
Superfast Configuration-Space Convex Set
Computation on GPUs for Online Motion Planning

Peter Werner1, Richard Cheng2, Thomas Stewart3, Russ Tedrake1,2, and Daniela Rus1

1MIT CSAIL 2Toyota Research Institute 3Woven by Toyota
{wernerpe, russt, rus}@mit.edu

richard.cheng@tri.global, tom.stewart@woven.toyota

Abstract—In this work, we leverage GPUs to construct
probabilistically collision-free convex sets in robot configuration
space on the fly. This extends the use of modern motion planning
algorithms that leverage such representations to changing
environments. These planners rapidly and reliably optimize high-
quality trajectories, without the burden of challenging nonconvex
collision-avoidance constraints. We present an algorithm that
inflates collision-free piecewise linear paths into sequences
of convex sets (SCS) that are probabilistically collision-free
using massive parallelism. We then integrate this algorithm
into a motion planning pipeline, which leverages dynamic
roadmaps to rapidly find one or multiple collision-free paths,
and inflates them. We then optimize the trajectory through
the probabilistically collision-free sets, simultaneously using
the candidate trajectory to detect and remove collisions
from the sets. We demonstrate the efficacy of our approach
on a simulation benchmark and a KUKA iiwa 7 robot
manipulator with perception in the loop. On our benchmark,
our approach runs 17.1 times faster and yields a 27.9%
increase in reliability over the nonlinear trajectory optimization
baseline, while still producing high-quality motion plans. Website:
https://sites.google.com/view/GPUPolytopes

I. INTRODUCTION

Finding high-quality collision-free motion plans remains
one of the most fundamental and challenging problems in
robotics [1, 2]. Systems with high demands on reliability
and performance, e.g. on production lines or in warehouses,
often require carefully tailored ad hoc solutions, which afford
reliability at the cost of engineering effort and performance.

Over the years, sampling-based motion planning, trajectory
optimization using nonlinear programming, and combinations
thereof, have become the most established approaches for
motion planning. Sampling-based motion planners are simple
to implement [2, 3], work well in lower dimensions, can have
completeness guarantees, and can be massively accelerated
using large-scale parallelization [4, 5]. See [6] for an overview
on sampling-based motion planning. Unfortunately, these
methods become impractical as the dimension increases,
yielding suboptimal motion plans and long planning times.

Directly transcribing motion planning as a general nonlinear
optimization problem and finding solutions with local
methods, e.g. [7–9], has the benefit of scaling to higher-
dimensional problems and allowing the user to encode a wider
variety of costs and constraints. Unfortunately, such local
optimization approaches are sensitive to initialization and often
struggle to find a feasible solution when one exists.

To capture the strengths of both trajectory optimization and
sampling-based motion planning, a series of recent works [10–
17] initially proposed in [18] investigate planning through
collections of collision-free convex sets that approximately
decompose the free space. For the remainder of this paper,
we will refer to this class of planners as decomposition-
based motion planners (DBMPs). A challenging nonconvexity
in trajectory optimization stems from the collision-avoidance
constraints. Given a collection of collision-free convex sets,
DBMPs replace these nonconvex constraints with simple
convex constraints, which allows them to profit from the
fast solve times and reliability of convex optimization. This
shifts the challenges that stem from these collision-avoidance
constraints to constructing a high-quality representation of the
collision-free space through a union of convex sets.

For a candidate approximate convex decomposition to be
effective, it should consist of a small number of sets, contain
high-quality trajectories in the union of the sets, and its
individual sets should be described by few constraints in order
to keep the trajectory optimization problems small.

Many robot motion planning problems are most naturally
formulated in the robot’s configuration space C. Therefore,
we seek to construct the convex sets in Cfree, the collision-
free subset of C. Unfortunately, this is particularly challenging
because configuration spaces tend to be high-dimensional
with complicated geometries, and we often only have
implicit descriptions of Cfree [1, §4.3.3]. Therefore, the go-
to algorithms used by practitioners for constructing convex
decompositions of Cfree are slow, scale poorly with the
environment complexity, and are difficult to use [19, 20],
mainly due to their complexity or because they are difficult
to tune. Additionally, these algorithms only consider static
environments. Generally, the sets need to be recomputed
in case the environment changes. So far, these challenges
have made set construction a bottleneck, and have prevented
DBMPs from being applied successfully to scenarios involving
changing environments like mobile manipulation.

In this paper, our aim is to tackle two key challenges: (1)
computing convex sets in robot configuration space for motion
planning in real-time, and (2) reliable and effective positioning
of the sets such that they contain high-quality trajectories.
By addressing these challenges, our aim is to unlock the
benefits of DBMPs and enable their use in general, changing
environments.

https://sites.google.com/view/GPUpolytopes

u

v

Fig. 1: On the left, our hardware setup with a KUKA LBR iiwa 7 R800 robotic manipulator and three Intel RealSense D415
depth cameras for perceiving obstacles is shown. In the center, the simulated system with the perceived obstacles is shown.
The target end effector pose is indicated by the yellow gripper and the collision geometries of the system are shown in red.
The perceived obstacles are approximated by a union of spheres shown in the center of the table. The figure on the right shows
a two-dimensional slice of the seven-dimensional configuration space, along with a slice of the safe sets (blue and green), and
a slice of the configuration obstacles (self-collisions in black, collisions with perceived obstacles in red). The slice lies tangent
to the trajectory such that the u-direction is co-linear with the velocity and the v-direction is a random orthogonal vector. The
current configuration is indicated by the black dot.

To tackle challenge (1), we build on the recently developed
IRIS-ZO algorithm [21], which lends itself to large-scale
parallelism. In particular, we propose Zero-Order Edge
Inflation (EI-ZO), and demonstrate that GPU acceleration of
our algorithm enables real-time set construction in changing
configuration spaces.

EI-ZO also addresses challenge (2) by inflating collision-
free line segments rather than points, yielding probabilistically
collision-free polytopes which are guaranteed to contain the
seed line segment. This enables us to inflate collision-free,
piecewise-linear (PWL) paths between the start and the goal
into sequences of convex sets (SCS) in which successive sets in
the sequence intersect. By construction, this SCS connects the
start to the goal and guarantees the containment of a collision-
free path. In comparison to approximating the entire free space
with a union of convex sets [22], this approach dramatically
reduces the computational burden by reducing the number of
required sets. Perhaps more importantly, it makes the step of
finding a collection of sets that connect the start to the goal
reliable, even in complicated, changing configuration spaces.

Finally, we propose a motion planning pipeline that
combines these ideas with large-scale dynamic road maps
(DRMs). The pipeline first leverages the DRM to rapidly find
a collision-free PWL path from a starting configuration to a
goal configuration. Next, this path is inflated with EI-ZO to
produce a SCS, which is then used to recover high-quality
motion plans using DBMPs.

We demonstrate the efficacy of our approach in simulation
benchmarks in two and seven dimensions and validate the
approach on hardware using a KUKA iiwa with perception
in the loop, as shown in Fig. 1. Relative to the nonlinear
trajectory optimization baseline, our approach produces
slightly higher-cost trajectories, but increases the success rate
from around 72% to 100% on our simulation benchmark,
while computing trajectories around 17 times faster.

The remainder of this paper is structured as follows. In
§II we outline the assumptions and required inputs. Next, we
review prior work on constructing convex sets in configuration
space for motion planning in §III. Our algorithm, EI-ZO, for
inflating line segments in configuration space is then presented
in §IV. We outline how we employ DRMs in §V. We then
present our full motion planning pipeline combining DRMs,
EI-ZO, and DBMPs in §VI. Our experiments are presented in
§VII. In §VIII we discuss the limitations and in §IX draw a
conclusion.

II. ASSUMPTIONS

We make similar assumptions as in prior work on computing
approximate convex decompositions of Cfree, e.g. [21, §2].
That is, we assume that we are given a description of the
considered robot system which contains information about the
kinematics and collision geometries of the system sufficient for
collision checking, e.g. as provided in URDFs [23] or SDFs
[24]. If we are dealing with additional obstacles entering and
leaving the system, then we assume that (1) these obstacles
remain static during the brief planning and execution time
of the motion plan and (2) we are given observations of
the obstacles sufficient to perform (potentially conservative)
collision checks against them. Specifically, we assume that
our collision checker never mislabels a configuration as safe
when it is actually in collision.

