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ABSTRACT
Wepropose amethod to control linear time-varying (LTV) discrete-
time systems subject to bounded process disturbances and measur-
able outputs with bounded noise, and polyhedral constraints over
system inputs and states. We search over control policies that map
the history of measurable outputs to the current control input. We
solve the problem in two stages. First, using the original system,
we build a linear system that predicts future observations using
the past observations. The bounded errors are characterized using
zonotopes. Next, we propose control laws based on affine maps
of such output prediction errors, and show that controllers can be
synthesized using convex linear/quadratic programs. Furthermore,
we can add constraints on trajectories and guarantee their satis-
faction for all allowable sequences of observation noise and pro-
cess disturbances. Our method does not require any assumptions
about system controllability and observability. The controller de-
sign does not directly take into account the state-space dynamics,
and its implementation does not require an observer. Instead, par-
tial observability is often sufficient to design a correct controller.
We provide the polytopic representation of observability errors
and reachable sets in the form of zonotopes. Illustrative examples
are included.
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1 INTRODUCTION
Full state knowledge is neither realistic nor necessary for a broad
range of control problems. Instead, controllers may use the mea-
sured system outputs to command inputs. There are, in general,
two main approaches to output feedback control: (i) static output
feedback, where the controller directly maps the current system
outputs to control inputs; and (ii) dynamic output feedback, where
the controls are amap of the latent states, which themselves evolve
by measured outputs. Dynamic output feedback can be brought
into static output feedback form by a special augmentation of the
output space with latent states [26]. Finding the complete algorith-
mic solution to static output feedback design is one of the classical
unsolved problems of control theory [36]. Instead, a wide range
of incomplete solutions - methods that may find solutions for par-
ticular problems but are not able to verify the nonexistence of a
solution - and special classes have been studied. In the most well-
studied problem, the latent state space has the same dimension as
the actual state space, and the dynamics governing the evolution
of latent states are given by an observer such that the latent states
are steered toward the actual states. For unconstrained linear sys-
tems with Gaussian noise and quadratic cost, it is well known that
the separation principle holds: the optimal controller is LinearQua-
dratic Regulator (LQR) of the latent state, which itself is the best
estimation of the actual state using Kalman filter [18]. Therefore,
state estimation and control are decoupled. This scheme is known
as Linear Quadratic Gaussian (LQG) control.

Despite its success, LQG control has two major limitations: (1)
the need for observing and incorporating the full state into the con-
trol loop; and (2) the lack of robustness guarantees [7] aswell as the
inability to reason about constraint satisfaction. In order to over-
come (2), the standard approach is replacing the Gaussian noise
with bounded sets, and quadratic regulators with model predictive
control (MPC) policies. However, issue (1) becomes even more se-
vere as MPC needs to be implemented for high-dimensional latent
state spaces. The majority of works on output feedback MPC are
in principle MPC implemented for latent states, while taking into
account the estimation error to guarantee robust constraint satis-
faction [9, 27, 35, 39]. They deal with infinite-time specifications
and require strong assumptions about controllability and observ-
ability. Furthermore, as the state dimension increases, these meth-
ods become too complicated to implement. For example, control
of deformable objects typically have high dimensional state-space
models that it seems unnatural to incorporate them in full state-
feedback (or full observed-state-feedback) MPC schemes.

In order to not deal with very high-dimensional state spaces,
model order reduction methods are ordinarily used. The aim is to
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approximate the true dynamics with less complexity than the ac-
tual states. A decades old classical problem is reduced-order LQG,
where the observer has arbitrarily fewer states than the actual sys-
tem. It is well known that the separation principle no longer holds
in this case as it gives rise to highly nonlinear, rank-constrained,
optimal projection equations [17], for which various numerical
methods have been proposed to find locally-optimal solutions [37,
38, 41]. However, convergence and global optimality are not, in
general, guaranteed.The difficulties associated with reduced-order
LQG highlight the grand challenge of simultaneous model order
reduction and control.

In this paper, we revisit the problem of output feedback con-
trol without full state estimation. Instead of employing standard
model-order reduction techniques, or designing an observer with
fewer dimensions than the actual system, we build a linear model
for output prediction based on the history of outputs and controls
- using all the information available. Thus, we circumvent the ex-
plicit model order reduction and choices within.We design the pre-
dictor that minimizes the mismatch between the output prediction
and the actual evolution, in a sense that is made clear in the paper.
The error sets are time-varying. For instance, they may be large
if some state variables are not measurable but heavily impact the
dynamics, but uncertainty shrinks as time progresses and the his-
tory of outputs indirectly incorporates them into the prediction.
Next, we design control policies based on the abstract output pre-
dictor. The only assumptions are the bounding sets for possible
initial states, process disturbances, and measurement noises. The
contributions and the organization of this paper are as follows:

(1) We characterize the set-valued error between the output pre-
dictor and actual full model using zonotopes, which are a highly
flexible class of polytopes amenable to convenient propagation
with affine transformations andMinkowski sums.We use zono-
tope order-reduction methods to gain tractability (Section 4).

(2) We parameterize the controller as an affine feedback of the er-
rors of the abstract output predictor.The reachable sets become
parameterized zonotopes. We specify the synthesis problem
by polyhedral constraints and convex linear/quadratic costs.
All the hard constraints become instances of polytope contain-
ment problems, which have efficient linear encodings [31]. Fur-
thermore, we extend the results to infinite-time invariance for
time-invariant or periodic jump linear systems via a contain-
ment approach.The parameters are synthesized in a correct-by-
design fashion using a linear/quadratic convex program (sec-
tion 5).

(3) We provide illustrative numerical examples on robust constrained
control and comparisons to LQG, (Section 7).

