
Functional Co-Optimization Of Articulated Robots

Andrew Spielberg, Brandon Araki, Cynthia Sung, Russ Tedrake, and Daniela Rus

Abstract— We present parametric trajectory optimization,
a method for simultaneously computing physical parameters,
actuation requirements, and robot motions for more efficient
robot designs. In this scheme, robot dimensions, masses, and
other physical parameters are solved for concurrently with
traditional motion planning variables, including dynamically
consistent robot states, actuation inputs, and contact forces. Our
method requires minimal user domain knowledge, requiring
only a coarse guess of the target robot configuration sequence
and a parameterized robot topology as input. We demonstrate
our results on four simulated robots, one of which we physically
fabricated in order to demonstrate physical consistency. We
demonstrate that by optimizing robot body parameters along-
side robot trajectories, motion planning problems which would
otherwise be infeasible can be made feasible, and actuation
requirements can be significantly reduced.

I. INTRODUCTION

The design of robots and the design of robot motions
are innately coupled problems. Changes in physical robot
designs often require modifying or completely redesigning
their motion primitives. Similarly, if trajectories that satisfy
user constraints do not exist for a given robot in solving a
required task, its mechanical design must be revisited.

Consider, for example, a Hexapod (Fig. 1) that must walk
to and press a button 0.15 m off the ground, while remaining
planted on the ground itself. With leg lengths of h = 0.10 m,
this is an impossible task as the Hexapod is not tall enough.
However, lengthening the legs increases the torque effected
by gravity on the leg joints, making it more difficult for the
robot to walk. As the physical design changes, the motion
and actuation for walking changes, e.g. legs with greater
mass require more actuation; longer legs are able to traverse
longer distances per gait cycle. Actuator selection needs to be
considered as well. If smaller motors are used, link masses
may need to be decreased in order to enable the desired robot
motion; if larger motors are used, the robot chassis may need
to grow to fit them.

Task-driven robot design typically involves several steps.
Designers must begin by deciding, at a high level, how the
robot will look and move, including what its method of
movement and actuation will be. Following this, designers
typically select actuators, settle on precise robot dimensions,
materials, and other physical properties. When the robot has
been fabricated, motions must be programmed and tested.
This process can require many design iterations before the

A. Spielberg, B. Araki, C. Sung, R. Tedrake, and D. Rus are
with MIT Computer Science And Artificial Intelligence Laboratory
(CSAIL), Massachusetts Institute of Technology, 77 Massachusetts Avenue,
Cambridge, Massachusetts, {aespielberg, araki, crsung,
russt, rus}@csail.mit.edu.

This work was supported by The National Science Foundation Grant No.
1240383. We thank Michael Posa for discussions regarding the contact-
implicit trajectory optimization method.

Z = 0m

Z = 0.15m
a) b) c)

0.1m

0.15 m 0.15 m

Fig. 1: A Hexapod robot must walk forward to hit a button on the wall.
a) The Hexapod’s legs are too short to reach the button. b) Lengthening the
legs makes the Hexapod tall enough to reach the button c) Shortening the
body allows for motions that are both feasible and require less energy.

Fig. 2: Four parameterizations of the same Hexapod model. Though not
visualized here, masses, moments of intertia, densities, and centers of mass
of the links also are parameterized. More complex robots can have larger
design spaces.

desired robot is built and able to complete the specified task.
We introduce a method for co-optimizing a robot’s physi-

cal design and its motion. Our method operates on physically
parameterized robot topologies (specifically, kinematic trees)
with physical parameters such as link dimensions, masses,
centers of mass, and moments of inertia. Such parameterized
designs afford significant design space (see, e.g., Fig. 2).

Our method is rooted in trajectory optimization [1], [2].
Trajectory optimization is a technique for finding kinody-
namically feasible robot motions subject to constraints such
as actuation limits, desired position and velocity states of the
robot at certain times (e.g. starting pose), and environmental
constraints, such as non-penetration with terrain or obstacles.
Further, trajectory optimization methods optimize these fea-
sible motions for specified objectives, such as minimizing
energy expenditure, maximizing robot speed, and so on.

Traditional trajectory optimization methods typically op-
erate on decision variables that include the robot state, actu-
ation, and contact forces. We demonstrate that robot design
parameters can be incorporated seamlessly into trajectory
optimization problems, enabling the concurrent solution of
robot trajectories, actuator selection, and physical designs.

We contribute the following:
• An algorithm for performing trajectory optimization

with full dynamics while co-optimizing over physical
design parameters and actuation requirements, with no
prescribed gaits for walking robots.

• A system in which efficient evaluation of costs and con-
straints and their gradients and Jacobians respectively is
achieved through symbolic representation of the robot’s
state, actuation, contacts, and parameters.

• Demonstrations of motions on a physical prototype



created using our approach.

A. Prior Work
Optimization techniques have shown great promise over

recent years as a means of generating complex behaviors
from higher level input. Work in [3] demonstrated how gaits
could be designed interactively for walking robots. Work in
[4] incorporated dynamics into the optimization and demon-
strated that an online formulation of trajectory optimization
could be used to create complex motions for humanoids by
varying the constraints and dynamics. Similarly, [5] and [6]
demonstrated that emergent behaviors can be synthesized
for arbitrary morphologies from high level specification, and
[7] demonstrated that trajectory optimization can be used to
synthesize controllers for arbitrary morphologies and high-
level gait specification. However, none of these works have
incorporated physical parameter changes.

