LQR-Trees: Feedback Motion Planning on Sparse Randomized Trees

Russ Tedrake

Associate Professor MIT Computer Science and Artificial Intelligence Lab

RSS, Seattle June 29, 2009

Russ Tedrake, MIT CSAIL

LQR-Trees

A Motivating Example: The Compass Gait

- Torque only at the hip.
- No foot scuffing.
- Impulsive, Inelastic Collisions
- Instantaneous transfer of support

[CLICK IMAGE TO PLAY MOVIE]

イロン イヨン イヨン イヨン

Russ Tedrake, MIT CSAIL

LQR-Trees

Compass Gait: The nominal (passive) limit cycle

Russ Tedrake, MIT CSAIL LQR-Trees

Compass Gait: The nominal (passive) limit cycle

Goswami, 1996 ◆□ → ◆♂ → ★≧ → ★≧ → ◆ ≥ → へ <>>

Russ Tedrake, MIT CSAIL LQR

LQR-Trees

• A good model for control experiments:

• A good model for control experiments:

- Captures challenge of hybrid limit cycle stability
- Avoids unnecessary complexity
- We don't yet have satisfying control solutions

• A good model for control experiments:

- Captures challenge of hybrid limit cycle stability
- Avoids unnecessary complexity
- We don't yet have satisfying control solutions
- Good previous work on stabilizing the nominal limit cycle:
 - Local linear or nonlinear feedback increases basin (Westervelt, Shiriaev, Ruina, Goswami,..)

• "Global" methods like dynamic progamming suffer from discretization, and don't scale (Byl,Morimoto,...).

• A good model for control experiments:

- Captures challenge of hybrid limit cycle stability
- Avoids unnecessary complexity
- We don't yet have satisfying control solutions
- Good previous work on stabilizing the nominal limit cycle:
 - Local linear or nonlinear feedback increases basin (Westervelt, Shiriaev, Ruina, Goswami,..)

(ロ) (同) (E) (E) (E) (O)(O)

• "Global" methods like dynamic progamming suffer from discretization, and don't scale (Byl,Morimoto,...).

but I want more...

• Goal: Systematically design a feedback controller such that every point in a (bounded subset of) state space that *can* be driven to the goal *will* be driven to the goal.

- Goal: Systematically design a feedback controller such that every point in a (bounded subset of) state space that *can* be driven to the goal *will* be driven to the goal.
 - Non-trivial because of actuator limits and nonlinear dynamic (underactuation) constraints

- Goal: Systematically design a feedback controller such that every point in a (bounded subset of) state space that *can* be driven to the goal *will* be driven to the goal.
 - Non-trivial because of actuator limits and nonlinear dynamic (underactuation) constraints

(ロ) (同) (E) (E) (E) (O)(O)

• Observation: Trajectory optimization and trajectory stabilization work very well (locally)

- Goal: Systematically design a feedback controller such that every point in a (bounded subset of) state space that *can* be driven to the goal *will* be driven to the goal.
 - Non-trivial because of actuator limits and nonlinear dynamic (underactuation) constraints
- Observation: Trajectory optimization and trajectory stabilization work very well (locally)
- Possible solution: Trajectory libraries
 - Chris Atkeson has been arguing this for years
 - Can we find a "minimal" set of trajectories that cover the space?

Estimating basins of attraction

 New tools from systems theory can estimate basins of attraction for linear feedback using convex optimization.

Estimating basins of attraction

- New tools from systems theory can estimate basins of attraction for linear feedback using convex optimization.
- Pendulum Example:

Russ Tedrake, MIT CSAIL

LOR-Trees

• • • •

∃ >

Sums-of-Squares (SOS) Optimization

• Given polynomial, *p*(*x*), with unknown coefficients, *c*, verify uniform positive definiteness:

 $\exists c \forall x \quad p(x) \geq 0.$

Sums-of-Squares (SOS) Optimization

• Given polynomial, *p*(*x*), with unknown coefficients, *c*, verify uniform positive definiteness:

$$\exists c \forall x \quad p(x) \geq 0.$$

(ロ) (同) (E) (E) (E) (O)(O)

• Feasibility set is convex \rightarrow convex optimization.