Related Work
Policy Parameterization. Parameterizing control policies such that
the synthesis program becomes convex is well studied. Examples
include Youla parameterization [40] and LMI formulations for ro-
bust control [4]. In the case of full-state knowledge, it was first
observed in [13] that if the policy is parameterized as a feedback
of the history of disturbances rather than the state, then the set

of parameters that lead to finite-time convex constraint satisfac-
tion is convex.This observation is very useful in designing correct-
by-design controllers for constrained linear systems via convex
programs [12, 29]. A related parameterization was used in [30]
to obtain robust controlled invariance. However, the disturbance-
feedback paradigm can not directly be extended to the output-feedback
case as the disturbances acting on state can not be measured. This
paper takes the idea of disturbance-feedback but applies it to the
errors in the output predictor.

The idea of parameterizing the control policy as an affine ca-
sual map of the history of outputs for constrained LTV system has
also appeared in [33] and related ideas such system level synthe-
sis [1]. The parameterization is carefully designed such that the
synthesis program becomes convex. The main difference between
our work and [1, 33] is the middle step of introducing the out-
put predictor and the fact that the synthesis program is based on
the output predictor - the notion of the full state is absent in the
synthesis. We also provide insight to how observability errors are
propagated. With the use of zonotope characterization, zonotope
order-reduction, and polytope containment, we are able to provide
a scalable solution to the worst case synthesis problem in [33] that
does not rely on exhaustive approaches such as sampling. Finally,
as opposed to [33], we also provide a solution to infinite-time syn-
thesis for time-invariant or periodic systems.

Data-enabled Control. While our approach is not based on data,
the abstract output predictor can be learned from Data (see Re-
mark 1). In data-enabled predictive control (DeepC) [6, 16], the
input-output data is directly used to find control inputs, skipping
the model-identification. The technique exploits the superposition
principle of linear systems to characterize the policy as a convex
optimization problem. The robust version of [16] requires the past
knowledge of disturbances, which are unknown in partially ob-
servable environments. Our approach does not suffer from this un-
realistic assumption as policies are based on observable errors in
the output prediction, not disturbances on state.

MPC for reduced order Models. Few recent works consider MPC
methods that do not rely on the full-state estimation using reduced-
order models. Ordinarily, the MPC approaches are independent of
the method used for order-reduction. For instance, the balanced-
truncation [32] is a popular method. The main challenge is propa-
gating the order-reduction error dynamics and taking them into ac-
count for MPC constraint satisfaction. Earlier works [8, 14, 15, 28]
avoided this issue and relied on softening the MPC constraints
on-the-fly to accommodate possible violations. Stability was only
guaranteed for open-loop stable systems [15]. Later, the authors
in [34] provided a very conservative error propagation character-
ization for systems in which the unmeasured states evolved in an
open-loop stable fashion, thus being able to reason aboutMPC con-
straint satisfaction by tightening the MPC constraints with the ap-
propriate set-valued error terms. In order to reduce conservative-
ness, moving-horizon estimators of the unmeasured states were
employed on the fly tomake the tightened constraints time-varying
and less conservative than what was computed offline. However,
this later technique required full-state estimation. The same issue
is present in [22], where the authors assume the knowledge of full
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state but only use it for a linear feedback ancillary controller along-
side MPC for the reduced order model. The works in [20, 24] solely
rely on reduced-state feedback for MPC. The error bounds, simi-
lar to [34], are computed in a worst-case fashion for any control
policy, and are computed prior to controller synthesis. In [24], a
guess and verify approach is taken to find the polytopic error set,
which is shown to be less conservative than [20]. However, these
bounds may still be arbitrarily large and heavily depend on the
user expertise for guessing the range of possible states/inputs. The
aforementioned works take advantage of the infinite-time specifi-
cations and Linear Time Invariant (LTI) systems, and did not take
the highly time-varying transient behavior into account.

2 PRELIMINARIES
In this section we provide the notation and necessary background
on polytopes, zonotopes, and polytope containment encodings, all
which we use in this paper.

2.1 Notation
The set of real, non-negative real, and non-negative integer num-
bers are denoted by R, R+, and N, respectively. The set of non-
negative integers smaller or equal to T is shown by N≤T . Given
matrix A, we use A′ and A† to denote its transpose and Moore-
Penrose inverse, respectively. The infinity norm of matrix A is de-
noted by ∥A∥∞, which is the maximum absolute row sum. Given
matrices Ai , i = 1, · · · ,N , with appropriate dimensions, we use
the following stacking notations:
• [A1, · · · ,AN ] to stack matrices vertically,
• (A1, · · · ,AN ) to stack matrices horizontally,
• blk(A1, · · · ,AN ) to construct a block-diagonal matrix by stack-
ing them diagonally,

• [A1, · · · ,AN ]∆ is the lower-triangular matrix by stacking them
vertically and letting remaining entries to be zero.

Given A ∈ Rn×n , the trace of the matrix is denoted by tr(A). For
A∈RnA×n and S ⊂ Rn , we interpret AS as {As |s ∈ S}. Given
S1,S2 ⊂ Rn , their Minkowski sum is S1 ⊕ S2 = {s1 + s2 |s1 ∈
S1, s2 ∈ S2}. We interpret s+S, s ∈ Rn , as {s} ⊕ S. Given two sets
A,B, their Cartesian product is A ⊗ B := {(a,b)|a ∈ A,b ∈ B}.
The n×n identity matrix, n×m zero matrix, and n-dimensional vec-
tor of all ones are denoted by In , 0n×m , and 1n , respectively. All in-
equality relations involving matrices are interpreted element-wise
in this paper.

With a slight abuse of notation, we call two random variables a
and b independent if a and b can take all the elements inA and B,
respectively, then (a,b) can take all the values inA×B. We did not
use the term statistically independent as the underlying probability
distributions of a and b may be unknown. We only require the
knowledge of their supports.