III. BACKGROUND

A. Constructing Safe Sets in Robot Configuration Space

The construction of convex safe sets in robot configuration
space has been studied in [19–21]. The algorithms in
[19] compute provably collision-free polytopes in a rational
reparametrization of the configuration space using polynomial
optimization. Due to the high computational cost of the
approaches in [19], we direct our focus towards the algorithm

IRIS-NP, initially proposed in [20], and later improved and
extended to IRIS-NP2 and IRIS-ZO in [21]. These algorithms
leverage nonlinear optimization to compute probabilistically
collision-free polytopes in robot configuration space in
substantially less time. IRIS-NP2 and IRIS-ZO provide a
probabilistic guarantee for a produced polytope P of the form

Pr

[
λ(P \ Cfree)

λ(P)
> ε

]
≤ δ, (1)

which controls what fraction of the volume of P is allowed
to be in collision. In (1), λ denotes the Lebesgue measure in
Cfree, ε is an admissible fraction of the volume of P that is
allowed to be in collision, and δ is the admissible uncertainty.

Here we introduce an algorithm for constructing safe
sets around line segments that primarily builds on IRIS-ZO
[21, §5.2]. IRIS-ZO constructs probabilistically collision-free
polytopes by iteratively removing collisions from the current
region via hyperplanes. It optimizes the locations of these
hyperplanes using sampling and collision checking. We build
on IRIS-ZO because it only relies on collision checking and
simple sample updates, making it massively parallelizeable,
and amenable to GPU acceleration.

B. Positioning Safe Sets for Effective Motion Planning

There have been two approaches to position individual
convex sets for motion planning. The first approach is to find a
collection of convex sets that efficiently cover a large fraction
of the entire configuration space. The second is to only cover
an individual collision-free (but potentially suboptimal) path.

For example, in [22, 25], visibility graphs are used to
construct approximate convex covers which try to minimize
the number of polytopes required to meet a coverage threshold.
The approach in [25] uses densely sampled visibility graphs
and visibility kernels in two and three dimensions to construct
a cover of polytopes represented as convex hulls of samples.
The Visibility Clique Cover algorithm in [22] works in
higher dimensions by expanding cliques on visibility graphs
to probabilistically collision-free polytopes using an algorithm
similar to [20].

Unfortunately, in relatively simple environments, the
required number of sets is already prohibitively large for
online cover generation. Instead, we focus on the second
approach: covering an individual collision-free (but potentially
suboptimal) path with collision-free convex sets.

This strategy has been investigated in two and three-
dimensional task spaces to generate safe flight corridors on the
fly [12–14, 26], where either a sequence of boxes is computed
[12], or the IRIS algorithm [27] is modified to include line
segments of a collision-free path [13, 14, 26] in the produced
polytopes. In [13, 14], this is accomplished by careful selection
of the initial ellipsoid, which defines the distance metric in the
IRIS algorithm for optimizing hyperplane placement. A more
involved formulation is used in [26] that admits constraining
the inclusion of line segments directly in the optimization of
the hyperplanes.

In general, this second strategy has the advantage of
only generating regions relevant for the current planning
problem, and thus creates substantially fewer sets. In this
paper, we propose a method for applying this idea in higher-
dimensional configuration spaces. Our approach proposes a
simple modification to the IRIS algorithms: using the distance
to a line segment as a metric instead of one defined by an
ellipsoid. As discussed in IV, this guarantees the inclusion of
the line segment (provided it is collision-free), skips checking
the ellipsoids for collisions, and avoids the more involved
optimization problems in [26], which would not be amenable
for GPU implementation.

IV. RAPIDLY INFLATING LINE SEGMENTS

In this section, we discuss our algorithm, Edge Inflation
Zero-Order (EI-ZO), for rapidly inflating line segments to full-
dimensional, probabilistically collision-free polytopes in robot
configuration space using only zero-th order information about
the system. First, we observe that the distance to a convex set,
in particular a line segment, is a convex function. This leads
to a natural way of extending IRIS algorithms to guarantee the
containment of line segments (and convex sets more generally)
provided they are collision-free. Given our focus on real-time
set generation, we specifically focus on adapting the IRIS-
ZO algorithm. The proposed modifications, however, can be
applied to both IRIS [27] and IRIS-NP2 [21] as well.

A. Preliminaries

Let A ⊆ Rn be a convex set, and

distA(x) = min
z∈A
||x− z||2 (2)

be the distance of a point x ∈ Rn to A. We verify in
Appendix A that the function distA(x) is convex in x. Given
that a line segment L = conv{v1, v2}, with v1, v2 ∈ Rn, is a
convex set by construction, it follows that the sub-level sets

BL(t) = {x|distL(x) ≤ t} (3)

are convex [28, §3.1.6]. In Fig. 2, the level sets for five
different distances are indicated by the dashed lines. The
convexity of these sub-level sets implies that the tangent plane

a = ∇(distL)|c, b = aT c, (4a)

T = {x|aTx− b = 0}, (4b)

passing through any point c ∈ Rn, with distL(c) = t > 0,
is supporting to BL(t), and cannot intersect L. Note that the
gradient of the distance function to a line segment has a simple
closed-form solution. The gradient at c reads

∇(distL)|c =
c− cproj

||c− cproj||2
, (5)

where cproj is the projection of c onto L given by

cproj =

{
v1 if v1 = v2,

(1− α) v1 + αv2, otherwise.
(6)

1.

2. 3.

4.

5.
1.

2. 3.

4.

5.

Fig. 2: A single iteration of adding hyperplanes to the polytope in the EI-ZO algorithm. The configuration obstacles are shaded
in grey and the line segment seeding EI-ZO is shown in black. Starting from the left, first, a batch of configurations is sampled
in the current polytope given by the black rectangle. These samples are checked for collisions. The colliding configurations,
shown in red, are then used to seed a bisection search to find collisions that minimize the distance to the line segment. The
resulting candidates, indicated by the red stars (center frame), are ranked by their distance to the line segment in ascending
order, and used to position the tangent planes (final frame) that separate the collisions from the line segment.

with
α = min

(
max

(
(c−v1)

T (v2−v1)
||(v2−v1)||22

, 0
)
, 1
)
. (7)

Next, consider the following procedure, which we formalize
in §IV-B. Given a collision-free line segment L ⊆ Cfree,
repeatedly search for points c that are in collision, and
place a hyperplane through point c according to (4) for each
found collision. By construction, these hyperplanes separate
each collision c from L. Therefore, if we repeat this for all
collisions in C, then the polytope constructed by intersecting
the halfspaces of each hyperplane that contains L is collision-
free and, crucially, contains L.

Unfortunately, this procedure could potentially require
infinitely many hyperplanes and is therefore not practical in
the general case. In order to obtain a practical algorithm, we
construct our polytope P by iteratively placing hyperplanes
until P is sufficiently collision-free and meets the criterion
(1). First, we optimistically assume a large polytope P that
contains L is collision-free. We then proceed to search for
collisions inside of P . Every time we find a collision, we
place a separating hyperplane according to (4) that separates
the found collision from P , while still ensuring L ⊆ P . Note
that placing a separating plane at a collision with a small
distance to L can simultaneously also separate collisions at
larger distances from L. As a result, optimizing the hyperplane
locations by attempting to find the collisions in P that
minimize the distance to L tends to produce polytopes with
substantially fewer hyperplanes. Therefore, a core subroutine
in EI-ZO is optimizing hyperplane locations by finding good
(although suboptimal) solutions to

minimize
x

distL(x), (8a)

subject to x /∈ Cfree, x ∈ P, (8b)

in order to reduce the number of hyperplanes that are required
for P to meet a termination condition that ensures (1).

Finally, in order to separate L from obstacles with concave
boundary segments using a finite number of hyperplanes, we
use a small, finite step back ∆ > 0 from the found collisions
before placing the hyperplanes, similarly to [20].

In summary, this procedure constructs a large
probabilistically collision-free polytope that contains the
collision-free convex set (in this case a line segment) used
to seed the polytope construction. We accomplish this
by separating collisions from this seed set, by placing
hyperplanes tangent to the sub-level sets of the distance
function to the set. In the following section, we describe how
EI-ZO implements these ideas to inflate collision-free line
segments. It uses a zero-order optimization strategy on (8) to
search for close collisions and uses a probabilistic termination
condition (the ‘unadaptive test’ in [22, §5.1]) that checks if
(1) is met and the polytope is sufficiently collision-free.

B. The EI-ZO Algorithm

The Edge Inflation Zero-Order (EI-ZO) algorithm is
summarized in Alg. 1 and illustrated in Fig. 2.

Given a collision-free line segment in configuration space,
L = conv{v1, v2} ⊆ Cfree, an initial polytope describing
the domain D = {x|ADx ≤ bD}1, such that L ⊂ D, EI-
ZO computes a probabilistically collision-free polytope P that
contains L, and with probability larger than 1− δ, is colliding
with no more than an ε-fraction of its volume. The algorithm
closely follows IRIS-ZO [22], and proceeds as follows.

