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Abstract

Having scalable verification and control tools is crucial for the safe operation of highly
dynamic systems such as complex robots. Yet, most current tools rely on either convex
optimization, which enjoys formal guarantees but struggles scalability-wise, or black-
box learning, which has the opposite characteristics. In this thesis, we address these
contrasting challenges, individually and then via a rapprochement.

First, we present two scale-improving methods for Lyapunov-based system veri-
fication via sum-of-squares (SOS) programming. The first method solves composi-
tional and independent small programs to verify large systems by exploiting natural,
and weaker than commonly assumed, system interconnection structures. The second
method, even more general, introduces novel quotient-ring SOS program reformu-
lations. These programs are multiplier-free, and thus smaller yet stronger; further,
they are solved, provably correctly, via a numerically superior finite-sampling. The
achieved scale is the largest to our knowledge (on a 32 states robot); in addition,
tighter results are computed 2–3 orders of magnitude faster.

Next, we introduce one of the first verification frameworks for partially observable
systems modeled or controlled by LSTM-type (long short term memory) recurrent
neural networks. Two complementary methods are proposed. One introduces novel
integral quadratic constraints to bound general sigmoid activations in these networks;
the other uses an algebraic sigmoid to, without sacrificing network performances,
arrive at far simpler verification programs with fewer, and exact, constraints.

Finally, drawing from the previous two parts, we propose SafetyNet, which via a
novel search-space and cost design, jointly learns readily-verifiable feedback controllers
and rational Lyapunov candidates. While leveraging stochastic gradient descent and
over-parameterization, the theory-guided design ensures the learned Lyapunov candi-
dates are positive definite and with “desirable” derivative landscapes, so as to enable
direct and “high-quality” downstream verifications. Altogether, SafetyNet produces
sample-efficient and certified control policies—overcoming two major drawbacks of
reinforcement learning—and can verify systems that are provably beyond the reach
of pure convex-optimization-based verifications.

Thesis Supervisor: Russ Tedrake
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

The recent years witnessed a momentous growth of impressive robotics applications:

obstacle-avoiding drones, back-flipping humanoids, Rubiks-solving and Lego-playing

robotic hands, (semi)autonomous cars, not to mention the “purpose-built robots” for

food delivering or warehouse packing, which were once a fantasy and now a somewhat

mundane reality.

While a unifying theme of “safely and more reliably perform more dexterous and

complex real-world tasks” clearly emerges from these advancements, under the hood,

such progress in verification and control is made possible by two fundamentally dif-

ferent approaches. One approach is deeply rooted in control theory and convex op-

timization, as represented by Lyapunov theory and sum-of-squares (SOS) programs;

and the other is data-driven, as represented by deep neural networks and supervised

or reinforcement learning.

At the heart of the co-existence of the two approaches are their contrasting pros

and cons. The optimization-based offer provable performance guarantee, but the

core assumption of convexity restricts their scale and generality. On the contrary,

despite the ever-increasing popularity and stellar empirical performance, analysis of

learning-based methods is elusive due to the models’ black-box nature.
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1.1 Contribution

In this thesis, we address these contrasting challenges of the two approaches, first

individually and then via a rapprochement. In particular, we propose to improve the

scalability of the optimization-based; bridge the analytical gap of the learning-based;

and design a balanced (structured) mixture of the two.

First in Part I, we present two methods to address the well-acknowledged scal-

ability challenge for Lyapunov-based stability verification via sum-of-squares (SOS)

programming. The first method exploits that large-scale systems are often natural

interconnections of smaller subsystems, and solves independent and compositional

small programs to verify the large systems. Compared with existing compositional

methods, the proposed procedure does not rely on commonly-assumed special struc-

tures (e.g., cyclic or triangular), and results in significantly smaller programs and

faster computation.

The second method, even more general, proposes novel sampling quotient-ring

SOS programs. The method starts by identifying that inequality constraints and

Lagrange multipliers are a major, but so far largely neglected, culprit of creating

bloated SOS verification programs. In light of this, we exploit various inherent system

properties to reformulate the verification problems as quotient-ring SOS programs.

These new programs are multiplier-free, smaller, sparser, less constrained, yet less

conservative. Their computation is further improved, significantly, by leveraging a

recent result on sampling algebraic varieties. Remarkably, solution correctness is

guaranteed with just a finite (in practice, very small) number of samples. The achieved

scale is the largest to our knowledge (on a 32 states robot); in addition, tighter results

are computed 2–3 orders of magnitude faster.

Next in Part II, we introduce one of the first verification frameworks for partially

observable systems modeled or controlled by LSTM-type (long short term memory)

recurrent neural networks. Formal guarantees for such systems are elusive due to

two reasons. First, the de facto activations used in these networks, the sigmoids,

are not directly amenable to existing verification tools. Moreover, the networks’
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internal looping structures make straightforward analysis schemes such as “unrolling”

impractical for long-horizon reasoning.

Recognizing these challenges, we propose two complementary techniques to handle

the sigmoids, and also to enable a connection with tools from control theory and

convex optimization to handle the long horizon. One method introduces novel integral

quadratic constraints to bound arbitrary sigmoid activations in LSTMs; the other

proposes the use of an algebraic sigmoid to, without sacrificing network performances,

arrive at far simpler verification with fewer, and exact, constraints.

Finally in Part III, drawing from the previous two parts, we design SafetyNet, a

new algorithm that jointly learns readily-verifiable feedback controllers and rational

Lyapunov candidates. While built on two cornerstones of deep learning—stochastic

gradient descent and over-parameterization—SafetyNet more importantly takes cues

from optimization and control theory for a purposeful search-space and cost design.

Specifically, the design ensures that (i) the learned rational Lyapunov candidates are

positive definite by construction, and that (ii) the learned control policies are em-

pirically stabilizing over a large region, as encoded by “desirable” Lyapunov deriva-

tive landscapes. These two properties, importantly, enable direct and “high-quality”

downstream verifications (those developed in Part I).

Altogether, thanks to the careful mixture of learning and optimization, SafetyNet

has advantages over both components. In particular, it produces sample-efficient and

certified control policies—overcoming two major drawbacks of reinforcement learn-

ing—and can verify systems that are provably beyond the reach of pure convex-

optimization-based verification schemes.
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Chapter 2

Background

In this chapter we provide a brief background on the key theoretical and computa-

tional tools that will be employed throughout this thesis.

2.1 Lyapunov Functions and Linear Matrix Inequal-

ities

Lyapunov theory is perhaps the most fundamental tool in system stability analysis.

Prior to its introduction, the only way to analyze the stability property was to explic-

itly solve for the system trajectory, which is potentially very hard, if at all possible.

Lyapunov proposes to instead search for a scalar surrogate function of the state, of-

ten associated or intuitively understood as an energy function, whose value always

decreases along the trajectory (implicitly) and thus eventually reaches the minimum,

local or global depending on the searching criterion.

For example, for LTI systems, quadratics are necessary and sufficient, and the

search problem can be straightforwardly formulated as semi-definite programming

(SDP) or equivalently (only differ in terminology), linear matrix inequality (LMI) [13].

To give a more concrete illustration, suppose we are interested in checking if a

system 𝑥+ = 𝑓(𝑥) is globally asymptotically stable with respect to the origin, i.e.,

if for all possible initial states, 𝑥+∞ = 0. Then what Lyapunov proposed is that we
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look for a scalar function 𝑉 (𝑥) that satisfies: 𝑉 (𝑥) = 0, 𝑥 = 0; 𝑉 (𝑥) > 0,∀𝑥 ̸= 0; and

𝑉 (𝑥+) − 𝑉 (𝑥) = 𝑉 (𝑓(𝑥)) − 𝑉 (𝑥) < 0,∀𝑥. If we can find one such function, it would

be sufficient to make the stability claim. Notice how in the last condition, 𝑓(𝑥) only

appears implicitly, which spared us the difficulty of keeping tabs on what the state

realization is at any given specific time (except for the initial and final states which

are both given as problem data).

In addition to offering the theoretically powerful alternative viewpoint, Lyapunov

theory also gained popularity because it links nicely with the efficient semi-definite

programming (SDP), a type of convex optimization. This connection makes the search

of Lyapunov function a very automated and systematic procedure. For instance, if

the system dynamics is 𝑥+ = 𝑓(𝑥) = 𝐴𝑥 where 𝐴 is a constant matrix, then there

exists a 𝑉 satisfying all the Lyapunov conditions if and only if the SDP below is

feasible:

find 𝑃 ≻ 0 (2.1a)

s.t. 𝐴𝑃𝐴′ − 𝑃 ≺ 0 (2.1b)

The sufficiency should be obvious once recognizing it is by parameterizing 𝑉 = 𝑥′𝑃𝑥.

We omit the necessity details and refer the readers to the wonderful book [13] for

details.

Granted, Eq. (2.1) and its immediate variants are only suitable for global analysis

of linear time invariant, deterministic, and non-constrained systems. It nonetheless

opened up doors to numerous extensions, contributed from both systems and opti-

mizations, to address more general problem settings.

We describe three relevant ones here: sum-of-squares programming, which brings

in specialized polynomial dynamics and polynomial Lyapunov parameterization; S-

procedure, which adds the capability of local analysis and state constraints analysis;

and integral quadratic constraints, which offers the treatment of a broad class of

bounded nonlinearities.
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2.2 Sum-of-Squares (SOS) Programming

For polynomial dynamics, direct application of Lyapunov theory requires checking

non-negativity of polynomials, which is unfortunately NP-hard in general. How-

ever, the problem of checking if a polynomial is sum-of-squares (SOS) - sufficient

for non-negativity, is computationally approachable. A scalar multivariate polyno-

mial 𝐹 (𝑥) ∈ P[𝑥] is called SOS if it can be written as 𝐹 (𝑥) =
∑︀𝑚

𝑖=1 𝑓
2
𝑖 (𝑥) for a

set of polynomials {𝑓𝑖}𝑚𝑖=1. If deg(𝐹 ) = 2𝑛, this SOS condition is equivalent to

𝐹 (𝑥) = 𝑚′(𝑥)𝑄𝑚(𝑥) where 𝑚(𝑥) is a vector whose rows are monomials of degree up

to 𝑛 in 𝑥, and the constant matrix called the Gram matrix 𝑄 ⪰ 0. Thus, the search

of a SOS decomposition for 𝐹 can be equivalently cast as an SDP on 𝑄 [51].

In short, SOS program computationally generalizes the linear dynamics Lyapunov

analysis and greatly expands the use cases. Additionally, the generalization is so

clean and under-the-hood that for an end user everything conceptual remains the

same. The only change is a swap of the sign conditions (or equivalently the positive-

definitenesses) with SOS conditions.

S-procedure For general nonlinear systems we are interested in, global analysis is

doomed to fail in all but very special cases [35]. We need a tool that can encode the

local information, which ideally would also be compatible with the Lyapunov theory

and computation for all the aforementioned benefits. S-procedure is such a tool.

Abstractly, S-procedure is a sufficient condition that handles the implication of the

signs of quadratic functions for the sign of another quadratic function. Specifically, let

𝑄1, . . . 𝑄𝑚 be quadratic functions of 𝑥 ∈ R𝑛 : 𝑄𝑖(𝑥) = 𝑥′𝑈𝑖𝑥+𝑉𝑖𝑥+𝑤𝑖, 𝑖 = 1, 2, . . .𝑚,

and suppose we are interested in finding out this: for all the 𝑥 such that all these 𝑚

quadratic functions are non-negative, would these 𝑥 make another quadratic function

𝑇 (𝑥) non-negative as well? (This is in general not trivial to answer, details can be

found in [13, 14, 84].) S-procedure says, obviously, if there exists some 𝜆1 ≥ 0, 𝜆2 ≥
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0, . . . , 𝜆𝑚 ≥ 0 such that:

𝑇 (𝑥) −
𝑚∑︁

𝑖=1

𝜆𝑖𝑄𝑖(𝑥) ≥ 0, ∀𝑥 ∈ R𝑛 (2.2)

then the statement is true, that indeed:

𝑇 (𝑥) ≥ 0, ∀𝑥 ∈ {𝑥 : 𝑄𝑖(𝑥) ≥ 0, 𝑖 = 1, 2, . . . ,𝑚} (2.3)

This process links to our analysis as follows: if we let the Lyapunov difference

condition Eq. (2.1b) be −𝑇 (𝑥), the target quadratic whose sign we hope to investigate,

and if we let {𝑥 : 𝑄𝑖(𝑥) = 𝑥′𝑈𝑖𝑥 + 𝑉𝑖𝑥 + 𝑤𝑖 ≥ 0} encode the “not the entire R𝑛”

information, then by solving problems like Eq. (2.2), we could make claims such as

“for all the states satisfying {𝑥 : 𝑄𝑖(𝑥) ≥ 0}, the Lyapunov difference condition is

met”. We defer till the next subsection for a concrete example leveraging this process.

2.3 Integral Quadratic Constraints (IQC)

Quadratic Constraints The core idea of IQC is to relax the nonlinear terms with

some chosen fixed quadratic constraints that those nonlinearities are known to satisfy,

in order to simplify analysis. Figure 2-1 shows a contrived example to illustrate the

main idea. For both systems, the dynamics can be written as 𝑥+ = (𝑓 (𝑥) + 𝑥) /3: a

linear term plus a state-dependent nonlinearity expressed as 𝑓(𝑥). The distinction is

that in system I, 𝑓 = tanh(𝑥) plotted as the red line is a difference equation; whereas

in system II, 𝑓(𝑥) is a difference inclusion that is allowed to take any possible value

as long as it satisfies {(𝑓 (𝑥) − 𝑥) 𝑓(𝑥) ≤ 0}, which is plotted as the blue region. This

difference inclusion is, in fact, very widely-used. It is due to Lur’e and is called the

sector condition, and we will revisit it later.

Note that since any 𝑥 and 𝑓 = tanh(𝑥) pair respects the inequality (𝑓(𝑥) −
𝑥)𝑓(𝑥) ≤ 0 defining the sector set, the hyperbolic tangent nonlinearity belongs to the

sector. Visually, the blue region encompasses the red line. This containment means

that any trajectory that system I could possibly produce is also a member in the
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set of trajectories system II could produce. Now if system II is stable or ℓ2 stable

locally or globally, then any subset of those trajectories under consideration must

also be stable or ℓ2 stable, including the subset that corresponds to system I. By this

rationale, system II becomes a relaxation of system I in terms of stability/robustness

analysis and serves as a surrogate for our analysis. We note that the full version with

an integral involves a bit more reasoning but follows the same high level relaxation

logic.

−3 0 3

x

−3

−2

−1

0

1

2

3

f(x)

System 1 - the original nonlinear system

f(x) = tanh(x)

−3 0 3

x

System 2 - the difference inclusion relaxation

{f(x) : f(x)(f(x)− x) ≤ 0}

Figure 2-1: IQC tutorial example. For both systems, the dynamics is 𝑥+ = (𝑥 +
𝑓(𝑥))/3 where 𝑓(𝑥) is a difference equation for system I and a difference inclusion for
system II.

A natural question arises as to why would one take such a detour in analysis.

The virtue lies in that the system II is easier to analyze. The constraints, now

quadratic, are directly compatible with the aforementioned framework. Specifically,

direct application of the Lyapunov condition Eq. (2.1) for global stability analysis

and S-procedure Eq. (2.2) requires solving:

find 𝑃 > 0, 𝜆 > 0

s.t. 𝑃𝑥2 − 𝑃 (𝑥+ 𝑓)2/9⏟  ⏞  
−Δ𝑉

+ 𝜆(𝑓 − 𝑥)𝑓⏟  ⏞  
S-procedure

constraining 𝑥 and 𝑓

> 0 ∀𝑥, 𝑓 (2.4)

Simple algebra shows 𝑃 = 4, 𝜆 = 1 makes Eq. (2.4) feasible, meaning system II is

stable. And by the relaxation logic, this implies that system I is stable.

Notice here the Lyapunov difference plays the role of −𝑇 and the sector condition

plays the role of 𝑄1 in Eq. (2.2). At first glance, it may be surprising that the
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blue sector region, which is non-convex, could be encoded into a convex optimization

problem. The process is indeed subtle: the non-convex constraint is on 𝑥 and 𝑓(𝑥),

neither appears as decision variable in Eq. (2.4); instead, the decision variable is the

multiplier 𝜆 whose only constraint, the sign condition, is convex. Peeling one layer

deeper, note that the implication of Eq. (2.2) =⇒ Eq. (2.3) is true regardless of the

convexity of both 𝑇 and 𝑄𝑖 on 𝑥1.

1In fact, the implication is true for non-quadratic functions as well; the assumption of everything
quadratic is again for computational reasons. Quadratic is believed to be the sweet spot between
conservatism (rich enough a class of function) and computational cost; it also comes with the benefit
of easily describable as an SDP [45].
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Part I

Scalable Optimization-Based

Verification
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Chapter 3

Compositional Verification

This chapter is adapted from work previously published in [65].

3.1 Introduction

As described in Section 2.1, LMIs are ubiquitous in system analysis, largely due to

their clean connection to Lyapunov theory. It is widely known that most of the com-

mon LTI systems analysis and synthesis tasks directly translate through Lyapunov

argument into LMIs [13]. More recently, the development of sum-of-squares (SOS)

programming makes it possible to essentially apply this technique in polynomial sys-

tems as well [51], expanding the applicability even further.

Practically, however, LMIs and, by extension, SOS do not scale very well, and the

computational cost is immense for large-scale systems. This computational challenge

of SOS-based approaches for large-scale systems, combined with the natural decom-

position structure arising from many such systems, motivates research areas such as

compositional analysis [4, 78] and distributed and decentralized control [59, 6]. The

common theme there is to not investigate the high-dimensional system directly. In-

stead, the large system is first divided and studied in parts, and the implications

of these individual results would then be reasoned about collectively for the original

system.

In the context of stability analysis for LTI systems, the compositional idea is
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typically materialized as the search of block-diagonal Lyapunov matrices. Various

necessary and sufficient conditions on their existence have been given in the literature,

but they are either restrictive or non-constructive. The restriction is usually on the

dynamics matrix 𝐴 having a special structure such as being a Metzler matrix [48],

block triangular, or cyclic [5], or on the Lyapunov matrix having particular block-

diagonal patterns such as strictly diagonal [8, 67, 81, 72] or being limited to a 2-by-2

partition [69]. For the more general conditions, such as in [18], there is no simple recipe

for computing the desired Lyapunov matrix from the sufficient rank conditions given.

Our work offers sufficient constructive conditions without any of these structural

limitations.

For compositional analysis of the more general polynomial systems via the SOS

framework, we mention [78, 68, 3], which are most similar to ours. In previous

work, the Lyapunov value constraints are untangled but their time derivatives are

not; ours completely decouples both. We also note in particular that [3] focuses

more on revealing a latent modular structure using graph partition ideas; we, on the

other hand, assume the system has a given decomposition structure or one obvious

enough by visual inspection and strive purely for efficiency. Our views are thus

complementary, and combining them can solve a larger class of problems faster, as

will be shown later by an example.

In Section 3.2, we formalize the problem and introduce technical background. In

Section 3.3, we focus on finding block-diagonal Lyapunov matrix for LTI system, and

present two algorithms for dynamics matrices of arbitrary size, structure, and parti-

tion pattern. In Section 3.4, we address the extension to polynomial dynamics and

formulate a much smaller SOS programming. Finally, we demonstrate on numerical

and practical examples in Section 3.5 the efficiency of the proposed algorithms.

Notation For a real vector 𝑥 ∈ R𝑛, the usual Euclidean 2-norm is denoted as

‖𝑥‖, the weighted 2-norm is denoted as ‖𝑥‖2𝐴 := 𝑥′𝐴𝑥 with 𝐴 ∈ R𝑛×𝑛, and the time

derivatives are denoted as �̇�. If 𝑥𝑖 ∈ R𝑛𝑖 , 𝑖 = 1, 2, . . . ,𝑚, then (𝑥1, 𝑥2, . . . , 𝑥𝑚) denotes

their column catenation. For a matrix 𝐴 ∈ R𝑚×𝑛, 𝜎1(𝐴) is its largest singular value
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and 𝐴′ its transpose. 𝐴 ≻ 0 (resp. 𝐴 ⪰ 0) implies 𝐴 is square, symmetric, and

positive definite (resp. positive semidefinite). If 𝐴𝑖 ∈ R𝑘𝑖×𝑘𝑖 , 𝑖 = 1, 2, . . . ,𝑚, then
⨁︀𝑚

𝑖=1𝐴𝑖 := 𝐴1 ⊕𝐴2 · · · ⊕𝐴𝑚 denotes the block diagonal matrix with diagonal blocks

𝐴1, 𝐴2, . . . , 𝐴𝑚. 𝐼 denotes the identity matrix of appropriate size. Symbol ∖ denotes

set complement. R[𝑥] denotes the ring of scalar polynomial functions in indeterminate

𝑥 with real coefficients, and R[𝑥]𝑚×𝑛 denotes an 𝑚 by 𝑛 matrix whose elements are

scalar polynomials in R[𝑥].

3.2 Problem Statement

Consider a time-invariant polynomial system described by �̇� = 𝑓(𝑥) where the state

𝑥 ∈ R𝑛 and the dynamics 𝑓 ∈ R[𝑥]𝑛. We restrict ourselves to time-invariant systems

and will drop all time dependencies. Let the state 𝑥 be partitioned into𝑚 components:

𝑥 = (𝑥1, 𝑥2, . . . 𝑥𝑚), where 𝑥𝑖 ∈ R𝑛𝑖 constitutes the states of a subsystem. We assume

the partition is one such that no more than two subsystems are coupled, i.e., no terms

like 𝑥11𝑥22𝑥32 (𝑥11 being the first state in the first subsystem and so on) exist in 𝑓 .

This is not a restrictive assumption as it can always be satisfied by regrouping (e.g.,

one can merge 𝑥1 and 𝑥2 into a new sub-system should terms like 𝑥11𝑥22𝑥32 appear).

With the partition and assumption above, �̇� = 𝑓(𝑥) can be rearranged into a

component-wise expanded form:

�̇�𝑖 = 𝑓𝑖(𝑥𝑖) +
𝑚∑︁

𝑗=1
𝑗 ̸=𝑖

𝑔𝑖𝑗(𝑥𝑖)ℎ𝑖𝑗(𝑥𝑗) (3.1)

where 𝑓𝑖 ∈ R[𝑥𝑖]
𝑛𝑖 describes the internal dynamics of sub-state 𝑥𝑖, 𝑔𝑖𝑗 ∈ R[𝑥𝑖]

𝑛𝑖×𝑙𝑖𝑗𝑛𝑗

and ℎ𝑖𝑗 ∈ R[𝑥𝑗]
𝑙𝑖𝑗𝑛𝑗 captures the coupling between sub-state 𝑥𝑖 and 𝑥𝑗. The newly

introduced dimension 𝑙𝑖𝑗 is due to the possibility of more than one linearly independent

coupling terms involving 𝑥𝑖 and 𝑥𝑗, for instance, say �̇�1 = −𝑥13 +𝑥1𝑥2 +3𝑥1
2𝑥2

2, then

𝑙12 = 2. For the special LTI case, 𝑙𝑖𝑗 = 1, ∀𝑖, 𝑗.
We are interested in making claims such as asymptotic stability to the origin and

invariance for the entire system states 𝑥, but ideally by examining one sub-system
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state 𝑥𝑖 at a time. To this end, we associate the system with a Lyapunov-like function

𝑉 such that:

𝑉 (𝑥) =
𝑚∑︁

𝑖=1

𝑉𝑖(𝑥𝑖) ≥ 0,∀𝑥 ∈ R𝑛 (3.2a)

�̇� (𝑥) =
𝑚∑︁

𝑖=1

�̇�𝑖 < 0,∀𝑥 ∈ D (3.2b)

where the equality in Eq. (3.2a) holds only at the origin, and the region D in Eq.

(3.2b) varies with the task in hand. For instance, when dealing with global stability

to the origin, D = R𝑛∖{0}, whereas in local analysis the region is usually a sub-level

set of 𝑉 and part of the decision variables.