On the other hand, recent results related to design opti-
mization include [8], where a kinematic approach to optimal
linkage synthesis is proposed, [9], where robot function is
specified in natural language to automate component selec-
tion, and [10], which demonstrates data-driven co-design for
mechanical and electronic subsystems of functional robots.
[11] demonstrated the ability to select discrete robot compo-
nents, including batteries and actuators, based on constraints
operating on mixed discrete and continuous variables, but
does not consider geometry or motions.

The work most similar to ours is [12]. In this work, the
authors demonstrate the potential for simultaneously opti-
mizing robot gaits and design parameters. Their method does
not factor in contact dynamics and allows only biologically-
inspired subsets of potential quadrupedal foothold patterns.
By contrast, our method for finding walking motions, which
builds upon [1], does not rely on expert knowledge for gait
patterns and computes contact forces implicitly as part of
the optimization. Further, compared with their evolutionary
algorithm-based approach, which provide few theoretical
guarantees, we employ a gradient-based optimization ap-
proach that is locally optimal in costs and constraints.

Although the co-design of robot structure and motions
has been gaining attention recently, it is worth noting that
a related problem, the co-design of robot structure and robot
controllers has been studied for far longer. For instance, a
method for simultaneously designing a high-speed, dynamic
arm with an optimal PD controller was explored in [13],
and the simultaneous design of electric DC motors and their
optimal PID controllers was explored in in [14].

II. CO-DESIGN AS OPTIMIZATION
We frame co-design of robot structure, actuation, and

motion as a parametric trajectory optimization problem,
naturally folding in design parameters as additional variables
atop the traditional trajectory optimization framework. By
incorporating parameters directly in the optimization step,
our method is able to alter the robot’s physical structure to
make otherwise infeasible tasks feasible, as well as optimize
robots for tasks such as path following or forward walking.
Our method exploits symbolic differentiation in order to
compute gradients (Jacobians) of constraints with respect

to physical parameters, enabling efficient optimization of
these structural parameters. While we pay special interest
to ground locomotion due to the complexity of the task, our
method is general to a gamut of robot models and tasks.

Our algorithm solves for robot designs and fully dynamic
motions. It ensures dynamical consistency by employing kin-
odynamic direct transcription trajectory optimization, solving
for contact forces via implicit contact constraints as in [1].
Our algorithm operates in the continuous domain by solving
for the robot state at discretized knot points and integrating
the robot dynamics between them.

Together, these objectives and constraints combine to form
a complex nonlinear program of the form:

min
h,q1...qk,q̇1...q̇k,λ1...λk,u1...uk,ρ

G (1)

subject to dynamics, contact constraints,
actuation constraints, parametric constraints,

design constraints, and task constraints

where G is an objective function operating on the variables,
and q, λ and u are robot state, contact forces, and actuation,
respectively. We describe this model in more detail through-
out the remainder of this section.

A. Robot Specification and Dynamics
Formally, let R be a user-specified robot model comprised

of links and joints with design parameters ρ ∈ Rp. These
design parameters may include, for each link, a parametric
representation of its geometry and mass, as well as functions
which define the link’s inertial tensor, center of mass, and
so on. Each joint may be actuated or non-actuated, and each
actuator may possess torque limits.

Consider, for example, our Hexapod model. Here, ρ in-
cludes as geometric variables the body length, width, and
height and the length of each leg link, with the other
dimensions fixed. ρ also includes mass variables, namely
the body mass and the leg mass (the same for each leg).
The geometry of each link is a rectangular prism. We model
each link as uniform density. We set the inertial tensor of
each leg L specifically to be: m(w2

L + d2L)/12 0 0
0 m(L2

L + d2L)/12 0
0 0 m(L2

L + w2
L)/12


where LL and mL are parameters length and mass parame-
ters of link L respectively. The width wL and depth dL of
link L is constant in this case.

Key to our algorithm is paying special care to the effect of
such parameters on robots’ motion constraints. As dynamic
constraints, we require:

∀t, [q̇(t), q̈(t)]T = f(q(t), q̇(t),u(t), λ(t); ρ) (2)

Here f is a function governing the dynamics of a robot, and
q(t) ∈ Rn, q̇(t) ∈ Rn,u(t) ∈ Rm, λ(t) ∈ R6l, and ρ ∈ Rp)
are the robot state, time derivative of the robot state, actuation
inputs (torques or forces), and contact forces at time t, and
the design parameters, respectively. Parameters are a static
attribute of the robot and are thus not a function of time.



By discretizing t into a vector of K (ordered) knot points
t ∈ RK , we can write, employing the backward Euler
integration method:

∀k ∈ 1 . . .K, [qk+1, q̇k+1]T = [qk, q̇k]T+

f(qk, q̇k;uk;λk; ρ)dtk

where dtk = tk+1 − tk (3)

Again, note that ρ is constant over all knot points. Specif-
ically, for f , we compute the forward dynamics of the robot
in order to compute the robot’s manipulator equations and
invert the equations in order to solve for [q̇k, q̈k]T . In other
words, f(qk,uk, ρ) is computed by solving the parameter-
ized manipulator equations H(qk; ρ)q̈k + C(qk, q̇k; ρ)q̇ +
g(qk; ρ) = B(qk)u + Jλk for [q̇k, q̈k]T . Here, B is the
robot’s control matrix, J is its contact point Jacobian matrix,
H is its inertial matrix, C is its Coriolis matrix, and g are
forces due to gravity. H is computed using the Composite-
Rigid Body algorithm, and C is computed using the recursive
Newton-Euler method.

