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Abstract— The empirical success of derivative-free methods
in reinforcement learning for planning through contact seems at
odds with the perceived fragility of classical gradient-based op-
timization methods in these domains. What is causing this gap,
and how might we use the answer to improve gradient-based
methods? We believe a stochastic formulation of dynamics is one
crucial ingredient. We use tools from randomized smoothing to
analyze sampling-based approximations of the gradient, and
formalize such approximations through the gradient bundle.
We show that using the gradient bundle in lieu of the gra-
dient mitigates fast-changing gradients of non-smooth contact
dynamics modeled by the implicit time-stepping, or the penalty
method. Finally, we apply the gradient bundle to optimal
control using iLQR, introducing a novel algorithm which
improves convergence over using exact gradients. Combining
our algorithm with a convex implicit time-stepping formulation
of contact, we show that we can tractably tackle planning-
through-contact problems in manipulation.

I. INTRODUCTION

Robots interact with their environments primarily through
contact, and planning of such systems (colloquially named
planning through contact) is a long-standing challenge in
manipulation and locomotion, especially in the absence of
fixed mode sequences. Neither the tightly coupled problems
of modeling the contact dynamics nor the planning that uses
the prescribed model have straightforward answers.

A large body of previous work in planning through contact
[1]–[5] has been based on gradient-based optimizers. Com-
bining different contact models, optimization methods for
planning, and a variety of relaxation schemes, these methods
have shown reasonable success. However, they still tend to
remain brittle: they are sensitive to hyperparameters, and the
quality of initial guesses becomes a make-or-break factor.
When they fail, they can be notoriously hard to debug.

In another direction, recent works in Reinforcement Learn-
ing (RL) have shown impressive results in tackling problems
with contact dynamics [6]–[8]. The quality of the solutions
obtained via RL is surprising, despite the fact that no
underlying structure was used. This suggests that improve-
ments can be made in time and sample complexity. More
importantly; however, the fact that we do not understand the
gap between the success of RL methods and the struggle of
more classical gradient-based methods in planning through
contact, is unsatisfying. What are the key improvements
that RL made but the classical methods failed to consider?
We believe that the answer lies in how RL fundamentally
considers a stochastic formulation, as opposed to gradient-
based methods that have largely been deterministic.

*These authors contributed equally to this work.
*This work was funded by NSF Award No.EFRI-1830901, Navy ONR

Award No. N00014-18-1-2210, and Lincoln Lab PO No. 7000470769.
1Massachusetts Institute of Technology, Cambridge, Massachusetts

02139, USA {hjsuh, pangtao, russt}@mit.edu

Fig. 1: Planning with exact gradients (top) vs. the gradient bundle
(bottom). Actuated objects drawn in red, unactuated objects drawn
in green, and the goal drawn in black. From left: planar hand, planar
pushing, box pivoting, and plate pickup task ( [9]).

If this is true, what would it mean to take a probabilistic
formulation of contact dynamics, and how would it help
the planning problem? Can we learn from the answers
and combine stochasticity with gradient-based approaches to
obtain better convergence behavior? We aim to answer these
questions through the lens of randomized smoothing [10]–
[12]. Results from non-smooth optimization [10] tell us that
the fast-changing gradients of non-smooth problems destabi-
lize gradient-based optimizers such as gradient descent [13].
By considering a probabilistic approach to contact, we aim
to alleviate flatness of gradients, as well as stabilize fast-
changing gradients of contact dynamics to produce a more
globally informative direction of improvement.

We formalize gradients taken through randomized smooth-
ing as the gradient bundle, and show that it has many benefits
over exact gradients of contact models, such as overcoming
non-smoothness, alleviating nonconvexity, and supporting a
zero-order variant. The gradient bundle can readily replace
the exact gradient in optimal control, policy search, state
estimation, and system identification. In our work, we apply
bundled gradients on optimal control using iterative LQR
(iLQR) to address planning-through-contact problems.

In addition, randomized smoothing allows obtaining the
gradient bundle of contact dynamics that are defined through
implicit optimization problems [4], [14], [15], that are often
preferred over penalty methods [16] for its ability to take
longer timesteps. To demonstrate this advantage, we utilize
our method on a quasi-dynamic simulator that uses an
implicit time-stepping scheme [17] and show that we can
tractably tackle robotic manipulation problems.

Contributions. We formalize the notion of the gradient
bundle by introducing randomized smoothing, which we then
apply to penalty and implicit time-stepping models of contact
dynamics. We replace the exact gradients of dynamics with
the gradient bundle in iLQR, showing that we can more
robustly solve manipulation problems.