The aim in this section is to find the set of {𝑉𝑖}𝑚𝑖=1 functions independently so as

to form as small an LMI or SOS as possible. Eq. (3.2a) is already in a decoupled

form, and one can simply require 𝑉𝑖 ≥ 0,∀𝑖. Eq. (3.2b) may look decoupled too, and

one may be tempted to claim that �̇�𝑖 < 0,∀𝑖 is also a set of independent constraints;

this is not true. Note that

�̇�𝑖 =
𝜕𝑉𝑖(𝑥𝑖)

𝜕𝑥𝑖
𝑓𝑖 +

𝑚∑︁

𝑗=1
𝑗 ̸=𝑖

𝜕𝑉𝑖(𝑥𝑖)

𝜕𝑥𝑖
𝑔𝑖𝑗(𝑥𝑖)ℎ𝑖𝑗(𝑥𝑗) (3.3)

while the first term is only dependent on 𝑥𝑖, the second term that is the summation

involves ℎ𝑖𝑗, a function of sub-states 𝑥𝑗, and the summing over all 𝑗 ̸= 𝑖 makes �̇�𝑖

dependent on possibly the entire states 𝑥 = (𝑥1, 𝑥2, . . . 𝑥𝑚). This is a direct conse-

quence of sub-states coupling from the dynamics �̇�𝑖, in other words, the set of {�̇�𝑖}𝑚𝑖=1

are inherently entangled.

Our compositional approach thus avoids dealing with {�̇�𝑖}𝑚𝑖=1 head-on. Instead,

we resort to finding an upper bound of �̇� that is by design a sum of functions each

dependent on one 𝑥𝑖 only. We then require this upper bound to be non-positive to

sufficiently imply Eq. (3.2b). While this detour leads to more conservative results, it

allows the parallel search we desire and can bypass the computational hurdle of direct

optimizations. The details of our approach are in Section 3.3 and 3.4.
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3.3 LTI Systems and Block-Diagonal Lyapunov Ma-

trix

We first study the most fundamental LTI systems. Though the technical result in

this section can be reduced from the polynomial systems’ result, some more intuitive

aspects of it can only be or are better appreciated in this limited setting and hence

it merits the separate elaboration here.

Under the LTI assumption, Eq. (3.1) takes a clean form

�̇�𝑖 = 𝐴𝑖𝑖𝑥𝑖 +
𝑚∑︁

𝑗=1
𝑗 ̸=𝑖

𝐴𝑖𝑗𝑥𝑗 (3.4)

where 𝐴𝑖𝑖 ∈ R𝑛𝑖×𝑛𝑖 , 𝐴𝑖𝑖𝑥𝑖 corresponds to the 𝑓𝑖 term, 𝐴𝑖𝑗 ∈ R𝑛𝑖×𝑛𝑗 corresponds to 𝑔𝑖𝑗

with dimension 𝑙𝑖𝑗 ≡ 1, and 𝑥𝑗 corresponds to the ℎ𝑖𝑗 term.

For LTI systems, it only makes sense to consider global asymptotic stability (to

the origin) as all convergences in LTI systems are in the global sense. A quadratic

parameterization of Lyapunov function 𝑉 = 𝑥′𝑃𝑥 such that 𝑃 ≻ 0 and 𝐴𝑃 + 𝑃𝐴′ ≺
0 is both necessary and sufficient for this task. Naturally then, when considering

Lyapunov functions for the subsystems, we use this quadratic parameterization as

well and let 𝑉𝑖 = 𝑥′𝑖𝑃𝑖𝑥𝑖. This is equivalent to imposing a block-diagonal structure

constraint on 𝑃 ≻ 0 as 𝑃 =
⨁︀𝑚

𝑖=1 𝑃𝑖 ≻ 0. Substituting the parameterization into

condition Eq. (3.2) yields:

find {𝑃𝑖}𝑚𝑖=1 (3.5a)

s.t. 𝑃𝑖 ≻ 0,∀𝑖 (3.5b)
⎡
⎢⎢⎢⎢⎢⎢⎣

𝐴11𝑃1 + 𝑃1𝐴
′
11 . . . 𝐴1𝑛𝑃𝑛 + 𝑃1𝐴

′
𝑛1

𝐴21𝑃1 + 𝑃2𝐴
′
12 . . . 𝐴2𝑛𝑃𝑛 + 𝑃2𝐴

′
𝑛2

... . . . ...

𝐴𝑛1𝑃1 + 𝑃𝑛𝐴
′
1𝑛 . . . 𝐴𝑛𝑛𝑃𝑛 + 𝑃𝑛𝐴

′
𝑛𝑛

⎤
⎥⎥⎥⎥⎥⎥⎦
≺ 0, (3.5c)

Note that Eq. (3.5c) gives a more tangible sense of the latent intertwined nature of
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𝐸𝑞. (3.2b). The clean block-diagonal structure in 𝑃 is deeply buried here as the left

hand side is a full matrix with 𝐴𝑖𝑗𝑃𝑗 + 𝑃𝑖𝐴
′
𝑗𝑖 at all the off-diagonal spots.

Our goal in this section is to find the set of {𝑃𝑖}𝑚𝑖=1 independently for each 𝑖. We

start with an LMI-based algorithm that is still somewhat coupled, and then gradually

get to the truly decoupled algorithm which is based on Riccati equations.

3.3.1 Sparse LMIs

Theorem 1. For an 𝑛-dimensional LTI system written in the form Eq. (3.4), if the

optimization problem

find {𝑃𝑖}𝑚𝑖=1, {𝑀𝑖𝑗}𝑚𝑖,𝑗=1,𝑖 ̸=𝑗 (3.6a)

s.t. 𝑃𝑖 ≻ 0,∀𝑖 (3.6b)

𝑀𝑖𝑗 ≻ 0,∀𝑖, 𝑗, 𝑖 ̸= 𝑗 (3.6c)

𝐴𝑖𝑖𝑃𝑖 + 𝑃𝑖𝐴
′
𝑖𝑖 +

𝑚∑︁

𝑗=1
𝑗 ̸=𝑖

𝐴𝑖𝑗𝑀𝑖𝑗𝐴
′
𝑖𝑗 + 𝑃𝑖𝑀

−1
𝑗𝑖 𝑃𝑖 ≺ 0,∀𝑖 (3.6d)

is feasible, then the set of {𝑃𝑖}𝑚𝑖=1 satisfies problem Eq. (3.5) with D = R𝑛∖{0}, and

the original system is strictly asymptotically stable.

Proof. Two proofs, one from the primal perspective and the other the dual, are in-

cluded in the chapter appendix. Theorem 1 can also be reduced from Theorem 2 (in

Subsection 3.4), whose proof is in fact less involved. The appended proofs, however,

offer a control and optimization connection that the simple proof lacks.

Remark 1. Theorem 1 can be viewed as a generalization of the sufficient direction

of Lyapunov inequality for LTI systems. Particularly, if the state is not partitioned,

𝑃 has no structural constraint, the summation in Eq. (3.6d) disappears, and the

condition reduces to the ordinary Lyapunov inequality. Furthermore, Theorem 1 gives

an explicit procedure to construct a Lyapunov matrix with user specified structures

including the extreme case of pure diagonal structure.

36



Remark 2. Theorem 1 also closely resembles the small-gain theorem (which in fact is

the inspiration for our results). Notice that setting 𝑚 = 2 (two subsystems scenario)

reduces Theorem 1 to the matrix version of the bounded real lemma, which proves

the product of the two subsystems’ ℓ2-gains less than or equal to one and implies

stability. The intuition behind the connection is this: think of diagonal blocks 𝐴11 and

𝐴22 as describing two disconnected “nominal” plants, and the off-diagonal blocks are

pumping feedback disturbance from one nominal system to the other. The compound

system admitting a block-diagonal Lyapunov matrix indicates it is stable whether or

not the disturbance blocks are present, and this is exactly what small-gain theorem

implies. The feedback disturbance interpretation obviously carries over to more than

two interconnected systems even though there is no extension of small-gain theorem

in those settings. (The structured disturbance setup arising from 𝜇-synthesis is not

such a generalization. While it does admit multi-dimensional disturbances, all the

disturbances are to the central nominal plant but not to one another.) We illustrate

the system assumptions difference between the two versions of small-gain and ours in

Figure 3-1.

Remark 3. One might wonder what is the virtue of studying the bare bone Lyapunov

inequality; after all, checking stability can easily be done through an eigenvalue com-

putation and that is uniformly faster than LMIs. We believe the value lies in that

LMIs is more general and clean than eigen-based methods. For instance, LMI for-

mulation leads to extensions such as robustness analysis via common Lyapunov func-

tions which eigen-based method fails to handle; or to a straightforward formulation

of ℓ2-gain bound, for which the eigen-based method leads to very messy computation.

Therefore, 𝐴𝑃 +𝑃𝐴′, the most basic building block appearing in almost every control

LMI, deserves a close examination.

Remark 4. Computationally, Eq. (3.6d) with the nonlinear term 𝑃𝑖𝑀
−1
𝑗𝑖 𝑃𝑖 can be

equivalently turned into an LMI via Schur complement. Hence, Theorem 1 requires

solving 𝑚 coupled LMIs of the original problem size, but all of them enjoy strong

sparsity as all non-zero terms only appear, in the block sense, at one row, one cor-
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Figure 3-1: Our setup compared with the unstructured and structured small-gain
setup. Our setup takes advantage of the ‘weak’ internal interconnection, thus achieve
a ‘balance’ between the unstructured and structured cases.

responding column, and the main diagonal. For instance, when 𝑚 = 8, Figure 3-2

shows the sparsity pattern of three out of the eight LMIs. The sparsity in practice

might already be a worthy trade off, and we test the claim in Section 3.5. Further,

if we fix the set of 𝑀𝑖𝑗 rather than searching for them, constraints Eq. (3.6) become

decoupled low-dimensional LMIs. Better yet, they can be solved by an even faster

Riccati equation based method below.

Figure 3-2: Sparsity pattern of three LMIs for 𝑀 = 8 example
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3.3.2 Riccati Equations

If 𝑀𝑖𝑗 are fixed, the set of decoupled low-dimensional LMIs can be solved by a method

based on Riccati equations, which has near-analytical solutions and by implication

far better scalability and numerical stability than LMIs. Specifically, if we replace

the inequality with equality, then Eq. (3.6) are precisely Riccati equations with un-

known 𝑃𝑖. The feasibility of LMIs like Eq. (3.6) is equivalent to the feasibility of

the associated Riccati equations. That is, the (unique) positive definite solution to

the Riccati equation lives on the boundary of the feasible set of the LMI [13]. So by

nudging the right hand side in the constraint slightly in the positive direction, e.g.,

replacing zero with 𝜖𝐼 for some small 𝜖 > 0, we get a solution strictly in the interior

and one precise to the original LMI. We note that when the Riccati equations return

a feasible solution, it is much faster than solving the sparse LMIs Eq. (3.6), and even

more significantly so than the original LMI Eq. (3.5).

The choice of the set of positive definite 𝑀𝑖𝑗 scaling matrices can be arbitrary but

would largely affect the feasibility. Identity scaling is one obviously valid choice, and

it is very likely to succeed in cases such as when the off-diagonal blocks are very close

to zeros. In general though, identity scaling is not guaranteed to always work, it is

then desirable to have some other heuristics at our disposal. Inspired by the small-

gain theorem connection in Remark 2, we propose another educated guess that we call

𝜎1-scaling. The procedure is to first initialize a set of scalars 𝛾𝑖𝑗 = 𝜎1(𝐴𝑖𝑖
−1𝐴𝑖𝑗); then

keep 𝛾𝑖𝑗 as is if 𝛾𝑖𝑗𝛾𝑗𝑖 ≤ 1, otherwise, say 𝛾𝑖𝑗 > 𝛾−1
𝑗𝑖 , then keep only 𝛾𝑗𝑖 and shrink 𝛾𝑖𝑗

down to 𝛾−1
𝑗𝑖 ; and finally set 𝑀𝑖𝑗 = 𝛾𝑖𝑗𝐼. The justification of the heuristic is that 𝜎1

operator of a dynamics matrix loosely reflects the input-output signal magnification

by the system, and 𝜎1(𝐴𝑖𝑖
−1𝐴𝑖𝑗) can therefore serve as a barometer of the relative

energy exchange between an internal 𝐴𝑖𝑖 subsystem and the coupling 𝐴𝑖𝑗 term from

system 𝑗. Of course, there is no guarantee on the performance of 𝜎1-scaling either.

Empirically though, they succeed roughly 7 times out of 10. Plus, the time it takes

to test these scalings is negligible compared with solving any LMIs, so it is well worth

a try.
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3.4 Polynomial Systems and Compositional SOS Lya-

punov Functions

Extending the LTI decoupling idea to polynomial systems is conceptually straightfor-

ward: we again want to upper bound �̇� . Technically, a few nice properties from the

LTI case would vanish. We will discuss these issues when they appear, and for now

start with the result for global asymptotic stability (g.a.s.).

Theorem 2. For a polynomial system described in the expanded form Eq. (3.1), if

find {𝑉𝑖}𝑚𝑖=1, {𝑀𝑖𝑗}𝑚𝑖,𝑗=1,𝑖 ̸=𝑗 (3.7a)

s.t. 𝑀𝑖𝑗 ≻ 0,∀𝑖, 𝑗, 𝑖 ̸= 𝑗 (3.7b)

𝑉𝑖 − 𝜖‖𝑥𝑖‖ is SOS,∀𝑖 (3.7c)

− 𝜕𝑉𝑖
𝜕𝑥𝑖

𝑓𝑖 −
1

2

𝑚∑︁

𝑗=1
𝑗 ̸=𝑖

‖𝜕𝑉𝑖
𝜕𝑥𝑖

𝑔𝑖𝑗‖2𝑀𝑖𝑗
− 1

2

𝑚∑︁

𝑗=1
𝑗 ̸=𝑖

‖ℎ𝑗𝑖‖2𝑀−1
𝑗𝑖

− 𝜖‖𝑥𝑖‖ is SOS,∀𝑖 (3.7d)

is feasible for some 𝜖 > 0, then the set of polynomial functions {𝑉𝑖(𝑥𝑖)}𝑚𝑖=1 satisfies

Eq. (3.2) with D = R𝑛∖{0} and the system is (g.a.s.) at the origin.

Proof. Eq. (3.7c) obviously implies Eq. (3.2a). Then introducing invertible matrices

𝑚𝑖𝑗 ∈ R𝑙𝑖𝑗𝑛𝑗×𝑙𝑖𝑗𝑛𝑗 and let 𝑀𝑖𝑗 = 𝑚𝑖𝑗𝑚
′
𝑖𝑗, we can have �̇� upper bounded:

�̇� =
𝑚∑︁

𝑖=1

⎛
⎜⎜⎝
𝜕𝑉𝑖
𝜕𝑥𝑖

𝑓𝑖 +
𝑚∑︁

𝑗=1
𝑗 ̸=𝑖

𝜕𝑉𝑖
𝜕𝑥𝑖

𝑔𝑖𝑗ℎ𝑖𝑗

⎞
⎟⎟⎠ (3.8a)

=
𝑚∑︁

𝑖=1

𝜕𝑉𝑖
𝜕𝑥𝑖

𝑓𝑖 +
𝑚∑︁

𝑖=1

𝑚∑︁

𝑗=1
𝑗 ̸=𝑖

(︂
𝜕𝑉𝑖
𝜕𝑥𝑖

𝑔𝑖𝑗𝑚𝑖𝑗𝑚
−1
𝑖𝑗 ℎ𝑖𝑗

)︂
(3.8b)

≤
𝑚∑︁

𝑖=1

𝜕𝑉𝑖
𝜕𝑥𝑖

𝑓𝑖 +
1

2

𝑚∑︁

𝑖=1

𝑚∑︁

𝑗=1
𝑗 ̸=𝑖

(︂
‖𝑔𝑖𝑗

𝜕𝑉𝑖
𝜕𝑥𝑖

‖2𝑀𝑖𝑗
+ ‖ℎ𝑖𝑗‖2𝑀−1

𝑖𝑗

)︂
(3.8c)

=
𝑚∑︁

𝑖=1

⎛
⎜⎜⎝
𝜕𝑉𝑖
𝜕𝑥𝑖

𝑓𝑖 +
1

2

𝑚∑︁

𝑗=1
𝑗 ̸=𝑖

(︂
‖𝜕𝑉𝑖
𝜕𝑥𝑖

𝑔𝑖𝑗‖2𝑀𝑖𝑗
+ ‖ℎ𝑗𝑖‖2𝑀−1

𝑗𝑖

)︂
⎞
⎟⎟⎠ (3.8d)
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Eq. (3.8c) is due to the elementary inequality of arithmetic and geometric means

(AM-GM inequality), and the exchange of summation index at Eq. (3.8d) is due to

the symmetry between 𝑖 and 𝑗. Eq. (3.7d) implies the negation of Eq. (3.8d) is SOS,

which directly leads to that the negation of �̇� is SOS, and sufficient to imply Eq.

(3.2b).

Remark 5. Our method can be extended to handle coupling terms such as 𝑥𝑖𝑥𝑗𝑥𝑘

that involves more than two sub-states. The key step is to use the generalized version

of AM-GM inequality with 𝑛 > 2 variables at Eq. (3.8c).

Remark 6. Similar to the LTI case, the scaling matrices 𝑀𝑖𝑗 brings coupling across

the constraints. Eliminating these constants as decision variables could again untangle

the entire set of constraints. However, we do not believe a trivial extension of 𝜎1-

scaling developed for the LTI case would be as convincing a heuristic for hand-picking

these constants in the polynomial settings. This is mainly due to the lack of a notion of

‘coupling strength’ in the polynomial sense. Specifically, for LTI systems, the coupling

can only enter as 𝐴𝑖𝑗𝑥𝑖𝑥𝑗, so at least intuitively, for a ‘normalized’ 𝐴𝑖𝑖 the strength

of the coupling is quantified by 𝐴𝑖𝑗. Polynomial systems with the additional freedom

of degrees, however, can have coupling terms like 4𝑥𝑖𝑥𝑗 and 𝑥𝑖𝑥
2
𝑗 . It is then hard

to argue, even hand-wavingly, if the coefficients play a more important role or if the

degrees do. Therefore, we settle with just fixing all the 𝑀𝑖𝑗 to identity.

Remark 7. Even with 𝑀𝑖𝑗 = 𝐼, the term ‖𝜕𝑉𝑖

𝜕𝑥𝑖
𝑔𝑖𝑗‖2 in Eq. (3.7d) is still not directly

valid for a SOS program because of the quadratic dependency on 𝑉𝑖. We develop below

what can be considered the generalization of Schur complement in the polynomial

settings to legalize the constraint.

Lemma 1. Given a scalar SOS polynomial 𝑞(𝑥) ∈ R[𝑥] of degree 2𝑑𝑞 and a vector

of generic polynomials 𝑠(𝑥) ∈ R[𝑥]𝑛 of maximum degree 𝑑𝑠, let 𝑦 be a vector of

indeterminates whose elements are independent of 𝑥, then 𝑞(𝑥) − 𝑠′(𝑥)𝑠(𝑥) ∈ R[𝑥] is

SOS if and only if 𝑞(𝑥) + 2𝑦′𝑠(𝑥) + 𝑦′𝑦 ∈ R[𝑥, 𝑦] is SOS.

Proof. Define 𝑚 (𝑥) and 𝑛(𝑥, 𝑦) respectively as the standard monomial basis of 𝑥

and (𝑥, 𝑦) up to degree 𝑑 = max(𝑑𝑞, 𝑑𝑠). It is always possible to rewrite 𝑠(𝑥) =
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𝐶 ′𝑚(𝑥) for some coefficients 𝐶, and 𝑞(𝑥) = 𝑚′(𝑥) [𝑄+ 𝐿 (𝛼1)]𝑚(𝑥), where Q is

a constant symmetric matrix such that 𝑞(𝑥) = 𝑚′(𝑥)𝑄𝑚(𝑥), 𝐿(𝛼1) is a param-

eterization of the linear subspace ℒ := {𝐿 = 𝐿′ : 𝑚′(𝑥)𝐿(𝛼)𝑚(𝑥) = 0}, and

𝑄 + 𝐿(𝛼1) ⪰ 0. Denote 𝑞(𝑥) − 𝑠′(𝑥)𝑠(𝑥) as Π1 and plug in these parameterizations,

Π1 = 𝑚′(𝑥) [𝑄+ 𝐿(𝛼1) − 𝐶 ′𝐶]𝑚(𝑥).

If Π1 is SOS, then there exists an 𝐿(𝛼2) ∈ ℒ (possibly different from 𝐿(𝛼1))

such that 𝑄 + 𝐿(𝛼1) − 𝐶 ′𝐶 + 𝐿(𝛼2) ⪰ 0. This implies via Schur complement that

𝑉 :=
[︀
𝑄+𝐿(𝛼1)+𝐿(𝛼2) 𝐶′

𝐶 𝐼

]︀
⪰ 0. Denote 𝑞(𝑥) + 2𝑦′𝑠(𝑥) + 𝑦′𝑦 as Π2 and notice that it is

precisely (𝑚(𝑥), 𝑦)′𝑉 (𝑚(𝑥), 𝑦), and therefore Π2 is SOS.

If Π2 is SOS, then there exists a 𝛽1 such that Π2 = 𝑛′(𝑥, 𝑦) [𝑇 +𝑀(𝛽1)]𝑛(𝑥, 𝑦)

where 𝑇 is a constant symmetric matrix such that 𝑛′(𝑥, 𝑦)𝑇𝑛(𝑥, 𝑦) = Π2, 𝑀(𝛽1) is a

parameterization of the linear subspace ℳ := {𝑀 = 𝑀 ′ : 𝑛′(𝑥, 𝑦)𝑀(𝛽)𝑛(𝑥, 𝑦) =

0}, and 𝑇 + 𝑀(𝛽1) ⪰ 0. Since the elements of 𝑚(𝑥) and 𝑦 form a strict sub-

set of those in 𝑛(𝑥, 𝑦), the ordering 𝑛(𝑥, 𝑦) = (𝑚(𝑥), 𝑦, 𝑘(𝑥, 𝑦)) where 𝑘 encapsu-

lates the 𝑥, 𝑦 cross term monomials is possible. Accordingly, 𝑇 + 𝑀(𝛽1) can be

partitioned as
[︁
𝑇11+𝑀11 𝑇12+𝑀12 𝑇13+𝑀13

* 𝑇22+𝑀22 𝑇23+𝑀23
* * 𝑇33+𝑀33

]︁
(𝛽1 from now on dropped for concision).

Then, since Π2 has no cross terms of second or higher order in 𝑦, it must be that

𝑘′(𝑥, 𝑦) [𝑇33 +𝑀33] 𝑘
′(𝑥, 𝑦) = 0, and since 𝑦 and 𝑥 are independent, 𝑇33 + 𝑀33 = 0.

Similar arguments imply that 𝑇23 +𝑀23 = 𝑇 ′
32 +𝑀 ′

32 = 0, and 𝑇22 +𝑀22 = 𝐼. Once

these four blocks are fixed, by the equality constraint in the Schur complement of 𝑇11+

𝑀11, it must be the case that 𝑇13+𝑀13 = 𝑇 ′
31+𝑀 ′

31 = 0. In other words, Π2 in fact ad-

mits a more compact expansion Π2 = (𝑚 (𝑥) , 𝑦)′
[︀
𝑇11+𝑀11 𝑇12+𝑀12

* 𝐼

]︀
(𝑚 (𝑥) , 𝑦) where by

matching the terms and invoking the independence of 𝑥 and 𝑦,𝑚′(𝑥) [𝑇11 +𝑀11]𝑚(𝑥) =

𝑞(𝑥), 𝑚′(𝑥) [𝑇12 +𝑀12] = 𝑠(𝑥), and the gram matrix is positive semi-definite. The

Schur complement of the 𝐼 block therefore gives an explicit SOS parameterization of

Π1 in 𝑚(𝑥).

