes the state of the atoms appearing in F;, n;(z) is the number of satisfying assignments
of formula F; in x, Z is normalization constant and ¢; (x;) = e"i.

4 Probabilistic Model

We introduce a probabilistic model for inferring symbolic plans from natural language instruc-
tions given the perceived world state and background knowledge expressed as the likelihood
P(o¢|At, Y4, K;). Language utterances from a human can instruct the robot to perform high-level
tasks such as “prepare milkshake but do not use the apples” or convey factual knowledge such
as “the box on the left is empty”. The process of assigning meaning or “grounding” a language
instruction involves estimating a set of instantiated predicates I'; that compactly represents observa-
tions of the task specification and factual knowledge conveyed in the instruction. For example, the
clause Prepare(milkshake) \ —NeedsA(milkshake, apple) estimated from the milkshake preparation
instruction introduced previously. The inclusion of language grounding variables I'; allows the plan
inference factor in Equation 1 to be factorized as:

Knowledge reasoning Language grounding

of =argmin}  P(or|le, Yo, Kis ME,c) P(DilA 16392 0) 3)
oc T,

The input language only provide sparse evidence for the intended plan to be executed by the robot
and require joint reasoning with background knowledge. The factor P(I';|As, Ty; ggo) infers a
literal grounding I'; of a language instruction A; given the observed world state T;. The fac-
tor P(oy|T'y, Ty, Ky; MY ) determines a complete interpretation of the instruction in terms of a
grounded symbolic plan o conditioned on groundings from language T';, background knowledge
K, and the observed workspace T;. The language grounding model is realized using a structured
log-linear model [12] parametrized as G¢ . The model relates phrases in the input instruction
with semantic concepts derived from the observed environment. The knowledge reasoning factor is
realized using probabilistic relational model MY , introduced previously in section 3. Figure 2a
illustrates the graphical model. ’

4.1 Inferring Plans from Instructions in Partially-known Workspaces

We now detail the estimation of a symbolic plan o given the input instruction and workspace knowl-
edge, P(o¢|Ty, Ty, Kt; M 7 ¢)- The distribution over the full space of workspace knowledge is
represented as a Markov logic network modeling the joint likelihood P(o¢,I's, ¢, K¢|M7 ) intro-
duced previously in Section 3. The workspace knowledge is derived from two sources: the observed
metric state Y, derived from perception and the set of grounding symbols I'; from language indica-
tive of the intended actions to be performed by the robot. With the observed observed world state Y’y
and groundings from language I'; as “evidence”, the model “queries” a likely grounded symbolic
plan o as the following conditional likelihood over the relational model:

Zweamrtmnm{t exp (Y_; wi - ni(z))
Zmermrmm exp (D, wi - ni(z))

P[0y, Ty, Ky MY o) = )
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The model uses statistical correlations between symbols of background ontological knowledge to
infer plan components that may be implicit in an under-specified instruction or missing from the
observed world model; in essence, estimating symbolic plans that are maximally correlated with
visual and linguistic context.

Inferring missing plan components involves reasoning over the full space of background knowledge
state K;. In practice, the number of variables in the ground knowledge state can be very large,
O(|L| - |C|Y), where N denotes the maximum arity of a predicate in symbol space. We address
this problem by using context from input language A; and the observed world state T, to postulate

a smaller set of probable knowledge state variables I?t Formally, the model determines a smaller
space of symbolic entities C' and relations L forming a context-dependent relational model M% oA

Yt

of size O(|L| - |C|V) where (|C| < |C|) and (|L| < |L|). The reduced knowledge state K; allows

plan inference to be factorized as:
Plan inference with reduced model Estimating reduced knowledge base

P(ot|Te, Yo, Kis M7 o) = ZP(Ut|Ft7TtaE§ i) P(KiTy, Yo, K) . ()
K,

Here, the estimated knowledge state IZ inferred from linguistic context I'; and observations of the
world state T; forms a Markov blanket between the plan inference and most variables in the large
knowledge state K;. Probable plans are determined via lifted inference [13].