II. LITERATURE REVIEW

A. Differentiable Modeling of Contact

We mainly address two classes of approaches for mod-
eling contact: the penalty method [16], and the implicit
time-stepping method [14], [15]. Although other classes of
models exist (e.g. hybrid dynamics simulation through event-
detection and impacts [18]), they have yet to scale to simu-
lating the complex geometry and dynamics of manipulation.

Works that utilize the penalty method [3], [19], [20]
approximate contact behavior at each timestep with forces
from stiff spring and dampers. While the method can ap-
proximate a wide range of contact behavior such as impact,
the dynamics often results in a stiff ODE, which requires
small timesteps to approximate well. In addition, although
penalty methods often have straightforward expressions for
the derivative [3], the computation of long-horizon gradients
may be expensive due to large number of timesteps required.

On the other hand, implicit time-stepping methods [1], [4],
[21] can take larger timesteps without sacrificing integration
accuracy, but integration requires solving a Linear Comple-
mentarity Problem (LCP) [22], whose per-step computation
is harder and solutions may not be unique. Nevertheless,
the LCP can be converted to a convex Quadratic Program
(QP) by relaxing the exact Coulomb friction constraints [17],
[23], [24]. The implicit models also allow differentiation by
computing the derivatives of the KKT conditions of the QP
using the implicit function theorem [25].

B. Smooth Approximations of Contact for Planning

As solving the non-smooth problem directly (e.g. via
mixed-integer programming [5], [26]) is difficult, many
existing works consider solving a smooth approximation
of the problem. For instance, penalty-based methods make
explicit smooth approximations of the contact dynamics [3],
[19], [20]. While the behavior of such approximations have
intuitive interpretations at a dynamics-level, the choice of
functions that are used is arbitrary. In addition, it is not clear
how to apply such explicit smoothing to implicit dynamics
whose result is defined by an optimization problem.

Other works [1], [2], [21], [24], [27], [28] do not directly
smooth out the dynamics, but find an explicit relaxation
of constraints that implicitly define the dynamics. While
these works are often better connected to the underlying
optimization, the interpretation of the resulting dynamics can
be unintuitive which makes debugging cumbersome.

Our philosophy behind why stochasticity is necessary for
planning is similar to the argument presented in [28]. How-
ever, unlike [28] which explicitly uses “rounded” comple-
mentarity constraints and interprets it as minimizing expected
constraint violation, randomized smoothing is fully implicit
[11], [12], in the sense that we do not require explicit
smoothing formulas for dynamics, nor the constraints that
define them. This allows us to make smooth approximations
to a more general class of models. In addition, the bundled
dynamics from randomized smoothing is more physically-
interpretable than numerical smoothing strategies that “sand
off” the sharp corners of non-smooth constraints.

C. Randomized Smoothing for Non-smooth Optimization

The destabilization of gradient descent for non-smooth
functions was observed by early works such as Wolfe’s
example [13], [29]. Stabilized gradient descent through gra-
dient sampling was introduced in [10], [30], [31], which
proposed to approximate an instance of a subgradient in the
convex hull of sampled gradients around the current iterate.
Based on these works, an optimal convergence guarantee was
provided in [11] where the term randomized smoothing was
introduced, and a zero-order variant was presented in [12].

Our work strongly builds upon existing works, but we
analyze the consequences of randomized smoothing in the
presence of contacts and aim to use the gradient bundle for
optimal control. In addition, we show potential pitfalls of
gradient sampling in the presence of dynamics of disconti-
nuities, which has not been addressed by previous works.

III. RANDOMIZED SMOOTHING

Motivated by [10], [11], we first introduce the idea of
randomized smoothing in the context of gradient descent.

A. The Gradient Bundle and the Bundled Objective

Let f(x) be a non-smooth objective function that is dif-
ferentiable a.e., and denote the gradient as ∇f(x). While the
gradient suggests a local direction of descent, it is myopic.
For smooth non-convex functions, gradient descent could
lead to bad local minima. For non-smooth functions, the
gradient may be subject to large jumps, stalling the descent
on the cost function [13], [29] and compromising standard
guarantees of convergence. To alleviate the problems caused
by the locality of the gradient, we can aggregate gradient
information in some neighborhood of the current x, which
we formalize with the term gradient bundle.

Definition 1. Gradient Bundle Let µ ∈ L1 be a symmetric
probability density. Then, the first-order gradient bundle is
defined as

∇̄f(x) :=

∫
∇f(x+ w)µ(w)dw = Ew∼µ[∇f(x+ w)]. (1)

The gradient bundle can be thought of as a convolution
of ∇f(x) and the kernel µ. Further insight of descent using
the gradient bundle can be obtained by defining the bundled
objective.