Lemma 1 trivially extends to “𝑞(𝑥)−∑︀𝑚
𝑗=1‖𝑠𝑗(𝑥)‖2 is SOS”, again via Schur com-

plement of the Gram matrix. The extended condition can be mapped to Eq. (3.7d),

with −𝜕𝑉𝑖

𝜕𝑥𝑖
𝑓𝑖− 1

2

∑︀𝑚
𝑗=1
𝑗 ̸=𝑖

‖ℎ𝑗𝑖‖2 as 𝑞(𝑥), and 𝜕𝑉𝑖𝑔𝑖𝑗√
2𝜕𝑥𝑖

as 𝑠𝑗(𝑥). Now the constraint Eq. (3.7d)

is linear in 𝑉𝑖 and can be readily handled by a SOS program.
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3.5 Experiments and Examples

The examples are run on a MacBook Pro with 2.9GHz i7 processor and 16GB memory.

The LMI problem specifications are parsed via CVX [25], SOS problems are parsed

via SPOTLESS [76], and both are then solved via MOSEK [47]. The source code is

available online.1

Randomly Generated LTI Systems We randomly generate 1000 candidate 𝐴

matrices of various sizes that admit block-diagonal Lyapunov matrices of various

block sizes. We facilitate the sampling process by biasing 𝐴 towards negative block-

diagonal dominance (to make it more likely an eligible candidate), and then pass this

sample 𝐴 into the full LMI Eq. (3.5) to check if the LMI (a necessary and sufficient

condition) produces a block-diagonal Lyapunov matrix, if not, the sample is rejected.

Table 3.1 records the average run time comparison of this full LMI Eq. (3.5) and our

proposed sparse LMIs Eq. (3.6) and Riccati equations algorithms. It also records the

success rate of identity scaling and 𝜎1-scalings for hand-picking the 𝑀𝑖𝑗 term in the

Riccati equations.

Table 3.1: Run-time and success rates for LTI systems

Size of 𝐴 50 100 100 1000

Block Size 25 10 25 25

Run-time
(seconds)

Full LMI 0.2 1.03 2.26 −
Sparse LMIs 0.18 0.83 1.76 −
Riccati eqns 1.44e-2 1.1e-3 1.89e-2 0.5

Success Rate
(Riccati eqns)

Identity 70% 56% 68% −
𝜎1-scaling 78% 69% 65% −

The first two “−”s in the last column indicate the LMI-based methods run into

memory issues and the solver is forced to stop. Riccati equations are still able to

solve some of these sampled problems, but without the baseline LMI feasibility, its

success rate is not available either, hence the last two “−”s. We note that when the
1codes available at https://github.com/shensquared/ComposableVerification
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Riccati equations are feasible, they are the fastest method to check stability of the

generated 𝐴 matrices. The computational saving becomes more significant as the

dimension goes up thanks to scalable algorithms solving Riccati equations. We also

note that there is no clear winner between identity scaling and 𝜎1 scaling when it

comes to producing feasible Riccati equations. In practice, one may want to try both

as there is very little added real time computational cost of doing so.

Lotka-Volterra System We take from [3] the Lotka-Volterra example and verify

its stability. It is a 16-dimensional polynomial system2, and is thus beyond the reach

of direct SOS optimization. In that paper, the authors handle the task by first

developing a graph partition based algorithm, which finds a 3-way partition scheme

for this example, and then a non-sparse or sparse SOS programs for computing a

Lyapunov function for each subsystem and a composite Lyapunov function for the

original system.

Their graph partition algorithm is of particular interest to us, since our composi-

tional algorithm requires a partition but lacks the ability to search for one. Reusing

their resulting 3-way partition scheme, we are also able to find a composite Lya-

punov function. However, our underlying SOS formulations and hence run-time are

significantly different.

Table 3.2: Run-time comparison for Lotka-Volterra system

Non-sparse alg.[3] Sparse alg. [3] Proposed
𝑉1 0.25s 0.38s 0.1023s
𝑉2 0.25s 0.37s 0.0587s
𝑉3 0.44s 0.59s 0.0568s
𝑉 1415.23s 688.54s 0.2178s

For both non-sparse and sparse algorithms in [3], after the individual {𝑉𝑖}3𝑖=1 are

found by low-dimensional SOS, it relies on an additional search of 𝛼𝑖 > 0 such that
∑︀

𝑖 𝛼𝑖𝑉𝑖 satisfies the derivative condition in 𝑥. This has to be done with yet another

2we omit explicitly listing here the dynamics for saving space and refer the reader to the source
code for details
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SOS program of considerable size since the indeterminate is the high dimensional 𝑥.

Also, there is no guarantee such an 𝛼𝑖 > 0 always exists; it heavily depends on how

compatible {𝑉𝑖}3𝑖=1 are (in our test, the {𝑉𝑖}3𝑖=1 we found do not produce feasible 𝛼𝑖,

so we copy the run-time reported in the paper for comparison).

Our sufficient condition Eq. (3.7), in contrast, guarantees that
∑︀

𝑖 𝑉𝑖 would auto-

matically satisfy the derivative condition. This is done by imposing more restrictive

conditions on {𝑉𝑖}3𝑖=1 at the their independent construction stages. In other words,

once we get these ingredients, no extra work is necessary and the time spent search-

ing for 𝑉 is just the sum of time spent on each {𝑉𝑖}3𝑖=1 in much lower dimensions.

Consequentially, as shown in Table 3.2, our final run-time is 3-4 orders of magnitude

faster in finding the composite 𝑉 .

This example showcases the combined power of graph partition-like algorithms

such as [3] and the technique proposed in this paper: the former as a prepossessing

step can extend the use case, and the latter can facilitate a much faster optimization

program.

3.6 Discussion and Future Work

In this paper, general and constructive compositional algorithms are proposed for

the computationally prohibitive problem of stability and invariance verification of

large-scale polynomial systems. The key idea is to break the large system into several

sub-systems, construct independently for each subsystem a Lyapunov-like function,

and guarantee that their sum automatically certifies the original high-dimensional

system is stable or invariant. The proposed algorithms can handle problems beyond

the reach of direct optimizations, and are orders of magnitude faster than existing

compositional methods.

We are interested in exploring extensions of our work to compositional safety

verification of multi-agent networks by leveraging the barrier certificate idea [56]. We

believe the connection is immediate both technically, as barrier certificates are natural

extensions of Lyapunov function, and practically, as the multi-agent network has, by
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definition, a compositional structure.

Appendix

Primal Proof of Theorem 1

Proof. Let us denote the left hand side of Eq. (3.5c) as 𝑈 . Let 𝑈𝑘 be the k-th leading

principal sub-matrix of 𝑈 in the blocks sense (e.g., 𝑈1 equals 𝐴11𝑃1 + 𝑃1𝐴
′
11 instead

of the first scalar element in 𝑈), and let �̃�𝑘 be the last column-blocks of 𝑈𝑘 with its

last block element deleted, i.e.,

�̃�𝑘 :=

⎡
⎢⎢⎢⎢⎢⎢⎣

𝐴1𝑘𝑃𝑘 + 𝑃1𝐴
′
𝑘1

𝐴2𝑘𝑃𝑘 + 𝑃2𝐴
′
𝑘2

...

𝐴(𝑘−1)𝑘𝑃𝑘 + 𝑃𝑘−1𝐴
′
𝑘(𝑘−1)

⎤
⎥⎥⎥⎥⎥⎥⎦

Also, define a sequence of matrices:

𝑁𝑘 :=
𝑘⨁︁

𝑖=1

(︃
𝑚∑︁

𝑗=𝑘+1

𝐴𝑖𝑗𝑀𝑖𝑗𝐴
′
𝑖𝑗 + 𝑃𝑖𝑀

−1
𝑗𝑖 𝑃𝑖

′
)︃

for 𝑘 = 1, 2, . . . ,𝑚− 1, and 𝑁𝑘 = 0 for 𝑘 = 𝑚. Let �̄�𝑘 be the largest principal minor

of 𝑁𝑘 in the block sense. It’s obvious then that by construction 𝑁𝑘 ⪰ 0,∀𝑘.

We will use induction to show that 𝑈𝑘 +𝑁𝑘 ≺ 0,∀𝑘, so that in the terminal case

𝑘 = 𝑛, we would arrive at the desired Lyapunov inequality 𝑈 = 𝑈𝑛 + 𝑁𝑛 ≺ 0. For

𝑘 = 1, 𝑈1 + 𝑁1 ≺ 0 is trivially guaranteed by taking 𝑖 = 1 in Eq. (3.6d). Suppose

𝑈𝑘 +𝑁𝑘 ≺ 0 for a particular 𝑘 ≤ 𝑛− 1, let us now show that 𝑈𝑘+1 +𝑁𝑘+1 ≺ 0.

First, notice that for 𝑘 ≤ 𝑛− 1, the sequence of 𝑁𝑘 satisfies this recursive update:

𝑁𝑘 = 𝑛𝑘 + �̄�𝑘+1 where

𝑛𝑘 :=
𝑘⨁︁

𝑖=1

(︁
𝐴𝑖(𝑘+1)𝑀𝑖(𝑘+1)𝐴

′
𝑖(𝑘+1) + 𝑃𝑖𝑀

−1
(𝑘+1)𝑖𝑃𝑖

′
)︁
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Notice also that 𝑛𝑘 = 𝐿𝑘𝑆𝑘+1𝐿
′
𝑘 where

𝐿𝑘 :=
[︁⨁︀𝑘

𝑖=1 𝑃𝑖 ,
⨁︀𝑘

𝑖=1𝐴𝑖(𝑘+1)

]︁

𝑆𝑘+1 :=
[︁⨁︀𝑘

𝑖=1𝑀
−1
(𝑘+1)𝑖 ⊕

⨁︀𝑘
𝑖=1𝑀𝑖(𝑘+1)

]︁

From the assumption that 𝑈𝑘+𝑁𝑘 ≺ 0, we have 𝑈𝑘+𝑁𝑘 = 𝑈𝑘+𝐿𝑘𝑆𝑘+1𝐿
′
𝑘+�̄�𝑘+1 ≺ 0.

Rearrange the terms:

− (𝑈𝑘 + �̄�𝑘+1) ≻ 𝐿𝑘𝑆𝑘+1𝐿
′
𝑘 (3.9)

Next, let 𝐷𝑘+1 be the left hand side of constraint Eq. (3.6d) at 𝑖 = 𝑘+ 1 with the

summation truncated to be only over indicies 𝑘 + 2 to 𝑛 (as opposed to be over all

indices other than 𝑘 + 1), i.e.,

𝐷𝑘+1 :=𝐴(𝑘+1)(𝑘+1)𝑃𝑘+1 + 𝑃𝑘+1𝐴
′
(𝑘+1)(𝑘+1)

+
𝑚∑︁

𝑗=𝑘+2

𝐴(𝑘+1)𝑗𝑀(𝑘+1)𝑗𝐴
′
(𝑘+1)𝑗

+
𝑚∑︁

𝑗=𝑘+2

𝑃𝑘+1𝑀(𝑘+1)𝑗𝑃𝑘+1

and let

𝑇𝑘+1 :=[𝐴(𝑘+1)1, 𝐴(𝑘+1)2, . . . , 𝐴(𝑘+1)𝑘, 𝑃𝑘+1, . . . , 𝑃𝑘+1⏟  ⏞  
repeat k times

]

Then by Schur complement, constraint Eq. (3.6d) with 𝑖 = 𝑘 + 1 is equivalent to:

⎡
⎢⎢⎢⎣

𝐷𝑘+1 𝑇𝑘+1

𝑇 ′
𝑘+1 −𝑆𝑘+1

⎤
⎥⎥⎥⎦ ≺ 0 (3.10)

Use Schur complement on Eq. (3.10) again, this time from the opposite direction, it

is also equivalent to:

𝑆𝑘+1 ≻ −𝑇 ′
𝑘+1𝐷

−1
𝑘+1𝑇𝑘+1 (3.11)
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Because 𝑃𝑖 ≻ 0,∀𝑖, 𝐿𝑘 has full row-rank, then pre- and post-multiplying Eq. (3.11)

with 𝐿𝑘 and 𝐿′
𝑘 preserves the positive definite order:

𝐿𝑘𝑆𝑘+1𝐿
′
𝑘 ≻ −𝐿𝑘𝑇

′
𝑘+1𝐷

−1
𝑘+1𝑇𝑘+1𝐿

′
𝑘 (3.12a)

= −�̃�𝑘+1𝐷
−1
𝑘+1�̃�

′
𝑘+1 (3.12b)

The last equality is due to

𝐿𝑘𝑇
′
𝑘+1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

𝐴1(𝑘+1)𝑃𝑘+1 + 𝑃1𝐴
′
(𝑘+1)1

𝐴2(𝑘+1)𝑃𝑘+1 + 𝑃2𝐴
′
(𝑘+1)2

...

𝐴𝑘(𝑘+1)𝑃𝑘+1 + 𝑃𝑘𝐴
′
(𝑘+1)𝑘

⎤
⎥⎥⎥⎥⎥⎥⎦

= �̃�𝑘+1

Finally, combining Eq. (3.9) and Eq. (3.12), we have

− (𝑈𝑘 + �̄�𝑘+1) ≻ −�̃�𝑘+1𝐷
−1
𝑘+1�̃�

′
𝑘+1

(3.13)

By again taking Schur complement, this is equivalent to:

⎡
⎢⎢⎢⎣

𝑈𝑘 + �̄�𝑘+1 �̃�𝑘+1

�̃� ′
𝑘+1 𝐷𝑘+1

⎤
⎥⎥⎥⎦ = 𝑈𝑘+1 +𝑁𝑘+1 ≺ 0 (3.14)

which completes the induction.

Dual Proof of Theorem 1

We’ll make use of Theorem of Alternatives [7] below.

Theorem 3. Let 𝒱 (resp. 𝒮) be a finite-dimensional vector space with inner product

⟨·, ·⟩𝒱 (resp. ⟨·, ·⟩𝒮). Let 𝒜 : 𝒱 → 𝒮 be a linear mapping, and 𝒜𝑎𝑑𝑗 : 𝒮 → 𝒱 be the

adjoint mapping such that ∀𝑥 ∈ 𝒱 and ∀𝑍 ∈ 𝒮, ⟨𝒜(𝑥), 𝑍⟩𝒮 = ⟨𝑥,𝒜𝑎𝑑𝑗(𝑍)⟩𝒱 , and let

𝐴0 ∈ 𝒮. Then exactly one of the two statements is true:

48



1. There exists an 𝑥 ∈ 𝒱 with 𝒜(𝑥) + 𝐴0 > 0.

2. There exists a 𝑍 ∈ 𝒮 with 𝑍 
 0, 𝒜𝑎𝑑𝑗(𝑍) = 0, and ⟨𝐴0, 𝑍⟩𝒮 ≤ 0.

The theorem can be intuitively thought of as a generalization of Farkas’ Lemma

to non-polyhedral convex cones. A complete proof can be found in [7]. Tailored to

our need, 𝒱 and 𝒮 are taken as the cone of positive semidefinite matrices equipped

with ⟨𝐴,𝐵⟩ = 𝑡𝑟𝑎𝑐𝑒(𝐴𝐵), > (resp. ≥) therefore means ≻ (resp. ⪰), and 𝑍 
 0

means 𝑍 ⪰ 0, 𝑍 ̸= 0.

Proof. Now, let us first match Eq. (3.5) to the first statement to get the linear mapping

𝒜 and the adjoint. Then Eq. (3.5) is infeasible if and only if there exists a 𝑍 with

the same size and partition of 𝐴 (as well as 𝑃 ) such that:

𝑍 
 0 (3.15a)

𝑍𝑖𝑖𝐴𝑖𝑖 + 𝐴′
𝑖𝑖𝑍𝑖𝑖 +

𝑚∑︁

𝑗=1
𝑗 ̸=𝑖

𝐴′
𝑖𝑗𝑍𝑖𝑗 + 𝑍 ′

𝑖𝑗𝐴𝑖𝑗 
 0,∀𝑖 (3.15b)

Finding the alternative of Eq. (3.6) is less straightforward. It turns out it is easier

to work with an equivalent form of Eq. (3.6):

𝑃𝑖 > 0,𝑀𝑖𝑗 > 0,∀𝑖, 𝑗, 𝑖 ̸= 𝑗 (3.16a)

𝑃𝑖𝐴𝑖𝑖 + 𝐴′
𝑖𝑖𝑃𝑖 +

𝑚∑︁

𝑗=1
𝑗 ̸=𝑖

𝑃𝑖𝐴𝑖𝑗𝑀𝑖𝑗𝐴
′
𝑖𝑗𝑃𝑖 +𝑀−1

𝑗𝑖 < 0,∀𝑖 (3.16b)

We then match Eq. (3.16) also to the first statement. It is infeasible if and only

if there exists a set of {𝑇𝑖}𝑚𝑖=1 where each 𝑇𝑖 is with the same size and partition of 𝐴
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(as well as 𝑃 ) such that:

𝑇𝑖 
 0,∀𝑖 (3.17a)

𝐴𝑖𝑖𝑇𝑖𝑖𝑖 + 𝑇𝑖𝑖𝑖𝐴
′
𝑖𝑖 +

𝑚∑︁

𝑗=1
𝑗 ̸=𝑖

𝑇𝑖𝑖𝑗𝐴
′
𝑖𝑗 + 𝐴𝑖𝑗𝑇𝑖

′
𝑖𝑗 
 0,∀𝑖 (3.17b)

𝑇𝑖𝑖𝑖 ≤ 𝑇𝑗 𝑖𝑖,∀𝑖, 𝑗, 𝑖 ̸= 𝑗 (3.17c)

It is clear that the feasibility of Eq. (3.15) implies that of Eq. (3.17) because one

can simply let 𝑇𝑖 = 𝑍−1, ∀𝑖 (the reverse implication does not necessarily hold; it

is possible the set {𝑇𝑖}𝑚𝑖=1 can not be ‘squashed’ into a single 𝑍−1). Therefore, the

infeasibility of Eq. (3.5) implies the infeasibility of Eq. (3.16) which is equivalent to

Eq. (3.6). Flipping both sides of the last statement, Eq. (3.6) is feasible implies Eq.

(3.5) is feasible.
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Chapter 4

Sampling Quotient-Ring SOS

Programs

This chapter is adapted from work previously published in [66].

To connect the dots, three limitations in the compositional work presented in

Chapter 3 motivated this work. In particular, we would like to i) avoid implicitly

assuming (non-general) system structure; ii) not sacrifice solution quality, and most

importantly, iii) address the “true” culprit that creates large-scale SOS/SDP programs

in the first place.

4.1 Introduction

We consider the fundamental verification problem of region-of-attraction (ROA) ap-

proximations for polynomial, polynomial with generalized Lur’e uncertainty, and

multi-rigid-body systems. Sum-of-squares programs are widely accepted as a stan-

dard approach to this problem. Powered by semidefinite program, SOS provides a

systematic way to optimize over polynomial Lyapunov functions’ sub-levelsets for

these approximation tasks [51, 55].

Despite the popularity and rich theories, the problems solved by these approaches

are still of only modest dimension (10–15 states) [41]. This is limiting, as many

interesting real-world applications, e.g., mechanical systems consisting of many rigid
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Figure 4-1: The proposed method significantly reduces both formulation and compu-
tation overhead. One resulting improvement is visualized above on the ROA approx.
of the Van der Pol. Traditional methods typically involve conditions on, e.g., the set
of all states enclosed within the yellow line, and solve an optimization globally. Our
method, provably correct and less conservative, only needs to examine few random
samples, shown as blue dots, on the yellow line.

bodies, are well beyond that scale.

What, then, could be causing the scalability challenge?

Typical scale-improving techniques, rightly so, identifies the low-level SDPs as a

computational bottleneck. However, the SDPs are far from the only issue; in fact,

we argue that they are, to a large extent, a scapegoat for the inefficient high-level

problem formulations.

Specifically, traditional formulations heavily rely on the recipe of (in)equality im-

plication, S-procedure, and auxiliary high-degree Lagrange multipliers. These multi-

pliers not only introduce a large number of auxiliary decision variables and possibly

extra expensive constraints, they inflate the problem dimension or degree as well,

all of which responsible for creating bloated SDPs. If the dynamics are not ex-

actly polynomial, like the Lur’e-uncertain or rigid-body dynamics that we consider,

auxiliary indeterminates are additionally necessary, aggravating the complexity even

further [54].

Motivated to eliminate all these multipliers (and most of the auxiliary indetermi-

nates), we exploit inherent system properties — continuity in polynomial, convexity

in Lur’e uncertain, and implicit algebraic structure in rigid-body systems — and refor-

mulate the ROA approximation problems as quotient-ring SOS programs. These are
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programs that directly reason on algebraic varieties (objects defined by polynomial

equations; for example, the yellow line in Figure 4-1 is a variety) without relying on

multipliers. Basic algebraic geometry properties imply these reformulated programs

are smaller, sparser, less constrained, yet less conservative.

The computation of the new quotient-ring SOS programs is further improved, sig-

nificantly, by leveraging a sampling algebraic variety approach. The method, recently

introduced in [20], reduces a quotient-ring SOS program to sampled instances on the

defining variety, resulting in small SDPs with low-rank data and better numerical con-

ditions. Remarkably, solution correctness is guaranteed with just a finite (in practice,

very small) number of such samples.

Combining the new formulations and sampling, the proposed method can verify

systems well beyond the reach of existing SOS-based approaches (32 states). On

smaller problems where a baseline is available, it computes tighter solution 2-3 orders

faster.

Finally, while this paper focuses on ROA verification, extensions to the closely

related problems such as reachability analysis or barrier certification [55] are imme-

diate.

Our general contributions are:

(i) We present three new quotient-ring SOS programs, one for each ROA approxi-

mation problems considered. Different inherent system structures are exploited,

all leading to smaller yet stronger formulations.

(ii) We apply the efficient sampling variety approach from polynomial optimization

to the context of general nonlinear system verification.

(iii) More specifically for the Lur’e-type uncertain systems, our new formulation is

novel, independent from the application of the underlying quotient-ring struc-

ture used for ROA analysis.

To our knowledge, all of these are proposed for the first time.
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4.1.1 Related Work

SOS programs have had success in verification for a wide variety of systems and tasks,

from polynomial to hybrid, deterministic to stochastic, and stability to robustness to

safety [51, 55, 70, 9, 54], and not only theoretically but demonstrated on hardware [41]

as well.

All these work essentially follow a standard pipeline, as illustrated in Fig. 4-

2. While we follow the same pipeline, our ingredients differ from the beginning,

e.g. our Lyapunov or Lur’e conditions are not the usual inequality implications.

These new conditions lead us to smaller yet stronger quotient-ring SOS programs;

multipliers, traditionally needed to segue to conformed convex and polynomial but

bloated programs, are thereby eliminated entirely.

These new quotient-ring SOS programs also allow us to take advantage of [20]

and improve the downstream computation differently. Existing methods commonly

assume special structures such as compositional [65], admitting low-rank solution [15],

or chordal sparse [44] in SDPs, or symmetric or sparse in polynomials [52, 53].

Other methods, while general, either approximate the semidefinite cone with lin-

ear or second-order cones [41], or rely on first-order methods such as the augmented

Lagrangian [62]; scalability are therefore achieved at the cost of conservatism or ac-

curacy.

In contrast, via sampling, [20] exploits the inherent geometric structure in our

quotient-ring SOS programs. It constructs orthogonal and low-dimensional (implicit)

Gröbner basis, and produces SDPs that are small, better conditioned, and of low-

rank (data, not solution). Remarkably, efficiency is significantly increased, without

sacrificing the program’s generality, correctness, and less-conservatism.

Figure 4-2: Standard SOS-based verification pipeline and the traditional overhead.
We follow the same pipeline but use different ingredients throughout. Thus, unlike
most scale-improving methods that are SDP-oriented, we reduce all these overhead.
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4.2 Problem Statement and Approach

Given a continuous-time closed-loop nonlinear system with dynamics �̇� = 𝑓(𝑥) and

a fixed positive definite polynomial Lyapunov candidate 𝑉 (𝑥), we consider the task

of quantitatively verifying if the system is locally asymptotically stable around the

fixed point (assumed to be the origin). Concretely, we are interested in finding a

sub-levelset ℰ (𝑉, 𝜌) := {𝑥 | 𝑉 (𝑥) < 𝜌} whose volume grows with 𝜌. The connected

component of ℰ that includes the origin is an inner approximation of the ROA if the

constraint in
max 𝜌

s.t. �̇� (𝑥) =
𝜕𝑉

𝜕𝑥
𝑓(𝑥) < 0, ∀𝑥 ∈ ℰ (𝑉, 𝜌) ∖ {0},

(4.1)

is satisfied. The cost on 𝜌 encourages enlarging the sub-levelset, thus providing a

tighter approximation.