The inferred symbolic plan o; consists of a sequence of symbolic actions which may contain sym-
bolic or “ungrounded” literals associated with objects that may not be detected as yet. For example,
for the cereal preparation task, if the milk is located inside the refrigerator and hence not visible, the
inferred plan is likely to contain an ungrounded symbol for the milk entity and a grounded symbol
for refrigerator as a possible location to search for the milk entity. For grounded symbolic actions
in the plan, a motion planner estimates a minimum-time, collision-free trajectory to accomplish the
task. The inferred locations for ungrounded literals serve as an informed prior for guided exploration
in the environment such as visual-scanning or opening the lid/cover to gather new observations.

4.2 Acquiring Missing Background Knowledge via Online Interaction

In realistic scenarios the robot’s pre-trained set of concepts may not suffice. Hence, the robot needs
an ability to estimate when its knowledge model lacks procedural knowledge for a task and then
interact with the user to replenish its knowledge representation. We augment the graphical model to
include a knowledge state variable K, propagated to the next time step ¢ + 1.

Given the current estimated knowledge state, the model classifies a resulting plan as known o if
the high-level task possesses a known decomposition into plan sub-goals. Otherwise the plan is
classified as unknown o} if the corresponding procedural knowledge is lacking in the background
knowledge state. In case a task specification is inferred as unknown, the the model generates a
template-based language query A} to the human operator seeking a factual description for stated
concept. We assume a cooperative human operator who provides a task description in the form of a
language utterance. The grounding of the language response serves as a new observation updating
the current knowledge state with new relational knowledge resulting in the updated knowledge state
K. Figure 2(b) illustrates the graphical model. The inclusion of the propagated knowledge state,
and the known/unknown tasks augments the plan estimation factor as:

Knowledge update ~ Unknown/Known Plan inference  Instruction Grounding

——f— ——
P(Kt+1’Ufan|At,Tt,Kt) = ZP(Kt+1|Kt;Ft> P({Ufagf}WuKt,Tt) P(T| Ky, Ay, Yy)
It

5 Evaluation

5.1 Quantitative Evaluation

For the MLN MY ., we use predicates indicating whether words are associated with syntactic
and semantic labels like part of speech tags, dependency relations, Wordnet synsets, and Framenet
actions and roles. We use instantiated predicates representing all relations (synonymy, hyponymy,



hypernymy) between the 117000 synsets in Wordnet. For training the weights, we use 30 instruction
sheets from the cooking domain and an additional 5 task descriptions collected for the household
domain indicative of typical locations of household objects. The grounding model ggo is the
one presented in [12], trained with available data from past work ([12]) and wikihow high-level
instructions.

For evaluation, we use 19 high level instructions collected from WikiHow. Each instruction is paired
with textual description of the steps that the robot has to perform, and the final symbolic robot plan
that needs to be executed. The instructions range from meal preparation (e.g. “prepare a milkshake”)
to common household tasks (e.g. “clear the table”). Finally, each instruction is paired with multiple
robot workspaces, each of which contains all required objects necessary to execute the plan and
4 extra distractor objects not required for the plan. Resolving each of the 19 instructions require
analyzing a large number of instructions, since each instruction can be decomposed into component
sub goals with a corresponding set of instructions. Overall, the evaluation involves analysis of 114
unique natural language instructions.

We quantitatively evaluate the proposed model in the following scenarios:

1. Workplace Context: Here, we evaluate the ability of the model to generate grounded
executable robot execution plans using the context of the robot’s workspace.We replace
a randomly chosen object’s type with its hyponym in the workspace. The system has to
select the hyponym as a suitable replacement for the missing object. We compare against
a baseline which chooses the most similar item as a replacement. Similarity is computed
using pretrained word embeddings [14].