2.2 Polytopic Objects and Operations
An H-polyhedron is a set defined by a finite number of linear in-
equalities:

H = {x ∈ Rn |Hx ≤ h}, (1)
where H ∈ Rq×n ,h ∈ Rq . A bounded H-polyhedron is called an H-
polytope. Any set that can be written as a H-polytope is a polytope.

The n-dimensional p-norm unit ball is denoted by: Bpn := {x ∈
Rn |∥x ∥p ≤ 1}. Note that Bpn is a polytope for p ∈ {1,∞}. For
instance, the∞-norm unit ball is a hyperbox centered at origin. Its
H-polytope form is:

B∞n := {x ∈ Rn |[In ,−In ]x ≤ 12n }. (2)
An affine transformation of a polytope is still a polytope. A zono-
tope is an affine transformation of a hyperbox, and is represented
as

Z := ⟨x̄ ,G⟩ := x̄ +GB∞p , (3)
where x̄ is the zonotope centorid andG is the matrixG is the gener-
ator. Zonotopes are popular because of their properties with affine
transformations and Minkowski sums. We have:

A⟨x̄ ,G⟩ + b = ⟨Ax̄ + b,AGz ⟩, (4a)
⟨x̄1,G1⟩ ⊕ ⟨x̄2,G2⟩ = ⟨x̄1 + x̄2, (G1,G2)⟩, (4b)

where all matrices in (4a) and (4b) have appropriate dimensions.
Notice the increase in the number of columns in the zonotope gen-
erator.

In general, an affine transformation of an H-polytope can be
transformed into a H-polytope but its number of inequalities may
be exponentially large [19]. A special case is when the linear map
has a left-inverse. Then x̄ +GH = {y ∈ Rn |HX †y ≤ h+HX †x̄}. s

2.3 Polytope Containment
We state the result in [31]. Given two sets inRn ,Qi = x̄i+GiHi ,Hi =
{x ∈ Rni |Hix ≤ hi }, i = 1, 2, a sufficient condition for Q1 ⊆ Q2
is the existence of Γ,Λ, and β , with appropriate dimensions, such
that:

G1 = G2Γ,ΛH1 = H2Γ, (5a)
x̄2 − x̄1 = G2β,Λh1 ≤ h2 + H2β ,Λ ≥ 0. (5b)

An implication of (5) is that if any or all of G1, x̄1, x̄2, and h2 are
decision variables in a mathematical program, then (5) are a set of
linear constraints on those decisions. We exploit this property in
this paper to constrain the parameters of controllers by contain-
ment of reachable sets in target sets.

The encoding in (5) is based on the duality of linear programs.
Another practical application of polytope containment is the fol-
lowing relation:

maxζ ∈B∞q ∥x̄ +Gζ ∥p = min r

subject to ⟨x̄ ,G⟩ ⊆ rB
p
n .

(6)

We use (6) to turnmin-max optimization problems inmodel predic-
tive control to standard minimization in Section 5.4. We also note
that the subset relation in (6) is often conservative, but there still
exist instances that the subset relation is tight (see [31] for more
details).

2.4 Zonotope Order Reduction
Thezonotope order withG ∈ Rn×p is defined as the ratio p

n . In prac-
tice, most zonotopes have order greater than 1. Zonotopes with or-
der smaller than 1 have zero volume. A zonotope with order one
that has non-zero volume is also known as parallelotope. Having
zonotopes with very large orders is undesirable. There exists a va-
riety of methods [21] to over-approximate Z with ZRedu. such that
Z ⊆ ZRedu. with the order of ZRedu. being arbitrarily small, as long
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is greater than or equal to one. In this paper, we use the algebraic
method in [10] as it is fast, convenient, and not very conservative.
Less conservative but slower optimization-based approaches are
also available [21, 31].

3 PROBLEM STATEMENT
Consider the following LTV system:

xt+1 = Atxt + Btut +wt ,wt ∈ Wt , (7a)

yt = Ctxt +vt ,vt ∈ Vt , (7b)

zt = Dtxt + dt , (7c)
where xt ∈ Rn , ut ∈ Rm , yt ∈ Ro , zt ∈ Rz , wt ∈ Wt and
vt ∈ Vt are system state, control inputs, measured outputs, per-
formance variables, process disturbance, and measurement noise,
respectively. The term dt ∈ Rz is the performance variable offset,
and is given and deterministic. The initial state x0 is unknown but
restricted to a given set X0. We later assume that setsWt ,Vt ,X0
are given zonotopes and the associated random variables are inde-
pendent. We use the capital letter notation to refer to the history of
variables. For instance, Yt := [y0,y1, · · · ,yt ]. The same notation
follows forUt ,Wt , andVt . At time t , the raw information available
is Yt and Ut−1. An output feedback control policy takes the form
ofΠ = {πt |t = 0, 1, · · · ,T −1}, whereT ∈ N∪{∞} is the horizon
and πt are functions such that:

ut = πt (Yt ,Ut−1), t ∈ N≤T . (8)

A trajectory is defined as the time series of values taken in control
input-performance output space:

σ = (z0,u0), (z1,u1), · · · , (zT−1,uT−1), zT . (9)

Given Π, the set of all possible trajectories of the system in the
input-output space is denoted by Σ(Π) and is given as:

{σ |Eq.(7),Eq.(8),x0 ∈ X0,wt ∈ Wt ,vt ∈ Vt , t ∈ N≤T }.

Problem 1. Given (7), a reference trajectory σ ref, polyhedral sets
Hzt ⊂ Rz ,Hut ⊂ Rm , t ∈ N≤T , and terminal set HzT ⊂ Rz , find the
optimal control policy Π∗ such that:

Π∗ = argmin
Π

max
σ ∈Σ(Π)

J(σ)

subject to zt ∈ Hzt ,ut ∈ Hut , t ∈ N≤T ,
zT ∈ HzT ,∀σ ∈ Σ(Π),

(10)

where

J(σ) =
T−1∑
t=0

(∥zt − z
ref
t ∥Zt + ∥ut − u

ref
t ∥Ut ) + ∥zT − z

ref
T ∥ZT ,

and ∥.∥. are user defined norms.