Definition 2. The Bundled Objective is defined as

f̄(x) :=

∫
f(x+ w)µ(w)dw = Ew∼u[f(x+ w)]. (2)

Lemma 1. The first-order gradient bundle ∇̄f(x) is the exact
gradient of the bundled objective f̄(x) (∇̄f(x) = ∇f̄(x))

Proof. Exchange the expectation Ew and the derivative ∇x

using the Dominated Convergence Theorem.

This suggests that using the bundled gradient in place
of the exact one lets us implicitly operate on a different
objective function defined by the bundled objective. The
bundled objective has an intuitive explanation as result of
filtering via convolution, such as Gaussian smoothing. Such



smoothing schemes alleviate non-convexity by smoothing
out local minima, and allows tackling non-smooth problems
by stabilizing gradient descent [10]. Note that the gradient
bundle is purposely biased to produce more global effects,
and thus will not converge to a stationary point of the original
objective, but rather that of the bundled objective. This can
be mitigated by iteratively decreasing the variance σ(µ), as
done in typical stochastic approximation schemes [32], [33].

B. Zero-Order Variation
If ∇f is not available or costly to compute, one may in-

stead compute an expected value of finite-differences (which
we denote by ∇0f(x)) to use as a direction of descent [12].
We call this object the zero-order gradient bundle. Conver-
gence of such schemes are well analyzed in Simultaneous
Perturbation Stochastic Approximation (SPSA) [34].

∇̄0f(x) := Ew∼µ[∇0f(x)] = Ew∼µ

[
f(x+ w)− f(x)

w

]
. (3)

Example 1. Function with many Local Minina: Let

f(x) = x2 + 0.1 sin(20x), (4)

which has many bad local minima. Under a suitable choice
for the Gaussian kernel µ(w) = N (w; 0, σ), this function can
be smoothed out to be convex, or gradient dominant [35].

Fig. 2: Left: Objective f(x). Center: Bundled objective recon-
structed from first-order gradient bundle. Right: Bundled objective
reconstructed from zero-order gradient bundle

C. Monte-Carlo Integration for the Gradient Bundle
Symbolic computation of the gradient bundle is pro-

hibitive, and quadrature methods do not scale well with
dimension. Thus, we propose use Monte-Carlo integration,
which can scale to high dimensions under suitable conditions
on the variance of the objective. This yields the gradient
sampling algorithm [10] and its zero order variant [12],

∇̂f(x) ≈ 1

N

∑
i

∇f(x+ wi) wi ∼ µ(w)

∇̂0f(x) ≈ 1

N

∑
i

(
f(x+ wi)− f(x)

wi

)
wi ∼ µ(w).

(5)

Lemma 2. Law of Large Numbers. If f has no discon-
tinuous jumps and ∇f,∇f0 ∈ L1, then ∇̂f(x)

a.s.−−→ ∇̄f(x)
and ∇̂0f(x)

a.s−−→ ∇̄0f(x)

However, one must be very careful with this Monte Carlo
approximation when f has discontinuous jumps, due to
the dirac-delta that appears in the derivative ∇f [36]. We
formalize this through the following theorem:

Theorem 1. Sampling Gradients of Discontinuities. Let
f(x) be a function differentiable a.e. with at least one jump
discontinuity; ∃x′ s.t. limx→x′− f(x) 6= limx←x′+ f(x).
Then, the Monte-Carlo estimate of the first-order gradient
bundle almost surely fails to converge to the gradient of the
bundled dynamics, ∇̄f(x) 6=a.s. ∇f̄(x).

Proof. Sampling from the dirac-delta is ill-defined, as it
does not evaluate pointwise. In practice, however, such an
attempt would always lead to 0 almost surely. Without loss
of generality, let x′ = 0. Then, ∃fL, fR s.t.

f(x) = fR(x)1x≥0 + fL(x)1x<0

∇f(x) = ∇fR(x)1x>0 +∇fL(x)1x<0 + cδ(x).
(6)

where c = fR(0)− fL(0) 6= 0. Then,

∇f̄(x) =

∫
∇f(x+ w)µ(w)dw

= cµ(x) +

∫ (
∇f(x+ w)− cδ(x+ w)

)
µ(w)dw.

(7)

Given that samples drawn from wi ∼ µ(w) have zero
probability of satisfying x+ wi,

∇̂f(x)
a.s.−−→

∫
(∇f(x+ w)− cδ(x+ w))µ(w)dw,

∇f̄(x)− ∇̂f(x)
a.s.−−→ cµ(x).