Sums-of-Squares (SOS) Optimization

• Given polynomial, *p*(*x*), with unknown coefficients, *c*, verify uniform positive definiteness:

$$\exists c \forall x \quad p(x) \geq 0.$$

- Feasibility set is convex \rightarrow convex optimization.
- Can also handle equality constraints, and/or optimize a linear objective

Polynomial Lyapunov functions

- Pablo Parrilo popularized SOS tools for control verification.
- Example: Given a polynomial dynamical system:

$$\dot{x} = \sum_{i=0}^{N} \alpha_i x^i,$$

can search for coefficients of a polynomial Lyapunov function, V(x), such that $\dot{V}(x) \leq 0$.

"Certificates" for LQR Design

• Given $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$

• Linearize around operating point to obtain

 $\dot{\bar{\mathbf{x}}} \approx \mathbf{A}\bar{\mathbf{x}} + \mathbf{B}\bar{\mathbf{u}}.$

LQR design gives:

$$\bar{\mathbf{u}} = -\mathbf{K}\bar{\mathbf{x}}, \quad J(\mathbf{x}) \approx \bar{\mathbf{x}}^T \mathbf{S}\bar{\mathbf{x}},$$

where $J(\mathbf{x})$ is the approximate *cost-to-go*.

- Approximate **f** with higher-order Taylor expansion.
- Use SOS tools to find largest scalar ρ for which

$$\forall \mathbf{x} \text{ with } J(\mathbf{x}) \leq \rho, \quad \frac{d}{dt} J(\mathbf{x}) \leq 0.$$

• Also works for LQR trajectory stabilization (time-varying)

Russ Tedrake, MIT CSAIL LQR-Trees

Pendulum "Funnels"

Russ Tedrake, MIT CSAIL LQR

LQR-Trees

◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

Pendulum "Funnels"

Russ Tedrake, MIT CSAIL

LQR-Trees

Pendulum "Funnels"

Erdmann, Mason, Koditschek ・ロ・・(型・・モ・・モ・)

Э

Russ Tedrake, MIT CSAIL

LQR-Trees

Randomized Feedback Motion Planning

• Planning funnels are based on trajectories.

- Represented compactly by matrix **S** and scalar ρ .
- Conservative in almost every way.

Randomized Feedback Motion Planning

- Planning funnels are based on trajectories.
 - Represented compactly by matrix **S** and scalar ρ .
 - Conservative in almost every way.
- Combine funnels with randomized motion planning
 - Rapidly-exploring randomized trees (RRTs)
 - Probabilistic Roadmaps (PRMs)

Grow a stabilizing tree backwards from the goal:

• • • • • • • •

∃ >

글 🖌 🛛 글

Grow a stabilizing tree backwards from the goal:

 Choose a sample randomly from state space

< □
< □

글 > 글

Grow a stabilizing tree backwards from the goal:

- Choose a sample randomly from state space
- Find closest leaf in the tree (via LQR metric)

- 17

Grow a stabilizing tree backwards from the goal:

- Choose a sample randomly from state space
- 2 Find closest leaf in the tree (via LQR metric)
- Grow the tree towards the sample

• • • •

.⊒ .⊳

Grow a stabilizing tree backwards from the goal:

- Choose a sample randomly from state space
- Find closest leaf in the tree (via LQR metric)
- Grow the tree towards the sample
 - If connection fails, discard sample.

• • • •

.⊒ .⊳

Russ Tedrake, MIT CSAIL LQR-

LQR-Trees

Grow a stabilizing tree backwards from the goal:

- Choose a sample randomly from state space
- Find closest leaf in the tree (via LQR metric)
- Grow the tree towards the sample
 - If connection fails, discard sample.
- Compute LQR stabilizing controller and Lyapunov 'certificates' for new leaf.