For the next problem, we assume the system is time invariant
and the specifications is infinite-time set-invariance.

Problem 2. Given LTI version of system (7), polyhedral setsHz ⊂
Rz ,Hu ⊂ Rm , find the infinite-horizon control policy Π∗ such that:

∀σ ∈ Σ(π∗),xt ∈ Hx ,ut ∈ Hu ,∀t ∈ N. (11)

In this paper, the main focus is on the robust constraint satis-
faction in (10) and (11) - guaranteeing constraints for all possible
closed-loop trajectories produced byΠ. For Problem 2, we can con-
sider periodic LTV systems as well but we omit the details. For
Problem 1, alternatives or approximations for the cost function are
possible. For instance, wemaywish tominimize the cost associated
with a nominal trajectory instead of the worst-case one.The choice
of norms are typically p-norms, with p ∈ {1, 2,∞}. Exact minimax
optimization with 2-norms is inefficient [3, 23], but we still make
approximations that render it convex and efficient. The details are
outlined in Section 5.4.

4 OUTPUT PREDICTOR
In this section, we take the first step toward solving Problem 1. We
abstract the system (7) into a linear model in which only outputs
are present. We make the abstraction sound by considering time-
varying error sets such that the output predictor contains all the
output behaviors of (7).

4.1 Observability
We can not measure x0,Wt or Vt . The only information we have
at time t is Yt and Ut (after making the decision of ut ). Using this
information, we are able to build a model for the next measurable
output and the current performance variable. We propose the fol-
lowing linear model:

yt+1 = MtYt + NtUt + et , et ∈ Et , (12a)
zt = RtYt + StUt + ft , ft ∈ Ft , (12b)

where Mt ,Nt ,Rt , St are matrices of parameters with appropri-
ate dimensions, and et ∈ Et , ft ∈ Ft are the error terms. The
bolded notation in this section highlights the decision variables
that we aim to compute in this section. For any values chosen for
Mt ,Nt ,Rt , St , there exist error sets that satisfy (12). The aim is to
choose the aforementioned matrices such that these error sets are
small, so their propagation over time in (12) does not lead to very
large sets for possible performance outputs.

First, we introduce additional notation. Given an initial state x0,
control sequence u0,u1, · · · ,ut , and disturbances w0,w1, · · · ,wt ,
the state at time t is given by:

xt = Pxt x0 + Put Ut−1 + Pwt Wt−1, t > 0, (13)
where the matrices are recursively constructed as follows:

Pxt+1 = AtP
x
t , P

x
1 = A0, (14a)

Put+1 = (AtP
u
t ,Bt ), P

u
1 = B0, (14b)

Pwt+1 = (AtP
w
t , In), P

w
1 = In , (14c)

Note that the sizes of Pu , Pw grow linearly with time. We have
y0 = C0x0 +v0. The measured output at t ≥ 1 is:

yt = CtP
x
t x0 +CtP

u
t Ut−1 +CtP

w
t Wt−1 +vt . (15)

For the ease of notation used later in the paper, we introduce the
following compact form:

Yt = Qx
t x0 +Qu

t Ut +Qw
t Wt +Qv

t Vt , (16)
where

Qx
t+1 = [Qx

t ,Ct+1P
x
t+1],Q

0
t = C0 (17a)

Qu
t+1 = [Qu

t , (Ct+1P
u
t+1, 0o×m)]∆,Q

u
0 = 0o×m , (17b)
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Qw
t+1 = [Qw

t , (Ct+1P
w
t+1, 0o×n)]∆,Q

w
0 = 0o×n , (17c)

Note thatQu
t ,Q

w
t are strictly lower-triangle matrices sinceyt does

not depend on ut and wt . The matrix Qv
t is Io(t+1) as Qv

t Vt = Vt .
The performance variable at time t is:

zt = DtP
x
t x0 + DtP

u
t Ut−1 + DtP

w
t Wt−1 + dt . (18)

Replacing (16) in (12) will yield the following:
yt+1 = MtQ

x
t x0+MtQ

u
t Ut +MtQ

w
t Wt +MtQ

v
t Vt +NtUt +et ,

(19a)
zt = RtQ

x
t x0+RtQ

u
t Ut+RtQ

w
t Wt+RtQ

v
t Vt+StUt+ ft . (19b)

By comparing it to (15) and (18), the error terms become:
et = (Ct+1P

x
t+1 −MtQ

x
t )x0 + (Ct+1P

u
t+1 − Nt −MtQ

u
t )Ut

+(Ct+1P
w
t+1 −MtQ

w
t )Wt −MtQ

v
t Vt +vt+1.

ft =
(
DtP

x
t − RtQ

x
t )x0 + ((DtP

u
t , 0z×m) − St − RtQ

u
t
)
Ut

+
(
(DtP

w
t , 0z×n) − RtQ

w
t
)
Wt − RtQ

v
t Vt + dt .

We investigate (4.1) and the characterization of Et . The analysis
for Ft is similar. We chooseNt = Ct+1P

u
t+1 −MtQ

u
t to cancel the

second term. We first make a common mild assumption.

Assumption 1. The random values x0 ∈ X0,wt ∈ Wt ,vt ∈
Vt , t ∈ N≤T , are independent.

Using Assumption 1, the error set becomes:
Et = (Ct+1P

x
t+1 −MtQ

x
t )X0

⊕(Ct+1P
w
t+1 −MtQ

w
t )

⊗t
τ=0Wτ

⊕MtQ
v
t
⊗t

τ=0 Vτ
⊕Vt+1.

(20)

Notice that we identify three additive, assumed to be independent,
sources of error:

The Initial State. The term (Ct+1P
x
t+1 −MtQ

x
t )X0 is the effect of

the uncertainty in initial state at time t . If there exists Mt such
that (Ct+1P

x
t+1 − MtQ

x
t ) = 0, then this uncertainty vanishes.