For the contact forces, we add λ =
[λz, λ

−
x , λ

+
x , λ

+
y , λ

−
y , γ]. Here, λz is the normal for each of l

potential contact forces, λ+x , λ
−
x , λ

+
y , and λ−y are the bilateral

sliding contact forces along the friction cone, and γ is a
slack variable in order to allow for sliding of the contacts.
In practice, similar to [1], we add additional slack variables
when solving the nonlinear complementarity constraints to
make the problem better conditioned numerically.

For our Hexapod example, we model the center of each
foot as being a potential contact point, giving l = 6. We then
add constraints at each knot point k as:

φ(qk, ρ) ≥ 0 (4)

λk,z, λ
+
k,x, λ

−
k,x, λ

+
k,y, λ

−
k,y, γk ≥ 0 (5)

µλk,z − λ+k,x − λ
−
k,x − λ

+
x,y − λ−k,x ≥ 0 (6)

φ(qk, ρ)Tλk,z = 0 (7)

γk + ψ(qk, q̇k, ρ)T êx ≥ 0 (8)

γk − ψ(qk, q̇k, ρ)T êx ≥ 0 (9)

γk + ψ(qk, q̇k, ρ)T êy ≥ 0 (10)

γk − ψ(qk, q̇k, ρ)T êy ≥ 0 (11)

(µλk,z − λ+k,x − λ
−
k,x − λ

+
x,y − λ−k,x)γk ≥ 0 (12)

(γk + ψ(qk, q̇k, ρ)T êx)λk,x
+ = 0 (13)

(γk − ψ(qk, q̇k, ρ)T êx)λk,x
− = 0 (14)

(γk + ψ(qk, q̇k, ρ)T êy)λk,y
+ = 0 (15)

(γk − ψ(qk, q̇k, ρ)T êy)λk,y
− = 0 (16)

Here, φi(·) is the signed distance between contact i and
the terrain, and ψi(·) provides the relative tangential velocity
of each contact. (Note we have dropped the contact indexing
i in the constraints above for readability.) The first constraint
encodes non-penetration; the second constraint is necessary
for breaking the contact forces into slack and bilateral
components. The third constraint enforces friction cone con-
straints, and the fourth constraint encodes the strict comple-
mentarity of contacts. The remaining constraints introduce

the tangential velocity term to the previous constraints in
order to allow for sliding in the contacts.

The decision to use an implicit contact constraint for-
mulation is important for two reasons. First, it lessens the
specification requirements for the user. As we are concerned
with allowing users to design robots from high-level design
goals, we consider such details to be a burden. Second,
constraining foothold patterns can shrink the design space.
This may make it impossible for the optimizer to find feasible
designs and motions for a given task, even if feasible designs
would otherwise exist; or, those solutions the optimizer finds
may be highly suboptimal. By solving for contacts as we
search for motions, we allow the optimizer to search over
the space of all robot designs and motions at once.

B. Constraints
In addition to the robot, users may specify three types of

problem constraints - parametric constraints, task constraints,
and design constraints.

As a bare minimum for parametric constraints, we require
an upper and lower bound on each design parameter in order
to prevent degenerate solutions. If a user desires, auxiliary
constraints may be added which establish a necessary rela-
tionship between parameters; these are useful for describing
fabrication constraints. For example, the minimum possible
mass of a robot may be a function of its size. For our
Hexapod example, we require the (obvious) constraint that
masses and dimensions must be positive, and specify an
upper and a lower bound on each.

Task constraints, which define the robot’s function, are
kinematic in nature. These constraints allow users to specify
the configuration (including world pose) of the robot, the
position of any point on the robot in the world frame, and
prescribe velocities of any of the robot’s degrees of freedom.
For walking robots, we also automatically add the constraint
that links without contact points must not collide the ground
(unless such a collision is explicitly requested by a user).

In our Hexapod task example, we add three task con-
straints: that our robot is upright on the ground with q̇1 = 0
at the first knot point, that our robot is upright on the ground
with q̇K = 0 at the final knot point, and that the front and
center of the robot’s body is at a height of 0.15 m.

Design constraints define a mapping between actuation
and design parameters. Higher power-output motors tend
to be larger in both size and mass. We assume designers
have access to a discrete collection of motors with which
to build their robots. Each motor is rated with a maximum
power output, and comes with its own design restrictions;
specifically, they must fit on the robot in the specified
locations, and the robot must be able to manage their load.

To ground this discussion, consider our Hexapod example.
Our Hexapod topology calls for three actuators on each side.
Any solution motion imposes constraints on the minimum
motor size. The height of the Hexapod’s body link must be
at least the height of the motor; its width must be at least
twice the width of the motor, and its length must be at least
three times the length of the motor. Further, the mass of the
body must be at least six times the mass of the chosen motor,
plus the mass of the building materials.



Such a set of constraints is discontinuous and can cause
numerical challenges for our optimizer. Therefore, we model
the necessary lower bounds on mass and dimensions con-
servatively, linearly interpolating the motor masses and link
dimensions between the jumps in power output. Although
this constraint is nonsmooth at a few points, we have not
found this to be an issue for our optimizer. Fig. 3 shows our
model for conservatively estimating the added motor mass;
similar models are used for the other variables as well.