We initialize P with the domain D. We then repeat
the following until the termination criterion from the
unadaptive test is met. First, we uniformly sample a batch
of configurations S inside the current polytope P using hit-
and-run sampling [29]. The batch size |S| is selected as
|S| = max{Np,M}, where M = ⌈2 log(1/δk)/(ετ2)⌉ and Np

is the maximum number of samples to update. Here, ε is the
admissible fraction of the volume allowed to be in collision,
τ ∈ (0, 1) is a decision threshold 2, and δk is the admissible
uncertainty at the k-th iteration. The value of δk is decayed
according to

δk =
6δ

π2k2
. (9)

1Typically, a box describing the joint limits of the system is chosen.
2The parameter τ serves as a decision threshold, that trades off the power

and cost of the unadaptive test. We typically choose τ = 0.5.

Algorithm 1: EI-ZO
Input: Domain D ⊆ C, collision-free line segment L

with L ⊂ D, test parameters (δ, ε, τ),
maximum step back ∆max, and optimizer
parameters (Np, Nf , Nb).

Output: Polytope P ⊆ D satisfying (1) for (ε, δ)
with L ⊆ P .

Algorithm: k ← 1, P ← D
while TRUE do
S ∼ UNIFORMSAMPLE(P,M)
Scol ← POINTSINCOLLISION(S)
If UNADAPTIVETEST(|SMcol |, δk, ε, τ) returns
accept then break.
Sproj

col ← PROJECTPOINTS(Scol,L)
S⋆col ← UPDATEPOINTSVIABISECTION(Scol,Sproj

col)
P ←

ORDERANDPLACEHYPERPLANES(P,Sproj
col ,S⋆col,∆)

k ← k + 1
end
return P

More details of this statistical test are given in [21, §5.1].
Next, we check the configurations in S for collisions,

collecting the colliding configurations in the set Scol. We
terminate and accept P if |SMcol | ≤ M(1 − τ)ε, where |SMcol |
denotes the number of collisions in the first M samples in S.

If the test fails, we modify P by adding more hyperplanes
in an attempt to reduce the fraction in collision. To this end,
we produce candidate solutions to (8) by performing gradient
descent on distL, with the first Np samples in Scol as feasible
initial guesses, while ensuring that the candidates remain in
collision.

First, we compute the projection of each sample in Scol onto
L using the closed-form solution (6) in order to determine the
gradient direction given by (5). We then perform a bisection
search along the negative gradient direction, with a fixed
number of bisection steps, Nb, in order to find a point close
to the boundary of a configuration obstacle that is still in
collision. The resulting points S⋆col are our candidate local
solutions to (8). These steps correspond to the left and the
center frame in Fig. 2.

In a final step, we sort the candidates by their objective
value (8a), the distance to L, and place up to Nf hyperplanes.
This is done by iteratively intersecting the halfspace

ai = ∇(distL)|ci , bi = aTi ci, (10a)

Hi = {x|aTi x ≤ bi −∆}, (10b)

with P , where ci ∈ S⋆col is the closest remaining candidate,
and discarding any other candidates that now lie outside of
the updated polytope. The step back ∆ ensures that nonconvex
obstacles can be excluded from the polytope with only a finite
number of hyperplanes and needs to be computed for every
hyperplane separately. How to compute δ is covered in §IV-C.
Fig. 2 illustrates placing the hyperplanes in the rightmost

frame. In this frame, the collision with the largest distance is
walled off by the collision that is third-closest, and therefore
no separating plane needs to be constructed for this collision.

This entire procedure of sampling inside of the current
polytope, evaluating the statistical test, determining the
gradient directions, updating candidates through bisection
search, and placing non-redundant hyperplanes is repeated
until the statistical test is passed.

C. Practical Algorithmic Considerations

In this section, we discuss three practical considerations:
setting a maximum number of iterations Nit, computing the
step back ∆, choosing the number of bisection steps Nb.

Maximum Iterations If one is concerned with generating
regions quickly, it can be helpful to set a maximum number
of iterations of adding hyperplanes to P to upper-bound the
run time. This will void the probabilistic guarantee, but can
still be useful in combination with mechanisms for recovering
from collisions, as described in §VI-B.

Computing the Step Back While there are methods that
can certify PWL paths or trajectories to be collision-free, e.g.
[30–33], we check trajectories and paths for collisions by
finely discretizing them because it is more amenable to our
GPU-accelerated collision checker. In practice, this means that
the line segments of the PWL path may be very close to or
in collision. We handle these cases as follows.

If a candidate ci ∈ S⋆col has a distance that is smaller than a
user-specified collision tolerance tcol (i.e. if distL(ci) ≤ tcol),
then we throw an error stating that the line segment is likely in
collision and do not attempt to construct the region. In order
to ‘fail fast’ it can also make sense to check the projection for
collisions at the start of the bisection search.

If a candidate ci ∈ S⋆col has a distance larger than the
collision tolerance tcol but smaller than the maximum step back
∆max, then applying the maximum step back to the hyperplane
may exclude a part of L. In this case, we relax the step back so
L remains contained in the updated polytope. More precisely,
first we find the vertex that is closest or the strongest violator
to the new hyperplane and compute the corresponding value
r as

r = max
{
aTi v1, a

T
i v2

}
− bi +∆max, (11)

where ai and bi are computed using (10). If r > 0, then
the step back ∆max excludes at least one of the vertices that
span the line segment. Therefore, we compute the step back
as follows

∆ =

{
∆max − r, if r > 0,

∆max, otherwise.
(12)

This forces the inclusion of L in P at the potential cost of
requiring more hyperplanes to meet the termination criterion.

Choosing the Number of Bisection Steps We use a
fixed number of bisection steps Nb in order to simplify the
parallelization of the algorithm. In order to choose Nb, we

suggest using the following rule of thumb:

Nb ≈ log2

(
L

∆max

)
, (13)

where L is a guess for the maximum distance the bisection
search would have to move a collision in order to get to a
boundary of an obstacle. Note that choosing a small Nb does
not impact the correctness of the regions. Instead, it might
simply increase the runtime because more rounds of adding
hyperplanes are necessary.

D. CUDA Implementation of EI-ZO

Accompanying this paper, we provide a Python
library that implements EI-ZO using C++ and CUDA
[34]. The software CSDecomp, short for configuration
space decomposition toolbox, can be found at
https://github.com/wernerpe/csdecomp.

We implement EI-ZO directly on the GPU to minimize
costly data transfer between the CPU and the GPU. To this
end, we employ thread-level parallelization to implement hit-
and-run sampling [29], by assigning one CUDA thread per
random walk where each walk accepts after a fixed number
of mixing steps, forward kinematics by assigning one CUDA
thread per configuration, collision checking by assigning
one CUDA thread per collision pair, and the projection
as well as the bisection updates by assigning one CUDA
thread per configuration. To sort and place the non-redundant
hyperplanes, we use a single CUDA thread.

As a result, at run time, we only need to send the seed line
segment to the GPU and transfer the final polytope back from
the GPU. Crucially, the samples never leave the GPU memory.

Currently, our collision-checker supports box and sphere
collision geometries, but could readily be extended to support
more geometries.

V. GENERATING COLLISION-FREE POLYGONAL PATHS
USING DYNAMIC ROADMAPS

Our motion planning pipeline requires finding at least one
collision-free PWL path in order to construct a sequence of
convex sets that connects the starting configuration to the goal
via EI-ZO. To this end, we employ dynamic roadmaps (DRMs)
which are designed to rapidly find these paths in changing
environments.

DRMs [35] approximate Cfree with a probabilistic roadmap
(PRM) [36], discretize the robot workspace into voxels, and
build large lookup tables that map activated voxels to nodes
and edges of the PRM that are in collision. For reference, see
Fig. 3. The key idea is that approximating the current perceived
environment by activating voxels, and subsequently pruning
the PRM with lookup tables, is faster and leads to better
motion plans than running a single-query motion planner [37].
Hence, DRMs enable us to offload much of the computational
burden of motion planning (e.g. collision checks) to the offline
construction of the roadmap, and thus enable fast planning in
changing environments.