We consider solving the ROA approximation on three sub-problems; they differ

in the dynamics characterization.

Polynomial problem: the “vanilla” case where 𝑓(𝑥) is polynomial in 𝑥.

Lur’e problem: The dynamics is a nominally polynomial 𝑓0(𝑥) subject to additive

uncertainty

𝑓(𝑥) = 𝑓0(𝑥) + 𝛿(𝑥),

where 𝛿(𝑥) satisfies a generalized Lur’e type condition (𝛼(𝑥)− 𝛿(𝑥))(𝛽(𝑥)− 𝛿(𝑥)) ≤ 0

with 𝛼(𝑥) and 𝛽(𝑥) both polynomial in 𝑥. Note that 𝛿(𝑥) may not be polynomial.

Rigid-body problem: The dynamics of rigid-body mechanical system, which come

from the equations of motion, are given as

𝑓(𝑥) = 𝑀−1(𝑥)𝐹 (𝑥),

where both 𝑀(𝑥) and 𝐹 (𝑥) include terms like sin(𝑥), thus 𝑓(𝑥) is rational trigono-

metric.

The overall approach in this paper is two-pronged: reformulate the three ROA

verification problems as simpler yet stronger quotient-ring SOS programs, and apply
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the efficient sampling algebraic variety method to solve them.

We begin by describing the complete solution to the polynomial problem. For

Lur’e and rigid-body problems, we focus on illustrating their tailor-made formulations

only, as the sampling subroutine is identically applied.

4.3 Formulation - Polynomial Problem

4.3.1 Existing Formulations

There are two known SOS programs formulations for the polynomial problem. The

more popular one, which we call program (IE), is based on a straightforward inequality

implication 𝑉 ≤ 𝜌 =⇒ �̇� ≤ 0, S-procedure and multipliers:

(IE)

find 𝜆(𝑥)

s.t. 𝜆(𝑥)(𝑉 (𝑥) − 𝜌) − �̇� (𝑥) is SOS

𝜆(𝑥) is SOS

Note that, this is a feasibility program and requires a line-search of a fixed 𝜌 since

otherwise the program would be bilinear (non-convex) in 𝜌 and 𝜆.

An alternative equality constrained formulation can be found in [51, 41]. In

particular, under the assumption that the Hessian of �̇� is negative definite at the

origin, the following is also sufficient for problem Eq. (4.1):

(E)
max

𝜌,𝑄,𝜆(𝑥)
𝜌

s.t. (𝑥′𝑥)𝑑 (𝑉 (𝑥) − 𝜌) − 𝜆(𝑥)�̇� (𝑥) = 𝑚′(𝑥)𝑄𝑚(𝑥) ∀𝑥

Here we explicitly write out the SOS factorization constraint on the right-hand side

(for easy reference later); 𝑚(𝑥) denotes the standard monomial basis of appropriate

degree.

Both formulations need to optimize over auxiliary multipliers 𝜆(𝑥). When the

𝜆 are of the same degree choices, the SOS programs translate to SDPs of similar
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dimension and lead to similar optimal 𝜌. However, the equality constrained (E) is

much simpler to solve due to the elimination of the SOS condition on the multipliers

and the line-search.

4.3.2 Proposed Formulation

The proposed formulation is closely related to (E). However, since it was given in the

references without proof, some important and subtle questions were left un-addressed.

For example, what is the formulation based on? and what is the purpose of the

(𝑥′𝑥)𝑑 term? To answer these, we first reverse-engineer the formulation to discover

its underlying implication, described below.

Theorem 4. Under the assumption that the Hessian of �̇� is negative definite at the

origin, the implication condition

�̇� (𝑥) = 0 =⇒ 𝑉 (𝑥) ≥ 𝜌 or 𝑥 = 0 (4.2)

is a sufficient condition for Eq. (4.1).

Proof. The Hessian condition ensures that �̇� (0) = 0 is a local maximum. Therefore,

locally around the origin, we must have �̇� < 0. If �̇� is negative definite, the system

is globally asymptotically stable, and Eq. (4.2) gives 𝜌 = ∞ which in turn correctly

implies Eq. (4.1). The more interesting case is when the system is locally stable, im-

plying that at some states �̇� > 0. Since 𝑉 and 𝑓 are both polynomial by assumption,

so is �̇� (𝑥) and it is thus continuous. Given this continuity, and that �̇� changes sign

eventually, zero-crossing event(s) must have occurred at some states.

If at all such states where �̇� (𝑥) = 0, the evaluation of 𝑉 ≥ 0 or it is precisely the

origin, as encoded by Eq. (4.2), then by contraposition, it is equivalent to

𝑥 ∈ {𝑥 | 𝑉 (𝑥) < 𝜌, 𝑥 ̸= 0} =⇒ �̇� (𝑥) ̸= 0

Given the local behavior of �̇� around the origin, the connected component of the 𝜌

sub-levelset that includes the origin, must have �̇� < 0 (except for the origin itself).
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Remark 8. Note that a discrete-time counterpart to Theorem 4 can be straightfor-

wardly stated and similarly proven as: The condition

∆𝑉 (𝑥) = 𝑉 (𝑓(𝑥)) − 𝑉 (𝑥) = 0 =⇒ 𝑉 (𝑥) ≥ 𝜌 or 𝑥 = 0 (4.3)

is a sufficient for the sub-levelset ℰ (𝑉, 𝜌) := {𝑥 | 𝑉 (𝑥) < 𝜌} to be an inner-approximation

of the true ROA to the system with dynamics 𝑥+ = 𝑓(𝑥).

An interactive visualization of the proof idea is available online1. Figure 4-1 shows

a snapshot of it, where the yellow line precisely defines those important non-origin

zero-crossings �̇� (𝑥) = 0.

With Theorem4 in place, it should be clear that Formulation (E) is a multiplier-

based sufficient condition for Eq. (4.2), therefore sufficient for Eq. (4.1) as well. Note

the importance of the negative definite Hessian condition2, it sufficiently implies the

local maximum condition needed in the proof. Note also the importance of the (𝑥′𝑥)𝑑

term, where 𝑑 is a strictly positive integer user chooses. Without this term, the

optimization (E) is meaningless because it would always return the trivial solution

𝜌 = 0. To see this, plug in 𝑥 = 0. The left-hand side become 0 − 𝜌− 0 which has to

match a non-negative right-hand side; the maximal value of 𝜌 must be zero.

Our formulation is a direct application of algebraic geometry on Eq. (4.2), using

basic objects such as affine variety, quotient ring, and Gröbner basis (due to space

limitation, we prioritize making the high-level idea clear, and only define variety

below, and refer to [21] Chapter 1 for the other background and definitions).

Definition 1. Let 𝑘 be a field, and let 𝑓1, . . . , 𝑓𝑠 be polynomials in 𝑘 [𝑥1, . . . , 𝑥𝑛] .

Then we set

𝒱 (𝑓1, . . . , 𝑓𝑠) = {(𝑎1, . . . , 𝑎𝑛) ∈ 𝑘𝑛 : 𝑓𝑖 (𝑎1, . . . , 𝑎𝑛) = 0 for all 1 ≤ 𝑖 ≤ 𝑠}

We call 𝒱 the variety whose defining equations are 𝑓1, . . . , 𝑓𝑠.

1http://web.mit.edu/shenshen/www/VDP-animation.html
2even though one reference does not make this assumption explicit and the other has a sign flip
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In rough terms, a variety is a set of roots to polynomial equations. Then, simply

by defining an algebraic variety 𝒱 := {𝑥|�̇� (𝑥) = 0}, a sufficient condition to Eq. (4.2)

is given by the following quotient-ring SOS program:

(Q)
max
𝜌,𝑄

𝜌

s.t. (𝑥′𝑥)𝑑 (𝑉 − 𝜌) = 𝑛′(𝑥)𝑄𝑛(𝑥), ∀𝑥 ∈ 𝒱

where 𝑛(𝑥) is a Gröbner basis.

(Q) and (E) may seem trivially equivalent and only differ in terminology; after

all, they stem from the same high-level polynomial equality constraint Eq. (4.2).

However, there are four facts that make the reformulation (Q) more appealing.

(i) The decision variable 𝜆(𝑥) is eliminated

(ii) The basis 𝑛(𝑥) in (Q) is of lower dimension than 𝑚(𝑥) in (E), due to Gröbner

basis (see [21], Chapter 2);

(iii) The fixed degree 𝑑 can be lower in (Q), due to the elimination of the 𝜆(𝑥)�̇� (𝑥)

term;

(iv) (Q) is intrinsically stronger than (E), i.e., optimal solution of (E) is in general

only suboptimal to (Q).

The last fact is important but subtle. It is due to that (E) relies on degree-

bounded multiplier whereas (Q) relies on geometric description of the variety. An

explicit example to make this distinction clear:

Degree-bounded multipliers are “bounded” Suppose we need to check if this

implication 𝑥 + 1 = 0 =⇒ 𝑥2 − 1 ≤ 0 is true. Multiplier-based formulation would

search for a 𝜆(𝑥) such that (𝑥2 − 1) + 𝜆(𝑥)(𝑥+ 1) ≤ 0,∀𝑥. This optimization can not

be feasible if 𝜆 is limited to be a constant, even though the implication is true. It

takes at least an affine multiplier, for example 𝜆(𝑥) = −(𝑥− 1) to make the problem

feasible. In contrast, quotient-ring formulation interprets the left-hand side of the
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implication as 𝑥 ≡ −1, so the right-hand side becomes 12 − 1 = 0 ≤ 0 which is

trivially true.

To recap, facts (i)-(iii) mean that the quotient-ring SOS program (Q) leads to a

much smaller SDP; yet it is also stronger (unless the multipliers can be of infinite

degree) due to fact (iv). Therefore, (Q) is a strictly better formulation, in theory.

The only downside, in practice, is that Gröbner basis themselves may be challenging

to find, especially when the defining equations for the variety get complicated or high-

dimensional. To overcome this potential difficulty, we leverage an efficient sampling-

based method.

4.4 Sampling on Algebraic Varieties

We apply the sampling algebraic varieties method introduced in [20] to solve the

quotient-ring problem (Q). The high-level idea is rather straightforward: instead of

solving the optimization for all real-valued 𝑥 with Gröbner basis, solve it at only a

set of sampled numerical instances {𝑥𝑖}:

(S)

max
𝜌,𝑄

𝜌

s.t. �̇� (𝑥𝑖) = 0, ∀𝑥𝑖

(𝑥′𝑖𝑥𝑖)
𝑑 (𝑉 (𝑥𝑖) − 𝜌) = �̃�′(𝑥𝑖)𝑄�̃�(𝑥𝑖), ∀𝑥𝑖

using �̃�(·), which can be a standard basis or an implicit Gröbner basis; this is to be

described later.

As hinted, there are certain numerical benefits of solving the sampled version (S).

But given that the ultimate goal is to produce stability certificate, we should be im-

mediately asking: a solution to (S) is necessarily a solution to (Q), does there exist

guarantee regarding sufficiency (as required to claim correctness)? Also, what is the

sample complexity and sampling procedure? The detailed answers and rigorous treat-

ments can be found in [20], we include a brief high-level summary for completeness.
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4.4.1 Correctness Guarantee on Finite Samples

The sampled program (S) is equivalent to the original program (Q), with probability

one, if the samples 𝑥𝑖 are generic. The genericity condition can be interpreted as

checking if enough samples are drawn randomly. In theory, there exists a finite sample

bound. This bound depends on many factors including the problem size, variety

structure, etc. Concretely, genericity is checked by a simple rank test of a matrix

whose elements are simple monomial evaluations at the samples.

Through this practical case-by-case numerical rank check, we accumulated enough

empirical evidence that the samples needed are in fact, very small. Usually, this

number is far less than the number of elements in the Gram matrix. In Section 4.7,

we document the number of samples used for each program, which could serve as an

empirical reference.

An intuitive explanation might be helpful; after all, “with probability one guaran-

tee” is usually stated in the asymptotic regime. Very loosely, here, the combination

of “being exactly on the variety” and “degree-bounded polynomial parameterization”

imposes a constraint so strong that finite samples are capable of capturing it. To some

extent, it is similar to polynomial interpolation, where a finite number of samples can

faithfully recover the coefficients of a degree-bounded polynomial.

We finally point out that, the sampling procedure itself involves finding roots to

polynomial equation(s). In the simple case where dynamics itself is polynomial, sam-

pling means finding roots of a single multi-variate polynomial �̇� , which can be easily

done via open-source packages (in our case, we use shooting method and numpy). As

the variety gets more complicated (usually so when having more defining equations),

so will the sampling process. Fortunately, sampling is a trivially parallelizable process,

where each thread only comes with very low processing and memory requirement.

4.4.2 Computational Benefits

The computational gains come from the paradigm shift: whereas traditional methods

match polynomial coefficients, sampled approach matches polynomial evaluations.
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One direct consequence is the low-dimensional numerical basis �̃�(𝑥𝑖). First, this

basis can be chosen as standard monomials evaluations, because the generic samples

numerically capture the underlying variety. In comparison, problem (Q) must rely

on explicit Gröbner basis to symbolically encode the variety. This in and of itself is

a huge improvement.

�̃�(𝑥) can be further simplified (from e.g. the standard basis) to an even lower-

dimensional implicit Gröbner basis by leveraging the underlying variety and a simple

SVD procedure. These implicit basis can be thought of as the orthogonal basis with

respect to a natural inner product supported on the samples. Orthogonalization,

as a byproduct of this size-reduction procedure, has been shown to improve SDP

numerical condition as well [38].

Finally, (S) results in an SDP with low-rank data structures, which can be readily

exploited by solvers. Note that the right-hand side of (S) is a scalar evaluation. Via

the trace cyclic property, �̃�′(𝑥𝑖)𝑄�̃�(𝑥𝑖) = tr(𝑄, �̃�(𝑥𝑖)�̃�
′(𝑥𝑖)), where �̃�(𝑥𝑖)�̃�

′(𝑥𝑖), the

problem data in the SDP, is of rank at most one by construction (because recall that

�̃�(𝑥𝑖) is a numerical vector). Such low-rank data does not appear in traditional SOS

programs, since 𝑛(𝑥) there are symbolic monomials. Note that it is the problem data

(rather than the decision variable 𝑄) that is of low-rank, which a lot of solvers can

readily take advantage of.

Figure 4-3: Qualitative comparison of the four programs.

Comparison of the four SOS programs. We have presented four different SOS

programs for the polynomial ROA problem. Figure 4-3 summarizes a qualitative

comparison of the solution quality and underlying SDP complexity. Note that the
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relative scale of the gap varies case-by-case. For example, on very simple problems,

all programs might be overkill and arrive at the same solution. On the other hand,

the proposed method achieves more significant computational gain for more complex

systems; Section 4.7 includes these quantitative comparisons.

4.5 Formulation - Lur’e Problem

Consider dynamics with generalized Lur’e uncertainties:

𝑓(𝑥) = 𝑓0(𝑥) + 𝛿(𝑥) (4.4)

where 𝑓0(𝑥) is the nominal polynomial dynamics; the uncertainty 𝛿(𝑥) satisfies (𝛼(𝑥)−
𝛿(𝑥))(𝛽(𝑥) − 𝛿(𝑥)) ≤ 0, where 𝛼(𝑥) and 𝛽(𝑥) are both polynomial (generalized from

the standard linear). A one-dimensional example of 𝛿(𝑥) is visualized in Figure 4-4.

Figure 4-4: Generalized Lur’e type sector uncertainty. 𝛼(𝑥) and 𝛽(𝑥), both polyno-
mial, define the “boundaries” of the sector; the uncertainty 𝛿(𝑥) can take any function
“in between”.

Existing Formulation For Lur’e problem, we would like to eliminate a standard S-

procedure dedicated to encoding the uncertainty 𝛿. This is a separate issue / overhead

from those arising from encoding sub-levelset (discussed in Section 4.3). To isolate

the two and highlight the new improvements here, we first present the standard and

proposed formulations for global analysis. Local extension is discussed later.

The standard way to verify global asymptotically stable (g.a.s.) is via an IQC-type
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treatment [46]:

find 𝜉(𝑥, 𝛿)

s.t. 𝜉(𝑥, 𝛿) > 0

𝜕𝑉

𝜕𝑥
(𝑓0(𝑥) + 𝛿)

⏟  ⏞  
�̇� (𝑥,𝛿)

− 𝜉(𝑥, 𝛿)(𝛼(𝑥) − 𝛿)(𝛽(𝑥) − 𝛿)
⏟  ⏞  

S-procedure encoding (𝑥, 𝛿) dependency

< 0,

(4.5)

where 𝛿 is an auxiliary indeterminate, independent from 𝑥 (thus the notation �̇� (𝑥, 𝛿));

its true dependency on 𝑥 is incorporated using multiplier 𝜉(𝑥, 𝛿) and the S-procedure.

Proposed Formulation The proposed formulation is simpler yet stronger (in as-

pect different from quotient-ring structure): it eliminates the auxiliary multiplier

𝜉(𝑥, 𝛿) and indeterminate 𝛿, and allow us to analyze all admissible dynamics 𝑓 (defined

in Eq. (4.4)) by examining the boundaries 𝑓𝛼 := 𝑓0(𝑥) + 𝛼(𝑥) and 𝑓𝛽 := 𝑓0(𝑥) + 𝛽(𝑥)

with a less conservative condition.

Lemma 2. For a given positive definite 𝑉 (𝑥), define

⎧
⎨
⎩

�̇�𝛼(𝑥) := 𝜕𝑉 (𝑥)
𝜕𝑥

𝑓𝛼 < 0

�̇�𝛽(𝑥) := 𝜕𝑉 (𝑥)
𝜕𝑥

𝑓𝛽 < 0,
(4.6)

then (4.5) =⇒ (4.6) =⇒ g.a.s. ≠⇒ (4.6) ≠⇒ (4.5) (slight abuse of notation here, (4.5)

denotes that the optimization is feasible).

Proof. (4.5) =⇒ (4.6): If (4.5) holds, it holds for all admissible 𝛿. It must hold

when 𝛿 = 𝛼(𝑥), plug this in and (4.5) reduces to exactly �̇�𝛼 < 0. Similarly �̇�𝛽 < 0 is

implied.

(4.6) =⇒ g.a.s.: First, note that for any fixed 𝑥, 𝛿(𝑥) can be written as a convex

combination of 𝛼(𝑥) and 𝛽(𝑥). Second, �̇� (𝑥) = 𝜕𝑉
𝜕𝑥

(𝑓0(𝑥) + 𝛿(𝑥)) is linear with

respect to 𝛿(𝑥). Combining the two observations, �̇� can also be written as a convex

combination of �̇�𝛽 and �̇�𝛼 (with generally state-dependent combination coefficients).

Therefore, (4.6) implies �̇� (𝑥) < 0 for all admissible 𝑓 .
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g.a.s ≠⇒ (4.6): Well-known fact. Finally, (4.6) ≠⇒ (4.5) is a consequence of the

multiplier limitation (Section 4.3).

Lemma 2 shows that (4.6) is stronger than (4.5). Also, in terms of computation,

not only is the multiplier 𝜉(𝑥, 𝛿) and S-procedure eliminated, so is the auxiliary in-

determinate 𝛿. These simplifications are preserved, and also combined with those in

Section 4.3 (e.g. elimination of multipliers 𝜆) when extended to local analysis via the

following.

Remark 9. It is worth pointing out that the Lemma 2 and its proof do not generally

translate directly into the discrete-time (DT) case. This is because the Lyapunov

difference ∆𝑉 = 𝑉 (𝑥+) − 𝑉 (𝑥) (the DT counterpart of �̇� ) is not linear in the 𝛿; for

example, if 𝑉 (𝑥) is quadratic in x, then ∆𝑉 is quadratic in 𝛿. So unless 𝑉 (𝑥) itself

is linear/affine in 𝑥 (or very precise cancellation happens for very particular 𝑓 and 𝑉

pair), ∆𝑉 can not be. However, a linear/affine 𝑉 cannot be positive definite (unless

it is trivially a constant, which is never a valid Lyapunov function).

Theorem 5. Given a positive definite 𝑉 (𝑥), if program (S) is feasible for dynamics

𝑓𝛼 and 𝑓𝛽, with optimal solutions 𝜌𝛼 and 𝜌𝛽, then �̇� (𝑥) < 0, ∀𝑥 ∈ ℰ
(︀
𝑉, 𝜌
)︀

:= {𝑥 |
𝑉 (𝑥) ≤ min(𝜌𝛼, 𝜌𝛽)}, and for all admissible 𝑓 defined by Eq. (4.4).

Proof. Given Theorem 4, the optimal solutions of (S) imply that �̇�𝛼(𝑥) < 0, ∀𝑥 ∈
ℰ
(︀
𝑉, 𝜌
)︀
, and similarly for �̇�𝛽. For all admissible 𝑓 , �̇� (𝑥) < 0 within this set can be

almost identically proved as “(4.6) =⇒ g.a.s.” part in Lemma 2.

Finally, the new formulation affords additional high-level insights into application

too; details in Section 4.7.2.

4.6 Formulation - Rigid-Body Problem

Multi-body rigid-body systems are challenging to analyze, not only because of their

often large scale, but more importantly because the Equations of Motions (EoM) and
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rotation and potential energy make their dynamics complicated rational trigonomet-

ric. Shown in Figure 4-5 is an N-link pendulum on a cart system, whose dynamics

exhibit such characteristic. We use it to illustrate more explicitly the challenge and

the existing and proposed approach.
2/8/20, 5(22 AM
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Figure 4-5: N-link pendulum on a cart. 3

Without loss of generality, assume 𝑁 = 1 (the classical cart-pole). Also, suppose

the cart and pole both have unit mass and the pole has unit length.

Let the states be 𝑦 := [𝑞0, 𝑞1, 𝑞0, 𝑞1], where 𝑞0 is the cart position, 𝑞1 the pole

angle, and 𝑞0, 𝑞1 the corresponding velocities. Let the force on the cart be 𝑢 and the

gravitational constant be 𝑔. The EoM is:

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 2 − sin 𝑞1

0 0 − sin 𝑞1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⏟  ⏞  
𝑀(𝑦)

⎡
⎢⎢⎢⎢⎢⎢⎣

𝑞0

𝑞1

𝑞0

𝑞1

⎤
⎥⎥⎥⎥⎥⎥⎦

⏟  ⏞  
�̇�

=

⎡
⎢⎢⎢⎢⎢⎢⎣

𝑞0

𝑞1

𝑞21 cos 𝑞1 + 𝑢

−𝑔 cos 𝑞1

⎤
⎥⎥⎥⎥⎥⎥⎦

⏟  ⏞  
𝐹 (𝑦,𝑢)

(4.7)

where 𝑀(𝑦) is the (positive definite) mass matrix, 𝐹 (𝑦, 𝑢) the force matrix, and �̇�

the dynamics. Since �̇� = 𝑀−1𝐹 , the dynamics is explicitly rational trigonometric.

Existing Formulations Taylor expansion is commonly used to handle the rational

trigonometric dynamics. This approach has two major limitations. One is the error;

or the complication introduced by error-bounding. The other limitation is Taylor

expansion’s own scalability; expansion can be challenging when the dimension or

3figure taken from the python PyDy package.
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degree gets non-trivial. For example, to expand the dynamics of the N-linked cart

example to third order, Sympy fails at link 4, whereas Matlab fails at link 5. If

higher-orders are needed to reduce the error, the scalability is even worse.

A “less lossy” transformation-type technique based on [50] has also been applied

[54, 9]. This technique deals with the dynamics in two steps. First, a change-of-

variables recasting technique can turn the trigonometric components into polynomials

and the dynamics are simplified as rationals. The second step is to clear the rationals’

denominator, perhaps not surprising by now, via multipliers, which carry all the

complications discussed so far.