This condition is equivalent to observability. In the LTI case, we
have Qx

t = [C,CA,CA2, · · · ,CAt ], which has a left inverse if it is
full column rank, thus enabling (CPxt+1 − MtQ

x
t ) = 0 by choos-

ing Mt = Qx
t
†CPxt+1. Even when observability does not hold,

this term still captures the uncertainty that is used to compute the
reachable sets.

Process Disturbances. These act similarly to the uncertainty in the
initial state as they may become observable after some time. How-
ever, it is not possible to drive this term to zero as the most recent
disturbances are not observable unless C. matrices are invertible.

Measurement Noise. The third term acts as a regularizer for choices
ofMt, penalizing large values as they amplify the effect ofmeasure-
ment noises in (12).

4.2 Zonotope Characterization
Assumption 2. The sets X0,Wt ,Vt , t ∈ N≤T , are zonotopes.

Assumption 2 is reasonable inmost applications. Evenwhen it is
not the case, any set can be over-approximated by a zonotope. The
assumption is inappropriate when the uncertainty sets are highly
asymmetric sets. Our framework remains valid for any representa-
tion as affinemaps of H-polytopes for the sets above.The zonotope

assumption is mainly for convenient notation and computation, as
we use zonotope order reduction techniques later in the paper.

The sets Et and Ft becomes zonotopes. In order to provide their
representation, we provide the following extra notation:

X0 = ⟨x̄0,GX0 ⟩,Wt = ⟨w̄t ,G
wt ⟩,Vt = ⟨v̄t ,Gvt ⟩. (21)

Then we have:

Et = ⟨ēt ,Get ⟩,Ft = ⟨ f̄t ,Gft ⟩, (22)

where:

ēt = (Ct+1P
x
t+1 −MtQ

x
t )x̄0+

(Ct+1P
w
t+1 −MtQ

w
t )W̄t +MtQ

v
t V̄t + v̄t+1,

Get =
(
(Ct+1P

x
t+1 −MtQ

x
t )G

X0 ,

(Ct+1P
w
t+1 −MtQ

w
t )GWt ,MtQ

v
t G

Vt ,Gvt+1
)
,

f̄t = (DtP
x
t − RtQ

x
t )x̄0 + ((DtP

w
t , 0z×n)

−RtQ
w
t )W̄t − RtQ

v
t V̄t + dt ,

Gft =
(
(DtP

x
t − RtQ

x
t )G

X0 ,

((DtP
w
t , 0z×n) − RtQ

w
t )GWt ,−RtQ

v
t G

Vt
)
,

and W̄t = [w̄0, · · · , w̄t ] andGWt = blk(Gw0 , · · · ,Gwt ). The same
notation follows for V̄t and GVt .

4.3 Optimal Parameters for Output Predictor
Nowwe pick the bestmodel such that the entries inGet andGft are
small values. We wish to solve the following optimization problem:

Mt ,Nt = argmin J(Get ), (23a)

Rt , St = argmin J(Gft ), (23b)

where J is a cost function promoting smaller volumes for Et and
Ft . We may consider the following cost functions.

4.3.1 Analytical Least Squares. A simple choice is the Frobenius
norm:

J(G) = tr(G ′G). (24)

Then we have the following closed-form minimizers:

Mt =
(
(Ct+1P

x
t+1G

X0 ,Ct+1P
w
t+1G

Wt , 0o×q1 ,G
vt+1

)(
Qx
t G

X0 ,Qw
t G

Wt ,Qv
t G

Vt , 0(t+1)o×q2

)†
,

(25a)
Nt = Ct+1P

u
t+1 −MtQ

u
t , (25b)

Rt =
(
(DtP

x
t G

X0 , (DtP
w
t , 0z×n)G

Wt , 0z×q1

)(
Qx
t G

X0 ,Qw
t G

Wt ,−Qv
t G

Vt ,
)†
,

(25c)

St = (DtP
u
t , 0z×n) − RtQ

u
t , (25d)

where q1 and q2 are the number of columns in Gvt and Gvt+1 ,
respectively.
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Figure 1: Example 2: Observavility error as characterized by
the Frobenious norm of the generator of Et for an open-
loop unstable system with n = 12. [left] without distur-
bances/noise.The error is zero for t ≥ 11, when observability
holds. [Right] with disturbances/noise.

4.3.2 Convex Programming with Zonotope Containment. An alter-
native is to propose a zonotopeZproposed such thatEt ⊆ αZproposed

for some scalar α . Then we find can find Mt using the following
polytope containment problem:

Mt = argmin α

subject to Et ⊆ αZproposed.
(26)

By the virtue of encoding in (5), (26) is a convex linear program.
A similar optimization problem to (26) can be set up for finding
Rt by containing Et in a proposed zonotope. An advantage of
optimization-based approach is that we can write it for multiple
instances of system (7), hence introducing robustness. The major
disadvantage is relying on user expertise to choose Zproposed. Sim-
ple guesses, such as hyperboxes, may be too conservative.

Remark 1 (Learning parameters in (12) directly from data).
The way we find the parameters (12) is from the original state-space
dynamics (7). For unknown systems, the state-space model is identi-
fied from the data. One possibility is to circumvent learning (7) is to
directly learn (12) from data - removing the notion of full-state in the
whole identification and synthesis process. A potential advantage is
generalizability to classes of systems where (7) may be very differ-
ent among instances but (12)may be relatively similar. We leave the
investigation of this research direction to future work.

5 FINITE-TIME POLICY SYNTHESIS
In this section, we solve Problem 1 by designing a control policy for
the linear predictor (12) from the optimization problem (10). The
technique is based on polytopic trajectories [31] and is the closely
related to convex optimization for disturbance-feedback synthesis
in [29] and system level synthesis in [1]. We provide polytopic rep-
resentation of possible reachable sets - represented by zonotopes
in this paper. These sets are pre-computed.