Fig. 3: A DRM is a PRM with additional lookup tables
that allow the PRM to rapidly be updated provided task
space observations of obstacles. To this end, the task space is
discretized into voxels. We associate a circumscribing sphere
with each voxel as collision geometry for collision checking.
A portion of these spheres are shown in purple in the right
figure. Next, a lookup table is constructed, Mc, that maps
each of these spheres to nodes in the road map that would
collide with the sphere. Above, a single sphere is shown in
yellow on the right, along with three configurations, shown
in red, green, and blue, that collide with it and are stored
in Mc. On the left, a cartoon of the configuration space is
shown with the underlying PRM and configuration obstacles.
The three colliding configurations are highlighted again in red,
blue, and green. The configuration obstacle corresponding to
the yellow sphere is highlighted in yellow.

We closely follow the implementation in [38], which
shows that GPU-accelerated collision checking both enables
the construction of large-scale DRMs and effective online
planning for a mobile bimanual manipulator. Similarly, we
skip constructing the edge collision map, and use lazy collision
checking online to invalidate colliding edges [39, 40].

A. Offline Roadmap Construction

Before any online planning, we construct our DRMs offline
using a similar procedure [38]. Our DRMs consist of 4 data
structures:

• A node mapMn : I → C that maps a node identification
number (node id) i ∈ I to its configuration,

• a node adjacency map Ma : I → P(I), where P
denotes the power set of I, which maps a node id to
all its neighbors,

• a collision map Mc : J → P(I) that maps a voxel
identification number (voxel id) j ∈ J to all node ids
that are in collision if the voxel j is active,

• a pose map Mp : I → SE(3) that maps each node id to
its corresponding end-effector pose.

Fig. 3 depicts a high-level visual description of the roadmap
and collision map. We do not detail the construction procedure
here, but the interested reader can refer to Appendix B.

B. Online Planning given Perception

Once we have our DRM formed by these four data
structures, we can use it to rapidly find collision-free PWL

paths online given perception. Online, we assume we are
given a voxel map representation of the world, a starting
configuration and a goal pose Pg ∈ SE(3). The planning then
proceeds in three phases.

1) Build the collision set CS ∈ P(I) that contains the
ids of all nodes that are colliding with the voxel map.
Given a point cloud, this is done by activating all voxels
containing points and subsequently using the collision
map Mc to find all nodes in collision.

2) Determine a goal configuration g given our goal pose
Pg by solving an inverse kinematics (IK) problem. We
use the pose map Mp and the collision set to find
collision-free configurations that lie near Pg. The closest
configurations are used to warmstart a small IK problem
to reach the final goal pose.

3) Connect the start s and goal g configurations up to the
roadmap, and use A∗ [41] combined with lazy collision
checking and greedy short cutting to find the collision-
free PWL path.

The right side of Figure 3 depicts the collision map being
used to quickly prune out nodes in collision, and the left side
of Figure 3 shows the resulting collision-free roadmap that
can be efficiently used for path planning. We compute the
obstacle representations for collision checking by voxelizing
a point cloud observation of the environment and representing
the collision geometries of the voxels as spheres.

VI. THE MOTION PLANNING PIPELINE

Our motion planning pipeline takes a goal end-effector
pose, the current configuration, and a voxel map of the
perceived obstacles as input, and produces a collision-free
trajectory as output. First, the DRM is leveraged to find a target
configuration by solving an IK problem, and subsequently to
find a collision-free PWL path. The details on how this is
done are covered in §V. Next, the path is inflated using EI-ZO
(§VI-A). In a last step, we optimize our motion plan by using
DBMPs and check the result for collisions using fine-grained
sampling along the trajectory. If collisions are present, we use
the found collisions to refine the convex sets and re-solve the
DBMP trajectory optimization until no collisions are found
in the path (§VI-B). We illustrate the entire motion planning
pipeline in Fig. 4.

Finally, we propose an approach for inflating multiple paths
(§VI-C). Certain DBMPs are not restricted to sequences of
convex sets and can handle more general covers of Cfree,
e.g. [10, 11, 16–18]. Therefore, it can be beneficial to inflate
multiple PWL paths in the hope that the safe sets intersect
in ways that reveal new paths around obstacles that are not
captured by the DRM.

A. Inflating a Single Path

Given a collision-free PWL path with K segments, v0≤k≤K

such that Lk := conv{vk, vk+1} ⊆ Cfree for k = 0, . . . ,K −
1, where v0 is the start and vK is the goal configuration, we
inflate the path in sequence. Starting at the first line segment

with k = 0, we construct the probabilistically collision-
free polytope Pk, which is guaranteed to contain Lk, and
subsequently check if Lk+1 is already contained in one of the
previously generated polytopes. We only inflate Lk+1 if it is
not yet contained and increment k. This is repeated iteratively
until k = K − 1.

B. Rapidly Recovering from Detected Collisions

The computed regions are only probabilistically collision-
free. This means at planning time, it is possible that the
optimized trajectory contains collisions. Given that the PWL
path used to generate the polytopes is assumed collision-free,
we have a natural way of iteratively refining the sets until
the trajectory is collision-free. Given a trajectory, we rapidly
check it for collisions by finely discretizing it. If collisions
are found, we treat them as candidate points to warm start
our search in (8) to modify the corresponding sets. We then
re-solve the trajectory optimization and repeat the procedure
until the trajectory is collision-free.

In detail, the procedure is the following. For each set, we
aggregate all the found collisions inside of the set in Scol. Next,
we repeat the last three steps of Alg. 1 in order to exclude these
collisions by updating the set. After the found collisions have
been excluded, we still need to verify that the new regions still
include the entire PWL path. While the line segments that seed
the sets remain in the sets by construction, our path inflation
approach in §VI-A may have attempted to cover additional line
segments with a single set for efficiency. There is no guarantee
that these other line segments remain contained in the edited
set as well. Therefore, we check that each segment of the
path, L0:K−1, is contained in at least one of the convex sets.
If not, we inflate the corresponding segment. This procedure
is summarized by the flowchart in Fig. 5 and is repeated until
the found path is collision-free.

C. Inflating Multiple Paths

Some DBMPs can handle graphs of safe sets rather than
just sequences [10, 11, 16–18]. If we inflate more than just
the sequence of safe sets associated with the shortest path in
the DRM, these approaches can potentially recover higher-
quality trajectories. In particular, the convex sets associated
with a longer, suboptimal path in the DRM could yield a better
optimized trajectory. In an attempt to capture these benefits, we
propose a method to inflate additional distinct paths through
the DRM, besides the shortest, in order to add more safe sets.

Our heuristic for adding additional paths assumes there
exists at least one safe set from a previous path that contains
neither the start nor the goal. The heuristic is to select a
random convex set that has not yet been selected, add all
nodes of the DRM that lie inside of the selected polytope
to the collision set CS (see §V-B), rerun A∗ on the DRM,
and inflate the resulting path according to §VI-A. If at any
point the procedure fails, we simply terminate.

The idea behind this heuristic is to use the previously
created sets to push the PWL path outside of the currently
inflated one.

Offline Online

Fig. 4: This figure depicts our motion planning pipeline. Our motion planning pipeline is split into an offline phase in which
a DRM is constructed, and an online phase where we use the DRM to generate a collision-free PWL paath, inflate the path,
and use a DBMP to optimize a trajectory. Starting from the left, in the first figure the DRM is constructed. In the second, we
observe a new obstacle (red blob), and build the collision set (red dot). Using the updated DRM, we then solve the IK problem
for the goal (yellow star), and find a collision-free path connecting the start (blue dot) to the goal. We inflate this path to an
SCS using EI-ZO in the third figure. In the fourth figure, we solve the motion planning problem using DBMPs and check the
trajectory for collisions, finding one inside of the green set, indicated by the red arrow. In the fifth figure, we use the recovery
mechanism from §VI-B to modify the green set and produce a collision-free path. In general, these last two steps need to be
repeated multiple times.

trajectory
optimization

collision-
free?

update
sets

L0:K−1

contained?
inflate

missing
edges

no no

yes

yes

done

Fig. 5: Flowchart for recovering from collisions found in the
optimized trajectory.

VII. EXPERIMENTAL EVALUATION

In this section, we evaluate our proposed motion planning
pipeline experimentally. This section is split into two parts.
In the first part, §VII-A we discuss our simulation benchmark
along with the baseline approach we compare against. In the
second part, §VII-B, we validate our approach on our hardware
setup.

A. Simulation Benchmark

This section covers the simulation benchmark, which
consists of two environments used to generate randomized
motion planning problems in two and seven dimensions.
For each environment, we solve two types of problems:
(1) minimum distance problems, where we seek to find
the shortest collision-free PWL path, and (2) minimum
time problems, in which we seek a smooth, velocity- and
acceleration-constrained curve that minimizes the time needed
to traverse between the start and goal.

