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Abstract— We present a statistical gradient following algo-
rithm which optimizes a control policy for bipedal walking
online on a real robot. One of the distinguishing features of this
system is that learning and execution occur simultaneously:
there are no explicit learning trials and there is no need to
model the dynamics of the robot in a simulation. Thanks in
part to the mechanical design of the robot, the system is able to
reliably acquire a robust policy for dynamic bipedal walking
from a blank slate in less than 20 minutes. Once the robot
begins walking, it quickly and continually adapts to the terrain
with every step that it takes.

I. INTRODUCTION

Despite many recent advances in robotics, there are still
a number of fundamental motor tasks in which biological
systems dramatically outperform robotic systems. Bipedal
walking is one of those tasks. Some robotics researchers
believe that an essential element missing in our robots is
the ability to learn - to acquire and adapt motor behaviors
through trial and error.

Over the last few years, we have begun to see examples of
learning systems solving difficult control problems on real
robotic systems. Atkeson and Schaal used learning from
demonstration to train an anthropomorphic robotic arm to
accomplish a pendulum swing-up task[1]. Morimoto and
Doya used continuous-time temporal difference learning to
teach a three-link robot to “stand up”[2]. Miller and Kun
demonstrated the learning on a dynamic biped by coordi-
nating hand-designed motor primitives[3]. More recently,
there has been a great deal of work on learning fast gaits
for Sony’s AIBO (e.g. [4]). Ng and Thrun used an offline
policy gradient algorithm to learn a policy for helicopter
flight[5]. Although impressive, these results have not yet
made a significant impact on the way that most robots are
controlled.

II. THE WALKING PROBLEM

A bipedal walking gait is considered dynamic if the
ground projection of the center of mass leaves the convex
hull of the ground contact points during some portion of
the walking cycle. Achieving stable dynamic walking on a
bipedal robot is a difficult control problem because bipeds
can only control the trajectory of their center of mass
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through the unilateral, intermittent, uncertain force contacts
with the ground. The walking control systems that dominate
the robotics literature (e.g. [6]) restrict themselves to overly
conservative gaits, and consequently cannot compare to hu-
man walking in terms of speed, efficiency, or robustness[7].

Dynamic walking is an excellent problem for studying
learning control. Trial and error learning is a fundamentally
different approach to achieving dynamic stability which
could have an immediate and dramatic impact on the way
that we control walking robots. Conversely, walking has
all of the elements of a difficult learning problem. First,
walking robots typically have many degrees of freedom,
which can cause a combinatorial explosion for learning
systems that attempt to optimize performance in every
possible configuration of the robot. Second, details of the
robot dynamics such as uncertainties in the ground contact
and nonlinear friction in the joints are difficult to model
well in simulation, making it unlikely that a controller
optimized in a simulation will perform optimally on the
real robot. Since it is only practical to run a small number
of learning trials on the real robot, the learning algorithms
must perform well after obtaining a very limited amount of
data. Finally, learning algorithms for dynamic walking must
deal with dynamic discontinuities caused by collisions with
the ground and with the problem of delayed reward - torques
applied at one time may have an effect on the performance
many steps into the future.

III. THE ROBOT

In order to address the potential difficulties, we have
carefully designed a bipedal robot which simplifies the
learning problem. In particular, we have minimized the
number of degrees of freedom on the robot down to a
single joint in each hip and two joints in each ankle.
More fundamentally, we have carefully designed the passive
dynamics of the device to give it an important property: the
ability to walk down a small ramp even when the control
system is turned off. This design principle is known in the
walking literature as passive dynamic walking, and it was
originally inspired by children’s walking toys ([8], [9]).

The walker shown on the left in Figure 1 is the simplest
machine that we could build which is capable of stable
passive dynamic walking in three dimensions. It has only
a single passive pin joint at the hip. When placed at the



Fig. 1. The robot on the left is a simple passive dynamic walker. The
robot on the right is our actuated version of the same robot.

top of a small ramp and given a small push, the walker
will begin falling down the ramp and eventually converge
to a stable limit cycle trajectory that has been compared to
the waddling gait of a penguin [8]. The energetics of this
passive walker are common to all passive walkers: energy
lost due to friction and collisions when the swing leg returns
to the ground is balanced by the gradual conversion of
potential energy into kinetic energy as the walker moves
down the slope. The mechanical design of this robot and
some experimental stability results are presented in [10].