5.1 Control Policy Parameterization
We propose the parametric structure of the controller such that we
synthesize the parameters using convex optimization. We propose
the control input to be an affine feedback of the past errors in (12a).
We show that this makes all the constraints linear, and hence con-
vex. The policy is:

ut = ũt + θt [y0, e0, e1, · · · , et−1], (27)

where ũt ∈ Rm and θt ∈ Rm×o(t+1) are the offset vector and ma-
trix parameters thatwewish to synthesize.The vector [y0, e0, e1, · · · , et−1]
is going to appear often in this section. Thus, we introduce the no-
tation:

ξ0 := y0, ξt := [y0, e0, e1, · · · , et−1], t ∈ N≤T . (28)

The values in ξt belongs to the following zonotope

Ξt := ⟨ξ̄t ,Gξt ⟩. (29)

The way to find expressions for ξ̄t ,Gξt is a bit subtle because the
error terms through time are not independent variables. Treating
them independently is very conservative - it is analogous to restart-
ing the intial condition and all previous disturbance and noises at
every time step. Instead, we characterize ξt based on the indepen-
dent random variables x0,wt ,vt . Let:

ξt = Ξx
t x0 +Ξwt Wt +Ξvt Vt , (30)

where matrices Ξx
t ,Ξ

w
t ,Ξ

v
t are constructed as follows:

Ξx
t+1 = [Ξx

t ,Ct+1P
x
t+1 −MtQ

x
t ]∆,Ξ

x
0 = C0. (31)

Ξwt+1 = [Ξwt , (Ct+1P
w
t+1 −MtQ

w
t , 0o×n)]∆,Ξ

w
0 = 0o×n . (32)

Ξvt+1 = [Ξvt , (MtQ
v
t , Io)]∆,Ξ

v
0 = Io . (33)

Then zonotope characterization of Ξt is:

ξ̄t = Ξx
t x̄0 +Ξwt W̄t−1 +Ξvt V̄t , (34)

Gξt = (Ξx
t G

x0 ,Ξwt G
Wt−1 ,Ξvt G

Vt ). (35)

5.2 Encoding the dynamics
Under the control policy (27), the closed-loop response is an affine
map of ξt . We introduce the following:

yt = ỹt + φt ξt ,Yt = Ỹt +Φt ξt , (36a)

ut = ũt + θt ξt ,Ut = Ũt +Θt ξt , (36b)

where Ỹt = [ỹ0, ỹ1, · · · , ỹt ] (the same notation stands for Ũt ), and:

Φt = [φ0,φ1, · · · ,φt ]∆, (37a)

Θt = [θ0,θ1, · · · ,θt ]∆, (37b)

Plugging the equations into (12a) and rearranging terms produces
the following encoding of the dynamics:

ỹt+1 = Mt Ỹt + NtŨt , (38a)

φt+1 = (MtΦt + NtΘt , Io). (38b)

Finally, we have the following initial conditions:

ỹ0 = 0,φ0 = Io . (39)
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5.3 Encoding the Performance Outputs
We have:

zt = Rt (Ỹt +Φt ζt ) + St (Ũt +Θt ζt ) + ft , (40)

Then the performance variable and control input falls into the fol-
lowing zonotope:

zt ∈ Zt ,Zt = ⟨z̄t ,Gzt ⟩, (41a)

ut ∈ Ut ,Ut = ⟨ūt ,Gut ⟩, (41b)
By writing (41b) using the independent uncertain variables, we
have:
zt = (RtΦtΞ

x
t + StΘtΞ

x
t + DtP

x
t − RtQ

x
t )x0+

(RtΦtΞ
w
t + StΘtΞ

w
t + (DtP

w
t , 0z×n) − RtQ

w
t ))Wt+

(RtΦtΞ
v
t + StΘtΞ

v
t − RtQ

v
t )Vt

(42)
Therefore, we have the following compact form for the zonotope
characterization of Zt :

z̄t = Rt (Ỹt +Φt ξ̄t ) + St (Ũt +Θt ξ̄t ) + f̄t , (43a)

Gzt = ((RtΦtΞ
x
t + StΘtΞ

x
t + DtP

x
t − RtQ

x
t )G

x0 ,

(RtΦtΞ
w
t + StΘtΞ

w
t + (DtP

w
t , 0z×n) − RtQ

w
t ))GWt

(RtΦtΞ
v
t + StΘtΞ

v
t − RtQ

v
t )G

Vt )
(43b)

The parameters of the control zonotope are:

ūt = ũt + θt ξ̄t , (44a)

Gut = θtG
ξ
t . (44b)

5.4 Control Policy Synthesis via Convex
Linear/Quadratic Programming

Now we are in the position to synthesize the parameters of the
controller.The policy decision variables are ũτ ,θτ ,τ ∈ N≤T−1.The
rest are variables for encoding.

Theorem 1 (Solution to Problem 1). Problem (10) is cast as
the following convex optimization problem

π∗ = argminπ rzT +
T−1∑
t=0

(rzt + rut ),

subject to ⟨z̄t − z
ref
t ,G

zt ⟩ ⊆ rzt Bp , t ∈ N≤T
⟨ūt − u

ref
t ,G

ut ⟩ ⊆ rut Bp ,
⟨z̄t ,Gzt ⟩ ∈ Hzt , ⟨ūt ,Gut ⟩ ∈ Hut ,
t ∈ N≤T−1, ⟨z̄T ,GzT ⟩ ∈ HzT ,
Eq.(43), (44).

(45)

Proof. The proof is constructive from the introduced encoding
and the min-max to min-min duality (6), □

Note that onemay replace the r values in the cost with quadratic
r2 to obtain a convex quadratic program.