1) Environments: Our benchmark environments are
depicted in Fig. 6. In the “Forest” environment, 15 circular
obstacles are scattered randomly in the center portion of a
square-shaped domain with a side length of 10. The center
portion corresponds to a square with a side length of 7, and
the obstacles have a radius of 0.35. In this environment,
shown on the left in Fig. 6, the goal is to find a collision-free
path from the bottom left to the top right of the environment.

Fig. 6: Our simulation benchmark consists of the Forest
environment, shown on the left, and the Franka environment,
shown on the right. A collision-free motion plan starting at
the red shaded robot and ending at the blue is shown in the
Franka environment.

In the “Franka” environment, 20 spherical obstacles are
randomly scattered in front of a seven degree-of-freedom
Franka Research 3 (FR3) robot manipulator. The collision
geometry of the FR3 is approximated with 33 spheres, and
the table is modeled as a box. As a result, 1187 collision pairs
need to be checked, of which 527 are associated with self-
collisions. In this environment, the robot always starts at a
random configuration on the right side of the table and needs
to plan to a random pose on the left side of the table. The
Franka environment is shown on the right in Fig. 6.

2) Problem Types: For each environment, we consider
two problem types: minimum distance and minimum time
problems. For the minimum distance problem, we seek the
shortest collision-free PWL path p, with length L(p), that
connects the start s to the goal g configuration,

minimize
p

L(p), (14a)

subject to p ⊆ Cfree, (14b)
pinit = s, pterm = g, (14c)

where pinit denotes the start, and pterm the end of p.
For the minimum time problem, we seek a time-

parametrized curve p, that obeys velocity and acceleration
constraints, and connects the start s to the goal g in the shortest
amount of time T , while starting and stopping at a standstill.
The problem reads:

minimize
p,T

T, (15a)

subject to p ⊆ Cfree, (15b)
p(0) = s, p(T) = g, (15c)
ṗ(0) = 0, ṗ(T) = 0, (15d)
vmin ≤ ṗ(t) ≤ vmax ∀t ∈ [0, T], (15e)
amin ≤ p̈(t) ≤ amax ∀t ∈ [0, T], (15f)

where vmin, and vmax denote the minimum and maximum
velocity, and amin, and amax denote the minimum and
maximum acceleration.

3) Baseline Approach: We use nonlinear trajectory
optimization (NTO), which we warm start from the path found
by the DRM, as our baseline approach. To this end, we employ
the KinematicTrajectoryOptimization class in Drake [42, link]
to transcribe the NTO problems and solve them with SNOPT
or IPOPT [43, 44]. For both problem types, (14) and (15), we
discretize the trajectory and enforce the collision-avoidance
constraint point-wise via [42, link] at Nc points.

For the minimum distance problems, we warm-start the
search with the PWL path found by the DRM. For the
minimum time problems, we warm-start the search by setting
the control points of a 4th order B-Spline to the nodes of the
PWL path from the DRM.

4) Employed DBMPs: For the minimum distance problem,
given an SCS, the problem is convex and has a straightforward
transcription as a second-order cone program, see Appendix
C. We solve these problems directly using MOSEK [45]
and call the approach LSCS standing for PWL shortest path
through an SCS. In the second approach, we inflate two paths
using §VI-C, and solve the mixed-integer convex program
formulation of the Euclidean distance shortest path problem
on a graph of convex sets problem [46, Eqn. 5.5] using Gurobi
[47]. We abbreviate this approach as LGCS standing for PWL
shortest path through a graph of convex sets.

We choose these two approaches for the minimum distance
problem to evaluate the speed and reliability of the simple
LSCS approach, and explore the value that is added by
inflating multiple paths, by using the more expensive LGCS.

For the minimum time problem, we use the recently
developed SCSTrajopt [15], which supports the minimum time
objective and rapidly finds smooth, velocity-, and acceleration-
constrained trajectories using alternations between two convex
optimizations. We solve these problems with Clarabel [48],
and abbreviate this approach as SCSTO.

5) Results: The simulation experiments are run on an Intel
i9-10850K CPU and a NVIDIA GeForce RTX 3090 using the
560.28.03 graphics driver and CUDA 12.6.

We solve each motion planning problem for 10 random
seeds of the environment, 10 random seeds for the DRM
construction, and 4 different road map sizes, resulting in 400
planning problems for each trajectory optimization approach.
The DRM sizes for the Forest environment are 200, 400, 800,
and 1600, and for the Franka environment, the sizes are 3000,
6000, 9000, and 12000 nodes. We tuned NTO individually
for both environments and problem types. Please refer to
Appendix D for more specifics on the used parameters. The
benchmark results are summarized in Tab. I.

In our experiments, the SCS approaches provide a
substantial speedup and boost in the reliability over NTO. We
find that, provided DRM success, the SCS approaches never
failed, and computed solutions 18.5 times faster in the forest
and 15.7 times faster in the franka environment, on average.
Given DRM success, NTO produced a collision-free trajectory
in 71.5% of the instances in the Forest environment and 72.8%
of the instances in the Franka environment. We found tuning
NTO for the minimum time problem instances in the Forest
environment particularly challenging, only achieving a success
rate of 45.9%.

Provided NTO succeeded, it produced equivalent cost
trajectories on the Forest minimum distance. On the minimum
time instances, it improved on the cost by 7.7%, provided the
optimizer found a solution. For the Franka minimum distance
and minimum time instances, it reduced the cost to the SCS
approaches by 33.7%, and 28%, respectively.

Inflating two paths and solving the minimum distance
problem using LGCS only yielded marginal improvements in
the cost of the trajectory, while dramatically increasing the
computation time.

For the Forest environment, the recovery mechanism
described in §VI-B, was triggered in 5.6% of the minimum
distance and 0.46% minimum time problems. In the Franka
environment, it was triggered in 40.22% and 21.36% of the
minimum distance and minimum time instances, respectively.

In summary, our pipeline affords a slight increase in
trajectory cost, at the benefit of substantially increasing
reliability and reducing computation times.

B. Validation on Hardware

In this section, we validate our pipeline on our system
that consists of a KUKA LBR iiwa 7 R800 and three Intel
RealSense D415 depth cameras for perceiving changes to the
table-top environment shown in Fig. 1 and Fig. 7. For this
setup, we only inflate the shortest path in the DRM and use
SCSTrajopt [15] with Clarabel [48] to find good solutions to
(15). We constrain the velocity between -1 and 1 [rads] and
the acceleration between -1 and 1 [rads2] for all joints.

In our hardware experiments, we alternate between pose
targets on the right and the left of the table. Between
plans, we modify the environment, as shown in Fig. 7, by
placing or moving obstacles in the center of the table for
the robot manipulator to plan around. We approximate the
robot collision geometries with 11 boxes, resulting in 105
self-collision pairs. For our hardware experiments, we use an

https://drake.mit.edu/doxygen_cxx/classdrake_1_1planning_1_1trajectory__optimization_1_1_kinematic_trajectory_optimization.html
https://drake.mit.edu/doxygen_cxx/classdrake_1_1multibody_1_1_minimum_distance_lower_bound_constraint.html

Problem Minimum Distance Minimum Time
Environment Forest Franka Forest Franka
DRM SR 1.00 0.961 1.00 0.961
DRM num. LS 3.45±0.86 4.49±1.24 3.45±0.86 4.49±1.24
DRM path len. 10.90±0.40 [m] 8.55±2.28 [rad] 10.90±0.40 [m] 8.55±2.28 [rad]
TO Approach NTO LSCS LGCS NTO LSCS LGCS NTO SCSTO NTO SCSTO
cost (S only) 10.727±0.3 10.770±0.3 10.732±0.3 5.519±1.1 7.382±1.7 7.110±1.6 9.363±0.2 10.096±0.7 5.057±1.2 6.473±1.5
time total [ms] 357.8±2520.3 18.2±9.8 96.8±142.1 3084.6±2938.0 152.5±89.1 4441.6±10194 335.1±167.2 19.3±7.8 4147.8±2674.6 307.9±226.3
time TO [ms] 357.8±2520.3 13.9±5.7 91.3±138.6 3084.6±2938.0 17.4±14.4 4236.5±10135 335.1±167.2 15.9±6.1 4147.8±2674.6 189.1±170.7
time CS [ms] - 4.2±4.7 5.5±5.5 - 135.1±76.0 205.2±107.8 - 3.4±2.6 - 118.8±61.0
num. CS - 2.45±0.9 3.67±2.3 - 3.49±1.2 6.18±2.8 - 2.45±0.9 - 3.49±1.2
TO SR 0.993 1.000 1.000 0.863 1.000 0.993 0.459 1.000 0.735 1.000
CFR 0.970 1.000 1.000 0.725 1.000 0.993 0.459 1.000 0.732 1.000
CFR given TO S 0.977 1.000 1.000 0.840 1.000 1.000 1.000 1.000 0.995 1.000

abbreviation S SR CFR TO LS CS
expanded success success rate collision-free rate trajectory optimization line segments convex sets

TABLE I: Simulation results of solving the minimum distance and minimum time problems on both the Forest and Franka
environments. The table indicates the averages and empirical standard deviations of the statistics across the different road map
sizes, and random seeds for the environment and road map construction provided the DRM found a solution.