We designed our learning robot by adding a small number
of actuators to this passive design. The robot shown on the
right in figure 1, which is also described in [10], has passive
joints at the hip and 2 degrees of actuation (roll and pitch) at
each ankle. The ankle actuators are position controlled servo
motors which, when commanded to hold their zero position,
allow the actuated robot to walk stably down a small ramp,
“simulating” the passive walker. The shape of the large,
curved feet is designed to make the robot walk passively
at 0.8Hz, and to take steps of approximately 6.5 cm when
walking down a ramp of 0.03 radians. The robot stands 44
cm tall and weighs approximately 2.9 kg, which includes
the CPU and batteries that are carried on-board. The most
recent additions to this robot are the passive arms, which
are mechanically coupled to the opposite leg to reduce the
yaw moment created by the swinging leg.

When placed on flat terrain, the passive walker waddles
back and forth, slowly losing energy, until it comes to rest
standing still. In order to achieve stable walking on flat
terrain, the actuators on our learning robot must restore
energy into the system that would have been restored by
gravity when walking down a slope. Deriving a control
policy for the ankle actuators turns out to be a very difficult
problem because the robot is under-actuated - it has only
four motors to control nine degrees of freedom1. This under-

16 internal DOFs and 3 DOFs for the robot’s orientation. We assume
that the robot is always in contact with the ground at a single point and
does not slip, and we ignore the robot’s absolute (x, y) position in space.

actuation means that the motors cannot produce an arbitrary
acceleration of the robot at any instant in time and that the
robot cannot follow an arbitrary trajectory, and therefore
conventional robot manipulator control strategies do not
apply. Before implementing any machine learning, we spent
considerable time hand-designing control policies for this
robot[10] to use as comparison for our learning experiments.
Although we were able to stabilize the walking gait on flat
terrain, the hand-designed controllers were not very robust
nor efficient, and they required considerable tuning for each
new surface that the robot walked on.

IV. THE LEARNING PROBLEM

In order to derive a control policy for this robot using
reinforcement learning, we formulate the goal of control as
stabilizing the limit cycle trajectory that the passive robot
follows walking down the ramp, making it invariant to
slope. We choose to characterize the stability of the limit
cycle using a Poincaré map ([11], [12]) taken at the point
when the robot’s left leg collides with the ground. This
allows us to replace the continuous-time dynamics of the
limit cycle trajectories with a discrete footstep-to-footstep
dynamics, and to formulate the learning on this discrete
map.

More precisely, the dynamics of the robot can be written
in the form

q̈ = f(q, q̇,u,d(t)), (1)

where q is the vector of joint angles denoting the state of the
robot, u is the control vector, and d(t) is the time-varying
vector of random disturbances. Our task is to acquire a
deterministic feedback control policy

u = π(q̂, ˆ̇q), (2)

where q̂ is a noisy estimate of q (due to noise in the
sensors).

The Poincaré map, or return map, dynamics are a Markov
random sequence with the probability at the (n + 1)th
footstep given by

Fπ(x′,x) = P
{

X̂n+1 = x′|X̂n = x, π
}

, (3)

where x = [q, q̇]T evaluated at the return map. For clarity,
we will reserve the variable x for describing the state of
the robot on the return map. Fπ(x′,x) represents the prob-
ability density function over the state space which contains
the closed-loop dynamics of the robot integrated from one
footstep to the next. We do not make any assumptions about
its form, except that it is Markov. The stochasticity in Fπ

comes from the random disturbances, d(t), and from the
sensor noise, x̂−x. We describe the dynamics as a Markov
sequence that is parameterized by the policy π instead of
a Markov decision process (MDP) because the policy is
evaluated many times between each crossing of the return
map.