As will be described in Section II-C, we seek to minimize
the maximum power output throughout a motion, thus allow-
ing our optimizer to choose motors with the smallest design
restrictions possible. We currently require all motors in a
robot to be the same for ease of programming the electronics.

C. Objectives and Actuator Selection

Our algorithm can optimize over any smooth function of
the robot state, actuation, contact, and design parameters.
However, we mostly focus on the objective function

G = αGact + βGreg (17)

where Gact is an actuation minimizing term, Greg is a pa-
rameter regularizer, and α and β are user-specified weights.

By choosing Gact as part of our objective function, our
method automatically chooses the actuators necessary for
the designed robots by attempting to minimize the necessary
power consumption. Since motors with higher power require-
ments are often larger, the decision to use higher power
output motors constrains designs. We seek to minimize the
motor size by minimizing the maximal power output.

We write this objective Gact as:

Gact = max
j

max
i

uij ≡ ‖u‖∞ (18)

where uij denotes the necessary actuation (torque) output of
actuator i and knot point j. The electrical power consumption
of the motors we consider are linearly proportional to their
torque applied, so we use torque as a proxy.

Through use of an auxiliary variable ξ, this objective can

Fig. 3: A conservative mapping of the necessary output torque to individual
minimum motor mass used to preserve continuity. We avoid flat regions in
our model to ensure that our optimizer has meaningful gradients to work
with.

be written as:

ξ

subject to ∀i, j ξ − uij ≥ 0

ξ + uij ≥ 0

The total actuation of each motor at each knot point must
also be limited by the specifications of the largest motor
available in a designer’s library.

For aesthetics, functional purposes, and perhaps fabri-
cation concerns (e.g. reducing material consumption), the
designer may prefer that the output designs respect her vision
as closely as possible. Therefore, we add the regularization
term Greg to the objective cost. We use L2 regularization as
its smoothness makes it easier to optimize over, though other
regularizers may be employed as well. In particular,

Greg =
1

2
‖ρ− ρ0‖22 (19)

The choice in α and β represents a user-specified trade-off
between the desire to minimize motor size and the desire to
keep the design close a designer’s original vision.

D. Initialization

Finally, users must specify guesses for the robot’s con-
figuration q at each time step and a maximum time for
task completion. We stress here that the initial guess need
not be physically feasible. Our algorithm generates initial
poses for each knot point by linearly interpolating over a few
sparse user-specified keyframes. An example five keyframe
sequence for the Hexapod, inspired by the tripod gait, is
shown in the video.

Velocities q̇ are automatically initialized to 0. Knot points
are linearly spaced between [0, T ], where T is a user-
specified maximum duration of the motion. The contact force
vector for contact point i at knot point k is set to be normal
to the terrain with magnitude equal to the robot’s weight if
its keyframe interpolation is in contact with the terrain, and
0 otherwise. For actuation initialization, uij ∼ U(−u′i, u′i),
where u′i is maximum torque-limit for actuator i.

E. Optimization

A complete description of the algorithm can be found in
Alg. 1. For the minimization step, we use SNOPT [15],
a sparse sequential quadratic programming (SQP) solver
which has been shown to be effective in solving direct tran-
scription optimization problems due to their sparse nature.
Our parameterized problem is in fact still sparse, since the
number of design parameters in each constraint is constant
and does not grow with the size of other problem parameters
such as knot points or robot state dimensionality. SNOPT
internally approximates the necessary Hessian information
in the optimization step in a numerically robust manner. We
break the optimization into two successive calls to SNOPT;
once to find a feasible solution (with no objective function),
and once using the feasible point as a seed to the objective
optimization. Since SNOPT converts constraints to costs to
find feasible points, minimizing over costs and constraints
simultaneously can sometimes lead SNOPT to deem locally



feasible problems as infeasible. By splitting the optimization
into two steps, we avoid this scenario.

III. IMPLEMENTATION

Our system was implemented atop Drake [16], a MATLAB
toolbox for robot simulation and trajectory optimization.

Trajectory optimization approaches often rely on gradient-
based methods (such as SQP) to solve the formulated
nonlinear programs. The form of these Jacobians is well
understood for robot dynamics when taken with respect to
actuation, state, and time. It is less obvious how to calculate
these Jacobians with respect to arbitrary physical parameters.
One approach is to calculate these Jacobians numerically.
However, computing finite differences can be expensive and
it can be numerically inaccurate in regions where function
curvature is large.

Our solution is to represent costs and constraints sym-
bolically in all decision variables. Since typical constraints
vary smoothly with respect to physical parameters, we can
use the symbolic representation to efficiently calculate these
Jacobians. This has benefits for designer usability as well.
A symbolic representation enables complex user costs and
constraints with no user overhead in specifying Jacobians.
This representation also makes it natural for users to define
metaparameters of other physical parameters (e.g. moments
of inertia that are functions of masses and link dimensions).

Generating symbolic objectives and constraints is a pre-
processing procedure that only has to be performed once
per robot or task. In order to speed up the evaluation of the
constraints and their Jacobians, we compile them to C.

IV. ANALYSIS

A. Complexity

The algorithm has two phases of computation - pre-
processing, in which dynamic, contact, and user-specified
constraints and objectives are composed, and the optimiza-
tion step itself. We examine each in turn.