(8)
which completes the proof.

On the other hand, the zero-order variant does not suffer
from this by using finite intervals for approximation.We
illustrate an extreme case of Theorem 1 in Example 2.

Example 2. Heaviside Function: Let

f(x) = H(x) = {1 if x ≥ 0, 0 if x < 0}. (9)

Then, ∇f(x) = δ(x), and the approximated gradient bundle
∇̄f(x + wi) = 0 almost surely. However, the analytical
computation of the bundled objective with a Gaussian µ
would result in f̄(x) = erf(x), whose derivative is non-zero
at x = 0. Thus ∇̂f(x) 6= ∇f̄(x).

Fig. 3: Left: Objective f(x). Center: Bundled objective recon-
structed from first-order gradient bundle. Right: Bundled objective
reconstructed from zero-order gradient bundle

Finally, first-order gradient sampling may compromise the
quality of gradient bundle for non-smooth functions (even
without discontinuities) in the regime of small samples.

Example 3. Quantization of Gradients: Let

f(x) = {−1 + x if x ≥ 0, 1− x if x < 0} (10)

Then, ∇f(x) = 1 for x ≥ 0, and −1 for x < 0. With N
samples, the approximated gradient bundle will be quantized
and can only take a finite set of values.

Fig. 4: Left: Original objective f(x). Center: Value of the gradient
bundle using gradient sampling. Right: Bundled objective recon-
structed from the zero-order gradient bundle.



D. Jacobian Bundle and Bundled Dynamics
We extend the concept of randomized smoothing to dy-

namical systems with the Jacobian bundle and the bundled
dynamics. Let f be a discrete-time dynamical system with
state xt ∈ Rn, and input ut ∈ Rm,

xt+1 = f(xt, ut). (11)

Recall that the linearization of the dynamical system f
around the nominal trajectory {x̄t, ūt}Tt=0 can be formed by
taking a first-order Taylor expansion:

xt+1 =
∂f

∂x

∣∣∣∣
x=x̄t,u=ūt︸ ︷︷ ︸

At

xt +
∂f

∂u

∣∣∣∣
x=x̄t,u=ūt︸ ︷︷ ︸

Bt

ut + ct,

ct = f(x̄t, ūt)−Atx̄t −Btūt,

(12)

While the linearization provides a local approximation, it
suffers the same problem from the gradient in a sense that it
is myopic. We apply randomized smoothing to the Jacobian
of the linearized system, and aim to provide a more globally
informative linear approximation to the system.

Definition 3. The Jacobian Bundle Let µ ∈ L1 be a
multivariate symmetric probability density with arguments
w ∈ Rm, v ∈ Rn. Then, the Jacobian bundle is defined as a
convolution between µ(w, v) and the Jacobian of f :

Āt = Ew,v
[
∂f

∂x

∣∣∣∣
(x̄t+w,ūt+v)

]
, B̄t = Ew,v

[
∂f

∂u

∣∣∣∣
(x̄t+w,ūt+v)

]
.

(13)

Definition 4. The Bundled Dynamics The Bundled dynam-
ics are defined as a multivariate convolution between the
original dynamics and the probability density µ:

f̄(xt, ut) = Ew,v
[
f(xt + w, ut + v)

]
. (14)

Lemma 3. The linear system described by the Jacobian
bundle Āt, B̄t is the exact linearization of the bundled
dynamics f̄(xt, ut).

Proof. Identical to Lemma 1.

The above theorem establishes that using the bundled
Jacobian, as opposed to the exact linearization of the system,
is equivalent to implicitly operating on a smoother version
of the dynamics that has been convolved with µ.

E. Monte-Carlo Approximation and Zero-Order Variant
We propose to approximate the Jacobian bundle using

Monte-carlo integration, where wi, vi ∼ µ(w, v):

Ât ≈
1

N

N∑
i=1

(
∂f

∂x

∣∣∣∣
x̄t+wi,ūt+vi

)
, B̂t ≈

1

N

N∑
i=1

(
∂f

∂u

∣∣∣∣
x̄t+wi,ūt+vi

)
.

(15)
Finally, we introduce a zero-order variant that takes a least-
squares approximation to the local dynamics, which can be
useful when the Jacobians are impractical to compute:

Â0
t , B̂

0
t = argminA,B

N∑
i=1

∥∥∥∥f(x̄t + wi, ūt + vi)− f(x̄t, ūt)−Awi −Bvi

∥∥∥∥2

2

.