In this formulation, we reward the global stability of the
desired limit cycle trajectory by penalizing the Euclidean



distance of each crossing of the return map from the desired
crossing. This corresponds to an optimal control problem
with the instantaneous cost using a constant desired value,
xd, on the return map:

g(x(n)) =
1

2
|x(n) − xd|2. (4)

This desired value can be considered a reference trajectory
on the return map, and is taken from the gait of the walker
down a slope of 0.03 radians; no reference trajectory is
required for the limit cycle between steps. For a given return
map trajectory x̂ = [x̂(0), x̂(1), ..., x̂(N)], we define the
average cost

GN (x̂) =
1

N

N
∑

n=0

g(x̂(n)). (5)

Our goal is to find a policy π which minimizes the infinite-
horizon average cost

lim
N→∞

E {GN (x̂)} . (6)

By minimizing this error, we are effectively minimizing the
eigenvalues of the return map, and maximizing the stability
of the desired limit cycle.

V. THE LEARNING ALGORITHM

To acquire a good control policy, we parameterize π using
a function approximator that is linear in the parameters. The
function approximator is parameterized by the vector w and
uses nonlinear features φ:

u = πw(x̂) =
∑

i

wiφi(x̂). (7)

The learning algorithm is a statistical actor-critic
algorithm[13] which makes small changes to the control
parameters w on each step and uses correlations between
changes in w and changes in the return map error to
climb the performance gradient. This can be accomplished
with an online learning rule which changes w with each
footstep that the robot takes. The form of the algorithm
that we present here was originally proposed by [14]. We
present a thorough derivation of the algorithm in [15].

The hallmark of the actor-critic family of reinforcement
learning algorithms is the use of an approximation of the
value function, Jπ(x), to improve the estimates of the
performance gradient, and thereby improve the convergence
rate of the algorithm. The value function is defined as the
expected average cost to be incurred by following policy
πw starting from state x:

Jπw(x) = lim
N→∞

1

N

N
∑

n=0

E{g(x(n))}, with x(0) = x. (8)

We will use the shorthand Jw(x) for Jπw(x). We use
another function approximator, parameterized by the vector
v, to estimate the true value function:

Ĵw

v
(x̂) =

∑

i

viψi(x̂). (9)

During learning, we estimate the performance gradient by
varying w, adding stochasticity to our deterministic policy.
Let Z(n) be a Gaussian random vector with E{Zi(n)} = 0
and E{Zi(n)Zj(n

′)} = σ2δijδnn′ . During the nth step
that the robot takes, we evaluate the controller using the
parameter vector w′(n) = w(n) + z(n). The algorithm
uses a storage variable, e(n), called the eligibility trace.
We begin with w(0) = e(0) = 0. At the end of the nth
step, we make the updates:

δ(n) =g (x̂(n)) + γĴv (x̂(n+ 1)) − Ĵv (x̂(n)) (10)
ei(n) =γei(n− 1) + bi(n)zi(n) (11)

∆wi(n) = − ηwδ(n)ei(n) (12)
∆vi(n) =ηvδ(n)ψi(x̂(n)). (13)

ηw ≥ 0 and ηv ≥ 0 are the learning rates and γ is the
discount factor of the eligibility trace, which parameterizes
the bias-variance trade-off of our gradient estimate[16].
bi(n) is a boolean one-step eligibility, which is 1 if the
parameter wi is activated (φi(x̂) > 0) at any point during
step n and 0 otherwise. δ(n) is the one-step temporal-
difference error.

The algorithm can be understood intuitively. On each
step the robot receives some cost g(x̂(n)). This cost is
compared to cost that we expect to receive, as estimated
by Ĵw

v
(x). If the cost is lower than expected, then −ηδ(n)

is positive, so we add a scaled version of the noise terms,
zi, into wi. Similarly, if the cost is higher than expected,
then we move in the opposite direction. Simulataneously,
the value estimate is updated using the temporal-difference
learning algorithm, TD(0) [17]. This simple online algo-
rithm performs approximate stochastic gradient descent on
the expected value of the average infinite-horizon cost.

VI. LEARNING IMPLEMENTATION

The major limitation of the algorithm presented here
is convergence rate. When x is high dimensional, then it
requires many trials to effectively sample the entire state
space. In order to emphasize fast convergence, we added
a manual dimensionality reduction step which decomposes
the control problem in the frontal and sagittal planes and
exploits the dynamic coupling between the joint variables
on the robot.

In the planar decomposition, the ankle roll actuators are
responsible for stabilizing the oscillations of the robot in
the frontal plane. The ankle pitch actuators cause the robot
to lean forward or backward in the sagittal plane, which
effectively moves the position of the center of mass relative
to the ground contact point on the foot. Because the hip joint
on our robot is passive, if the center of mass is in front of
the ground contact when the swing foot leaves the ground,
then the robot will begin to walk forward. The distance
of between the center of mass and the ground contact is
monotonically related to the step size and to the walking
speed.