2. Partially known Workspace: In case of missing items in the workplace, our model esti-
mates ungrounded literals, along with a possible location to search for the missing entity
(Section 4.1). We evaluate this capability — predicting plans with search locations for miss-
ing entities in this scenario. We replace an object in the workspace with a possible location
where it can be stored. The goal is to generate a plan with possible location for the missing
items. We compare against a baseline which chooses locations based on average similarity
(based on word embeddings) to storage locations encountered in the training data.

3. Acquiring Missing Knowledge: We evaluate the ability of the system to infer missing
knowledge in the database, and to query the human to online replenish the missing knowl-
edge in the database (Section 4.2). We delete the corresponding textual descriptions for
input instructions. Once the model detects that relevant knowledge is missing, we provide
the descriptions as a response provided by a human. The goal of the model is to ground
language instructions online and generate the correct executable plan.

Table 1 summarizes the results. The proposed model significantly outperforms the baselines. State
of the art linguistic similarity metrics fail to capture the relational reasoning required for our task.

[ [ Workspace Context [ Partially known Workspace [ Acquiring Missing Knowledge |
[ Baseline [ 62 [ 42 [ N/A |
| Proposed Model | 96 [ 70 | 48 |

Table 1: Accuracy (%) of generating executable robot plans under different scenarios. Each experi-
ment was run on 50 examples.

In comparison to traditional language grounding work, the symbol space for our model is very large
owing to the inference over concepts in Wordnet and Framenet. In particular, grounding a low level
instruction involves inference over 42 actions, each action is associated with around 2 arguments,
each argument is selected from a space of 117000 concepts. Our model leverages strong structured
priors from learned background knowledge and the context of the workplace to search over a small
space of likely symbols to complete plans. The context-specific independences allowed search over
a significantly reduced fraction of symbols — only 0.3% to 1.21% in our experiments.

5.2 Qualitative Results

The model is demonstrated on a Baxter Research Robot in a table top workspace and a PR2 robot
in a simulated kitchen environment. During the experiments, the robot is commanded to perform
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Figure 3: Demonstration on a Baxter Research Robot and a simulated PR2 robot. (a) The clearing task requires relational reasoning based
on object attributes (used or full) to determine the correct destinations (trash can or the storage tray respectively). (b) The sub-goals for the
breakfast preparation task are a-priori unknown to the robot. The robot infers the missing concept and queries the human to elicit a description.
The model leverages relational knowledge and estimates that the milk ingredient is correlated with cereal and required for this preparation and
further infers the fridge as a likely location to explore as a milk bottle cannot be seen in the workspace. (c) The recipe preparation task requires
taxonomic generalization for plan completion.

clearing, assembly and recipe preparation tasks, Figure 3. A video for the demonstration is available
at: https://youtu.be/uWv-17XMoB8.

Table clearing task. In this scenario, two cracker boxes, a fruit, a trash can, a fruit basket and
a storage box are placed on the table. The human subject conveys that, “the cracker box on the
left is empty” and then tasks the robot to “clear the table”. The model infers the grounding for
this instruction as an abstract task composed of plan steps as learnt from prior knowledge in the
instruction data. The second cracker box is assumed to be full. The relational model infers that the
likely destination for the empty box is the trash can and determines that the full cracker box is to be
stored away. Taxonomic reasoning enables the apple to be inferred as a fruit and the fruit basket is
determined to be its most likely destination.

Breakfast preparation task. The robot’s workspace consists of a can, a box, a fruit and a refrig-
erator with a milk carton inside. The location of the milk carton is unknown. The robot is asked
to “prepare breakfast”. The model infers this task specification as novel and generates a question,
“what breakfast would you like to have”. The human fur-

ther prese.n’t’s a factual desc;ription as, “I would like cereal fridge.n01 | E— 0.580524
and a fruit”. The model infers the apple as a plan con- , cabinetnos |mm— 0.269662
stituent using background taxonomic knowledge. Using container.n.01 | I : 0149812
learned procedural knowledge, the model infers that ce- 00 05 1.0
1 1 1 1 fridge.n.01 0.0