The optimization problem (45) is solved offline. Once it is solved,
implementing the linear error-feedback policy online is very effi-
cient as it boils down to matrix multiplications and summations in
(8) - no real-time optimization is necessary. Resolving (45) online
to adjust it to onlinemeasurements (such as an updated knowledge
of possible initial conditions) can potentially improve performance,
but its empirical investigation is beyond the scope of this paper.

5.5 Computational Complexity
5.5.1 Encoding Dynamics. The number of decision variables cor-
responding to the control policy in (45) ismT (T +1)/2+mT . The
number of variables in ΦT is of order O(oT 2). The number of vari-
ables and constraints corresponding to dynamics encoding grows
with the order O((o +m)T 2). A simple technique to decrease the
number of decision variables ismakingΘ block-banded [33], where
the values of θt that correspond to errors older than τ steps before
are set to zero. By assuming fixed band τ , the number of policy
decision variables becomes linear in τ ,T .

5.5.2 Encoding Min-Max Optimization. The rest of the complex-
ity roots in the polytope containment encoding, which depend on
the order of the zonotopes that represent uncertainty sets. Let the
zonotope order ρxn be the order of X0, and ρwn, ρvo be the aver-
age zonotope order ofWt andVt sets over t = 0, 1, · · · ,T−1.Then
the number of generators in both Zt and Ut is O

(
nρx + t(nρw +

oρv )
)
. Given the average number of hyperplanes in the constraint

sets be ρuhm for control constraints and ρzhz performance variables,
the encoding of polytope containment from (5) requires the follow-
ing order of variables and constraints:

O
(
max(nρxh ,mρuh ,n,m)(nρw + oρv )T

2) . (46)

If all zonotopes are paralleltopes, then all values related to indices
of ρ are one. The more complex the zonotopes are beyond paral-
leltopes, the complexity of (45) grows. Note that the complexity is
quadratic in horizonT , instead of linear that is typical in traditional
MPC.

5.6 Proxy Constraint via Zonotope Order
Reduction

In order to reduce complexity, we propose the following method
that preserves correctness, but may degrade optimality. A very ef-
fective way to decrease complexity is performing zonotope order
reduction for Ξt prior to solving (45). Let ΞRedu.

t be the reduced
zonotope of Ξt . However, the performance variable is not a func-
tion of this zonotope. By treating ξt and ft being independent
(which are not) in (40), we conservatively have the following ap-
proximation:

Zt ⊆ Rt Ỹt + StŨt + (RtΦt + StΘt )Ξ
Redu.
t ⊕ Ft , (47)

Instead of using Zt , we use the right hand side in (47) to alleviate
complexity. The main advantage of such a order reductions is that
the dependency of the complexity on n - the original state space
dimension - can be removed as the number of the columns of the
generator in ΞRedu.

t can be as small as o(t + 1) (order 1 zonotope).
We always use this technique when synthesizing policies for sys-
tems with very large state-spaces in a scalable way.

6 INFINITE-TIME INVARIANCE
In this section, we provide a solution to Problem 2. We assume the
system to be time invariant. The method is based on the following
idea: if a finite-time policy after time T∞ manages to bring all the
possible state values xT∞ to fully lie in X0, then we can repeat the
same policy starting fromT∞ and so on. Thus, we obtain a stabiliz-
ing periodic output feedback policy that maps at most T∞ recent
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history to a control input. We formalize this in the following theo-
rem.

Theorem 2 (Solution to Problem 2). If there exists T∞ such
that XT∞ ⊆ X0, where:

Xt = PuT∞
Ũt−1 + (Pxt + PuT∞

Θt−1Ξx
t−1)X0

⊕(Pwt + Put Θt−1Ξwt−1)
t−1⊗
τ=0

Wτ ⊕

Pvt Θt−1Ξvt
⊗t−1

τ=0Vτ

(48)

and Xt ∈ Hx ,Ut ∈ Ut , t ∈ N≤T∞ , then the following control policy
is a solution to Problem 2:

π(t) = π(t mod T∞) (49)

Proof. We plug the control policy (8) in (13) to find the state-
response. When XT∞ ⊆ X0, then the history can be cleaned with
the reset of time to 0 and the repetition of the same policy. It is
straightforward to observe that XkT∞ ⊆ X(k−1)T∞X0 ⊂ X0∀k ∈
N, t ≥ 1. □

Our solution based onTheorem 2 is sound but it is not as flexible
as state-feedback methods such as in [30]. The main reason is the
dependence of the solutions onX0. IfX0 is a decision variable, then
the containment encoding leads to bilinear constraints.

7 EXAMPLES
Weprovidemultiple examples to demonstrate the usefulness of our
methods. First, we consider unconstrained problems and compare
our controller to LQG. Next, we consider constrained problems.
The scripts for all the examples are publicly available 1.

7.1 Comparison against LQG
Our method is different in nature from LQG, as it is mainly de-
signed to handle constraints and provide worst-case guarantees
rather than average performance. Nevertheless, both methods can
be applied to unconstrained problems problem. It is anticipated
that for some cases our method achieves smaller cost than LQG,
which is mainly due to the fact that LQG is optimized for Gaussian
noise, but ours is indifferent to the distribution. In both examples
the systems are LTI.

Example 1. We chose n = 6,m = 1,o = 1, z = 1, yielding
a problem of the same size as in [15] and [24]. We randomly gen-
erate matrix A. The location of its eigenvalues in the complex plane
are shown in Figure 2[Top]. It is observed that the 4 of the eigen-
values are outside of the unit circle, implying open-loop instability.
The systems in [24] were, on the other hand, open-loop stable. We
set B = (0, 1, 1, 1, 1, 0). Only the first entry of matrices C,D are 1
and the rest are zero (we only measure and track the first state). The
zonotope of X0 = ⟨0, I6⟩ is centered at origin and its generator is
I6, meaning the initial state can take any value in the unit hyperbox.
We set Wt = ⟨0, 0.01I6⟩,Vt = ⟨0, 0.01⟩, t = 0, 1, · · · ,T − 1. The
horizon is set to T = 40. With no additional constraints, we synthe-
size our output feedback control policy using (45). Comparisons are
made against time-varying LQG (TV-LQG), which uses Riccati dif-
ference equation to update control and observer gains over time [2].
1https://github.com/sadraddini/polytrajectory

Figure 2: [Left] Example 1 and [Right] Example 2. The lo-
cation of eigenvalues of A (top figures), sample trajectories,
and reachable sets shown by the shaded areas, which are ob-
tained from projecting the associated zonotopes.