1) Constraints And Objectives: The dynamics of the
robot need only be computed once in order to formulate
the dynamics constraints. This routine relies on two steps:
Composite Rigid-Body and Recursive Newton-Euler algo-
rithms, which run in O(n) time, and solving the manipulator
equations. Solving the manipulator equations is the most
time-consuming operation, requiring O(n3) time. Computing
the Jacobian of the dynamics requires differentiating each of
the O(n) dynamics expression coordinates with respect to
(n+m+p+ l) state, actuation, contact force, and parameter
variables, taking O(n3(n(n+m+ p+ l))) time.

Computation of the contact constraint relies on computing
the distance from each contact point on the robot to each
potential terrain contact point. Computation of each of the
contact points in the world frame can be computed in O(n)
time using forward kinematics. Thus, the distance from
each contact point in the world to each terrain point may
be computed in O(n) time. For piecewise defined terrain
with τ grid cells, and l contact points, O(lτ) constraints
must be composed, this computation takes O(lτn) time. For
Jacobians, each of O(lτ) constraints must be differentiated

with respect to O(n+l+p) state, contact force, and parameter
variables, taking O(nlτ(n+ l + p)) time.

Beyond the constraints that we add automatically, users
are free to add their own constraints as described above.

2) Optimization: Each of our two SNOPT calls requires,
at worst, O(‖z0−z∗‖2) iterations to converge, where z0 is the
initial decision vector of each SNOPT call and z∗ is the local
optimal feasible solution. For each iteration, every constraint
and its Jacobian must be evaluated. The time needed to
evaluate these constraints and Jacobians is equal to the
time needed to formulate them, as described above. O(K)
dynamics, non-terrain penetration constraints, and contact
constraint sets must be evaluated at each iteration.

B. Convergence Guarantees

Our optimization problem is highly nonlinear over a very
high dimensional space; state, design, and slack variables
sum to (2n+m+6l)K+p+1+(K−1)(5l+1) variables per
problem. For nonlinear problems, SNOPT is only guaranteed
to converge in the neighborhood of the solution. If the prob-
lem is initialized within a small enough neighborhood of a
feasible solution, then SNOPT (and indeed our algorithm) is
guaranteed to find a feasible design. Otherwise, no guarantee
can be made. Theoretically, this neighborhood is very hard
to define explicitly. In practice, we find that local feasibility
of our problems is most sensitive to the initial guesses for
the actuation. In the event of failures, random restart can
eventually find a solution with most well-behaved problems.

V. EXPERIMENTS

We present virtual experiments on four model robots to
demonstrate the flexibility and power of our algorithm. Our
model robots include a Hexapod, Biped, Quadruped, and
Quadcopter, all with fully dynamic motion. Further results
can be found in the video.

We model all of our virtual and physical experiments (with
the exception of the Quadcopter) using the Dynamixel family
of servo motors. A chart mapping the necessary power output
to motors we have selected from the Dynamixel family, along
with their masses and dimensions can be seen in Table I.

All walking robots were given 4 seconds to complete their
tasks; the Quadcopter was given 6 seconds. K = 16 knot
points were used for all experiments. For legged robots,
we model the legs’ inertial tensors as rectangular prisms as
described in Section II-A; we choose constant values for
the body links, assuming we can realize these moments by
judiciously distributing the mass in our fabrication process.
All joints on our robots are actuated, and there are no joint
limits. Our robot models are shown in Figs. 4 and 5.

A. Hexapod

Our Hexapod demonstrates our running example being
optimized using our algorithm. We require the Hexapod to
walk forward 0.45 m and touch a height of 0.15 m, while
keeping all legs planted on the ground. This task is infeasible
without adjusting its parameters, since the center of its body
initially is only 0.1 m tall. The Hexapod has 6 parameters in
total: the X (length), Y (width), and Z (height) extents of
the base, the (equal) height of the legs, the mass of the body,



Algorithm 1 Co-optimization Of Trajectories and Parameters

1: procedure CO-OPTIMIZE(R,U,G) . R is a parameterized robot design, G is a user-specified objective function, U is
the set of user constraints, G is a user-specified objective function.

2: Constraints ← {U}
3: Costs ← {}.
4: for k = 0 . . .K − 1 do
5: Constraints ← Constraints ∪{Λk,Mk,qk+1 = qk + f(qk,uk, ρ)dtk, ρlower ≤ ρ ≤ ρupper}
6: . Λk are the contact constraints, Mk are the motor constraints.
7: (q, , q̇, u, dt, λ, ρ)← SNOPT(qinit, q̇init, uinit, dtinit, λinit, ρinit, Constraints, Costs) . Solve for feasibility.
8: Costs ← G
9: return (Success, q, q̇, u, dt, λ, ρ)← SNOPT(q, q̇, u, dt, λ, ρ, Constraints, Costs) . Solve with costs.

Motor Name X Extents (m) Y Extents (m) Z Extents (m) Mass (kg) Torque (N · m)
AX-12a 0.032 0.04 0.05 0.055 1.53
RX-28 0.0355 0.0356* 0.41 0.072 2.83

MX-64T8 0.0402 0.041 0.0611 0.126 6.0

TABLE I: The motors from our selected Dynamixel motor library, ordered by increasing torque and size. All motors consume 12 V and have a top speed
of approximately 2π rad / s.
*Though this motor’s Y extents are 0.0356, we model it as 0.0405 in order to keep the Y extents monotonically increasing.

and the (equal) mass of the legs. The optimization problem
has 1528 decision variables.