Proposed Formulation The proposed method to deal with the rational trigono-

metric dynamics is a combination of change of variable, differential algebraic equations

(DAE), and implicit algebraic variety.

We start with the standard change of variable. Let 𝑥 := [𝑞0, 𝑠1, 𝑐1, 𝑞0, 𝑞1] where

𝑠1 ≡ sin 𝑞1 and 𝑐1 ≡ cos 𝑞1; suppose a feedback controller 𝑢(𝑥) is given to close the

loop. The new coordinates first must satisfy the unit circle condition 𝑠21 + 𝑐21 = 1,

which is equivalent to 𝑥′𝑆𝑥 = 1 where 𝑆 = diag(0, 1, 1, 0, 0).

Secondly, simple variable substitution of the recast states 𝑥 into the EoM Eq.

(4.7) gives 𝑀(𝑥)�̇� = 𝐹 (𝑥). This is the key step, where we do not explicitly write out

the �̇� but rather leave it implicit. In other words, instead of dealing with ordinary

differential equations, we describe the dynamic via DAEs, which are in fact more

general as well.

Thirdly, due to the coordinate transformation, the dynamics of the recast �̇� follows

a transformation from �̇� as:

�̇� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑞0

�̇�1

�̇�1

𝑞0

𝑞1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 𝑐1 0 0
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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⎤
⎥⎥⎥⎥⎥⎥⎦

⏟  ⏞  
�̇�

= 𝑇 (𝑥)�̇�
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where 𝑇 (𝑥) is the recasting transformation matrix (purely dependent on 𝑥). Conse-

quentially, the derivative of the Lyapunov function is then

�̇� (𝑥) =
𝜕𝑉

𝜕𝑥
�̇� =

𝜕𝑉

𝜕𝑥
𝑇 (𝑥)�̇� (4.8)

With these preparations, sampling quotient-ring can be now readily applied. In

the ‘vanilla’ case where the dynamics is polynomial, the variety has only one com-

ponent that is �̇� = 0. Here, due to the recasting, the variety 𝒱 is more involved

𝒱 = 𝒱1 ∪ 𝒱2 ∪ 𝒱3 where the defining equations are:

𝑥′𝑆𝑥 = 1 (4.9a)

𝑀(𝑥)�̇� = 𝐹 (𝑥) (4.9b)

𝜕𝑉 (𝑥)

𝜕𝑥
𝑇 (𝑥)�̇� = 0 (4.9c)

Note that �̇� = [𝑞0, 𝑞1, 𝑞0, 𝑞1] may seem necessary to be included in the SOS program

basis. However, because the first half of the elements (first-order derivatives of 𝑞)

is included in 𝑥, whereas the second half (second-order derivatives of 𝑞) is otherwise

independent of 𝑥, the numerical samples via the variety capture all dependencies

between �̇� and 𝑥. In other words, it is not necessary for �̇� to appear explicitly in the

basis, which is another major advantage over multiplier-based formulation.

4.7 Experiments and Examples

4.7.1 Polynomial Problems

We first consider three polynomial systems: Van der Pol oscillator, Ninja star, and

Pendubot. Programs (IE), (E), and (S) are compared. Across all three examples, the

proposed method (S) demonstrates speed improvement of up to 2-3 orders (Table 4.1).

On Pendubot and Ninja star example, the proposed method also produces better

solutions.

68



Figure 4-6: ROA approximations of polynomial systems. Qualitatively, for Van-
derPol, all three programs return identical result; for Ninja star, only the proposed
method (S) succeeds; for Pendubot, the proposed method is tighter.

(a) Van der Pol (b) Ninja Star (c) Pendubot

Van der Pol Ninja Star Pendubot

(IE) (E) (S) (IE) (E) (S) (IE) (E) (S)

PSD variable dim 45 45 15 220 220 55 495 495 70
num. scalar var. 46 46 1 221 221 1 496 496 1

num. constraintsa 165 152 29 540 632 78 4844 4840 118
time (𝑠𝑒𝑐) 0.09 0.07 0.01 errb err 0.13 err 217.96 0.33

aequals the number of samples on the variety for method (S)
b“err” indicates the solver encounters numerical error

Table 4.1: Numerical comparison of three methods for ROA verification.

Van der Pol (Time-reversed) Van der Pol is a 2 state, degree 3 polynomial systems.

It has a known ROA, and has thus been a staple benchmark. Using a degree 6

candidate 𝑉 , all programs produce almost tight approximation (Fig. 4-6a), though

the proposed method is the fastest.

Ninja star To showcase the efficacy of our method in numerically challenging sit-

uations, we purposely create a system with “badly conditioned” dynamics:

�̇�1/16 = −25𝑥31 + 2500𝑥71 + 48𝑥22𝑥1 − 14400𝑥22𝑥
5
1 + 28432𝑥42𝑥

3
1 − 19200𝑥62𝑥1

�̇�2/16 = −100𝑥32 + 40000𝑥72 + 48𝑥2𝑥
2
1 − 4800𝑥2𝑥

6
1 + 28432𝑥32𝑥

4
1 − 57600𝑥52𝑥

2
1

The system, with known true ROA that resembles a Ninja star shown in Figure 4-6,

is low dimensional (2 states) but of high degree (7 degree). Further, the coefficients
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are very unbalanced (relative scale difference is 103); and the dynamics linearization 𝐴

matrix at the origin are precisely zero. We supply a unit quadratic function 𝑉 = 𝑥′𝑥,

therefore coefficients of 𝑉 and �̇� are even more unbalanced than the those in the

dynamics. Among the three programs, only the proposed succeeds at producing a

result (and the result is tight).

Pendubot We take from [79] an LQR-controlled four dimensional Pendubot sys-

tem, Taylor expanded to degree three at the fixed point. A degree six Lyapunov

function is provided. Figure 4-6 shows the produced approximation at slice (𝑥1, 𝑥3).

Our method not only produces better approximation, it does so about 103 times faster

(Table 4.1).

4.7.2 Lur’e Problem - Path-Tracking Dubins Vehicle

Consider a Dubins car defined in the error frame relative to the virtual vehicle along

a path to be tracked, illustrated in Figure 6-2. The model is: �̇�𝐸 = 𝑢1 − 𝑘𝑣ℓ, �̇�𝐸 =

𝑢1𝑌𝐸 + 𝑢2 − ℓ cos𝜓𝐸, �̇�𝐸 = −𝑢1𝑋𝐸 + ℓ sin𝜓𝐸 where 𝜓𝐸, �̇�𝐸, �̇�𝐸 are the angle error

and linear displacements, 𝑙 and 𝑘𝑣 are the target speed and path curvature, and 𝑢1

and 𝑢2 are the angular and linear torques. Stabilization at zero error means the car

achieves perfect tracking.

Figure 4-7: Path-tracking Dubins vehicle in the virtual error frame

An LQR controller is designed for a constant nominal tracking curvature 𝑘𝑣 =

1. The true curvature can be between [0.8, 1.2], and potentially time-varying. The

task is to find an ROA approximation robust to this run-time parameter variation.

Formulation presented in Section 4.5 is applied to this problem, which allows us to
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verify the robust ROA by checking the two extreme cases. The result is shown in

Figure 4-8.

Figure 4-8: Robust ROA analysis for Dubins vehicle tracking a path of varying cur-
vature. The yellow outer tube corresponds to 𝑘𝑣 = 0.8 (straighter path). The green
inner-tube corresponds to 𝑘𝑣 = 1.2. The inner-tube is also the robust ROA for any
𝑘𝑣 varying within the given range. The red dots are counter-examples that do not
converge to the origin; they show the tightness of the approximation.

We would like to point out an extra bit of insight the proposed method affords

(which the existing formulation does not). Comparing the two ROAs produced for

the extreme cases, the one corresponding to a straighter 𝑘𝑣 = 0.8 path has larger

volume than 𝑘𝑣 = 1.2. In fact, we approximated the ROA for the nominal constant

curvature 𝑘𝑣 = 1 (note that this is not required for the robust ROA per se), and the

result is sandwiched in between the two shown in Fig. 4-8 (so smaller than straighter-

path one), even though the controller is designed based on this parameter. These

findings agree with our intuition that tracking a “curvier” path feels dynamically

more demanding, and it is interesting to have it, as a byproduct, emerging from the

result.

4.7.3 Rigid-Body Problem - Cart with N-Link Pole

Consider the problem of N-link pendulum on a cart, illustrated in Figure 4-5. The

system states are the position and (angular) velocity of the cart and the 𝑁 links.

There are 𝑁 inputs, one is a force applied on the cart, and the rest are torques
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Table 4.2: Numerical results of the ROA problem with different number of links on
the cart.

Link 1 2 3 4 5 6 7 8 9

dim(𝑥) 5 8 11 14 17 20 23 26 29

dim𝑄a 21 45 78 120 171 231 300 378 465
cstrsb 45 89 179 298 390 531 690 890 1390

time (𝑠) 0.03 0.48 23.67 91.87 178.78 338.56 478.37 598.20 723.03

aThe matrix variable in the SDP is dim𝑄-by-dim𝑄.
bThe number of constraints, which is the same as the number of samples.

applied on the 𝑁 − 1 links, starting from the attached on the cart (farthest one from

the cart is not controlled directly). The task is to balance all the links upright.

We first produce an LQR controller and a quadratic Lyapunov function in the

original coordinate. Then with small-angle approximations, and techniques intro-

duced Section 4.6, transform them all into the recast 𝑥 coordinate. Figure 4-9 shows

the ever-growing complexity disparity for the proposed method and its multiplier-

based counterpart (E). Applying techniques detailed in, we are able to verify system

of dimension 32, well beyond the scale of current SOS-based method. The numerical

comparisons for different N are documented in Table 4.2.

Figure 4-9: SDP complexity as the number of links in the N-link on cart system
Figure 4-5 grows. Note the log-scale.
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4.8 Discussion and Future Work

We presented a novel framework, combining smaller yet stronger problem reformula-

tions and sampling, to address the scalability issues of SOS-based verification. The

three new ROA formulations each relies on (different) intrinsic system structures,

and are thus general. The subsequent quotient-ring SOS programs leverage geo-

metric problem description rather than algebraic and are thus smaller, sparser, less

constrained, yet less conservative. Their computation is further improved via the

application of sampling variety method. Altogether, scale and speed are significantly

improved.

Future work includes extending the techniques to more applications. A direct

example is the multi-contact example described in [54]. Where the mass matrix can

be handled via DAE technique as described in Section 4.6, contact condition can be

simplified as described in Section 4.5.

An important related question we did not elaborate on here is how to find a high-

quality Lyapunov candidate to feed into this new verification pipeline. This is the

motivation of a sister project, which we discuss in Chapter 6.
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Part II

Verification of Neural Networks

Systems
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Machine learning and neural networks have disrupted many engineering and sci-

entific fields for their flexibility, simplicity and effectiveness. In the context of dy-

namical systems control, there has been a great deal of success using feedforward

neural networks (FFNNs) or recurrent neural networks (RNNs) to mine controllers

for challenging tasks such as grasping, autonomous driving, and walking.

Despite these successes, learning-based approaches have had limited applicability

in the real world due to the lack of performance guarantees. Traditionally, these

neural networks are tested on a large set of sample points for empirical performance

evaluation, but since it is impossible to exhaustively test every “point” on the real

line, let alone in the real world, what was not tested can never be truly trusted.

Indeed, as evidenced by the so-called “adversarial attacks”, even on a network with

consistent high performance, a test input slightly disturbed can lead to a bafflingly

different output. Placing this sort of solution as controller in a closed loop would

imply that even if a neural network controller produces a safe trajectory from a given

initial state, a tiny perturbation can cause the trajectory to become unsafe.

This is clearly concerning, and calls for provable certificates for set-based closed-

loop behaviors, which can be exactly captured by the notion of stability and reach-

ability. However, while there are rich tools for analyzing these properties, it is quite

challenging to apply them directly to systems with machine learning components in

the loop.

The challenges can be characterized by the complex system dynamics. It is well-

known that an appropriately trained FFNN can approximate an arbitrary nonlinear

function; modern RNNs are even more intricate due to their internal states and

the interconnected gating mechanism introduced by the popular Long Short Time

Memory (LSTM) design. In addition to these analytic challenges, since the neural

networks achieve their performance by tuning a huge amount of parameters, their

sheer sizes pose practical difficulty for computational tools. These are exactly the

issues we propose to address in this part.
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Chapter 5

Verification of Systems Modeled or

Controlled by RNNs

This chapter, except for Method II (described in Section 5.4) and the corresponding

results, has been presented publicly [64].

5.1 Introduction

Recurrent neural networks (RNNs) are a widely-used type of neural networks. Unlike

feedforward networks (FFNNs), RNNs have internal dynamical cells, and are best

known as the standard solution to learning tasks that require memory or inference,

such as video captioning, text from/to speech or natural languages translations.

While may not be immediately obvious, RNNs is not a foreign concept in the con-

text of control and identification; specifically, they are conceptually no different from

the classical dynamic observers or dynamic output feedback compensators. These

observers and compensators are the traditional approach to the well-known difficult

partially observable problems; likewise, RNNs have been successfully applied for var-

ious such tasks [26], and substantially outperform static feedforward neural networks

(FFNNs).

As tempting as it is to just throw an RNN at partially observable problems and

claim it solved though, one should be cautious about the necessity of formally analyz-
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ing such systems, especially because, in direct contrast to their FFNN counterpart,

formal verification or analysis on RNNs are scarce.

The lack of verification would certainly make sense if RNN were out of fashion,

or intrinsically transparent to interpret, or immune to attacks. The reality, however,

is quite the contrary. For sequential and temporal tasks, RNN remains the de facto

standard and out-performs feedforward nets [49]; how to interpret and improve the

RNN structure itself motivates an entire active research area [27]; and RNN has been

shown to be quite vulnerable to adversarial attacks as well [17]. So then, why the

void? What is the challenge and why cannot the techniques developed for feedforward

nets simply be applied here?

In principle, an RNN can be unrolled into a sequence of feedforward blocks and

then verified block by block using the existing methods, see Fig. 5-1; in practice,

however, this is currently either impossible or impractical. The obvious reason is

that the majority of the feedforward net verification work assumes ReLU activation

[82, 32], and simply cannot handle the family of sigmoidal activations used in the

prevailing RNN structure, the LSTMs. And even if we were to assume ReLU is good

for RNN, direct application of feed-forward techniques is still, subtly, impractical.

Figure 5-1: Standard verification setup for FFNN (left) and direct application of this
idea to an unrolled RNN(right)

The subtlety has to do with time. For feed-forward nets, the existing techniques

which reason about ℓ𝑝-balls around a nominal sample in input and output spaces is

‘one-and-done’ and rightfully so. For unrolled RNN, at any specific time, the de-

pendency of the network’s current output on the previous state forces the verification

process to additionally keep track of the ℓ𝑝-ball around the previous nominal state. In

other words, the verification has to be carried out sequentially for all time steps, each

dependent on the verified result from the step before and so on. Given that at every
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single time, the existing techniques rely on solving either an exact but very expensive

problem (mixed-integer or SMT), or a cheaper but relaxed one (convex optimization

or nonlinear program), the accumulated computational cost would lead to finishing

verifying an entire trajectory way too late, and the accumulated conservatisms would

lead to getting hit by a zero volume ℓ𝑝-ball way too early. Either way, “unrolling”

practically destroys any hope of long-horizon reasoning.

Recognizing the challenge imposed by unrolling, we believe the technical gap can

be and perhaps should be fulfilled with a viewpoint shift. We propose instead to

embrace the unique loop structure in RNN and treat it as, quite naturally, a dynam-

ical system. This view enables connection with control theory, Lyapunov theory in

particular, which avoids explicit reasoning in time and connects elegantly with convex

optimization.

But even from a control-theoretic viewpoint, verifying systems with RNN compo-

nents is still quite challenging due to the networks’ highly nonlinear dynamics. How

to deal with this challenge constitutes the major part of our contribution below.

3 2 1 0 1 2 3
x

1.0

0.5

0.0

0.5

1.0

y

y = tanh(x)
Our relaxation

Figure 5-2: Our Method I relies on a relaxation for general activations in the sig-
moidal family; hyperbolic tangent is used here for illustration. The relaxation is the
conjunction of four quadratic constraints and the key ingredient in our control theory
and convex optimization powered verification framework.

Contribution To the best of our knowledge, this is one of the first work to formally

verify systems containing modern RNN components. Two methods are proposed for

the verification task:

• Method I proposes tailored novel QC/IQC building blocks to make the general

sigmoidal activation family amenable (previewed in Figure 5-2, using tanh as
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an example) to analysis tools. Our relaxation can achieve increasingly tighter

bound with more computational resources (adding more multipliers).

• These proposed QC/IQCs are not limited to a learning setting and the sigmoidal

nonlinearities; they more broadly apply to arbitrary functions that are odd and

value-bounded.

• Method II proposes the use of an algebraic sigmoid as the activation function in

the network. While achieving competitive network performance, the proposed

activation scheme results in significant verification simplification compared with

the more general Method I.

5.1.1 Related Work

From the system and controls viewpoint, the internal dynamical states make RNNs

no different from the dynamic output feedback compensators. Designning these com-

pensators are well-known to be difficult even for general linear time-invariant plants.

Traditionally, the difficulty lies in the correct-by-construction requirement, because a

simultaneous synthesis and verification task does not admit a convex formulation in

all but very special cases such as the full-order linear dynamic compensator [63]. In

our setting, the synthesis is decoupled from the correctness verification, and we rely

on learning to propose a decent controller and verify it post-hoc. While the synthesis

part becomes straightforward, the verification is consequentially more complex since

it has to deal with a black-box model.

From the learning viewpoint, shortly after the exposure of the vulnerability of deep

neural networks in image classification [24], which raised serious concerns over if and

how such data-driven approaches can be reliably deployed, there has been an arms

race between the attack and verification of the feedforward neural networks using

various techniques [10, 33, 28, 83, 75, 58, 23, 71]. In striking contrast to this rapid

development, essentially no formal verification framework exists for RNNs, largely

due to the reason we laid out in the introduction.

A relevant work close to the problem we consider is [2], where systems controlled
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by RNNs with ReLU activation are studied via a simplified version of LTL on bounded

executions. However, since ReLUs are rarely used as activation in RNNs in practice,

the applicability of the work is very limited.

We instead consider the de facto standard RNN architecture, the Long Short Time

Memory (LSTM)s. This type of RNN has a unique gating mechanism and relies on

sigmoidal activations, whose gradients (softer than, e.g., ReLUs) effectively battle the

notorious exploding or vanishing gradient problem commonly found in networks with

long history or deep (many) layers. While the intricate design improves on predication

criteria such as the horizon and accuracy, it introduces to the already challenging task

of system analysis additional difficulty of complex dynamics, and is another reason

for the lack of work in this area.

Note that at the time of this thesis writing, two new work had since emerged from

the literature. One relies on explicit unrolling in time [30], a scheme similar to what

was described in the introduction (Section 5.1); therefore, it inherently struggles

in scaling-up in terms of the verification horizon. The work presented in [60] is

more similar in spirit to ours, where an IQC-based bounding scheme is applied on

dissipation inequality for robustness guarantee. Both of these work achieve similar

scale as the proposed Method I but are dwarfed by Method II.

5.2 Problem Statement

We are interested in analyzing closed-loop behavior of systems with RNN in the loop.

Similar to Chapter 4, our goal is to solve the fundamental region-of-attraction (ROA)

approximation problem for this closed-loop system: maximize the inner approxima-

tion of the set of initial states which eventually converge to the locally stable fixed

point (without loss of generality, assumed to be zero).

More specifically, we are interested in two problem settings: partially observable

closed-loop systems modeled by RNNs, or partially observable open-loop systems

controlled by RNNs.

81



5.2.1 System Controlled by RNNs

Suppose a known plant is given, with states 𝑥, inputs 𝑢, and outputs 𝑦 = 𝑔(𝑥),

and the dynamics are 𝑥+ = 𝑓(𝑥, 𝑢). The plant is feedback-connected with an RNN

system whose states 𝑐 have dynamics of 𝑐+ = ℎ(𝑐, 𝑦); note 𝑐 depend on the plant

through plant output 𝑦 and not the explicit plant states 𝑥. The RNN then produces

the control command 𝑢 = 𝑙(𝑐) for the plant. Once the plant and RNN controller are

connected, the closed-loop system states incorporate both components; we denote it

by 𝑠 := [𝑐, 𝑥], the column concatenation of the vectors 𝑐 and 𝑥.

We assume that 𝑓(·), 𝑔(·), and 𝑙(·) are all polynomials, and 𝑔(·) leads to partial

observation of 𝑥. Additionally, the RNN structure is assumed to be the standard

LSTM-type. In particular, while our verification techniques apply to any of these

variations, we focus on the JANET (Just Another Net). The choice is motivated by

the potential computational savings in both training and verification, and justified

by JANET’s competitive performance on many benchmark datasets [80].

Specifically, the RNN update rule 𝑐+ = ℎ(·) can be written as1:

𝑐+ = ℎ(𝑐, 𝑦)

=
1

2
(𝑐+ 𝑐⊙𝜏𝑓 + 𝜏𝑐− 𝜏𝑓⊙𝜏𝑐) ,

(5.1)

where ⊙ denotes element-wise multiplication, and 𝜏𝑓 denotes the tanh function, taken

element-wise as well:

𝜏𝑓 := tanh
(︀
𝑤′

𝑓𝑠
)︀
, (5.2)

𝑤𝑓 are the trainable matrix weights. Similarly, 𝜏𝑐 := tanh (𝑤′
𝑐𝑠) simply uses a different

trainable matrix weights for its inner-product argument. We sometime collectively

refer to all the trainable weights stacked as 𝑤 := [𝑤𝑓 , 𝑤𝑐].

1The dynamics as presented in the original paper has both tanh and logistic sigmoidal activations.
Since the two are a scaled and shifted version of each other, i.e. tanh(𝑥) = 2logistic(2𝑥) − 1, we
unify the two for clarity.
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The overall dynamics can be written as:

𝑠+ = 𝑓𝑐𝑙(𝑠) =

⎡
⎣ 𝑥+

𝑐+

⎤
⎦ =

⎡
⎣ 𝑓(𝑥, 𝑙(𝑐))

ℎ(𝑐, 𝑔(𝑥))

⎤
⎦ (5.3)

5.2.2 System Modeled by RNNs

Just as RNNs are suitable for controlling partially observable open-loop systems, they

are also a natural parameterization for system identification of partially observable

closed-loop systems.

Figure 5-3 illustrates the training process for the system identification task. The

goal of training is to produce the RNN weights 𝑤𝑓 , 𝑤𝑐 and and linear RNN output

mapping 𝑤𝑜𝑢𝑡 so that the RNN is capable of producing similar output trajectories.

The output trajectories from the RNN depend on the initial internal state 𝑐init of the

RNN. In order to train the model, we allow the optimization to tune these initial

conditions for each trajectory sample in order to optimize the cloning objective. In

part because it will be helpful for our analysis, we choose to parameterize these initial

conditions as a simple affine function mapping a short segment of outputs to the initial

conditions, 𝑤𝑖𝑛𝑖𝑡.

yn+1 ……
Training RNN

c0 = f(y1:n; Winit) c+ = g(c; c0, Wc), ̂y = h(c; Wout)

partial observations

̂yn+1 ̂yN… …predictions
Train Winit, Wc, Wout
jointly to minimize 
MSE( ̂yn+1:N − yn+1:N)

Winit? Wc, Wout?

y1 … yn yN

Figure 5-3: The training process.

More precisely, from the sampled 𝑁 -step observations of the true system outputs,

three sets of weights are jointly trained: the initialization weights 𝑤𝑖𝑛𝑖𝑡, mapping a

short fraction at the beginning of the observation tape 𝑦[1:𝑛] to an initial RNN cell
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state 𝑐init; the cell update weights 𝑤𝑓 and 𝑤𝑐, mapping the internal state 𝑐 to the

next time step state 𝑐+; and the output weights 𝑤𝑜𝑢𝑡, mapping the internal state 𝑐 to

RNN output 𝑦. The training objective is to minimize the mean square error between

the observations and the RNN output prediction for the remaining 𝑁 − 𝑛 steps.