The time-invariant LQG (TI-LQG) uses discrete-time algebraic Riccati
equation (DARE) to find fixed gains. To excite the system the most,
we randomly sample the measurement noise and process disturbance
from the vertices of their respective zonotopes.The LQG gains are com-
puted from the covariance matrices fit to 1000 randomly generated
samples. The cost function is the 2-norm summation of inputs and
outputs. However, in using (45), we replace the cost with ∞-norm-
squared and use zonotope order-reduction (to make order zonotope
orders equal to 1) to improve tractability. The synthesis optimization
problem (45) takes 0.4 seconds on a personal computer. A sample tra-
jectory is shown in Figure 2. The reachable sets corresponding to Zt
andUt are shown in shaded colors. On over 1000 runs, the cost associ-
ated with our method was about 20% less than the one corresponding
to TV-LQG, and 28% less than the cost of TI-LQG. When we changed
the disturbance and noise distribution to Gaussian, we found that
over 1000 runs, the cost of TV-LQG is on average about 4% smaller
than ourmethod, which has roughly the same average cost as TI-LQG.
Note that LQG is provably optimal on average for Gaussian setting
[2].

Example 2. We chose n = 1000,m = 5,o = 1, z = 1. Solv-
ing DARE for this problem size is numerically difficult. Therefore, we
only solve the problem using our method and TV-LQG. The location
of eigenvalues and a sample trajectory are shown in Figure 2. The
rest of the setup is similar to Example 1. In this numerical example
and in many other cases that only a small portion of state values are
measured, LQG becomes very sensitive with respect to numerics in
covariance matrices. In this example, our method overperforms LQG.
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Figure 3: Example 3: [Left] Sample trajectory in x[1],x[2] and
the zonotopes Zt through time. The red shaded area is ZT .
[Right]The corresponding trajectory of inputs and the zono-
topes of U[t ] through time. The shaded box is the set of
valid inputs. In both plots, time progression is depicted by
brighter colors. The cyan zonotopes are for final time.

The noise variables are spanned over ±0.01 in all dimensions and the
initial state belongs to unit hyperbox in R1000.

7.2 Constrained Control
Example 3. We pick n = 10,m = 2,o = 1, z = 2 and randomly

generated matrices in (7). We only observe x[1], and the performance
variables are x[1] and x[2]. We constrain the control input for all times
in a box, and the terminal constraint is a box in x[1],x[2] space. Pro-
cess andmeasurement noise are present - their numerical descriptions
are available in the scripts. A sample trajectory with T = 20 and re-
sults are shown in Fig. 3.

7.3 Control with Fixed but Unknown
Parameters

We may consider a system where the state includes static param-
eters of the environment. These parameters are not observable at
all times, but they are measured in a time-varying way.The param-
eters take values from a polytopic set, and our synthesis method
provides a formal certificate of robustness versus all admissible pa-
rameters.

Example 4. Consider a particle moving in 2D space with constant
velocity in the horizontal direction and double integrator dynamics
with acceleration control in the vertical direction, where gravity faces
downward. The environment includes obstacles on the upper side and
lower side that remain flat for K segments of length 1 (see Fig. 4. The
heights of the obstacles belong to a given zonotope.The state is 2K+3
dimensions (2K static states for the heights of the obstacles, 3 for the
particle position and velocity). At every time, the measured outputs
are the difference between the height of the particle and the obsta-
cle in the current and the subsequent segment (4 outputs). We also
include small measurement noise and disturbance acting in vertical
position. The performance variables encode the distance from the ob-
stacles in each segment.This yields a systemwith time-varyingC and
D matrix.

By solving the convex program in Theorem 45, we obtain a policy
that is provably robust against all possible environment parameters.

Figure 4: Example 4:The obstacles are shaded in orange.The
particle moves to the right.

Figure 5: Example 5: Infinite-time invariance with compass
gait model. The measured output is the angle between two
legs, which is θst + θsw . The areas between zonotopes are
filled in a continous-time sense by taking the convex-hull
of two time-consecutive zonotopes.

Three samples of such environments and corresponding sample tra-
jectories are shown in Fig. 4, where K = 10.

7.4 Periodic Invariance
Example 5. We consider the compass gait walking model in [11].

By assuming small angles, we characterize the system with a jump
linear model, and discretize time with ∆t = 0.05s . Note that limit
cycles still exist because of discrete jumps. The parameters are the
same as in [5]. The only measurable output is the angle between the
stance and the swing leg. The task is obtaining a polytopic trajectory
driven with output feedback that repeats itself after the reset map. A
slight modification to Theorem 2 is necessary. By considering a linear
reset map R, instead of writing XT∞ ⊆ X0, we have RXT∞ ⊆ X0,
which is still a linear zonotope containment problem. The results are
shown in Fig. 5. The results are comparable to the state-feedback LQR
region-of-attraction computed in [25] with the note that linearization
errors are not considered here.
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8 CONCLUSION AND FUTUREWORK
In this paper, we provided provably correct output feedback poli-
cies with explicit zonotope representation of reachable sets. The
controllers were found using convex programs.

Future work will focus on the direction suggested in Remark 1,
and extension to hybrid systemswhere unlike example 5, themode
sequence is not known in prior.
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