LQR-Trees

Grow a stabilizing tree backwards from the goal:

- Choose a sample randomly from state space
- Find closest leaf in the tree (via LQR metric)
- Grow the tree towards the sample
 - If connection fails, discard sample.
- Compute LQR stabilizing controller and Lyapunov 'certificates' for new leaf.
- 6 Repeat

Simple Pendulum Example

Russ Tedrake, MIT CSAIL

LOR-Trees

イロン イヨン イヨン イヨン

Э

Russ Tedrake, MIT CSAIL LQR-Trees

<□> <圖> < E> < E> E のQ@

• Probabilistically covers reachable space with stabilizing controller (under mild assumptions)

- Probabilistically covers reachable space with stabilizing controller (under mild assumptions)
- Efficient in number of nodes; each node requires computation

- Probabilistically covers reachable space with stabilizing controller (under mild assumptions)
- Efficient in number of nodes; each node requires computation

Russ Tedrake, MIT CSAIL

LQR-Trees
Certificates for the Cart-Pole system

[CLICK IMAGE TO PLAY MOVIE]

by Philipp Reist

- ∢ ≣ →

æ

Russ Tedrake, MIT CSAIL

LQR-Trees

LQR-Trees for the Cart-Pole system

t = 0.00 sec

[CLICK IMAGE TO PLAY MOVIE]

Russ Tedrake, MIT CSAIL LQR-Trees

.

The "Perching" Problem

9 Q (P

Russ Tedrake, MIT CSAIL LQR-Trees

Experiment Design

- Glider (no propellor)
- Flat wings
- Dihedral (passive roll stability)
- Offboard sensing and control

イロン イヨン イヨン イヨン

Russ Tedrake, MIT CSAIL

LQR-Trees

System Identification

- Nonlinear rigid-body vehicle model
- Linear (w/ delay) actuator model
- Real flight data (no wind tunnel)
 - Very high angle-of-attack regimes
 - Relatively small number of physics-based basis functions
 - Vortex shedding

Lift Coefficient

Drag Coefficient

Russ Tedrake, MIT CSAIL

LQR-Trees

A dynamic model

- Planar dynamics
- Aerodynamics fit from data
- State: $\mathbf{x} = [x, y, \theta, \phi, \dot{x}, \dot{y}, \dot{\theta}]$
- Only actuator is the elevator angle, $\mathbf{u}=\dot{\boldsymbol{\phi}}$

・ロト ・回ト ・ヨト

Russ Tedrake, MIT CSAIL LQR-Trees

Glider Perching

- Enters motion capture @ 6 m/s.
- Perch is < 3.5 m away.
- Entire trajectory @ 1 second.

Requires Separation!

・ロン ・四 と ・ ヨ と ・ ヨ と

3

[CLICK IMAGE TO PLAY MOVIE]

Russ Tedrake, MIT CSAIL

LQR-Trees

Glider Perching

- Enters motion capture @ 6 m/s.
- Perch is < 3.5 m away.
- Entire trajectory @ 1 second.

Requires Separation!

・ロン ・四 と ・ ヨ と ・ ヨ と

3

[CLICK IMAGE TO PLAY MOVIE]

Russ Tedrake, MIT CSAIL

LQR-Trees

Preliminary results: Trees for Perching

・ロン ・回 と ・ ヨ と ・ ヨ と …

æ

[CLICK IMAGE TO PLAY MOVIE]

Russ Tedrake, MIT CSAIL LQR-Trees

Cartoon: LQR-Trees for bipedal walking

Russ Tedrake, MIT CSAIL LQR-Trees

・ロ・・ (日・・ (日・・ (日・

æ

Cartoon: LQR-trees for bipedal walking

・ロト ・回ト ・ヨト ・ヨト

æ

Russ Tedrake, MIT CSAIL LQR-Trees

• Can replace LQR with favorite trajectory stabilizer

Russ Tedrake, MIT CSAIL LQR-Trees

- Can replace LQR with favorite trajectory stabilizer
 - Stochastic basins requires more thought, but not impossible

(ロ) (同) (E) (E) (E) (O)(O)