regl is highly gorrelated yv1th milk anq populates the plap 0 oo — 0.605263
with a symbolic abstraction for the milk concept and esti- containern 01 | NN 0304736
mates its likely location to be the refrigerator. The robot 0.0 05 1o >

performs eXp lorato_ry actions by opening the frldge, and Figure 4: Distributions over likely locations of milk:
then detects the milk carton and moves the carton to the (a) the original prior and (b) the posterior distribution
table completing the task. As the model maintains a distri- updated with the fact that the milk is not in the fridge.
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Figure 5: Inference over multiple plan hypothesis: A distribution over two equivalent robot plans for boiling water using different objects and
devices, conditioned on different world models. World (a) is equipped with a cooking pot and a stove, World (b) contains a kettle. Worlds
being more compatible with the respective plan (with respect to objects available), gain higher likelihoods.

bution over possible locations of objects, more informed posteriors can be computed with the world
model having been updated. If, after exploration, for instance, the milk turns out to be not in the
fridge, the world model can be updated and the distribution over locations is being recomputed with
the new evidence. Figure 4 illustrates this reasoning case.

Recipe following task. A simulated PR2 robot in a kitchen environment is tasked to prepare a
strawberry milkshake. The robot’s background knowledge contains a natural language recipe for
preparing a milkshake and serving a drink. The natural language recipe is specified only abstractly,
referring to the flavor of the milkshake as ‘fruit’. Here, the taxonomic knowledge is used to adapt
the recipe to the instruction and the environment, such that the final plan contains an action to put the
strawberries into the blender, but not the other fruits. The robot also infers that serving the milkshake
requires pouring it into a glass. The workspace did not contain a glass but a cup, so it infers the cup
as an appropriate alternative to adapt the plan.

A key feature of the proposed approach is the ability to compute probability distributions over mul-
tiple plan options (e.g. multiple ways of achieving the same goal) conditioned on a respective world
model. This allows the robot to select the action sequence that is most compatible in the given en-
vironment. An example is shown in Figure 5: Two different recipes for a ‘boiling water’ task are
given, one heating water in a pot on the stove, the other one using a water kettle. Under evidence of
two different worlds, plans that are more compatible with a respective world gain higher probability.

6 Related Works

Contemporary language grounding models [1, 3, 4, 15] estimate correspondences between linguistic
constituents and the semantic entities observed in the world model but do not directly incorporate
background relational knowledge in inference. Past work in robot language grounding and semantic
parsing [2, 16, 17, 18] map instructions to formal logical representations, but they place the onus
on a downstream model [12, 19, 20, 21] to derive executable controllers from high level logical
forms. In contrast, our method jointly infers both the high-level predicates a sequence of low-level
sub-goals directly executable by the robot. In related work [22, 7, 8] propose cognitive architectures
modeled as symbolic production systems. In this work, we take a probabilistic approach that enables
probabilistic estimates for plan hypotheses. Approaches such as [5, 6, 8, 22] use symbolic data bases
and ontologies but ignore the perceptual context. Approaches in [23, 6] construct context-sensitive
relational knowledge bases from local observations but do not consider the plan inference task. Other
efforts have focused on acquiring abstract concepts by interacting with the user [4, 24, 25, 26, 27].

7 Conclusion

We introduced a probabilistic model for interpreting complex activities communicated via natural
language as a sequence of symbolic actions that an autonomous agent can execute. The model incor-
porates a learned relational knowledge representation that enables inference over plan elements not
explicitly stated in language or missing from the perceptual view of the workspace. Relational in-
ference is performed over a context-dependent model based on accrued context of observed entitites
and the history of linguistic interactions with the human. In case the robot encounters a novel task
the model allows the robot to interact with the human to acquire new knowledge. We demonstrate
robot manipulators following high-level instructions in incompletely known workspaces.
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