Due to the simplicity of the sagittal plane control, we
only need to learn a control policy for the two ankle roll
actuators which stabilize the roll oscillation in the frontal
plane. This strategy will change as the robot walks at
different speeds, but we hope the learning algorithm will
adapt quickly enough to compensate for those differences.

In the frontal plane, we constrain the feedback policy to
be a function of only two variables: the roll angle of the
body (θroll) and its derivative (θ̇roll). The choice of these
two variables is not arbitrary; they are the only variables that
we used when writing the non-learning feedback controllers
that stabilize the oscillation. We also constrain the policy to
be symmetric - the controller for the left ankle is simply a
mirror image of the controller for the right ankle. Therefore,
the learned control policy only has a single output. Because
the value function is evaluated on the return map, it has
one less dimension than the policy, making it a function of
only a single variable: θ̇roll. This dimensionality reduction
step allows the algorithm to train very quickly, by manually
imposing a mechanism of generalization over the state space
and reducing the number of trials necessary to explore the
space.

The control policy and value functions are both rep-
resented using linear function approximators of the form
described in Equations 7 and 9, which are fast and very
convenient to initialize. We use a non-overlapping tile-
coding for our approximator basis functions: 35 tiles for
the policy (5 in θroll× 7 in θ̇roll) and 11 tiles for the value
function.

In order to make the robot explore the state space during
learning, we hand-designed a simple controller to place the
robot in random initial conditions on the return map. The
random distribution is biased according to the distribution
of points that the robot has already experienced on the
return map - the most likely initial condition is the state that
the robot experienced least often. We use this controller to
randomly reinitialize the robot every time that it comes to
a halt standing still, or every 10 seconds, whichever comes
first. This heuristic makes the distribution on the return map
more uniform, and increases the likelihood of the algorithm
converging on the same policy each time that it learns from
a blank slate.

VII. EXPERIMENTAL RESULTS

When the learning begins, the policy parameters, w, are
set to 0 and the baseline parameters, v, are initialized so that
Ĵw

v
(x) ≈ g(x)

1−γ
. We typically train the robot on flat terrain

using short trials with random initial conditions. During the
first few trials, the policy does not restore sufficient energy
into the system, and the robot comes to a halt standing
still. Within a minute of training, the robot achieves foot
clearance on nearly every step; this is the minimal definition
of walking on this system. The learning easily converges
to a robust gait with the desired fixed point on the return
map within 20 minutes (approximately 960 steps at 0.8
Hz). Error obtained during learning depends on the random

initial conditions of each trial, and is therefore a very noisy
stochastic variable. For this reason, in Figure 2 we plot a
typical learning curve in terms of the average error per step.
Figure 3 plots a typical trajectory of the learned controller
walking on flat terrain. Figure 4 displays the final policy.

Fig. 2. A typical learning curve, plotted as the average error on each
step.

seconds

Fig. 3. θroll trajectory of the robot starting from standing still.

Fig. 4. Learned feedback control policy uraRoll = πw(x̂).

In Figure 5 we plot the return maps of the system before
learning (w = 0) and after 1000 steps. In general, the return
map for our 9 DOF robot is 17 dimensional (9 states +
9 derivatives - 1), and the projection of these dynamics
onto a single dimension is difficult to interpret. The plots in
Figure 5 where made with the robot walking in place on flat
terrain. In this particular situation, most of the return map
variables are close to zero throughout the dynamics, and a
two dimensional return map captures the desired dynamics.
As expected, before learning the return map illustrates a
single fixed point at θ̇roll = 0, which means the robot is
standing still. After learning, we obtain a single fixed point
at the desired value (θ̇roll = 1.0 radians / second), and the



basin of attraction of this fixed point extends over the entire
domain that we tested. On the rare occasion that the robot
falls over, the system does not return to the map and stops
producing points on this graph.

Fig. 5. Experimental return maps, before (top) and after (bottom) learning.
Fixed points exist at the intersections of the return map (blue) and the line
of slope one (red).