(16)

IV. RANDOMIZED SMOOTHING OF CONTACT DYNAMICS

What does it mean to apply randomized smoothing in the
presence of contacts? Intuitively, different samples will en-
counter different contact modes. In expectation, the effect of
sampling is a smoothed behavior where normal and frictional
forces are applied at a distance, and the boundaries of stick
and slip blur. We analyze this intuition through two classes of
contact models: implicit contact defined by complementarity
constraints [15], [37], and the penalty method [16].

A. Contacts Defined by Complementarity Constraints
Implicit models of contact using complementarity con-

straints [14], [15] are widely used in planning through
contact for their ability to stably take bigger time steps
[1], [38]. However, unlike penalty methods which permit
explicit smoothing of forces [3], [19], [20], smoothing results
of implicit optimization problems is less straightforward;
randomized smoothing is unique in that it provides the ability
to do so without an explicit relaxation of constraints.

An accurate treatment of multibody dynamics with contact
and friction in its full glory requires heavy notation and
detracts from the intuition behind the advantage of smooth-
ing. We instead demonstrate the effect of smoothing on
contact dynamics through two simple, 2D examples, and
refer the reader to [15], [17], [23], [37] for a more detailed
presentation of contact dynamics.

To simplify the dynamics aspect of the modeling and focus
more on contact, we keep the full second-order dynamics for
un-actuated objects, but make the assumption that the actu-
ated bodies (robots) are gravity-compensated, PD-controlled
and quasi-static [17], [39]: the robots are always in force
equilibrium, with the generalized forces exerted by contact
balanced by the virtual spring of the proportional part of
the PD controller. The quasi-static assumption reduces the
dimension of robot states by half, and is commonly made
in systems where inertial forces are negligible compared
to contact forces, such as robotic manipulation [5], [40].
Despite these simplifications, our analysis on the effect of
contact smoothing does transfer to the full second-order
dynamics of the entire robot-object system.

Example 4. Randomized Smoothing of Normal Contact.
We first consider a 1D system of two objects in Fig. 5a,
where the boxes can only interact through normal contact
forces. The dynamics of the robot (red box) is described by

−λn + hk(x̃at+1 − xat+1) = 0, (17)

where λn denotes the impulse generated by the normal
force during the timestep h; x̃at+1 and xat+1 are the robot’s
commanded and actual positions at the next timestep t +
1. Constraint (17) states that the contact force −λn/h is
balanced by the virtual spring force k(x̃at+1− xa+1) at t+ 1.

The dynamics of the object (green box) is given by

mvut+1 = λn, (18a)
xut+1 = xut + hvut+1, (18b)

where (18a) states that the gain in object momentum comes
from the normal contact impulse λn, assuming that the robot
has 0 velocity at the current timestep.



The contact impulse and the distance between the two
objects satisfy the following complementarity constraint:

0 ≤ λn ⊥ (xut+1 − xat+1) ≥ 0, (19)

where a ⊥ b for vectors a and b means that aᵀb = 0. The
implication of (19) is three-fold: (i) the impulse can only
push (λn ≥ 0); (ii) the two boxes cannot penetrate at t + 1
(xut+1 − xat+1 ≥ 0); and (iii) non-zero normal impulse exists
only if the two objects are in contact (λn ⊥ xut+1 − xat+1).

The state of the 1D system at t+1 can be solved from the
implicit contact dynamics (17) - (19). The dynamics consists
of two linear pieces, depending on whether the two objects
make contact at t+ 1:[

xut+1

xat+1

]
=

[
1 0
0 0

] [
xut
xat

]
+

[
0
1

]
[x̃at+1] (no contact), (20a)[

xut+1

xat+1

]
=

[ c
1+c

0
c

1+c
0

] [
xut
xat

]
+

[ 1
1+c

1
1+c

]
[x̃at+1] (contact), (20b)

where c = m/(h2k). The explicit dynamics (20), which has
the same form as (12), results in perfect position command
being achieved for xat+1 with no movement for xut+1 if
there is no contact; and xat+1 = xut+1 being placed near the
commanded position if there is contact.

As shown in Fig. 5b, before making contact, the control
input x̃a has no effect on xu, producing zero gradients. In
contrast, when sampling around x̃a, some of the samples
will hit the un-actuated box, and in expectation, push them
away from each other. Thus, the bundled dynamics give
information that x̃a should approach xu to push the box.

Fig. 5: (a) A 1D dynamical system consisting of a 1-DOF robot
(red box) and an un-actuated object (green box). Both boxes are
constrained to slide on a friction surface. (b) The piecewise-linear
relationship between the free object position xu and the commanded
robot position x̃a. Note that there is no contact unless x̃at+1 ≥ xut .