Fig. 7: In our hardware experiments, we alternate between planning to the right and the left side of the table. Between plans
we place, move and remove obstacles. Starting from the left, first we place the shoe rack and box, highlighted in green, then
we run our planner and move the robot to the right side of the table. Next, we slide the shoe rack closer to the robot and run
our planner again. The shoe rack forces the arm to move in a higher arc to reach the left side of the table.

Intel i9-7900X CPU, a Nvidia GeForce 2080Ti GPU using the
555.42.06 driver and CUDA 12.5.

We implement a simple perception pipeline that uses the
Python interface to the depth cameras and down-samples the
point clouds to voxels with a side length of 8 cm. We associate
a sphere collision geometry that circumscribes each voxel as
shown in the center frame of Fig. 1.

The timing and auxiliary statistics of 15 trajectories with
changing obstacle setups are summarized in Tab. II. For
additional details please refer to Appendix D and the video
accompanying this paper that demonstrates the setup.

We find that our entire pipeline ran in 0.82 seconds on
average, of which only around 0.12 seconds were spent on
constructing and editing the safe sets, and 0.08 seconds were
spent running SCSTrajOpt. The planner did not fail during our
experiments in this setup.

VIII. LIMITATIONS

We discuss four current limitations of our approach.

A. Local and Global Improvements with Nonlinear Solvers

DBMPs are restricted to searching for trajectories inside
of the union of the convex sets. If our method seeds the
set construction with a bad path, or our approach for finding
solutions to (8) results in small sets, it is possible that no high-
quality trajectories are covered; the result will potentially have
a high cost. For nonlinear trajectory optimization, on the other
hand, one can get lucky, and, starting from a bad initial guess,

Component Time [ms]

perception 369.7 ± 16.7
IK 130.1 ± 79.5
DRM 116.8 ± 34.8
convex sets 122.5 ± 43.1
SCSTO 82.8 ± 67.9
overhead 1.5 ± 0.6
total 823.4 ± 122.6

Auxiliary Stats. Value

num. line seg. 2.9 ± 0.6
num. safe sets 1.93 ± 0.57
col. checks / set 121018 ± 24262
hyperplanes / set 60.7 ± 14.4
voxels 359.6 ± 76.4
col. pairs 4431.2 ± 916.7
self-col. pairs 105

TABLE II: Statistics (the mean and standard deviation) for
the hardware experiments. For the 15 collected trajectories we
aggregate the timing information on the left, and auxiliary
information on the right. Between each of the trajectories, the
obstacle setup was modified similarly to Fig. 7.

the solver can escape to a better local minimum and still find
a good trajectory. We believe that this is reflected in the lower
trajectory costs in Tab. I when the solver succeeded. We hoped
to recover this behavior for the minimum distance problem
instances by inflating multiple paths, which indeed created
more intricately connected graphs of convex sets between the
individual SCS. Unfortunately, resulting improvements on path
length were only marginal, even when solving the trajectory
optimization to global optimality with the LGCS approach.

The low trajectory costs of NTO, although, demand scrutiny.
Depending on the use case, a system failure could have a
high cost (e.g. human intervention) which could make the
expected cost of NTO substantially worse than that of the
SCS approaches.

B. GPU Memory

Currently, the resolution of the voxel maps we can handle
is quite limited by the GPU memory. The layout of our
collision checker requires checking the robot for collisions
against each voxel for all configurations in parallel. Hence,
increasing the resolution of the voxel map increases the
memory requirements for the collision checker cubically.
We aim to mitigate this in the future by representing the
environment using a signed distance field [49–51].

C. Scaling to Higher Dimensions

Our experiments only investigate systems up to 7 degrees
of freedom. We have yet to investigate how our method
works in higher dimensions, e.g. in mobile or bimanual
systems. In particular, it remains to be seen up to what
dimension our approaches for constructing dynamic roadmaps
and configuration-space sets remain effective.

D. Inverse Kinematics

Our hardware experiments only featured simple inverse
kinematics problems. The obstacles were placed such that they
would not overlap with the target end effector pose. We found
our inverse kinematics approach to be a weak point of the
pipeline, and have not tested its limits in this paper. In the
future, we aim to improve this with an approach that is more
tailored to the individual robot we are running our pipeline
on, e.g. by using analytic inverse kinematics [52].

IX. CONCLUSION

We have proposed a massively parallelizeable algorithm,
EI-ZO, for inflating collision-free line segments to
probabilistically collision-free polytopes in robot configuration
space. We have demonstrated this algorithm in a pipeline
that enables motion planning in changing environments
with perception in the loop. The motion planning pipeline
leverages DRMs to rapidly find collision-free piecewise linear
paths, inflates the paths with EI-ZO, and leverages DBMPs
to optimize the final trajectory while eliminating collisions
from the sets with candidate trajectories where necessary.

Our pipeline generates the configuration-space convex sets
fast enough such that it enables using DBMPs in changing
configuration spaces for the first time. As a result, the user can
encode nontrivial costs, such as traversal time, and constraints,
such as velocity and acceleration bounds, and still profit from
the speed and reliability of these approaches.

Our experimental evaluation demonstrates that generating
sequences of convex sets and using corresponding trajectory
optimization approaches is not only fast but also reliable. On
our simulation benchmark, this approach did not fail provided
the DRM found a solution, which resulted in a 27.9% increase
in reliability and a 17.1 times speedup over the nonlinear
trajectory optimization baseline. Currently, this comes with the
trade-off that this baseline tends to produce trajectories with
a lower cost, provided the solver finds a solution.

In conclusion, our procedure is complementary to advances
in sampling-based motion planning and advances in DBMPs.

We hope to leverage the former to improve path generation,
e.g. via [5, 53, 54], and the latter to expand the toolbox of
supported costs and constraints for the user. In the future,
we seek to leverage these advances and deploy our pipeline
in practical pick-and-place and higher degree-of-freedom
applications such as mobile manipulation.

ACKNOWLEDGMENTS

We thank Tobia Marcucci for his insights and for providing
the code for SCSTrajopt. We further thank Rebecca H. Jiang,
Alexandre Amice, Nicholas Pfaff, Evelyn Fu, Thomas Cohn,
Hongkai Dai, Xuchen Han, and the Mobile Manipulation Team
at the Toyota Research Institute for many fruitful discussions,
help with the software development, and assistance with
the hardware experiments. We are grateful for the funding
provided by the Toyota Research Institute.

REFERENCES

[1] S. M. LaValle, Planning algorithms. Cambridge
university press, 2006.

[2] B. Siciliano and O. Khatib, “Robotics and the handbook,”
in Springer Handbook of Robotics. Springer, 2016, pp.
1–6.

[3] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open
Motion Planning Library,” IEEE Robotics & Automation
Magazine, vol. 19, no. 4, pp. 72–82, December 2012,
https://ompl.kavrakilab.org.

[4] J. Pan and D. Manocha, “Gpu-based parallel collision
detection for fast motion planning,” The International
Journal of Robotics Research, vol. 31, no. 2, pp. 187–
200, 2012.

[5] W. Thomason, Z. Kingston, and L. E. Kavraki,
“Motions in microseconds via vectorized sampling-based
planning,” in 2024 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2024, pp.
8749–8756.

[6] A. Orthey, C. Chamzas, and L. E. Kavraki, “Sampling-
based motion planning: A comparative review,” Annual
Review of Control, Robotics, and Autonomous Systems,
vol. 7, 2023.

[7] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and
S. Schaal, “Stomp: Stochastic trajectory optimization for
motion planning,” in 2011 IEEE international conference
on robotics and automation. IEEE, 2011, pp. 4569–
4574.

[8] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa,
“Chomp: Gradient optimization techniques for efficient
motion planning,” in 2009 IEEE international conference
on robotics and automation. IEEE, 2009, pp. 489–494.

[9] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal,
H. Bradlow, J. Pan, S. Patil, K. Goldberg, and P. Abbeel,
“Motion planning with sequential convex optimization
and convex collision checking,” The International
Journal of Robotics Research, vol. 33, no. 9, pp. 1251–
1270, 2014.

https://ompl.kavrakilab.org

[10] T. Marcucci, M. Petersen, D. von Wrangel, and
R. Tedrake, “Motion planning around obstacles with
convex optimization,” Science robotics, vol. 8, no. 84,
p. 7843, 2023.