To quantify the stability of the learned controller, we
measure the eigenvalues of the return map. Linearizing
around the fixed point in Figure 5 suggests that the system
has a single eigenvalue of 0.5. To obtain the eigenvalues of
the return map when the robot is walking, we run the robot
from a large number of initial conditions and record the
return map trajectories x̂i(n), 9×1 vectors which represent
the state of the system (with fixed ankles) on the nth
crossing of the ith trial. For each trial we estimate x̂i(∞),
the equilibrium of the return map. Finally, we perform a
least squares fit of the matrix A to satisfy the relation

[x̂i(n+ 1) − x̂i(∞)] = A[x̂i(n) − x̂i(∞)].

The eigenvalues of A for the learned controller and for
our hand-designed controllers (described in [10]) are:

Controller Eigenvalues
Passive walking 0.88 ± 0.01i, 0.75, 0.66 ± 0.03i,

(63 trials) 0.54, 0.36, 0.32 ± 0.13i

Hand-designed 0.80, 0.60, 0.49 ± 0.04i, 0.36,
feed-forward (89 trials) 0.25, 0.20 ± 0.01i, 0.01

Hand-designed 0.78, 0.69 ± 0.03i, 0.36, 0.25,
feedback (58 trials) 0.20 ± 0.01i, 0.01

Learned feedback 0.74 ± 0.05i, 0.53 ± 0.09i, 0.43,
(42 trials) 0.30 ± 0.02i, 0.15, 0.07

All of these experiments were on flat terrain except the
passive walking, which was on a slope of 0.027 radians.
The convergence of the system to the nominal trajectory is
largely governed by the largest eigenvalues. This analysis
suggests that our learned controller converges to the steady
state trajectory more quickly that the passive walker on
a ramp and more quickly than any of our hand-designed
controllers.

Our stochastic policy gradient algorithm solves the tem-
poral credit assignment problem by accumulating the eli-
gibility within a step and discounting eligibility between
steps. Interestingly, our algorithm performs best with heavy
discounting between steps (0 ≤ γ ≤ 0.2). This suggests
that our one dimensional value estimate does a good job of
isolating the credit assignment to a single step.

While it took a few minutes to learn a controller from a
blank slate, adjusting the learned controller to adapt to small
changes in the terrain appears to happen very quickly. The
non-learning controllers require constant attention and small
manual changes to the parameters as the robot walks down
the hall, on tiles, and on carpet. The learning controller
easily adapts to these situations.

VIII. DISCUSSION

Designing our robot like a passive dynamic walker
changes the learning problem in a number of ways. It
allows us to learn a policy with only a single output which
controlled a 9 DOF system, and allows us to formulate
the problem on the return map dynamics. It also dra-
matically increases the number of policies in the search
space which could generate stable walking. The learning
algorithm works extremely well on this simple robot, but
will the technique scale to more complicated robots?

One factor in our success was the formulation of the
learning problem on the discrete dynamics of the return
map instead of the continuous dynamics along the entire
trajectory. This formulation relies on the fact that our
passive walker produces periodic trajectories even before
the learning begins. It is possible for passive walkers to have
knees and arms [18], or on a more traditional humanoid
robot this algorithm could be used to augment and improve
and existing walking controller which produces nominal
walking trajectories.

As the number of degrees of freedom increases, the
stochastic policy gradient algorithm may have problems
with scaling. The algorithm correlates changes in the policy



parameters with changes in the performance on the return
map. As we add degrees of freedom, the assignment of
credit to a particular actuator will become more difficult,
requiring more learning trials to obtain a good estimate
of the correlation. This scaling problem is an open and
interesting research question and a primary focus of our
current research.

One of the distinguishing features of this learning system
is that learning and execution occur simulatenously. The
learning system is always on, and the robot makes small
changes to its parameters with every step that it takes. The
changes to the parameters on every step are small enough
that they do not break the walking gait, in fact they are
rarely even perceptible to the human eye, but they are
large enough to measure a change in performance using
the sensors. When the robot walks off a tiled surface onto a
carpetted surface, the policy parameters change quickly and
the robot is able to recover its gait within a dozen steps. This
is an encouraging feature because it suggests that we use a
learning system to augment an existing controller to allow
that controller to systematically improve with experience.

Movies of Toddler can be found at:
http://hebb.mit.edu/people/russt/
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