Example 5. Randomized Smoothing of Friction. In this
example, we study the 2D system in Fig. 6 where the robot
(red sphere) interacts with the green box through a frictional
contact on the right of the box.

The Coulomb friction model constrains contact force to
stay inside the friction cone. In addition, when the contact
is sliding, the force needs to stay on the friction cone’s
boundary and in the opposite direction of the relative slid-
ing velocity. Similar to the normal contact constraint (19),
Coulomb friction can be modeled with additional comple-
mentarity constraints [14].

Assuming the same quasi-static dynamics for the robot,
zero initial velocity for the box, and the initial condition
[xut , x

a
t , y

a
t ] = [0, 0, 0], it can be shown, by solving the

dynamics subject to the Coulomb friction constraints, that
the box’s position at the next time step, xut+1, is again a
piece-wise linear function of the control input [x̃at+1, ỹ

a
t+1].

As shown Fig. 7a, the dynamics function consists of four

Fig. 6: A 2D dynamical system consisting of a 2-DOF robot (red
sphere) and an un-actuated object (green box). The robot can move
freely in the xy-plane, whereas the box is constrained to slide on
the frictionless surface.
pieces, where each piece corresponds to one contact mode.
Note that the exact dynamics is flat for all ỹat+1 > 0, which
provides no information about how the control affects the
state. In contrast, the bundled dynamics (Fig. 7b) has non-
zero gradient even for ỹat+1 > 0.

For faster speed and better numerics, multi-body sim-
ulators (such as [17], [41]) frequently relax the exact
complementarity-based Coulomb friction constraints in [15],
[37]. One such relaxation is proposed by Anitescu [23],
which allows the forward dynamics to be solved as a
quadratic program (QP) instead of a linear complementarity
problem (LCP). Using Anitescu’s relaxed constraints, the
dynamics of xut+1 with respect to [x̃at+1, ỹ

a
t+1] (Fig. 7b)

can be shown to have a very similar structure as the exact
Coulomb friction contact dynamics in Fig. 7a. In particular,
the relaxed dynamics is the same as the exact dynamics when
the contact is sticking or separating. In sliding, a “boundary
layer” is introduced, in which the ball drags the box even
when they are not in contact.

Although relaxed contact models such as [23] sacrifice
physical realism, the bundled dynamics of the relaxed contact
models behave similar to the bundled dynamics of the exact
contact models, as shown in Fig. 7c and 7d. This suggests
that algorithms using bundled dynamics for planning can
safely capitalize the speed and efficiency of the relaxed
contact models despite their mild physical inaccuracy.

B. Penalty-based Contacts
1) Description: In the penalty method [16], the forces in

the normal direction are approximated using a stiff spring.
Denoting the signed distance between two objects as φ(q),
we can write the normal-direction force with two modes of
contact and no-contact.

fn = −kmin{φ(q), 0}. (21)

In the penalty approximation of Coulomb friction, sticking
is often enforced by means of very viscous damping, while
slipping is approximated by a constant multiple of the normal
force. Let ψ(q, q̇) be the relative tangential velocity between
two objects at the point of contact.

ft = µfn µ =

{
cψ(q, q̇) if ψ(q, q̇) ≤ ψs
µd if ψ(q, q̇) > ψs

, (22)

where ψs controls the threshold of stick and slip. Simple
models of Coulomb friction sets ψs to make the approxima-
tion continuous (i.e. cψs = µd), as done in [3]. However, the
Stribeck effect [42] tells us that dynamic friction is lesser in
magnitude than static friction. Continuous approximations to
the discontinuities of Stribeck effect is made in Drake [43].



Fig. 7: Implicit contact dynamics using (a) the exact Coulomb friction model [37] and (b) the relaxed Coulomb friction model [23].
Both (a) and (b) plot the the green box position xut+1 as a function of the commanded sphere positions [x̃at+1, ỹ

a
t+1]. Both dynamics are

piecewise-linear, where each piece corresponds to a contact mode: green represents separation; blue sliding and red sticking. The larger
sliding region in (b) is a result of the “boundary layer” artifact of the relaxed Coulomb friction model. (c) and (d): bundled dynamics of
(a) and (b), respectively, obtained using randomized smoothing.