[11] T. Marcucci, P. Nobel, R. Tedrake, and S. Boyd, “Fast
path planning through large collections of safe boxes,”
IEEE Transactions on Robotics, 2024.

[12] J. Chen, T. Liu, and S. Shen, “Online generation of
collision-free trajectories for quadrotor flight in unknown
cluttered environments,” in 2016 IEEE international
conference on robotics and automation (ICRA). IEEE,
2016, pp. 1476–1483.

[13] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya,
C. J. Taylor, and V. Kumar, “Planning dynamically
feasible trajectories for quadrotors using safe flight
corridors in 3-d complex environments,” IEEE Robotics
and Automation Letters, vol. 2, no. 3, pp. 1688–1695,
2017.

[14] Y. Wu, I. Spasojevic, P. Chaudhari, and V. Kumar,
“Optimal convex cover as collision-free space
approximation for trajectory generation,” arXiv preprint
arXiv:2406.09631, 2024.

[15] T. Marcucci, M. Halm, W. Yang, D. Lee, and A. D.
Marchese, “A biconvex method for minimum-time
motion planning through sequences of convex sets,”
Accepted for publication in Robotics: Science and
Systems Foundation, 2025.

[16] R. Natarajan, C. Liu, H. Choset, and M. Likhachev,
“Implicit graph search for planning on graphs of convex
sets,” arXiv preprint arXiv:2410.08909, 2024.

[17] S. Y. C. Chia, R. H. Jiang, B. P. Graesdal, L. P.
Kaelbling, and R. Tedrake, “Gcs*: Forward heuristic
search on implicit graphs of convex sets,” arXiv preprint
arXiv:2407.08848, 2024.

[18] R. Deits and R. Tedrake, “Efficient mixed-integer
planning for uavs in cluttered environments,” in
2015 IEEE international conference on robotics and
automation (ICRA). IEEE, 2015, pp. 42–49.

[19] H. Dai, A. Amice, P. Werner, A. Zhang, and R. Tedrake,
“Certified polyhedral decompositions of collision-free
configuration space,” The International Journal of
Robotics Research, vol. 43, no. 9, pp. 1322–1341, 2024.

[20] M. Petersen and R. Tedrake, “Growing convex collision-
free regions in configuration space using nonlinear
programming,” arXiv preprint arXiv:2303.14737, 2023.

[21] P. Werner, T. Cohn, R. H. Jiang, T. Seyde,
M. Simchowitz, R. Tedrake, and D. Rus, “Faster
algorithms for growing collision-free convex polytopes
in robot configuration space,” arXiv preprint
arXiv:2410.12649, 2024.

[22] P. Werner, A. Amice, T. Marcucci, D. Rus, and
R. Tedrake, “Approximating robot configuration spaces
with few convex sets using clique covers of visibility
graphs,” in 2024 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2024, pp.
10 359–10 365.

[23] ROS.org, “Urdf - unified robot description format,”
2024, accessed: 2024-06-09. [Online]. Available: http:
//wiki.ros.org/urdf

[24] O. S. R. Foundation, “Sdf specification,” 2024, accessed:
2024-06-09. [Online]. Available: http://sdformat.org

[25] A. Sarmientoy, R. Murrieta-Cidz, and S. Hutchinsony, “A
sample-based convex cover for rapidly finding an object
in a 3-d environment,” in Proceedings of the 2005 IEEE
International Conference on Robotics and Automation.
IEEE, 2005, pp. 3486–3491.

[26] Q. Wang, Z. Wang, M. Wang, J. Ji, Z. Han, T. Wu, R. Jin,
Y. Gao, C. Xu, and F. Gao, “Fast iterative region inflation
for computing large 2-d/3-d convex regions of obstacle-
free space,” arXiv preprint arXiv:2403.02977, 2024.

[27] R. Deits and R. Tedrake, “Computing large convex
regions of obstacle-free space through semidefinite
programming,” in Algorithmic Foundations of Robotics
XI: Selected Contributions of the Eleventh International
Workshop on the Algorithmic Foundations of Robotics.
Springer, 2015, pp. 109–124.

[28] S. Boyd and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

[29] L. Lovász, “Hit-and-run mixes fast,” Mathematical
programming, vol. 86, 1999.

[30] A. Amice, P. Werner, and R. Tedrake, “Certifying
bimanual rrt motion plans in a second,” in 2024 IEEE
International Conference on Robotics and Automation
(ICRA). IEEE, 2024, pp. 9293–9299.

[31] M. Tang, Y. J. Kim, and D. Manocha, “Ccq: Efficient
local planning using connection collision query,” in
Algorithmic Foundations of Robotics IX: Selected
Contributions of the Ninth International Workshop on the
Algorithmic Foundations of Robotics. Springer, 2011,
pp. 229–247.

[32] F. Schwarzer, M. Saha, and J.-C. Latombe, “Exact
collision checking of robot paths,” Algorithmic
foundations of robotics V, pp. 25–41, 2004.

[33] J. Pan, L. Zhang, and D. Manocha, “Collision-free
and curvature-continuous path smoothing in cluttered
environments,” 2012.

[34] NVIDIA Corporation, NVIDIA CUDA Toolkit
Documentation, NVIDIA Corporation, 2024. [Online].
Available: https://docs.nvidia.com/cuda/

[35] P. Leven and S. Hutchinson, “A framework for real-
time path planning in changing environments,” The
International Journal of Robotics Research, vol. 21,
no. 12, pp. 999–1030, 2002.

[36] L. E. Kavraki, P. Svestka, J.-C. Latombe, and
M. H. Overmars, “Probabilistic roadmaps for path
planning in high-dimensional configuration spaces,”
IEEE transactions on Robotics and Automation, vol. 12,
no. 4, pp. 566–580, 1996.

[37] M. Kallman and M. Mataric, “Motion planning using
dynamic roadmaps,” in IEEE International Conference
on Robotics and Automation, 2004. Proceedings.
ICRA’04. 2004, vol. 5. IEEE, 2004, pp. 4399–4404.

http://wiki.ros.org/urdf
http://wiki.ros.org/urdf
http://sdformat.org
https://docs.nvidia.com/cuda/

[38] R. Cheng, J. Petersen, J. Borders, D. Helmick, L. Kaul,
D. Kruse, J. Leichty, C. Matl, C. Papazov, K. Shankar
et al., “Motion planning to cartesian targets leveraging
large-scale dynamic roadmaps,” in 2023 IEEE 19th
International Conference on Automation Science and
Engineering (CASE). IEEE, 2023, pp. 1–7.

[39] H. Liu, X. Deng, H. Zha, and D. Ding, “A path
planner in changing environments by using wc nodes
mapping coupled with lazy edges evaluation,” in 2006
IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE, 2006, pp. 4078–4083.

[40] R. Bohlin and L. E. Kavraki, “Path planning using
lazy prm,” in Proceedings 2000 ICRA. Millennium
conference. IEEE international conference on robotics
and automation. Symposia proceedings (Cat. No.
00CH37065), vol. 1. IEEE, 2000, pp. 521–528.

[41] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis
for the heuristic determination of minimum cost paths,”
IEEE transactions on Systems Science and Cybernetics,
vol. 4, no. 2, pp. 100–107, 1968.

[42] R. Tedrake and the Drake Development Team, “Drake:
Model-based design and verification for robotics,” 2019.
[Online]. Available: https://drake.mit.edu

[43] P. E. Gill, W. Murray, and M. A. Saunders, “Snopt: An
sqp algorithm for large-scale constrained optimization,”
SIAM review, vol. 47, no. 1, pp. 99–131, 2005.

[44] A. Wächter and L. T. Biegler, “On the implementation
of an interior-point filter line-search algorithm for
large-scale nonlinear programming,” Mathematical
programming, vol. 106, pp. 25–57, 2006.

[45] M. ApS, “MOSEK Optimization Suite,” 2019.
[46] T. Marcucci, J. Umenberger, P. Parrilo, and R. Tedrake,

“Shortest paths in graphs of convex sets,” SIAM Journal
on Optimization, vol. 34, no. 1, pp. 507–532, 2024.

[47] Gurobi Optimization, LLC, “Gurobi Optimizer
Reference Manual,” 2024. [Online]. Available:
https://www.gurobi.com

[48] P. J. Goulart and Y. Chen, “Clarabel: An interior-point
solver for conic programs with quadratic objectives,”
arXiv preprint arXiv:2405.12762, 2024.