The verification task is at a high-level similar to Subsection 5.2.1. In particular,

we are interested in finding the set of 𝑐init which is inside the region of attraction for

the zero fixed point.

y1 … yn

Fixed RNN

c0 = f(y1:n; Winit) c+ = g(c; c0, Wc), ̂y = h(c; Wout)
Winit Wc, Wout

̂yn+1 … ̂yN…
predictions

0… 0……

? ?…
Searching for a set of 
c0 or equivalently y1:n
such that  ̂y∞ = 0

Figure 5-4: The verification objective.

Practically, the RNN internal states is most likely hard to interpret or does not

associate straightforwardly to the quantities we really care about or are directly mea-

suring, e.g., physical or semantical ones. It may therefore be more convenient or

meaningful to equivalently map the set found in the RNN’s initial state space to

those interpretable space. In our setting, this means a reverse mapping to the short

history space we directly observed for initialization. Figure 5-4 illustrates the verifi-

cation objective.

In the next two sections, we present two methods to address the problem for-

mulated here. At a high level, inherent in these two methods is a generality versus

efficiency trade-off.
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5.3 Method I: Integral Quadratic Constraints

Method I applies to all sigmoidal activation variants, including but not limited to:

tanh, arctan, logistic, ElliotSig, as well as the algebraic sigmoidal we consider in

Method II. For brevity, we use tanh activation as the running example to describe

this proposed method.

In principle, problem stated in Section 5.2 can be handled by the standard tools

introduced in the background chapter (Chapter 2) as is. The issue we see is that each

and every one of those computational tools only provides a sufficient condition for

the problem, so the resulting optimization, even if feasible, is unlikely to provide any

meaningful solution.

Realistically, most of these sufficient-only gaps are terribly hard to close. For

example, the gap between SOS polynomials and non-negative polynomials, and the

gap between linear and nonlinear dynamics each constitutes an entire research field.

On the other hand, the gap between the sector condition relaxation and the exact

tanh (see Figure 2-1, the relaxed blue region versus the actual red line), is so tangibly

loose and so problem specific that there should be hope to tighten it up. In light of

this, we propose below a novel, tailored relaxation for the tanh (applicable to general

sigmoids).

IQCs work in “conjunction” The tutorial example in Subsection 2.3 demon-

strates how the IQC idea materializes with one single quadratic constraint. What is

perhaps not immediately obvious is that, multiple QCs/IQCs can be combined in a

conjunctive way to tighten the relaxation. This is most easily shown visually with

QCs.

For notational clarity, we use generic scalars 𝑎 and 𝑏 = tanh(𝑎) for illustrating our

tailored solution. Figure 5-5 plots on the left the sector condition, which we discussed

in the background tutorial (see Figure 2-1). Plotted in the middle is another widely-

used constraint, properly named the saturation condition. The saturation is a valid

QC for the 𝑏 = tanh(𝑎) the same way the sector is: it encompasses the red hyperbolic

tangent line. Recall that the sector condition can be folded in the Lyapunov condition
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using S-procedure Eq. (2.4); or on a lower level act as one 𝑄1 term in Eq. (2.2), this

saturation condition can likewise act as a 𝑄2 term and be attached using another

multiplier. The implied condition Eq. (2.3) is then for all the states such that both

𝑄1 and 𝑄2 sign conditions are met, namely the conjunction of those two individual

feasible sets, which is plotted on the right of Figure 5-5.
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S2 = {(b+ 1)(b− 1) ≤ 0}
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Conjunction of Sector and Saturation

b = tanh(a)

CJ1 = S1 ∧ S2

Figure 5-5: The sector and saturation conditions and their conjunction.

By joining forces of two QCs, we effectively improved the relaxation — the con-

junction on the right of Figure 5-5 is strictly tighter than either of its two ingredients

to its left. Yet, compared with the precise red hyperbolic tangent line, this relaxation

is still too loose and not satisfying. Of course, one can play the same game again

and stack on more IQCs to further tighten up the regions; the question then becomes

where to find these ingredient IQCs, which is usually the hard part in the analysis

and calls for problem-specific solutions.

Proposed quadratic constraints To the best of our knowledge, the sector and

saturation conditions are the only off-the-shelf solutions for the hyperbolic tangent.

Our proposed tailored solution is inspired by these two. Specifically, we discover that

shifted versions of the sector can also be valid IQCs for our problem. This can be

proven by the picture Figure 5-6 or by simple algebra invoking the bounded derivative

property of the hyperbolic tangent. These tailored relaxations, after passing through

the same conjunctive reasoning from the S-procedure, produce a tighter relaxation

on the right in Figure 5-6.

The shifting constants 𝛼 and 𝛽 can be chosen arbitrarily as long as they satisfy

𝛼 = 𝛽− tanh−1(𝛽). Our choice of 𝛽 = 0.77 and the corresponding 𝛼 are simply taken
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Figure 5-6: Two shifted sector conditions and their conjunction. The shift constants
𝛼 and 𝛽 can be arbitrarily chosen as long as 𝛼 = 𝛽− tanh−1(𝛽); the plot corresponds
to the choice of 𝛽 = 0.77, and 𝛼 = 0.77 − tanh−1(0.77)

from the visual cue that they “mix well” with the sector and saturation condition in a

complementary sense, and would produce an overall tight relaxation. This is shown in

Figure 5-7. In our experiment, we found that 𝛽 in the range of [0.65, 0.8] are similarly

well-balanced—as is visually clear why—and produce similarly tight solutions.

For reference, the QCs proposed for the function 𝑏 = tanh(𝑎) are QC(𝑎, 𝑏;𝛼, 𝛽) < 0

where

QC(𝑎, 𝑏;𝛼, 𝛽) :=

⎡
⎢⎢⎢⎢⎢⎢⎣

(𝑏− 𝑎) ⊙ 𝑏

(𝑏+ 1) ⊙ (𝑏− 1)

(𝑏− 𝛽) ⊙ (𝑏− 𝑎− 𝛼)

(𝑏+ 𝛽) ⊙ (𝑏− 𝑎+ 𝛼)

⎤
⎥⎥⎥⎥⎥⎥⎦
, (5.4)

𝛼 = 𝛽 − tanh−1(𝛽), and “>” is to be interpreted element-wise. Here, 𝑎, 𝑏 are both

scalars but can be trivially extend to vector arguments via concatenation.
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Figure 5-7: Hierarchical conjunctions of various IQCs.

Proposed integral quadratic constraints The QCs took advantage of two im-

portant properties of the tanh function: that it is odd and value-bounded. However,
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note that these QCs are static; they only constrain all the particular snapshot in-

stances of the function realization, but do not capture the transient behavior, which

presents a missed opportunity in tightening the relaxation.

To take advantage of the dynamic nature of the system, we propose below an

integral quadratic constraint using a simple dynamics 𝑎+ = tanh(𝑎) where 𝑎 ∈ R as

an example. Consider this function: 𝑉 (𝑎) = 𝑎 tanh(𝑎); simple algebra shows that:

∆𝑉 (𝑎) = 𝑉 (𝑎+) − 𝑉 (𝑎)

= tanh(𝑎)
(︀
tanh

(︀
𝑎+
)︀
− 𝑎
)︀

≤ tanh(𝑎) (tanh(𝑎) − 𝑎)

< 0,

(5.5)

which illustrates an upper-bounding scheme for the update difference of the proposed

𝑉 (𝑎) ≻ 0. Applying this idea back to the RNN dynamics, a finally building block to

be added to the verification will simply be:

IQC(𝑠, 𝜏 ;𝑤) := (𝑤′𝑠) ⊙ 𝜏, (5.6)

and the corresponding ∆IQC can be similarly upper-bounded by invoking properties

of tanh as in Eq. (5.5).

5.3.1 Verification Programs

Recall the closed-loop system has states 𝑠 = [𝑥, 𝑐] with dynamics 𝑓𝑐𝑙 defined in Eq.

(5.3). Given the assumptions, the RNN dynamics Eq. (5.1) is the only component

that is not polynomial.

However, if we first treat all the 𝜏 terms as new indeterminates, independent from

𝑠, then the closed-loop dynamics is polynomial in [𝑠, 𝜏 ]. Of course, the introduction

of new indeterminates in itself loses all the information that 𝜏𝑓 = tanh
(︀
𝑤′

𝑓 [𝑐, 𝑦]
)︀
, 𝜏𝑐 =

tanh(𝑤′
𝑐[𝑐, 𝑦]) and creates a gap. This gap is to be taken care of by the QC/IQC

process, which links these new indeterminates 𝜏 back to their arguments.
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Following the standard procedure (refer to Section 2.3) to assemble all the pieces

together, the verification program can be transcribed as:

max
𝑉,𝜌,𝑙,𝑚

𝜌 (5.7a)

s.t. 𝜌 > 0 (5.7b)

𝑙,𝑚 are SOS (5.7c)

− ∆𝑉 (𝑠) + 𝑙′ ((I)QCs([𝑠; 𝜏 ])⏟  ⏞  
Eq. (5.4),(5.6)

+𝑚′(𝑉 (𝑠) − 𝜌⏟  ⏞  
sublevel-set

) is SOS (5.7d)

Remark 10. Method I was developed before the techniques presented in Chapter 4

were conceived; but this is not the reason that we do not invoke the “simplified” con-

dition for Lur’e-type nonlinearity, proved in Lemma 2, Section 4.5. The reason is

because the setup and proof there rely on the system being continuous-time; the lemma

does not hold in discrete-time settings we are dealing here, see Remark 9 for details.

Remark 11. Method I was also developed before the techniques to be presented in

Chapter 6 were conceived. Those techniques could indeed further simplify the verifi-

cation process here. In particular, it is useful for finding a “high-quality” Lyapunov

candidate 𝑉 , and the bilinear alternation we do here could be avoided.

Figure 5-8: Canonical friction model in mechanical systems, where 𝐹 is an applied
force, 𝑓 is the friction force, 𝜇 is the dynamic coefficient of friction, 𝑛 is the magnitude
of the normal force. Such nonlinearity can be similarly handled via the proposed
QCs/IQCs. Figure taken online from Quora.com.

Remark 12. The proposed QCs Eq. (5.4) and IQC Eq. (5.6) are not limited to the

tanh or sigmoidal function; they are valid for any nonlinear function that is odd
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and value-bounded. In fact, many of the nonlinearities commonly found in physical

systems can also be handled via conjunction of (potentially only a subset of) the

proposed QCs/IQCs, one such example is the friction model, shown below.

5.4 Method II: Algebraic Sigmoid (AlgSig)

Method II directly replaces the generally trouble-making sigmoidal activation with a

particular one in the family: Algebraic Sigmoidal (AlgSig).

AlgSig(𝑥) :=
𝑥√

1 + 𝑥2
(5.8)

While not as famous as its siblings like the logistic or tanh when it comes to neu-

ral network activations, AlgSig has actually been quite widely used in music signal

processing applications [37]. There, not unlike the learning applications, smooth sat-

uration and fast computations are desired, and AlgSig offers both.

Back to our learning application, some slightly different justification has to be

made for this swapping proposal; similarly the motivation is slightly different as well.

The justification can be summarized as that AlgSig has all the nice sigmoidal

properties that have been hypothesized as the key to their success as RNN activation;

and that no empirical network performance is sacrificed due to the swap.

As shown in Fig. 5-9, the function curve of the standard tanh and AlgSig closely

resemble each other. In particular, both have the key property of “saturating at ±1”

and the “S”-shape properties.

Second, a nice property of the sigmoidal family that made it so popular is that

the evaluation of their gradients are very cheap. For example, for tanh, it involves a

simple multiplication of the function value itself:

d

d𝑥
(tanh(𝑥)) = 1 − tanh2(𝑥) (5.9)
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Figure 5-9: tanh(𝑥) versus the proposed AlgSig nonlinear activation

AlgSig is equipped with this convenient property as well:

d

d𝑥

(︂
𝑥√

1 + 𝑥2

)︂
=

1
(︀√

1 + 𝑥2
)︀3 (5.10)

In fact, as we will discuss in Section 5.7, some brief investigation has shown that, the

evaluation of Eq. (5.10) is a few times faster than that of the evaluation of Eq. (5.9).

Though this potential benefit is not the main focus of our work.

Thirdly, the soft gradient of tanh and logistic, which is the key to battle vanishing

and exploding gradient problems in RNNs, is also preserved from the swap.

As the a justification, not only are the activations similar in and of themselves,

when placed in networks, the resulting performance are quite comparable as well.

Subsection 5.6.1 shows that, on a model trained with the standard tanh activation,

merely swapping the activation with AlgSig already lead to similar performance;

re-training after the activation swap easily offer further training and testing error

improvements.

But why bother with a different activation? Similar to the numerous attempts

at simplifying or modifying the “vanilla” LSTM networks, we are computationally

motivated as well. However, it has more to do with the computation of the verification

certificate than the training (though AlgSig has indeed huge potential for training

savings as well; this is to be discussed in the future work). In particular, AlgSig leads

to a significantly simplified verification process, where the sampling quotient-ring SOS
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framework discussed in Chapter 4 is directly applicable, with no approximation or

relaxation required. This has important implication in both the verification scale and

quality, to be described in Subsection 5.5.

5.4.1 Verification Programs

Suppose the number of units in the RNN is 𝑛𝑐, then the ROA problem can be written

as maximizing over 𝜌, 𝑉 (𝑠) ≤ 𝜌 for all 𝑠, 𝜏 such that (recall Eq.(4.3) in Section 4.3.2):

∆𝑉 (𝑠) = 𝑉
(︀
𝑠+
)︀
− 𝑉 (𝑠)

= 𝑉 (𝑓𝑐𝑙(𝑠)) − 𝑉 (𝑠) = 0
(5.11)

and

𝜏𝑖 = AlgSig(𝑤′
𝑖𝑠) =

𝑤′
𝑖𝑠√︀

1 + (𝑤′
𝑖𝑠)

2
(5.12)

where 𝜏𝑖 is the generic 𝑖-th element in the stacked 𝜏 vector and similarly 𝑤𝑖 is the 𝑖-th

element in the stacked trainable weights 𝑤.

Note that constraint (5.11) is already in polynomial form, whereas (5.12) can be

recast so:

𝜏𝑖 =
𝑤′

𝑖𝑠√︀
1 + (𝑤′

𝑖𝑠)
2

⇐⇒

⎧
⎨
⎩

𝜏 2𝑖 + 𝜏 2𝑖 (𝑤′
𝑖𝑠)

2 = (𝑤′
𝑖𝑠)

2

𝜏𝑖𝑤
′
𝑖𝑠 > 0

(5.13)

These now polynomial constraints and cost can be translated into an SOS program

amenable for the sampling quotient-ring SOS method described in Chapter 4. In

particular, we formulate this problem:

max
𝜌,{𝑙𝑖}

𝜌 (5.14a)

s.t. 𝜌 > 0 (5.14b)

𝑙𝑖 are SOS, 𝑖 = 1, 2, . . . , 2𝑛𝑐 (5.14c)

(𝑠′𝑠) (𝑉 (𝑠) − 𝜌) +
2𝑛𝑐∑︁

𝑖=1

𝑙𝑖𝜏𝑖𝑤
′
𝑖𝑠 is SOS, ∀(𝑠, 𝜏) ∈ 𝒱 (5.14d)

𝒱(𝑠, 𝜏) :=
{︀

(𝑠, 𝜏) : 𝜏 2𝑖 + 𝜏 2𝑖 (𝑤′
𝑖𝑠)

2 = (𝑤′
𝑖𝑠)

2, 𝑖 = 1, 2, . . . , 2𝑛𝑐

}︀
(5.14e)
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where 𝑛𝑐 is the number of units in the network, 𝑙𝑖 is a scalar polynomial multiplier, 𝜏𝑖

is the 𝑖-th element in the all-stacked AlgSig nonlinearity. The size 2𝑛𝑐 is due to that

each cell introduces 2 AlgSig nonlinearities (both 𝜏𝑐 and 𝜏𝑓 ).

Note that Eq.(5.14d) encodes the 𝜏𝑤′𝑠 ≥ 0 constraint, and the defining equations

for the variety Eq.(5.14e) encodes the squaring of the algebraic sigmoidal; both due

to Eq.(5.13).

5.5 Methods I and II Comparison

We have presented two methods, geared towards the same high-level problem. Method

I is more general but comes with the price of having more complex constraints in the

verification. Method II requires a specific activation, but in turn, results in a sig-

nificantly simpler verification program with much less constraints; more importantly,

these fewer constraints are all exact.

To be more precise, for Method I, the inequality constrained (I)QCs are each

introduces at least a sign-constrained multiplier. And since all of the (I)QCs are

only “bounding” the nonlinearity, to get a feasible or meaningful verification result,

one needs to add as many such bounding constraints as possible (e.g., all 5 of the

proposed).

Method II on the other hand relies on an algebraic activation that can be described

by one polynomial equality and one single polynomial inequality, Eq. (5.13). Once

the equality constraint is efficiently taken care of via the techniques presented in

Chapter 4, the remaining single polynomial inequality is enough to “exactly” capture

the nonlinearity.

So, the comparison boils down to “one constraint to exactly describe the non-

linearity” versus “five to just bound”, these constraints and size differences add up

very quickly when the RNN size grows. Method II, therefore, is perhaps preferable

when applicable, especially if verification is of the highest priority. But if, for exam-

ple, the RNN to be verified for uses non-AlgSig activation and cannot be modified

or retrained, then the more geneal Method I is useful despite the higher verification
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computational cost.

5.6 Experiments and Examples

5.6.1 AlgSig Is Effective for Training

We test the performance of AlgSig against the vanilla LSTM and the simplified Janet

models, both of which rely on the standard tanh sigmoid. Table 5.1 shows the testing

accuracies of these models on benchmark datasets.

Table 5.1: Accuracies [%] on benchmark datasets for different RNN architectures.
All networks have a single hidden layer of 128 units. “Janet w. AlgSig (swap)” are
pre-trained Janet networks with all their tanh activation function swapped with the
AlgSig activation, while keeping all weights (therefore the arguments in the activation
as well) fixed. “Janet w. AlgSig (retrain)” are the swapped models with weights up-
dated from further training. The means and standard deviations from 10 independent
runs are presented.

Model MNISTa pMNIST IMDB [40] MIT-BIH

Vanilla LSTM 98.9±0.13 92.3± 0.22 95.2± 0.18 85.4± 0.18
Janet 98.3±0.11 93.8± 0.13 93.2± 0.12 87.9± 0.21

Janet w. AlgSig (swap) 95.3±0.19 91.8± 0.29 91.3± 0.24 82.1± 0.25
Janet w. AlgSig (retrain) 97.8±0.10 92.9± 0.18 94.8± 0.14 84.8± 0.15

aeach row (or column) of the pixels is fed into the net sequentially; this is different from how
common CNNs treat the inputs.

5.6.2 Verification Examples

Partially observable Van der Pol modeled by an RNN Following the problem

setup in 5.2.2, we train an RNN to approximate the dynamics of the benchmark

system, time-reversed Van der Pol oscillator (TRVDP). TRVDP is a 2-dimensional

continuous time polynomial system: �̇�1 = −𝑥2, �̇�2 = 𝑥1 − 𝑥2 + 𝑥2𝑥
2
1, the output is

simply the partial state, i.e. 𝑦 = 𝑥2. It has a known true ROA that’s also easy to

visualize, and therefore it has been a staple benchmark for ROA analysis techniques.
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The RNN is trained to approximate the output 𝑦 = 𝑥2. For training data, we

sample 10, 000 of initial states [𝑥1;𝑥2] within the 6-by-6 square centered at the origin.

For each sample, we simulate the TRVDP plant by integration for 12 seconds, and

discard the unstable samples and the 𝑥1 dimension. We then tick along the 1D sim-

ulated 𝑦 trajectories at every 0.12 second interval to get 100 discrete time steps. The

first 10 time steps is used to train a mapping to the initial cell state 𝑐init of the RNN,

and the rest 90 time steps is the target the RNN output attempts to approximate.

The loss function is the mean square error between the true and predicted 90 steps,

the training uses adam for gradient descent. The RNN has a single Janet layer with

10 units, an affine initialization mapping, and a linear output layer mapping.

Figure 5-10 compares four samples of the true system output 𝑦 versus the network

prediction 𝑦 drawn from the test set. Notice that, since the output 𝑦 is just one state

𝑥2 of a 2-states system, some of the trajectories cross each other, implying that a

single snap-shot measurement of partial state alone does not fully determine the future

trajectory. This highlights the necessity and advantage of RNN, for that its internal

cell states is capable of compensating the loss of full observability, as evidenced by

the small error of the predicted and simulated trajectories.
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Figure 5-10: True output 𝑦 v.s. predicated output 𝑦 trajectories, sampled from the
test data set.

For verification, we use a quadric parameterization for the Lyapunov function

and all the multipliers, and obtain an ellipsoidal ROA in R10 for 𝑐init. Since directly
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plotting this ellipsoid does not give us any insight on the quality of the approximation

with respect to the true ROA in R2, we instead densely sample, again from the

sampling square for initial states. For each sample of the initial TRVDP states, we

repeat what was done in the training to find its image in the RNN initial state space:

forward simulate the TRVDP state for 10 steps, and then affine transform this short

history using the trained initialization weights 𝑤𝑖𝑛𝑖𝑡. Once obtain this RNN initial

states in R10, we simply check if it is within the verified ellipsoid.

Figure 5-11 shows samples in and out the verified ROA versus the true ROA

boundary.
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Figure 5-11: Verified samples v.s. the true ROA.

Note that the conservatism of our estimation is to be expected, and there could be

two sources for the gap. First, the RNN is only an approximation of the true dynamics,

and second, our verified ROA is also only an (inner) approximation. Nonetheless, that

our estimation can capture the true ROA this closely is very encouraging.

Partially observable double integrator controlled by an RNN Consider the

discrete-time double integrator, whose open-loop dynamics are: 𝑥+1 = 𝑥1 + 𝑥2, 𝑥
+
2 =

𝑥2+𝑢, where 𝑥1 is the position, 𝑥2 is the velocity, and 𝑢 the input. We are interested in

using only single shot of the position 𝑥1, not a history of 𝑥1 or any direct measurement

of 𝑥2, to produce control 𝑢 that can steer the integrator to the origin (zero position and

velocity). Simple classical eigenvalue analysis can show that, a linear static output
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feedback in the form of 𝑢 = 𝐾𝑥1 where 𝐾 is the feedback gain is not capable of

completing the task (in a more descriptive language, not knowing my past positions

nor current velocity, it is impossible to come up with simple linear control strategy

that gets me back to the origin). It is necessary to have at least an estimation of 𝑥2,

either explicitly or implicitly.

We train an RNN in a reinforcement learning fashion to accomplish this control

task. We minimize, with the RNN in the feedback loop, the ℓ2 norm of 𝑥1 measure-

ment at the terminal time step. The closed-loop system dynamic in this setting are

therefore 𝑥+1 = 𝑥1 +𝑥2, 𝑥
+
2 = 𝑥2 +𝑢 = 𝑤′𝑐, 𝑐+ = ℎ(𝑐, 𝑥1), where ℎ is the RNN dynam-

ics, and 𝑤 is the trainable output weights. As for the initialization of the network’s

internal state, since it is only reasonable to assume the network knows nothing about

the system before the first measurement, we always initialize all cells to zero. This is

also the common practice in the adaptive control community.

The verification task is to find an inner approximation of the ROA, in the 𝑠 :=

[𝑥1;𝑥2; 𝑐] state space, for the closed-loop system. Figure 5-12 shows an example of

the two-dimensional slice of the verified ROA using Method I. The network has ten

internal cells, and we used quadratic parameterization for Lyapunov function and all

the multipliers. The ellipse is a slice of our verified six-dimensional ellipsoid at time

zero where it is known 𝑐init = 0 ∈ R10. Since we do not have a known true ROA of the

closed-loop system to compare against, we sample initial states and forward simulate

to record the “True” ROA.