We use the Hexapod as an opportunity to demonstrate the
results of our regularization objective. In particular, we run
our Hexapod under two conditions: β = 0, and β = 1.0. We
set α = 1.0 for all of our experiments. For each condition,
we ran 10 optimizations. Initial parameters and the results
under each condition can be seen in Table II.

As expected, the legs of the Hexapod grow to satisfy the
height constraints. Further, the leg masses decrease, reducing
the power output needed to propel the robot forward.

As β increases, the Hexapod approaches its initial param-
eter values where possible. Larger β results in larger link
masses; larger motors may be necessary depending on the
trajectories selected. For the β = 0 case, the motors had
to be increased from the AX-12a model to the RX-28 in
one trial, and in the β = 1.0 case, the motors had to be
increased in four of the trials. As expected, larger relative β
values decrease the emphasis on reducing motor size.

We found in our β = 0 experiments that some of the
optimized parameter values were spread fairly uniformly
throughout their range; for larger β values these parameters
snap to their initial parameter values (e.g. the body Z
extents). The regularizer can automatically detect parameters
which have little effect on the actuation objective and keep
them in their preferred configuration with little to no cost.

We fabricated a real Hexapod in order to demonstrate that
our simulations are physically realizable. We selected one
optimized Hexapod design from our β = 0 experiments and
fabricated it with a light laser cut acrylic frame, 3-D printed
legs, and 6 Dynamixel AX-12a servos with PID position
and velocity control. An Arduino MEGA 2560 was used
to control the electronics and record data. Our fabricated
Hexapod body is 0.9 m long, 0.1 m wide, and 0.15 m tall.
Its legs are 0.15 m tall legs.

A montage of one fabricated Hexapod alongside its sim-
ulated counterpart can be found in Fig. 4. Compared with
its planned motion, the center of mass of the fabricated
Hexapod had an average integrated squared error of 1.93

cm2 in x (the direction of motion), 0.078 cm2 in the
y − z plane, and 1.97

◦2

in its angular orientation. Although
geometrically the motions look quite similar, there is a large
discrepency in tracking in the x direction since the actual
friction coefficients were higher than those used for planning
the virtual model. Throughout its trajectory, the center of
mass of the physical model gradually fell behind that of
the virtual model due to slip. Improving the accuracy of the
frictional coefficients or tightly constraining the allowed slip
in motion planning can reduce these types of errors.

B. Biped
The Biped example demonstrates that our walking robots

can locomote on more than just flat terrain. In this example,
we present a Biped, consisting of a base, hip joints, and
knee joints. It consists of the following eight parameters: the
length of the lower leg links (equal), the length of the upper
leg links (equal), the x, y, and z dimensions of the base, the
mass of the lower leg links (equal), the mass of the upper
leg links (equal), and the mass of the body.

We present two tasks for the Biped. In the first task, we
require the Biped to walk forward 0.3 m. In the second task,
we require the Biped to walk forward 0.3 m and up a 0.1 m
step. We set α = 1.0 and β = 0 for both tasks. Further, we
restrict the final height of the Biped to lie between 0.25 m
and 0.35 m tall. This problem has 750 decision variables.

We ran 30 optimization runs for each task. Table III
presents statistics about the optimized design and motion,
along with valid parameter ranges. Two items are of par-
ticular note. First, resulting masses are near their lower
limits. Lowering the masses of the links decreases the power
needed to actuate them, and allows the optimizer to select
the smallest motors available (which it does for all tasks).
Notably, the masses are rarely all at their absolute minimum -
some excess mass may be added by the optimizer to increase
the controllability of the design. Second, leg links tend to get
longer, meaning they have to actuate over a smaller angular
range. For the step task in particular, the algorithm discovers
that the upper leg link should be shorter than in the flat



β Actuation Regularization Body X (m) Body Y (m) Body Z (m) Leg Mass (kg) Body Mass (kg) Opt. Time (s)
Objective (N · m) Objective 0.9 / 1.2 / 1.05 0.05 / 0.10 / 0.10 0.1 / 0.15 / 0.15 0.08 / 0.12 / 0.10 0.3 / 0.5 / 0.4

0 1.49 (0.572) 0.394 (0.019) 1.01 (0.154) 0.092 (0.008) 0.138 (0.023) 0.08 (0.0) 0.027 (0.46) 2,246 (2,230)
1.0 1.28 (0.189) 0.447 (0.026) 1.50 (0.014) 0.1 (0.0) 0.15 (0.0) 0.08 (0.0) 0.433 (0.019) 2,049 (2,007)

TABLE II: Results of the simulated Hexapod optimizations for two β values. Parentheses denote standard deviations. Headers of parameter columns denote
lower bound / upper bound / initial value. The task was feasible for 7 of the 10 initializations.

t = 0.0 s t = 1.0 s t = 2.0 s t = 3.0 s t = 4.0 s

Fig. 4: A montage of our simulated fabricated Hexapod in motion.