2) Randomized Smoothing: We apply randomized
smoothing by sampling φ and ψ, and plot the results on
Fig.8. We note several effects of randomized smoothing: (i)
in the normal direction, even if the objects are not in contact,
repulsive forces are applied at a distance; (ii) tangential
friction is also applied at a distance due to smoothing that
occurs in the direction of φ in Fig.8; (iii) discontinuous
effects from the Stribeck effect is smoothed out.

Fig. 8: (a) Penalty-based Coulomb friction model with Stribeck
effect. Note the discontinuity between the blue (sliding) and red
(sticking) pieces. (b) Discontinuity in friction is removed by ran-
domized smoothing.

C. Key Insights

1) Problems with Exact Gradients: The non-smoothness
of both the implicit time-stepping scheme and the penalty
method suggests that the algorithms that rely on the local
validity of linearization will suffer. The flatness of the
gradients in non-penetrating configurations also suggests no
direction of improvement.

2) Relaxing Coulomb friction leads to better planning:
Relaxations of the LCP version of Coulomb friction (e.g.
Anitescu) allow the application of friction at a distance
and coincidentally provide meaningful gradients useful for
planning. For instance, the slope of sliding in Fig.7.b sug-
gests that the ball should be closer to the box in the
direction of y order to drag the box. This suggests that
regularization used in popular simulators such as Mujoco
[41] may fundamentally help planning algorithms achieve
better performance.

3) Discontinuities of Contact Dynamics: Implicit time-
stepping and the penalty method both result in non-smooth,
yet continuous contact behavior with the exception of the
Stribeck effect. The intuition behind the continuity of implicit
time-stepping methods lies in the inelastic approximation of
contact behavior, while the continuity of penalty methods
come from considering an infinitesimal section of time.

However, we have yet to conclude the consequences
of Theorem 1 to be a minor nuisance. In more complex

examples with non-smooth geometries, the normal of the
object surface can also change in a discontinuous manner
[44], [45]. In contrast, the zero-order gradient bundle can
be free from the consequences of Theorem 1, which might
suggest that the zero-order nature of popular RL algorithms
such as the policy gradient [46] might coincidentally help in
overcoming pitfalls of sampling gradients directly.

V. ITERATIVE RANDOMIZED SMOOTHING-LQR

The gradient bundle obtained via randomized smoothing
can be used to replace the exact gradient in a variety of opti-
mization problems, suggesting a new family of algorithms. In
this work, we choose to replace the exact linearization with
the Jacobian bundle in the trajectory optimization algorithm
of iterative LQR (iLQR). [47]–[49]. We name our variant
iterative Randomized Smoothing-LQR (iRS-LQR). Our re-
sulting variant is similar to SaDDP [50] or Unscented DDP
[51], but we uniquely apply it in the presence of contact
dynamics with the understanding of how sampling helps.

We first modify iLQR to handle more general constraints
by solving a Model Predictive Control (MPC) problem on
the locally linear dynamics at every time step, which results
in solving a QP of decreasing length at every time step.
Such approaches fit well within the computational budget of
modern QP solvers [52].

MPC (x̄j) = u∗
j , where

min
xt,ut

[
‖xT − xdT ‖2Qd

+

T−1∑
t=j

(
‖xt − xdt ‖2Qt

+ ‖ut‖2Rt

)]
s.t. xt+1 = Atxt + Btut + ct ∀t ∈ {j, · · · , T − 1},

Cu
t ut ≤ dut Cx

t xt ≤ dxt ∀t ∈ {j, · · · , T},
xj = x̄j .

(23)

Here, {Cu
t , d

u
t } are parameters of linear inequalities on state,

and {Cx
t , d

x
t } are parameters of linear inequalities on inputs,

and {xdt } represents the desired trajectory. Note that the time
indices depend on j; the horizon of the MPC decreases with
our progress along the trajectory. Using this subroutine, we
roll out the system using MPC at every timestep (whose
horizons get shorter at every timestep) and iteratively repeat
until a satisfactory solution has been reached (Alg.1).

We introduce a variance scheduling function η(Σ0, k)
which takes the initial variance Σ0 and the current iteration
number k to produce a reduced variance Σk [32], [34].
Convergence to a local minima of the original problem is
guaranteed as long as

∑
k η(Σ0, k)2 <∞.
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Fig. 9: Results for various systems on which iRS-LQR has been tested. Top row: Smooth Systems. Bottom row: Systems with Contact.
Results of the final iterations are illustrated in Fig.1.
Algorithm 1: iRS-LQR

1 Given: Initial state x0, initial input trajectory ūt;
2 Given: Variance scheduler η, initialize k = 0.;
3 Given: Sampling distribution µ with variance Σ0;
4 {x̄t, ūt}Tt=0 ← Rollout f from x0 with ūt;
5 while Convergence do
6 for 0 ≤ t < T do
7 {Āt, B̄t}Tt=0 ← Use (15) or (16) around