Once again, the plot showcases the tightness of our approximation. It is also

worth pointing out that, in the training stage, all samples of the initial [𝑥1;𝑥2] states

are drawn from the 6-by-6 square centered at the origin, and we are able to verify a

space much larger than that. Of course, we expect the network learns to generalize;

this is the basic assumption and motivation underlying any learning approach. But

being able to have a definitive and formal answer as to how much and how reliably

the network is capable of generalizing, through our proposed verification framework,

is very encouraging.

Additional implication of the result has to do with improving sample complexity,
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Figure 5-12: Verified ellipsoid ROA for the closed-loop double integrator system using
RNN as a partial state feedback controller

which has been a major bottleneck in reinforcement learning paradigm, especially the

model-free version. There, the performance quality is gained painstakingly through

quantity — learning is encouraged to explore and assess as many sample points as

possible, so as to get good test coverage. Given our verification, the exhaustive

testing is much alleviated. For example, we might not have visited a sample at, say,

(10, 1). But as Figure 5-12 shows, exploration to this sample is not necessary as the

verification proves formally that the controller would behave well there.

Partially observable satellite controlled by an RNN We take from [42] a

6-dimensional satellite model. The states are the configuration and the velocities,

and the system admits a 3-dimensional input.

𝐻�̇� = −Ω(𝜔)𝐻𝜔 + 𝑢

�̇� =
1

2

(︀
𝐼 + Ω(𝜓) + 𝜓𝜓𝑇

)︀
𝜔

(5.15)

where 𝜔 ∈ R3 are the angular velocities in the body-frame, 𝜓 ∈ R3 represent the atti-

tude as modified Rodriguez parameters, and let 𝑥 = [𝜔;𝜓] denote the 6-dimensional

plant states. Ω : R3 → R3×3 is the matrix defined so that Ω(𝜓)𝜔 = is the cross

product 𝜓 × 𝜔, and 𝐻 = diag([2, 1, 1]) is the inertia matrix.
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The plant output is selected to be the full state leaving out 𝑥6, the dynamics are

discretized via forward Euler with time-step of 1𝑒−3 for the purpose of training, and

a single-layer RNN with 8 AlgSig units is trained in a reinforcement learning fashion,

similar as the double integrator example.

Due to the use of AlgSig activation, Method II is applicable to verify the closed-

loop dynamics. Two slices of the verified ROA and the sampled stable initial states

are shown in Figure 5-13

(a) Slice at 𝑥1 and 𝑥2 (b) Slice at 𝑥2 and 𝑥3

Figure 5-13: The verified ROA and the sampled stable initial states for the satellite
plant controlled by RNN with AlgSig activation.

5.7 Discussion and Future Work

Other (algebraic) sigmoid activations Investigating whether other sigmoidal

activations could offer comparable performance as the standard logistic and tanh

could help test the hypothesis that the three key properties described in Section 5.4

are indeed crucial for RNN training (since they are also all satisfied by this function).

A good reference on this topic is [22].

In the process of such investiagtion, we might also discover other functions that

could further simplify the verification programs. An example, suggested by Alexandre

Megretski

𝑓(𝑥) =
𝑥

1 + |𝑥| ,
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might be a good starting point (for its analytical simplicity); the reference above also

has brief discussion on this particular nonlinearity.

Extension to ReLUs Techniques used in this chapter inspire some ideas for an-

alyzing FFNN using SOS/SDPs instead of the mixed integer linear programming or

linear programming hierarchy. Two particular ones are:

• Encode the PWA ReLU with polynomial constraints.

Recall that 𝑦 = ReLU(𝑥) = max(0, 𝑥), which can be equivalently written as:

⎧
⎨
⎩

𝑦(𝑦 − 𝑥) = 0

𝑦 ≥ 𝑥
(5.16)

• Use rational approximation of ReLU.

In [74], it is shown that, rational functions are an ideal approximator to the

ReLU activation function. Given the straightforward mechanism to convert be-

tween polynomial and rational functions, and consequentially the direct appli-

cation of the something variety approach for verification given these polynomial

or rational constraints, this could also be a fruitful direction.
Neural networks and rational functions

A poor estimate for the number of zeros is simply the de-
gree of 2p�q, however, since f is univariate, a stronger tool
becomes available: by Descartes’ rule of signs, the number
of zeros in f � 1/2 is upper bounded by the number of
terms in 2p � q.

3. Approximating rational functions with
ReLU networks

This section will develop the proof of part 1 of Theo-
rem 1.1, as well as the tightness result in Proposition 1.5

3.1. Proving part 1 of Theorem 1.1

To establish part 1 of Theorem 1.1, the first step is to ap-
proximate polynomials with ReLU networks, and the sec-
ond is to then approximate the division operation.

The representation of polynomials will be based upon con-
structions due to Yarotsky (2016). The starting point is the
following approximation of the squaring function.
Lemma 3.1 ((Yarotsky, 2016)). Let any ✏ > 0 be given.
There exists f : x ! [0, 1], represented as a ReLU
network with O(ln(1/✏)) nodes and layers, such that
supx2[0,1] |f(x) � x2|  ✏ and f(0) = 0.

Yarotsky’s proof is beautiful and deserves mention. The
approximation of x2 is the function fk, defined as

fk(x) := x �
kX

i=1

�i(x)

4i
,

where � is the triangle map from Section 2. For every
k, fk is a convex, piecewise-affine interpolation between
points along the graph of x2; going from k to k + 1 does
not adjust any of these interpolation points, but adds a new
set of O(2k) interpolation points.

Once squaring is in place, multiplication comes via the po-
larization identity xy = ((x + y)2 � x2 � y2)/2.
Lemma 3.2 ((Yarotsky, 2016)). Let any ✏ > 0 and B � 1
be given. There exists g(x, y) : [0, B]2 ! [0, B2], rep-
resented by a ReLU network with O(ln(B/✏) nodes and
layers, with

sup
x,y2[0,1]

|g(x, y) � xy|  ✏

and g(x, y) = 0 if x = 0 or y = 0.

Next, it follows that ReLU networks can efficiently approx-
imate exponentiation thanks to repeated squaring.
Lemma 3.3. Let ✏ 2 (0, 1] and positive integer y be given.
There exists h : [0, 1] ! [0, 1], represented by a ReLU
network with O(ln(y/✏)2) nodes and layers, with

sup
x,y2[0,1]

��h(x) � xy
��  ✏

�1.00 �0.75 �0.50 �0.25 0.00 0.25 0.50 0.75 1.00

0.0

0.2

0.4

0.6

0.8

1.0 ReLU

rat

poly

Figure 5. Polynomial and rational fit to �r.

With multiplication and exponentiation, a representation
result for polynomials follows.

Lemma 3.4. Let ✏ 2 (0, 1] be given. Let p :
[0, 1]d ! [�1, +1] denote a polynomial with  s
monomials, each with degree  r and scalar coef-
ficient within [�1, +1]. Then there exists a function
q : [0, 1]d ! [�1, +1] computed by a network of
size O

�
min{sr ln(sr/✏), sd ln(dsr/✏)2}

�
, which satisfies

supx2[0,1]d |p(x) � q(x)|  ✏.

The remainder of the proof now focuses on the division op-
eration. Since multiplication has been handled, it suffices
to compute a single reciprocal.

Lemma 3.5. Let ✏ 2 (0, 1] and nonnegative integer k be
given. There exists a ReLU network q : [2�k, 1] ! [1, 2k],
of size O(k2 ln(1/✏)2) and depth O(k4 ln(1/✏)3) such that

sup
x2[2�k,1]

����q(x) � 1

x

����  ✏.

This proof relies on two tricks. The first is to observe, for
x 2 (0, 1], that

1

x
=

1

1 � (1 � x)
=
X

i�0

(1 � x)i.

Thanks to the earlier development of exponentiation, trun-
cating this summation gives an expression easily approxi-
mate by a neural network as follows.

Lemma 3.6. Let 0 < a  b and ✏ > 0 be given. Then there
exists a ReLU network q : R ! R with O(ln(1/(a✏))2)
layers and O((b/a) ln(1/(a✏))3) nodes satisfying

sup
x2[a,b]

����q(x) � 1

x

����  2✏.

Unfortunately, Lemma 3.6 differs from the desired state-
ment Lemma 3.6: inverting inputs lying within [2�k, 1] re-
quires O(2k ln(1/✏)2) nodes rather than O(k4 ln(1/✏)3)!

Figure 5-14: ReLU and polynomial and rational approximations [74]

Better understanding of the fast InvSqrt algorithm and its implications

to RNN training/evaluation A very preliminary report [16] shows that, even

for the purpose of training alone, evaluations of AlgSig are 3x to 6x faster than the

standard tanh.
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This fast evaluation is due to the famous Fast Inverse Square Root (InvSqrt)

algorithm, which efficiently calculates the function 𝑦 = 1√
𝑥
, the central operation in

AlgSig. The code snippet of InvSqrt is shown below [39]. As a side note, curiously,

this code snippet relies on the “magical” Hex constant 0x5F3759DF, which is shown

to outperform some other constants rigorously chosen from pure math; unfortunately,

the original author and derivation (or a trial-and-error procedure) of the magic are

both unknown.

Figure 5-15: The fast InvSqrt() source code

It would be interesting to understand better the ideas behind this algorithm,

investigate whether, and how, it could further improve the training and evaluation

of RNNs with AlgSig activation. More broadly, brief reading on this topic suggests

that the magic constant has close and clever connection with Newton iteration, and it

would also be interesting to seek further pure optimization-related connection there.
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Part III

SafetyNet: Structured Learning and

Optimization Knit Together
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We have discussed in Part I the optimization-based system verification framework,

its main scalability challenge and two methods to improve the computation. Then in

Part II, we showed how black-box learning models can be challenging to analyze, and

how systematic relaxations and approximations, or clever tricks are needed to bridge

the gap.

Given these contrasting strengths and weaknesses, a natural question to ask is,

how can we combine them in a complimentary way? Admittedly, this is a huge open

question, but some basic high-level considerations should be immediately clear.

First, learning-based methods are particularly good at mining out complex rela-

tionships of data pairs; whereas optimization can offer a final seal of approval for any

of those candidates. In other words, learning is good at “searching” while optimiza-

tion is good at “proving”. Therefore, an upstream learning-based module followed by

a downstream optimization-based certification is one, and perhaps the only, logical

choice.

Second, given the verification difficulties caused by the complex network structures

and activations, it is desirable to have the learning methods produce rich yet nicely-

parameterized outputs, so as to ease off such challenges.

The question remains as what parameterization to choose, and what properties to

offer at the learning stags. The answer to both questions requires insights from the

verification programs’ point of view, as to what would the programs directly benefit

from. Our answers and the thinking behind are described in the next chapter.
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Chapter 6

Readily-Verifiable Learned

Controllers and Lyapunov Candidates

6.1 Introduction

Intrigued by the compelling success of (deep) reinforcement learning as an approxima-

tion to the computationally intractable dynamic programming and optimal control,

we consider the central question in this chapter:

What are some other important but hard control and verification problems

that could benefit from data-driven searches? and how?

The “what” part may have many possible answers, but two obviously arise from our

discussions in the previous chapters, i.e., the search of Lyapunov candidates and

the synthesis of stabilizing controllers. While we (hopefully) have established their

importances, the challenges therein, which we only alluded to or at best glossed over,

e.g., in Chapters 4 and 5, has to do with non-convexities in traditional optimization

setup.

To see this non-convexity more clearly, recall the Lyapunov sub-levelset used for

approximating the ROA (see Section 3.4) is jointly defined by the Lyapunov function

𝑉 and the level 𝜌. This means that a simultaneous search of both 𝑉 and 𝜌 would

require multipliers to encode the corresponding �̇� condition, and result in a non-
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convex bilinear problem, which are known to be NP-hard in general [77]. If, in

addition, a feedback controller 𝑢 = 𝜋(𝑥) is to be searched for simultaneously, the

non-convexity is even worse, i.e., escalated from bilinear to tri-linear.

Traditional optimization-based approaches address this non-convexity by fixing

some variables so as to convexly search for the rest, and alternate between what

to fix and what to search. As we will review in detail in Subsection 6.1.1, these

alternations not only each inherits the traditional scalability challenges described in

Part I), but they collectively introduce ill-conditioned iterations.

Various data-driven approaches have been proposed in order to bypass exactly

these non-convexity and numerical issues. However, these previous work share com-

mon shortcomings. Specifically, the search space is either too limited/structured, e.g.

strictly convex search-space, that it cannot accommodate control synthesis. Or it is

too rich/complex, e.g., support vector machine, that formal set-based guarantee be-

comes elusive and analysis has to resort to statistical tools, which in itself introduces

sample complexity scalability issues.

To overcome all these major limitations is to answer the “how” part in our mo-

tivating question, and these previous work highlight two key considerations. Most

importantly, the search-space parameterization should be well-balanced between ex-

pressiveness and analytical cleanness (so as to facilitate a downstream verification).

Moreover, as with any data-driven or learning approaches, it is also important to keep

in mind how to encourage generalizability of the model to unseen data points/sets.

Given the large volume of successful polynomial controller in classical control liter-

ature, and the strong evidence that linear control functions are all we need for solving

highly nonlinear control problems through reinforcement learning [43], polynomial pa-

rameterization for the feedback controller is a natural and well-justified choice. For

the Lyapunov candidate, however, theoretical [1] and practical [9] evidence have in-

dicated that polynomial family might be limited, thus we resort to the much richer

rational family. Besides the theoretical justifications, these choices more practically

enable connection with the techniques presented in Part I which allow us to carry out

verification at scale.
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The question remains what property should these learned functions have. Recall

the conditions such as in Theorem 5 has positive definiteness (PD) of the Lyapunov

candidate as a prerequisite so this is a necessary property to satisfy. However, PD is

not a cheap constraint—the precise reason why SDP is the most expensive class of

convex optimization. Our solution to this is based on the flexible stochastic gradient

descent over carefully chosen search-spaces, e.g., the factorization space of the Gram

matrix of an SOS polynomial. With some minor regularizing terms, it is guaranteed

that the candidate is PD by construction.

As for the objective, motivated to generalize to unseen samples, we take cues from

system theory and set the cost to be the worst-case Lyapunov exponential decay rate

(instead of formulating the problem as, e.g., an ostensible classification).

These design choices ensure that: (i) the Lyapunov candidate is positive definite

by construction, and that (ii) the Lyapunov derivatives indicate that controller is

“empirically stabilizing” on samples over a large region. The first property then

enables a direct application of the verification subroutine presented in Chapter 4,

and the second implies the candidate is of “high-quality” thus encourages good (tight)

verification results.

Contributions.

(i) We propose SafetyNet, a mixture of learning and optimization procedure for ver-

ification and control. SafetyNet generates sample-efficient and verified control

policies, and thus overcomes two major drawbacks of reinforcement learning.

(ii) SafetyNet also offers the capability to directly search for rational Lyapunov

candidate at scale; this is strictly more general than the polynomial family that

most existing convex-optimization-based methods are limited to. Consequen-

tially, SafetyNet can verify systems that are provably beyond the reach of pure

convex-optimization-based verifications.
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6.1.1 Related Work

Completely convex-optimization-based via alternation Traditionally, the bi-

linear or trilinear non-convex problem is solved via an alternation of SOS programs [73,

41]; the high-level idea is quite similar to the expectation maximization (EM) alter-

nation in classical learning. Specifically, using linearization and Lyapunov quadratic

equations or LQR, an initial Lyapunov candidate and controller (when necessary)

pair can be fixed to make the optimization convex.

One major limitation here is that the linearization could be very local, especially

for systems with highly nonlinear behavior. In some cases, with this rather weak

initialization, it may take many iterations of alternations to arrive at a meaningful

volume (because the shape and orientation of Lyapunov candidate largely determine

the quality of the certificate). In worse situations, such as when the closed-loop

linearization is marginally stable, the quadratic initialization may itself fail; we will

demonstrate this via an explicit example In Section 6.4.

A more subtle issue has to do with numerical conditions. Through the alterna-

tions, each iteration solves for an optimization problem, and pushes the intermediate

solution as far as possible to the boundary of the PSD cone, deteriorating the numer-

ical condition for the subsequent iterations. In this sense, this is more challenging

than the unconstrained EM alternation.

Data-driven search (of polynomial 𝑉 only) via convex optimization In the

same spirit of convexifying the search by fixing some variable, an alternative line of

work relies on samples to generate those to-be-fixed variables. For instance, [79] uses

simulation to first find a set of stable states, and uses SDP to fit a candidate on those

samples; the verification step is then carried out following the standard practice. The

major disadvantage of this method is that it would require solving a potentially large-

scale SDP for when there are a large number of samples, which is necessary to capture

the nonlinear behavior or spread over a large region of the state space.

Such scalability limitation in generating the candidate motivated the work pre-

sented in [31], which instead uses an LP for the search of the candidate. Also, it uses
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a guided search of counter examples that violate the derivative (difference) condition

to iteratively improve the quality of the candidate Lyapunov functions.

Compared with [79], the scalability (and quality) of the candidate search is im-

proved, but this is at the cost of the complexity of the downstream verification: the

resulting candidate is only positive semidefinite on the samples, as opposed to glob-

ally. Therefore, it requires an additional PSD constraint in the verification step to

close the gap, and the overall scalability remains an issue.

Another common disadvantage of researches along this line is that their reliance on

convex optimization limits the search to be for Lyapunov candidate only, as opposed

to the more practical simultaneous search of a candidate 𝑉 and controller 𝜋.

Learning-based search (of generic 𝑉 only) with statistical guarantee Most

researches along this learning-type search of Lyapunov candidate formulate the sta-

bility verification problem as a binary classification. For instance, [36] solves the

classification via support vector machines (SVM) with polynomial kernels, so at the

low level, it needs to solve a quadratic program (QP). The quality of the resulting

candidate is only assessed empirically, either through straightforward generalization

error on discrete samples, or a slightly more involved k-fold evaluation. Hidden in the

method is a scalability issue: essentially, to fit the separating hyperplane “snuggly”,

SVM requires a large number of support vectors, and natural more general data. and

the inherent scalability issue of QPs.

A recent approach to learning Lyapunov function which has some philosophical

connections to the method we propose is that of [61]. It carries out a parameterized

search of the factorization 𝑉 = 𝑁𝑁 ′ using gradient descent, and uses a loss function

based on binary labels of whether a sample is simulated to be stable. The major

issue there is that, because the 𝑁 component are themselves complicated neural

networks, they can not be exactly verified; instead, the guarantee of the validity of the

candidate is based on Lipschitz constant upper-bounds and discretization relaxation.

Such discretization-based verification is either very conservative, or relies on very

fine resolution which scales badly. This shortcoming casts doubt on the necessity and
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justification of using a black-box neural network to represent the Lyapunov candidate.

Other related work Our core idea of searching over factorization space is some-

what similar to the Burer-Monteiro (BM) method in optimization [15], and both are

computationally motivated by avoiding solving expensive SDPs. However, the under-

lying assumption in BM, that the PSD decision variable has a low rank, is irrelevant

in our work. In fact, we intentionally over-parameterize the factorization space, so the

solution is generally explicitly of full rank. Another major difference is that our cost

is highly non-convex. Therefore we do not have, at the candidate-generating stage,

convergence guarantee as many BM method does; such guarantee is to be provided

by the downstream verification though.

Another related and popular direction is to approximate the dynamics using Gaus-

sian processes [57, 12]. The disadvantage is that the safety is guaranteed statistically

in terms of probability bound and distributional parameters such as the covariance

matrices; and generally such work suffer from scalability issues.

A more recent and more closely related work is [19], which produces both a con-

troller and a Lyapunov candidate. The authors use a similar approach as [61], but

the training set contains counterexample states (states where the Lyapunov condition

is violated). These counter-example states are generated using an SMT solver at each

iteration. Due to numerical issues stemming from the SMT solver, the numerical ac-

curacy of is not high (around 0.01), especially around the equilibrium state, where a

guarantee of stability is most critical.

6.2 Problem Statement

Given a continuous-time dynamical system �̇� = 𝑓(𝑥, 𝑢) (discrete-time counterpart

is straightfowrd), we consider the task of synthesizing a feedback controller 𝑢 =

𝜋(𝑥), such that the resulting closed-loop dynamics 𝑓(𝑥, 𝜋(𝑥)) is locally or globally

asymptotically stable around a fixed point, which is without loss of generality assumed

to be at the origin. Note that the setup includes as a special case the verification of
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a given closed-loop. That is, if a feedback controller 𝜋(𝑥) is given a priori or if the

system effectively admits zero inputs.

The stability properties are to be verified by a Lyapunov candidate 𝑉 satisfying

the value condition (𝑉 ≻ 0) and derivative condition (�̇� ≺ 0) globally or locally.

The task in this chapter is to produce, via sampling and SGD, “empirically good”

control law 𝜋(𝑥) and Lyapunov candidate 𝑉 (𝑥), which are to be fed into downstream

verification programs (those presented in Part I) for correctness guarantees.

By empirically good, we mean at the least, the value and derivative conditions

should hold on a large fraction, if not all, of the training samples. Further, given

that the end-goal is to produce an as large (volume) of an ROA approximation or

even global certificate, the “error margins” should be large enough to accommodate

for generalization, i.e., sign condition is satisfied on samples outside the training set.

These considerations, however, do not translate directly into an actionable cost.

In particular, the straightforward sign function is not suitable for training cost since

the gradients are zero almost everywhere. Nonetheless, this serves as a high-level

description, the precise (mathematical) objective is to be presented in Section 6.3.

6.2.1 Assumptions

We assume the Lyapunov function 𝑉 (𝑥) is rational in the states 𝑥; this includes

the common polynomial feedback and/or Lyapunov parameterization. Further, we

assume 𝑓(𝑥, 𝑢) is polynomial in 𝑢 (the math in fact can work for rational dependence

in 𝑢, since singularity can be easily pitted out by parameterization tricks, but practical

systems rarely depend on the control input rationally), and this includes the large class

of control-affine systems, particularly mechanical systems. Due to similar practical

consideration, even though the math works for rational parameterization, we assume

the control law 𝜋(𝑥) is polynomial in 𝑥.

Unlike the controls, the dependence of the dynamics 𝑓 on the states 𝑥 is often

times quite rich, therefore, we assume it to be rational. This is quite a rich assumption

in itself, but techniques presented in Section 4.6 and in [50] can be applied to recast an

even larger class of nonlinear analytical systems losslessly into polynomial or rational
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form.

6.3 Generate Control Policy 𝜋(𝑥) and Lyapunov Can-

didate 𝑉 (𝑥) via SGD

This section describe our algorithm to generate via sampling and SGD a polynomial

control law 𝜋(𝑥) and Lyapunov candidate 𝑉 (𝑥) for the resulting closed-loop dynamics.

We first introduce our search space and cost design, as justified from a mathematical

or theoretical viewpoint.

6.3.1 Over-Parameterized Search Space Design

Given and a degree bound 𝑑𝑛 and 𝑑𝑑 for the Lyapunov candidate (𝑑𝑛 for the nu-

merator, and 𝑑𝑑 for the denominator), and a degree bound 𝑑𝜋 for the controller, we

first construct the monomial basis 𝜙(𝑥), 𝜑𝑛(𝑥), and 𝜑𝑑(𝑥), which are the standard

monomial basis of 𝑥 up to degree 𝑑𝜋, 𝑑𝑛/2 and 𝑑𝑑/2, respectively.

The feedback controller is straightforwardly parameterized as

𝜋(𝑥) = 𝑤′
𝑢𝜙(𝑥), (6.1)

where 𝑤𝑢 is the search variable (similar to notion of controller gain in linear feedback).

The Lyapunov function parameterization takes some consideration. We need to

rely on an unconstrained, first-order optimization tool to guarantee for a positive

definite rational function. Our solution below draws ideas from i) Padé rational

parameterization, ii) PSD matrix definition, and iii) SOS polynomial decomposition:

𝑉 (𝑥) =
𝑉𝑛(𝑥)

𝑉𝑑(𝑥) + 1
(6.2a)

=
𝜑′
𝑛(𝑥)𝐿′

𝑛𝐿𝑛𝜑𝑛(𝑥) + 𝛿𝑥′𝑥

𝜑′
𝑑(𝑥)𝐿′

𝑑𝐿𝑑𝜑𝑑(𝑥) + 1
(6.2b)
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where 𝐿𝑛 and 𝐿𝑑 are the unconstrained parameters to be search for via SGD, and 𝛿

is a fixed small positive constant.