Task Actuation Lower Leg Length (m) Upper Leg Length (m)
Objective (N · m) 0.5 / 4.0 / 1.0 0.5 / 4.0 / 2.0

Flat 0.506 (0.117) 0.216 (0.044) 0.100 (0.032)
Step 0.651 (0.267) 0.2328 (0.509) 0.085 (0.044)

Task Body X (m) Body Y (m) Body Z (m) Body Mass (kg)
0.3 / 2.0 / 1.0 0.3 / 2.0 / 1.0 0.3 / 2.0 / 1.0 0.5 / 10.0 / 4.0

Flat 0.080 (0.00) 0.085 (0.079) 0.133 (0.044) 0.14 (0.058)
Step 0.088 (0.024) 0.097 (0.076) 0.130 (0.043) 0.126 (0.026)

Task Upper Leg Mass (kg) Lower Leg Mass (kg) Opt. Time (s)
0.5 / 10.0 / 4.0 0.5 / 10.0 / 4.0

Flat 0.064 (0.037) 0.068 (0.030) 685 (1,830)
Step 0.066 (0.034) 0.059 (0.019) 460 (500.2)

TABLE III: Results of the simulated Biped optimizations for the flat and
step terrain. Parentheticals denote standard deviations. Headers of parameter
columns denote lower bound / upper bound / initial value.

walking task in order to clear the step via a forward motion.

C. Quadruped
The Quadruped presents the most articulated robot of

our examples. Our Quadruped model consists of four legs
attached to a base. Similar to our Biped, each leg has an
upper and lower limb; the parameterization used for the
Quadruped, in fact, is the same as that of the Biped but
with two extra legs (and some different parameter ranges).
We require the robot to walk forward 0.25 m, with a final
height between 0.35 m and 0.4 m. Note the Quadruped only
starts at 3 m tall; the algorithm must discover that it must
grow. The Quadruped problem has 1284 decision variables.

Although we have put a focus on actuation minimization
and regularization objectives, our method can extend to other
objectives which may be of interest to other roboticists. To
demonstrate this, we optimize our Quadruped over two sets
of experiments. First, we optimize our Quadruped over our
standard objectives with α = 1.0 and β = 0.0. Second, we
optimize our Quadruped in a different set of experiments
where we minimize time to task completion.

Each experiment was run 10 times. This is a difficult
and time-consuming optimization problem, sensitive to initial
actuation guesses, and so for each experiment we only
received a handful of successes (three each). Thus, we note
mostly qualitative results here.

In the actuation minimization experiments, the heights of
the legs increased to their maximum combined lengths of

0.4 m. This allows the robot to locomote while expending
as little torque possible, since its joints have to cover less of
an angular range to travel the required distance. Meanwhile,
in the velocity tasks, the legs decreased to their minimum
combined lengths of 0.35 m. Shorter legs give the robot
greater acceleration and deceleration, allowing the robot to
achieve the zero velocity start and end constraints.

In both sets of experiments, the base and upper leg
link masses decreased to nearly their minimum bounds; the
total robot masses decreased overall as well. However, the
bottom link mass decreased for the actuation minimization
task, while increasing slightly for the time minimization.
Increasing mass in the lower leg links increases their inertial
moments, making overall velocity of the robot easier to
control. This is again important for allowing time-objective
designs to easily decelerate. Controllability is not such a
concern for the lower-actuated design, and so the optimizer
is free to decrease masses to decrease power output.

Finally, we notice a large contrast in the objective values
between the two tasks. For the actuation minimization task,
the full 4 seconds was required, while the maximum torque
required ranged between 0.294 and 0.494 N · m, resulting
in the smallest motors. Meanwhile, for all time minimization
trials, the largest motors were selected and the maximum
torque was used (6 N · m), with most of these high torques
occurring during the push-off and landing of contacts. Times
required for task completion, however, ranged from 1.252 s
to 1.268 s, marking a significant improvement.

D. Quadcopter

As a final example, we present a Quadcopter, which we
use to validate our assertion that our algorithm is able to find
known optimal parameterizations, with better objectives than
any other (valid) fixed parameterization. The Quadcopter also
presents an opportunity to demonstrate our algorithm on a
non-walking example, demonstrating its generalizability.

Our Quadcopter consists of a circular base with motors
spaced evenly around the circle half the overall size of the
Quadcopter. We model the base as being uniform density
with fixed inertia. Each motor acts as a force element which
can provide an impulsive linear force, which provides linear



Quadcopter model Biped model Quadruped model

Fig. 5: The non-Hexapod models.

Fig. 6: A surface plot of the actuation costs versus various parameterizations
for the Quadcopter. Our parameterized trajectory optimization is success-
fully able to find the optimal parameterization at the bottom-left corner.

thrusts and torques to the Quadcopter’s base. Our Quadcopter
has two parameters - the radius of the base (which in turn
positions the motors), and an adjustable mass which can
be increased at each motor’s base. We consider the motors
chosen a priori and massless for this single example.

For our task, we require the Quadcopter to fly in a circle
of radius 1 m by hitting 16 waypoints. This simple model
and task (274 decision variables) admits an obvious optimal
solution: in order to maneuver with as little power output as
possible, torquing the robot and maintaining altitude must be
as cheap as possible. This is achieved when the motors are
extended as far out radially as possible and when the mass
is reduced to its minimum.