[49] T.-T. Cao, K. Tang, A. Mohamed, and T.-S. Tan,
“Parallel banding algorithm to compute exact distance
transform with the gpu,” in Proceedings of the 2010 ACM
SIGGRAPH symposium on Interactive 3D Graphics and
Games, 2010, pp. 83–90.

[50] Y. Chen, S. Lai, J. Cui, B. Wang, and B. M. Chen, “Gpu-
accelerated incremental euclidean distance transform for
online motion planning of mobile robots,” IEEE Robotics
and Automation Letters, vol. 7, no. 3, pp. 6894–6901,
2022.

[51] A. Millane, H. Oleynikova, E. Wirbel, R. Steiner,
V. Ramasamy, D. Tingdahl, and R. Siegwart, “nvblox:
Gpu-accelerated incremental signed distance field
mapping,” 2024.

[52] C. Faria, F. Ferreira, W. Erlhagen, S. Monteiro, and
E. Bicho, “Position-based kinematics for 7-dof serial

manipulators with global configuration control, joint limit
and singularity avoidance,” Mechanism and Machine
Theory, vol. 121, pp. 317–334, 2018.

[53] T. S. Wilson, W. Thomason, Z. Kingston, L. E.
Kavraki, and J. D. Gammell, “Nearest-neighbourless
asymptotically optimal motion planning with fully
connected informed trees (fcit*),” arXiv preprint
arXiv:2411.17902, 2024.

[54] C. W. Ramsey, Z. Kingston, W. Thomason, and L. E.
Kavraki, “Collision-affording point trees: Simd-amenable
nearest neighbors for fast collision checking,” arXiv
preprint arXiv:2406.02807, 2024.

APPENDIX

A. Distance Function Convexity

Proof : Let C ⊆ Rn be a convex set, λ ∈ [0, 1], and
let x1, x2 ∈ Rn. Then, we directly confirm that Jensen’s
inequality holds.

λdistC(x1) + (1− λ)distC(x2)

= λ||x1 − z1||+ (1− λ)||x2 − z2||
(16)

where z1, z2 ∈ C are any minimizers of the respective
distances to x1 and x2. Observe that

λ||x1 − z1||+ (1− λ)||x2 − z2||
≥ ||λx1 + (1− λ)x2 − (λz1 + (1− λ)z2)||,

(17)

by the triangle inequality, and due to the convexity of C, we
have (λz1 + (1− λ)z2) ∈ C. Hence, it holds

||λx1 + (1− λ)x2 − (λz1 + (1− λ)z2)||
≥ distC(λx1 + (1− λ)x2),

(18)

showing that Jensen’s inequality is satisfied.

B. DRM Construction

Our offline construction of the DRM closely follows [38].
First, we sample a batch of configurations uniformly in the
collision-free configuration space of our system to build up
our node map Mn. Next, we construct our node adjacency
map Ma from the sampled nodes. We limit the number of
neighbors for each node to k, and only add edges between
two configurations if both their L2 distance in configuration
space is smaller than dCS and the distance in task space of
a selected frame is less than dTS. Then we ensure that the
adjacency matrix is symmetric by adding missing edges.

To build the collision mapMc, we discretize the task space
of the robot into voxels. We use a sphere with radius

√
3
2 s,

where s is the side length of a voxel, that circumscibes each
voxel for collision checking. For each voxel, we then check for
collision with each node of the roadmap, and store the ids of
all the nodes in the roadmap that this voxel is in collision with.
The resultant mapping between voxels to nodes in collision
then serves as our collision map, and this allows for fast look-
up of collisions during online planning.

https://drake.mit.edu
https://www.mosek.com/documentation/
https://www.gurobi.com

C. Polygonal Shortest Paths through Sequences of Convex Sets

Given a sequence of convex sets P1:M such that successive
sets intersect, Pi ∩ Pi+1 ̸= ∅, then the LSCS second-order
cone program is

minimize
v0≤i≤M+1

M∑
i=1

||vi − vi+1||2, (19a)

subject to v1 = s, (19b)
vM+1 = g, (19c)
vi = vi+1 for i = 1, . . . ,M, (19d)
vi ∈ Pi, for i = 1, . . . ,M, (19e)
vi ∈ Pi−1, for i = 2, . . . ,M, (19f)

where vi are the knot points of the polygonal path.

D. Supplementary Information on Experimental Evaluation

In this section, we collect additional statistics and parameter
values that we used in our experiments. This section is split
into two parts. First, we cover the simulation experiments, and
then the hardware experiments.
Simulation The simulation experiments are run on a PC
running Ubuntu 22.04 with an Intel i9-10850K CPU and an
NVIDIA GeForce RTX 3090 using the 560.28.03 graphics
driver and CUDA 12.6.

With this setup, our collision checker has a throughput of
around 19.9 million configurations per second in the Forest
environment and 8.6 million configurations per second in the
Franka environment when using a batch size of two million
configurations.

We found the greatest success solving all NTO instances in
the Forest environment using SNOPT. We employ Nc = 20
and Nc = 100 for the minimum distance and minimum
time problems, respectively. In the Franka environment, we
found the greatest success solving the minimum distance
problems with SNOPT and the minimum time instances with
IPOPT. In both cases Nc = 150 yielded a good trade-
off between computation time and the resulting trajectories
being collision-free when the solver reported success. The
parameters employed in the DRM construction for both the
Forest and the Franka environments are summarized in Tab. V.
The employed EI-ZO parameters are summarized in Tab. III
for the Forest environment, and in Tab. IV for the Franka
environment. With these settings, EI-ZO would typically pass
the unadaptive test in less than 10 iterations. For the lazy
collision checking, we used a step size of 0.1 [m] or 0.1 [rad]
in both environments, respectively.
Hardware For our hardware experiments, we use an Intel
i9-7900X CPU, a Nvidia GeForce 2080Ti GPU using the
555.42.06 driver and CUDA 12.5. With this setup, our collision
checker has a throughput of around 6.9 million configurations
per second when using a batch size of 2 million. To generate
the PWL paths, we employed a DRM with 35000 nodes. We
used the same EI-ZO parameters as in Tab. IV, except for Nf ,
which was increased to 20. In those experiments, the recovery
mechanism from §VI-B was never triggered. See Tab. VI for

Parameter Symbol Value
admissible uncertainty δ 0.05
admissible fraction in collisions ε 0.01
number of samples to update Np 1000
max number of faces per iteration Nf 10
number of mixing steps for sampling Nms 30
step back ∆max 0.01

TABLE III: Employed parameters in the Forest environment
for EI-ZO.

Parameter Symbol Value
admissible uncertainty δ 0.005
admissible fraction in collision ε 0.005
number of samples to update Np 10000
max number of faces per iteration Nf 10
number of mixing steps for sampling Nms 60
step back ∆max 0.01

TABLE IV: Employed parameters in the Franka environment
for EI-ZO.

the employed parameters during the DRM construction. For
the lazy collision checking, we used a step size of 0.1 [rad].

Parameter Symbol Value
max. task space distance dTS 10 [m]
max. configuration space distance dCS 10 [m]
max. neighbors k 10
offline voxel length s 0.06 [m]

TABLE V: Employed parameters in the Franka and Forest
environments for constructing the DRMs.

Parameter Symbol Value
max. task space distance dTS 0.45 [m]
max. configuration space distance dCS 4.5 [rad]
max. neighbors k 10
offline voxel length s 0.06 [m]

TABLE VI: Employed DRM construction parameters for the
hardware expermients.

	Introduction
	Assumptions
	Background
	Constructing Safe Sets in Robot Configuration Space
	Positioning Safe Sets for Effective Motion Planning

	Rapidly Inflating Line Segments
	Preliminaries
	The EI-ZO Algorithm
	Practical Algorithmic Considerations
	CUDA Implementation of EI-ZO

	Generating Collision-Free Polygonal Paths using Dynamic Roadmaps
	Offline Roadmap Construction
	Online Planning given Perception

	The Motion Planning Pipeline
	Inflating a Single Path
	Rapidly Recovering from Detected Collisions
	Inflating Multiple Paths

	Experimental Evaluation
	Simulation Benchmark
	Environments
	Problem Types
	Baseline Approach
	Employed DBMPs
	Results

	Validation on Hardware

	Limitations
	Local and Global Improvements with Nonlinear Solvers
	GPU Memory
	Scaling to Higher Dimensions
	Inverse Kinematics

	Conclusion
	Appendix
	Distance Function Convexity
	DRM Construction
	Polygonal Shortest Paths through Sequences of Convex Sets
	Supplementary Information on Experimental Evaluation