(x̄t, ūt) with variance Σk = η(Σ0, k);
8 c̄t ← f(x̄t, ūt)− Ātx̄t − B̄tūt;

9 for 0 ≤ t < T do
10 Observe new nominal state x̄t;
11 Compute new nominal input ūt ← MPC(x̄t);
12 Apply ūt on the system. x̄t+1 = f(x̄t, ūt)

13 k ← k + 1 . Decrease variance

VI. EXPERIMENTS AND RESULTS

Here, we show experimental comparisons of iRS-LQR
(Alg. 1) against the baseline of using the same algorithm
with exact gradients, which we refer to as iLQR.

A. Simulation and Parallelization
We test iRS-LQR on a quasi-dynamic simulation that

relies on convex implicit time-stepping models of contact
[17], as well as the simulation of Drake [43]. We also
parallelize iRS-LQR on the CPU by having different threads
per knot point in {x̄t, ūt}Tt=0, which are responsible for
sampling around the designated points. We use 100 samples
throughout all the experiments to demonstrate the effective-
ness of Monte-Carlo integration in higher dimensions.

B. Smooth Systems
Will the gradient bundle be more effective than the gradi-

ent even for smooth systems? We investigate this question for
three smooth systems: the pendulum, Dubin’s car [53], and
the quadrotor. In many cases, the performance of iRS-LQR
is comparable to or better than that of exact linearization.
However, when the initial guess supplied is not informative,
the gradient bundle can power through local minima and still
arrive at much better minima compared to exact gradients,
as demonstrated by the example of Dubin’s car.

C. Non-Smooth Systems with Contact

To test our hypothesis that the gradient bundle results in
more stable behavior compared to using the exact gradient in
the presence of contacts, we test iRS-LQR on three systems
in robotic manipulation: a planar two-finger manipulation
example with gravity, a planar pushing example [5], and a
box flipping (pivoting) example with gravity (Fig.1).

In the planar hand example, we start with an initial guess
that makes contact. Although the exact gradient is able to
drive the cost down, the fast changing gradients due to the
switching of contact modes between iterations noticeably
destabilize the algorithm. On the other hand, the first-order
and zero-order gradient bundle are much more stable.

For the planar pushing and box pivoting example, we set
the initial guess such that the robot is not in contact with the
object. Due to flat gradients, iLQR is no longer able to make
progress from this bad initialization. In contrast, iRS-LQR
still succeeds in finding a valid descent direction and stably
drives down the cost. These results demonstrate our insights
in the problems of using exact gradients in Sec.IV-C.

D. First-order vs. Zero-Order Gradient Bundle

Throughout our work, we were constantly surprised to see
that the zero-order gradient bundle was on par with, some-
times outperformed, the first-order one. Despite only having
100 samples, the zero-order variant also produced high-
quality solutions in high-dimensional systems (e.g. quadrotor
with 12 states). which is consistent with the findings of [50].

Combined with the robustness of zero-order optimization
for sampling non-smooth functions (Example 2), this may
suggest that zero-order methods may be a promising alter-
native to first-order methods in tackling non-smooth contact
problems. As a consequence, simulators, given enough com-
putation speed and parallelizability, may not necessarily need
to focus on end-to-end differentiability.

E. Contact-dynamics formulations

We show that randomized smoothing is also able to
stabilize second-order (fully-dynamic) systems with penalty-
based contact models, whose gradients are obtained through
Drake’s autodiff feature. However, using the implicit quasi-
dynamic formulation for planning resulted in much faster
(x36) computation compared to the second-order penalty
method due to less number of timesteps.



VII. CONCLUSION

In this work, we have presented a method to obtain
the gradient bundle through contact dynamics by using
randomized smoothing. By applying randomized smoothing
on two different contact models of implicit time-stepping
and penalty, we answered what it means to take a stochas-
tic formulation of contact dynamics. We then applied the
gradient bundle to planning-through-contact problems, and
showed that the gradient bundle enables much more stable
convergence behavior compared to exact gradients. Through
this, we answered how a stochastic formulation of dynamics
might help the planning process.

In addition to the qualitative analysis, our contribution
includes taking the gradient bundle of implicit quasi-dynamic
dynamics, whose explicit smooth approximations are difficult
to make. Combining the stability of our gradients and the
computational benefits of the quasi-dynamic simulation, we
took a step towards stable and real-time solving of contact-
rich manipulation problems.
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