- Can replace LQR with favorite trajectory stabilizer
 - Stochastic basins requires more thought, but not impossible

(ロ) (同) (E) (E) (E) (O)(O)

• LQR is convenient because it yields cost-to-go

- Can replace LQR with favorite trajectory stabilizer
 - Stochastic basins requires more thought, but not impossible
 - LQR is convenient because it yields cost-to-go
- Certificates for more complicated problems (e.g., actuator constraints)

(ロ) (同) (E) (E) (E) (O)(O)

- Can replace LQR with favorite trajectory stabilizer
 - Stochastic basins requires more thought, but not impossible
 - LQR is convenient because it yields cost-to-go
- Certificates for more complicated problems (e.g., actuator constraints)
 - Can replace some pieces of SOS with direct simulation without losing coverage

- Can replace LQR with favorite trajectory stabilizer
 - Stochastic basins requires more thought, but not impossible
 - LQR is convenient because it yields cost-to-go
- Certificates for more complicated problems (e.g., actuator constraints)
 - Can replace some pieces of SOS with direct simulation without losing coverage

- Multi-query algorithms.
 - Backwards tree is big stabilizing web of trajectories.
 - Reuse funnel computation when goal changes.

- Can replace LQR with favorite trajectory stabilizer
 - Stochastic basins requires more thought, but not impossible
 - LQR is convenient because it yields cost-to-go
- Certificates for more complicated problems (e.g., actuator constraints)
 - Can replace some pieces of SOS with direct simulation without losing coverage
- Multi-query algorithms.
 - Backwards tree is big stabilizing web of trajectories.
 - Reuse funnel computation when goal changes.
- Tentative: Combine with policy-gradient methods to adjust to model errors

(ロ) (同) (E) (E) (E) (O)(O)

Russ Tedrake, MIT CSAIL LQR-Trees

<□> <圖> < E> < E> E のQ@

• Randomized sampling scales

<□> <圖> < E> < E> E のQ@

- Randomized sampling scales
- Trajectory optimization scales

- Randomized sampling scales
- Trajectory optimization scales
- LQR design scales

◆□> ◆□> ◆目> ◆目> ・目 ・のへぐ

- Randomized sampling scales
- Trajectory optimization scales
- LQR design scales
- Polynomial expansion for certificates is expensive

- Randomized sampling scales
- Trajectory optimization scales
- LQR design scales
- Polynomial expansion for certificates is expensive
- In high dimensions, cover only relevant portion of state space

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

- Randomized sampling scales
- Trajectory optimization scales
- LQR design scales
- Polynomial expansion for certificates is expensive
- In high dimensions, cover only relevant portion of state space

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

SQ C

• Can add to the tree during execution (multi-query)

- Randomized sampling scales
- Trajectory optimization scales
- LQR design scales
- Polynomial expansion for certificates is expensive
- In high dimensions, cover only relevant portion of state space
 - Can add to the tree during execution (multi-query)
- Currently demonstrated in 5 dimensions (same as dynamic programming) with virtually no optimization

(ロ) (同) (E) (E) (E) (O)(O)

- Randomized sampling scales
- Trajectory optimization scales
- LQR design scales
- Polynomial expansion for certificates is expensive
- In high dimensions, cover only relevant portion of state space
 - Can add to the tree during execution (multi-query)
- Currently demonstrated in 5 dimensions (same as dynamic programming) with virtually no optimization

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ●のへの

• Goal is @ 10 dimensions. Time will tell.

Summary and Conclusions

Russ Tedrake, MIT CSAIL LQR-Trees

<□> <圖> < E> < E> E のQ@

Summary and Conclusions

• Trajectory libraries are a good way to systematically design nonlinear controllers using linear control.

Summary and Conclusions

- Trajectory libraries are a good way to systematically design nonlinear controllers using linear control.
- It pays to reason about the funnels as you plan:
 - Efficient thanks to new tools from verification
 - Sparseness relatively few trajectories required
 - Stronger guarantees "probabilistic feedback coverage"