It should be obvious that 𝑉 (𝑥) ≻ 0 (i.e., 𝑉 (0) = 0;𝑉 (𝑥) > 0, 𝑥 ̸= 0),∀𝐿𝑛, 𝐿𝑑, thus

fulfilling our requirement. However, instead of directly searching over these 𝐿𝑛 and

𝐿𝑑 factorizations, strong evidences from the learning community, summarized below,

suggest that an over-parameterization—with essentially no additional computational

costs—might be desirable.

Over-parameterization may be a key to the deep learning success Here

we first take a detour to look at what makes neural networks effective; this topic

is beyond the scope of our work, and we will be merely presenting existing results.

Nonetheless, the current thinking in that community not only shed interesting light

on optimization in general but in fact motivated part of our search space design, and

thus a brief summary is appropriate.

As referenced in Part II, there are many cases in deep learning where we can

reliably solve seemingly very high-dimensional and non-convex optimization problems.

Overall, the success is a mixture of many techniques maturing and emerging at the

right moment, e.g., hardware GPUs that enable parallel computing coupled with

the large quantities of data available. From an algorithmic point of view, several

elements are absolutely indispensable for the success and popularization. Theoretical

understanding of what makes neural networks so powerful is rapidly evolving; but it

is fair to summarize the consensus thus far (which is by no means a complete list) as:

Non-convexity is not a vice; high-dimension is a blessing in disguise.

Specifically, the belief is that many of these success stories are happening in the so-

called “interpolating regime” [11] where we have more decision variables than data,

and the search space is dense with solutions that can fit the data perfectly.

Of course, the underlying non-convexity introduces many local minima that may

not be global minima, and global minima that may not be robust, the arrival at a

"good" interpolating solution relies on the optimization engines such as stochastic

gradient descent, batch normalization [29] for some form of implicit regularization.
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Figure 1: Curves for training risk (dashed line) and test risk (solid line). (a) The classical
U-shaped risk curve arising from the bias-variance trade-o↵. (b) The double descent risk curve,
which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed
behavior from using high capacity function classes (i.e., the “modern” interpolating regime), sep-
arated by the interpolation threshold. The predictors to the right of the interpolation threshold
have zero training risk.

When function class capacity is below the “interpolation threshold”, learned predictors exhibit
the classical U-shaped curve from Figure 1(a). (In this paper, function class capacity is identified
with the number of parameters needed to specify a function within the class.) The bottom of the
U is achieved at the sweet spot which balances the fit to the training data and the susceptibility
to over-fitting: to the left of the sweet spot, predictors are under-fit, and immediately to the
right, predictors are over-fit. When we increase the function class capacity high enough (e.g.,
by increasing the number of features or the size of the neural network architecture), the learned
predictors achieve (near) perfect fits to the training data—i.e., interpolation. Although the learned
predictors obtained at the interpolation threshold typically have high risk, we show that increasing
the function class capacity beyond this point leads to decreasing risk, typically going below the risk
achieved at the sweet spot in the “classical” regime.

All of the learned predictors to the right of the interpolation threshold fit the training data
perfectly and have zero empirical risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer is that the capacity of the function
class does not necessarily reflect how well the predictor matches the inductive bias appropriate for
the problem at hand. For the learning problems we consider (a range of real-world datasets as well
as synthetic data), the inductive bias that seems appropriate is the regularity or smoothness of
a function as measured by a certain function space norm. Choosing the smoothest function that
perfectly fits observed data is a form of Occam’s razor: the simplest explanation compatible with
the observations should be preferred (cf. [38, 6]). By considering larger function classes, which
contain more candidate predictors compatible with the data, we are able to find interpolating
functions that have smaller norm and are thus “simpler”. Thus increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins theory [38, 2, 35], where a larger
function class H may permit the discovery of a classifier with a larger margin. While the margins
theory can be used to study classification, it does not apply to regression, and also does not pre-
dict the second descent beyond the interpolation threshold. Recently, there has been an emerging
recognition that certain interpolating predictors (not based on ERM) can indeed be provably sta-
tistically optimal or near-optimal [3, 5], which is compatible with our empirical observations in the
interpolating regime.

In the remainder of this article, we discuss empirical evidence for the double descent curve, the

3

Figure 6-1: The double descent risk curve proposed by Belkin et al. [11]. It incorpo-
rates the U-shaped risk curve (i.e., the “classical” regime) together with the observed
behavior from using high capacity function classes (i.e., the “modern” interpolating
regime).

This idea is very relevant in our case, since at candidate generation stage, we are

only interested in a “good enough solution”. Moreover, the crucial ingredient in our pa-

rameterization, and SOS polynomial is naturally amenable to over-parameterization.

An explicit example is given below.

Over-parameterize 𝐿 Consider a univariate polynomial 𝑝(𝑥) written in factoriza-

tion form:
𝑝(𝑥) =

(︀
𝑥+ 𝑥3

)︀2
+
(︀
𝑥2
)︀2

=

⎡
⎢⎢⎢⎣

𝑥

𝑥2

𝑥3

⎤
⎥⎥⎥⎦

𝑇 ⎡
⎢⎢⎢⎣

1 0

0 1

1 0

⎤
⎥⎥⎥⎦

⎡
⎣ 1 0 1

0 1 0

⎤
⎦

⏟  ⏞  
𝐿

⎡
⎢⎢⎢⎣

𝑥

𝑥2

𝑥3

⎤
⎥⎥⎥⎦
.

However, the factorization is not unique. Another decomposition, composed of more

“summing” terms, naturally comes with more parameters in the 𝐿 matrix:

𝑝(𝑥) = 𝑥2 + 3𝑥4 + 𝑥6

=

⎡
⎢⎢⎢⎣

𝑥

𝑥2

𝑥3

⎤
⎥⎥⎥⎦

𝑇 ⎡
⎢⎢⎢⎣

1 0 0

0
√

3 0

0 0 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1 0 0

0
√

3 0

0 0 1

⎤
⎥⎥⎥⎦

⏟  ⏞  
𝐿

⎡
⎢⎢⎢⎣

𝑥

𝑥2

𝑥3

⎤
⎥⎥⎥⎦

As should be clear, the row size of the factorization 𝐿 is the number of terms that

appear in the expanded SOS polynomial. Over-parameterize 𝐿 to be of more rows

easily accommodate more possible factorizations.
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An additional straightforward over-parameterization scheme is inspired by the lay-

ered architecture in modern neural networks. In particular, we can write the factoriza-

tion 𝐿 itself as products of intermediate 𝑙𝑚 terms, each of which over-parameterized:

𝐿 =
∏︁

𝑙𝑚

While this second type of over-parameterization is less theoretically justified, it em-

pirically improves the “smoothness” of the resulting Gram matrix, as will be shown

in Subsection 6.5. It is not the focus of the this work to investigate why that is the

case (but it is a topic we are interested in for future work), we simply include those

evidence for completeness and an empirical justification.

Note that both over-parameterization strategies accommodate more possibilities

of factorization choices, without the loss of correctness or tightness. In particular, the

important positive definiteness property remains intact, and the Lyapunov derivative

condition is guarded by the verification subroutine. Also, the added computation

due to the over-parameterization is negligible given that we are using SGD as the

computational engine.

6.3.2 Cost Design

Taking cues from control theory, our cost is designed to be the worst case exponential

decay rate among all the samples:

min
𝑤,𝐿,𝜎

max
𝑖

(�̇�𝑖/𝑉𝑖)

This may look strange at first because a natural cost seems to be simply the sum or

the mean of the Lyapunov derivatives; below are why we do not choose either.

First, it should be noted that one can simply scale a candidate which does not

change the final verifiable result but would change
∑︀
�̇�𝑖 or mean(�̇�𝑖); so at least a

scaling like �̇�𝑖/𝑉𝑖 is necessary.

Even then, the scaled sum or the mean of the Lyapunov derivatives still have
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shortcomings. In particular, they do not distinguish whether a sample is close to the

origin (so potentially have smaller, i.e., more negative �̇� ) or close to the true boundary

of the ROA (so only slightly negative �̇� ), which is an important piece of information

as it reveals which sample should contribute more into shaping the landscapes of 𝑉

and �̇� .

This information is nicely encoded in the proposed cost. By pushing from the

above on all the samples, and penalizing only the worst-case, the general average

samples do not incur cost and thus the shaping is much more largely contributed by

the near-boundary ones.

6.3.3 Overall Algorithm

The overall algorithm is summarized in Algorithm 1.

To summarize, the algorithm is designed to efficiently generate a pair of polynomial

controller 𝜋(𝑥) that is empirically stabilizing over a large region, and a corresponding

𝑉 (𝑥) ≻ 0 for the closed-loop, with good �̇� landscape. The efficiency is achieved by

SGD; positive definiteness is guaranteed by searching in the factorization space, and

the empirical performance goal is encoded in the cost.

6.4 Experiments and Examples

6.4.1 Closed-Loop Verification

Recall we showed Van der Pol oscillator and Pendubot verification results in Sub-

section 4.7.1. Those Lyapunov candidates are in fact generated using Algorithm 1.

Figure 4-6a and Figure 4-6c demonstrate the tightness of the candidates.

To show the advantage of the proposed algorithm over the pure optimization-based

methods, let us consider two challenging examples below.

Dubins with marginally stable linearization. Consider a Dubins car defined in

the error frame relative to the virtual vehicle along a path to be tracked, illustrated
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Algorithm 1 Data-driven generation of Lyapunov candidate 𝑉 and controller 𝜋
Require: 𝑓(𝑥, 𝑢) ◁ The open- or closed-loop system dynamics

Require: 𝑘max, 𝑛, 𝛿, 𝑑𝑛, 𝑑𝑑, 𝑑𝑢,𝒟, 𝛾 ◁ The number

of training epochs, number of samples, fixed small positive real number (used in

𝑉𝑛), polynomial degree of 𝑉𝑛, polynomial degree of 𝑉𝑑, polynomial degree of the

controller 𝜋, the domain of interest to control over (if the system is open-loop),

negative �̇� percentage

1: if 𝑓 is closed-loop then

2: Randomly sample initial states, forward simulate and add the stable ones to

the training set {𝑥𝑖}
3: else

4: Randomly sample 𝑥𝑖 ∈ 𝒟 to be added to the training set

5: Construct symbolic standard basis 𝜓(𝑥), 𝜑𝑛(𝑥) and 𝜑𝑑(𝑥)

6: 𝑘 = 0, 𝛾 = 0, and randomly set the weights 𝑤,𝐿 ◁ Initialization

7: while 𝑘 ≤ 𝑘max and 𝛾 < 1 do

8: for all 𝑥𝑖 do

9: Evaluate 𝜋𝑖, 𝑉𝑖, and �̇�𝑖 with current weights ◁ Via Eq. (6.1),(6.2)

10: Calculate �̇�𝑖/𝑉𝑖 ◁ Evaluate the output

11: Update 𝑤,𝐿 by decreasing the cost max𝑖(�̇�𝑖/𝑉𝑖) ◁ Using SGD

12: Calculate 𝛾 = −∑︀𝑖 sign(�̇�𝑖)/𝑛 ◁ the negative �̇� percentage

13: Reconstruct 𝜋(𝑥), 𝑉 (𝑥), �̇� (𝑥) from the weights 𝑤,𝐿

14: return 𝜋(𝑥), 𝑉 (𝑥), �̇� (𝑥)
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in Figure 6-2. The model is:

�̇�𝐸 = 𝑢1 − 𝑘𝑣ℓ

�̇�𝐸 = 𝑢1𝑌𝐸 + 𝑢2 − ℓ cos𝜓𝐸

�̇�𝐸 = −𝑢1𝑋𝐸 + ℓ sin𝜓𝐸

(6.3)

where 𝜓𝐸, �̇�𝐸, �̇�𝐸 are the angle error and linear displacements, 𝑙 and 𝑘𝑣 are the target

speed and path curvature, and 𝑢1 and 𝑢2 are the angular and linear torques. We

assume the path is straight 𝑘𝑣 = 0 and the target speed 𝑙 = 2. Stabilization at zero

error means the car achieves perfect tracking. We close the loop with a simple hand-

Figure 6-2: Virtual error frame for Dubins path tracking

designed feedback controller 𝑢1 = 𝜋1(𝑥) = −𝑢2𝑌𝐸 and 𝑢2 = 𝜋2(𝑥) = 𝑋2
𝐸 +𝑌 2

𝐸 + 𝑙. We

then use a 3rd-degree Taylor expansion to take care of the sin and cos terms of the

vehicle heading, and the resulting polynomial dynamics is the our verification target.

The traditional bilinear alternation fails this verification task due to an analytical

limitation. In particular, one needs to linearize the dynamics for the local 𝐴 matrix,

and then solves the Lyapunov equation for a quadratic Lyapunov function, in order

to initialize the alternation. A requirement for this procedure to succeed is that

𝐴 is a Hurwitz matrix. In this example, the linearized 𝐴 matrix has eigenvalues

[0 + 2𝑗, 0 − 2𝑗, 0 + 0𝑗] and is only marginally stable. As a result, the Lyapunov

equation does not produce a qualifying solution for initialization, and the bilinear

alternation is doomed to fail at the first iteration. By contrast, the proposed method

succeeds because the generated Lyapunov candidate directly captures the nonlinear

dynamics.
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System that admits NO polynomial Lyapunov function In [1], a 2-dimensional

polynomial system is given:
�̇�1 = −𝑥1 + 𝑥1𝑥2

�̇�2 = −𝑥2
(6.4)

This system is interesting because it is globally asymptotically stable (g.a.s.)

about the origin, as proven by a hand-designed Lyapunov function of logarithm and

polynomial mixtures. However, it also provably does not admit a polynomial Lya-

punov function that can certify its g.a.s. property.

This implies that the traditional optimization-based method can not generate a

suitable candidate. Using Algorithm 1, we search over the family of rational functions,

and explicitly construct the following candidate 𝑉 = 𝑉𝑛/(𝑉𝑑 + 1) where

𝑉𝑛 = 0.41652𝑥41𝑥
2
2 + 0.997𝑥41 + 3.9694𝑥21𝑥

4
2 + 3.544𝑥21𝑥

2
2 + 3.46𝑥21 + 0.6408𝑥42 + 2.78𝑥22

𝑉𝑑 = 0.234𝑥41 + 2.23𝑥21𝑥
2
2 + 1.18𝑥21 + 0.36𝑥22,

(6.5)

Figure 6-3 shows the candidate 𝑉 and �̇� , whereas Figure 6-4 plots the contour of

these two functions.

(a) Rational candidate 𝑉 (b) The corresponding �̇�

Figure 6-3: Rational candidate 𝑉 and the corresponding �̇� for system Eq. 6.4

The numerator of the corresponding −�̇� is verified to be SOS, thereby proving

the g.a.s. property (this is because once the candidate is provided, the denominator

of �̇� is the fixed (𝑉𝑑 + 1)2 and positive definite, so the verification of −�̇� boils down
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(a) Contour of the rational candidate 𝑉 (b) Contour of �̇�

Figure 6-4: Contour of the rational candidate 𝑉 and the corresponding �̇� for system
Eq. 6.4

to verifying its numerator only.

Note that this example highlights again the advantage of SafetyNet over the pure

convex-optimization-based verification scheme. In particular, since for any rationally

parameterized 𝑉 = 𝑉1

𝑉2
, its time-derivative is

�̇� =
𝑉2�̇�1 − 𝑉1�̇�2

𝑉 2
2

,

a simultaneously search of both components breaks the fundamental convex search

assumption.

6.4.2 Simultaneous Generation of 𝜋 and 𝑉

In this subsection, we consider simultaneous synthesis and verification. We highlight

that the proposed method generates controller that relies on only simple sampling

and no domain knowledge, yet generalizes well.

Inverted Pendulum Recast. Consider the task of controlling and balancing a

damped pendulum (dynamics𝑚𝑙2𝜃 = 𝑢−𝑚𝑔𝑙 sin 𝜃−𝑏𝜃 with states [𝜃, 𝜃]) at the upright

fixed point [𝜋, 0]. We recast the states into [𝑠, 𝑐, 𝜃] where 𝑠 ≡ sin 𝜃 and 𝑐 ≡ cos 𝜃, such
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that the dynamics is polynomial:

⎡
⎢⎢⎢⎣

�̇�

�̇�

𝜃

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

𝑐𝜃

−𝑠𝜃
(𝑢−𝑚𝑔𝑙𝑠− 𝑏𝜃)/(𝑚𝑙2)

⎤
⎥⎥⎥⎦ (6.6)

subject to the unit circle constraint 𝑠2 + 𝑐2 = 1.

In the recast coordinate, the target fixed point is [0,−1, 0]. We set deg 𝑉 = 4,

deg 𝑢 = 1 to search for a controller and a candidate. The algorithm produces the

control law:

𝜋(𝑥) = 6.8679447 sin(𝜃) + 0.36002526(cos(𝜃) + 1) − 4.646804𝜃 (6.7)

and a corresponding degree four Lyapunov function whose derivative �̇� (𝑥) is globally

negative semidefinite on the unit circle in R3, as certified by a SOS decomposition.

By LaSalle’s invariance principle, this semi-definitness implies that all states con-

verge to the invariant set where �̇� = 0. Note that all states where �̇� = 0 are

transient except for the fixed points, and the resulting closed-loop using the con-

trol law Eq. (6.7) has two fixed points: one is the target [0,−1, 0], and the other

[𝑠 = −0.354883, 𝑐 = 0.9349107, 𝜃 = 0]. The linearization at this other fixed point has

one strictly positive eigenvalue, thus non-stable [34]. Combining this fact with the

global −�̇� certificate and LaSelle, the produced controller is guaranteed to be globally

stabilizing, except for the measure-zero set of initial conditions on the stable manifold

(Chapter 2, Perko book) of the non-stable fixed point. The results are visualized in

Figure 6-5.

It is worth pointing out that compared with the well-known energy-shaping con-

troller, the proposed method synthesizes a simple controller that is also verifiably

globally stabilizing; but the procedure does not relying on any domain knowledge.

Another advantage of the proposed method is its generalization capability. In

particular, the controller is “trained” on only 10,000 samples, uniformly grid-sampled

within the square {|𝜃| ≤ 𝜋/2, |𝜃| ≤ 1}, yet it generalizes globally, a major improvement
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(a) 𝑉 (b) �̇�

Figure 6-5: 𝑉 and �̇� of the pendulum plant (mass 𝑚 = 1, length 𝑙 = 0.5, damping
𝑏 = 0.1 and gravity 𝑔 = 9.81) controlled by the sampling-generated feedback controller
𝜋(𝑥) = 6.8679447 sin(𝜃)+0.36002526(cos(𝜃)+1)−4.646804𝜃. Both 𝑉 and �̇� are recast
back from the [𝑠, 𝑐, 𝜃] coordinate to the original [𝜃, 𝜃] for plotting.

Figure 6-6: Forward simulations of 30 random initial conditions for the Pendulum
Recast plant with sampling-based trigonometric feedback controller.

over most learning-based methods such as reinforcement learning that are well-known

to suffer from sample complexity issues.

We interpret intuitively that this is due to the simultaneous search of a corre-

sponding 𝑉 , with good �̇� landscape encouraged by the cost. In other words, while

searching for the controller, we are already implicitly “improving” the downstream

verification quality.

Virtual Dubins Recast. Consider the Dubins plant again, in this example, the

controller is not given a-priori but to be synthesized. We recast the sin and cos terms,
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such that the model becomes:

�̇�𝐸 = 𝑐𝐸 (𝑢1 − 𝑘𝑣𝑙)

�̇�𝐸 = −𝑠𝐸 (𝑢1 − 𝑘𝑣𝑙)

�̇�𝐸 = 𝑢1𝑌𝐸 + 𝑢2 − 𝑙𝑐𝐸

�̇�𝐸 = −𝑢1𝑋𝐸 + 𝑙𝑠𝐸

(6.8)

where all the parameters are as before, expect the fixed point becomes [0, 1, 0, 0].

Similar with the pendulum case, by parameterizing a linear controller with feed-

back of the sin and cos, we again achieve a globally stabilizing controller, certified by

having a SOS certificate of the accompanying 4-dimensional 4-degree �̇� on the unit

circle. A simulation of 30 random initial conditions are shown in Figure 6-7.

Figure 6-7: Forward simulations of 30 random initial conditions for the Dubins Recast
plant with sampling-based trigonometric feedback controller.

Compared with the given Dubins with hand-designed controller, this example also

demonstrates the power of not only synthesizing but also verifying on the sin and cos

instead of angels themselves. Analysis involving angles has two limitations. First, due

to 2𝜋 period of angles, only local certificates are achievable. Second, angles mostly

appear in the dynamics in trigonometric forms, and as such would there is a gap

between the true dynamics in angles and polynomial analysis.

The recasting technique can overcome these two limitations, but it introduces

constraints such as unit circle. Just as in the ROA analysis formulation, such con-

straints also relies on Lagrange multipliers, which results in a similarly bloated SDP.

The verification method proposed in Chapter 4, by taking advantage of the sampling
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variety subroutine, addresses this computational overhead as well.

6.5 Discussion and Future Work

Understand why over-parameterization is numerically “smoothing” Pre-

liminary experiments show that over-parameterization leads to more “balanced” or

“smoother” Gram matrix.

(a) (b) (c) (d)

Figure 6-8: Eigenvalues of four 9-by-9 Gram matrix using different factorization sizes.
For example, the Gram matrix𝑄𝑎 in plot (a) is constructed from the factorization𝑄 =
𝐿′
1𝐿1 where 𝐿1 ∈ R9×9, the one in plot (b) 𝑄𝑏 is constructed from the factorization

𝑄 = 𝐿′
1𝐿

′
2𝐿2𝐿1 where 𝐿1 ∈ R9×9, and 𝐿1 ∈ R9×27, and similarly for the next two

plots.

Shown in Figure 6-8 is the eigenvalue plots of four 9-by-9 Gram matrix, found

using different factorization schemes. Visually, the one with the most “components”

and the most parameters has the smoothest distribution of eigenvalues.

The plots above are for particular Gram matrix and only offers visual cues, and we

would like to examine the trend of the eigenvalue distribution versus the parameteri-

zation richness. Therefore, we run 1000 tests for each parameterization, and resort to

entropy of the eigenvalue array to get a better overview. Recall that the uniform dis-

tribution, among discrete distributions, has the largest entropy, therefore, the identity

matrix has the largest entropy of a fixed-size PSD matrix. For each parameterization

scheme, we run Algorithm 1 1,000 times, and average out over this 1000 trials the

entropies of the reconstructed Gram matrix.

It is interesting to observe that with more parameters, the entropy also in general

increases, indicating a more central Gram matrix. Of course, the benefit, if any, is

only numerical and investigation into that is left for future work.
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Figure 6-9: Average entropy over 1,000 Gram matrix for each fixed parameterization
scheme

Incorporate control saturation in controller synthesis While we use samples

to synthesize a globally stabilizing controller for the simple pendulum in the previous

section, no input saturation was considered, which is rather unrealistic.

With very little modification, control saturation can be incorporated into Safe-

tyNet, e.g., by any of the following procedure: (i) passing the polynomial control law

𝑢 through a saturation layer like the tanh function we are so familiar with (the main

topic discussed in Chapter 5), (ii) simply clipping 𝑢 at saturation, and (iii) anding a,

e.g., quadratic cost, on the control output 𝑢. Experiments on these ideas are left for

future work.

Also, it is important to consider possible discontinuities necessary to enlarge the

stabilizing area, for example, at the downward fixed point, should the controller swing

left or right? Such discontinuous decision-making is most straightforwardly handled

via an integer state/decision variable. However, this inevitably complicates the down-

stream verification; given our main computational tool is the SOS programming, a

mix-integer SOS program is not likely to scale well—even with the help of the scale-

improving techniques we developed in Part I. How to balance this tension between

“easy to control” is “easy to verify”, the central consideration for SafetyNet, but in a

discrete decision-making context, is an important open (as far as we know) question.
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