In our experiments, we allow the Quadcopter radius to
vary between 0.1 m and 0.5 m (initialized at 0.3 m,) and
allow the mass to vary between 0.3 kg and 0.7 kg (initialized
at 0.5 kg). Over 20 trials, our optimizer successfully found
the optimal configuration every time in less than 5 seconds.
Beyond this, we ran 20 trials fixed at 400 different parameter
configurations. A plot showing the resulting average costs of
these trials can be seen in Fig. 6. The minimum can be found
at 0.5 m and 0.3 kg as claimed; our algorithm recovered the
optimal parameterization and corresponding motion.

VI. CONCLUSION

We have introduced an algorithm for the co-optimization
of robot design and function, and we demonstrate that a
natural parametric representation and complete symbolic
formulation of constraints, costs, and robot dynamics allows
for direct and efficient of physically realizable designs. Our
method is able to simultaneously design the robot motion,
robot body parameters, and select from available actuators
with very little user overhead. Our work suggests two natural
follow-up problems whose solutions would aid the effective-
ness and usefulness of our method.

First, our method would benefit from a better initialization
procedure. Our method assumes that the robot designer can
identify initial guesses for the robot motions and can specify
them as waypoints. In our examples these initial guesses were
fairly obvious, typically amounting to linear interpolation
between starting and ending poses and considering natural
biological motion of legs. Further, our method chooses the
initial actuation vector at random, which can sometimes lead
to local infeasibilities, requiring a random restart. In order to
automate the design process further, a similar coarse planning
method such as a parametric variant of RRT [17] is needed.

Second, topology is fixed in our method. A method for
searching over morphology while searching over design
parameters is necessary to explore larger design spaces.
Such an optimization would likely be a mixture of discrete
and continuous variables, and thus much harder to solve
efficiently, though we have already started in this direction
using conservative continuous models for motor selection.

REFERENCES

[1] M. Posa and R. Tedrake, “Direct trajectory optimization of rigid body
dynamical systems through contact,” in Algorithmic Foundations of
Robotics X, 2013, vol. 86, pp. 527–542.

[2] E. Todorov, “A convex, smooth and invertible contact model for
trajectory optimization,” in 2011 IEEE International Conference on
Robotics and Automation (ICRA), May 2011, pp. 1071–1076.

[3] V. Megaro, B. Thomaszewski et al., “Interactive design of 3D-printable
robotic creatures,” ACM Transactions on Graphics, vol. 34, no. 6, pp.
216:1–216:9, Oct. 2015.

[4] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of
complex behaviors through online trajectory optimization,” in 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2012, pp. 4906–4913.

[5] I. Mordatch, E. Todorov, and Z. Popović, “Discovery of complex
behaviors through contact-invariant optimization,” ACM Transactions
on Graphics (TOG), vol. 31, no. 4, p. 43, 2012.

[6] I. Mordatch, K. Lowrey et al., “Interactive control of diverse complex
characters with neural networks,” in Advances in Neural Information
Processing Systems, 2015, pp. 3114–3122.

[7] K. Wampler, J. Popović, and Z. Popović, “Animal locomotion con-
trollers from scratch,” in Computer Graphics Forum, vol. 32, no. 2pt2.
Wiley Online Library, 2013, pp. 153–162.

[8] S. Coros, B. Thomaszewski et al., “Computational design of mechan-
ical characters,” ACM Transactions on Graphics, vol. 32, no. 4, pp.
83:1–83:12, Jul. 2013.

[9] A. Mehta, J. DelPreto et al., “Robot creation from functional specifica-
tions,” in The International Symposium on Robotics Research (ISRR),
Sestri Levante, Italy, Sep 2015.

[10] A. Mehta, J. DelPreto, and D. Rus, “Integrated codesign of printable
robots,” Journal of Mechanisms and Robotics, vol. 7, no. 2, p. 021015,
2015.

[11] A. Censi, “A class of co-design problems with cyclic constraints and
their solution,” IEEE Robotics and Automation Letters, vol. 2, no. 1,
pp. 96–103, Jan 2017.

[12] K. Digumarti, C. Gehring et al., “Concurrent optimization of me-
chanical design and locomotion control of a legged robot,” in 17th
International conference on climbing and walking robots (CLAWAR
2014), 2014.

[13] J.-H. Park and H. Asada, “Concurrent design optimization of mechan-
ical structure and control for high speed robots,” Journal of dynamic
systems, measurement, and control, vol. 116, no. 3, pp. 344–356, 1994.

[14] J. A. Reyer and P. Y. Papalambros, “Combined optimal design and
control with application to an electric dc motor,” Journal of Mechan-
ical Design, vol. 124, pp. 183–191, 2002.

[15] P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP
algorithm for large-scale constrained optimization,” 2002.

[16] R. Tedrake, “Drake: A planning, control, and analysis toolbox
for nonlinear dynamical systems,” 2014. [Online]. Available:
http://drake.mit.edu

[17] S. M. LaValle and J. J. Kuffner Jr, “Rapidly-exploring random trees:
Progress and prospects,” 2000.

http://drake.mit.edu

	INTRODUCTION
	Prior Work

	CO-DESIGN AS OPTIMIZATION
	Robot Specification and Dynamics
	Constraints
	Objectives and Actuator Selection
	Initialization
	Optimization

	IMPLEMENTATION
	ANALYSIS
	Complexity
	Constraints And Objectives
	Optimization

	Convergence Guarantees

	EXPERIMENTS
	Hexapod
	Biped
	Quadruped
	Quadcopter

	CONCLUSION
	References

