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Abstract
The paper presents the simulation-based variant of the LQR-Tree feedback-motion-planning approach. The algorithm
generates a control policy that stabilizes a nonlinear dynamic system from a bounded set of initial conditions to a goal.
This policy is represented by a tree of feedback-stabilized trajectories. The algorithm explores the bounded set with
random state samples and, where needed, adds new trajectories to the tree using motion planning. Simultaneously,
the algorithm approximates the funnel of a trajectory, which is the set of states that can be stabilized to the goal by
the trajectory’s feedback policy. Generating a control policy that stabilizes the bounded set to the goal is equivalent
to adding trajectories to the tree until their funnels cover the set. In previous work, funnels are approximated with
sums-of-squares verification. Here, funnels are approximated by sampling and falsification by simulation, which allows
the application to a broader range of systems and a straightforward enforcement of input and state constraints.
A theoretical analysis shows that in the long run, the algorithm tends to improve the coverage of the bounded
set as well as the funnel approximations. Focusing on the practical application of the method, a detailed example
implementation is given that is used to generate policies for two example systems. Simulation results support the
theoretical findings, while experiments demonstrate the algorithm’s state-constraints capability, and applicability to
highly-dynamic systems.
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1 Introduction

The proposed algorithm generates a feedback policy
that stabilizes a nonlinear dynamic system (for
example, a running or flying robot) from a wide range
of initial conditions to a goal. While standard linear
policies can stabilize initial conditions near a goal
(or a nominal trajectory), they usually fail for initial
conditions “far” from the goal, where the system’s
nonlinear dynamics, and input- and state constraints
must be considered by the policy. In order to address
this issue, the simulation-based LQR-Tree algorithm,
a variant of the algorithm introduced in Tedrake
(2009), generates a policy that consists of a tree of
feedback-stabilized trajectories that lead to the goal
(the trajectories are stabilized with time-varying linear
quadratic regulator (LQR) policies, hence the name).

The algorithm combines concepts from randomized
motion planning and feedback control: The bounded
set of initial conditions that should be stabilized to
the goal is explored using random state samples,
and feedback-stabilized trajectories are added to the
tree-policy where needed. Key to the algorithm is

the approximation of the set of states that can be
stabilized to the goal by the feedback policy of a
trajectory. This set is called the funnel of a trajectory,
inspired by Mason (1985) and Burridge et al. (1998).
Generating a policy that stabilizes the bounded set to
the goal is equivalent to covering the set with funnels
of trajectories leading to the goal. When the policy is
applied, the tree is queried to find the trajectory whose
funnel contains the initial state of the system; then,
by definition of a funnel, the system reaches the goal
when the trajectory’s feedback-policy is applied. The
assignment of initial conditions to trajectory-policies is
one of the funnels’ key purposes.
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In previous work (Tedrake 2009; Tedrake et al.
2010), the funnels are approximated by verifying
invariant sets using Lyapunov function candidates and
sums-of-squares (SoS) programming (Parrilo 2003).
Here, we propose an alternative method that, instead
of a formal verification, approximates the funnels
with a falsification mechanism that uses sampling
and simulation: Each trajectory has an associated
funnel hypothesis; if a random state sample is within
the funnel hypothesis of a trajectory, we simulate
the system with the sample as initial condition,
while applying the trajectory’s feedback policy. If
the simulation does not reach the goal, the funnel
hypothesis is falsified and is shrunk to exclude the
sample. With more samples, the hypothesis shrinks to
a tighter approximation to the stabilizable set of the
trajectory.

The falsification mechanism renders the funnel
approximations nonconservative, which is a major
difference to previous work, where the conservative
approximations provide sufficient conditions for
stabilizability (Tedrake et al. 2010). The stability
guarantees of the formal verification are traded-off for:
1) The applicability to a broader class of systems:
Simulation-based tree-policies can be generated for
(almost) any system that can be simulated on a
computer. For example, the approach can handle
feedback policies that are not a straightforward
function of time and state, such as model-predictive
control (MPC) policies (Garcia et al. 1989). 2) The
implementation of the simulation-based approach is
less involved compared to the SoS method. For
example, it is straightforward to enforce input
and state constraints in a simulation, and the
system dynamics do not have to be approximated
by polynomials, as typically performed for SoS-
verification (Tedrake et al. 2010; Majumdar et al.
2013).

An analysis of the algorithm’s behavior as the
number of iterations tends to infinity shows that
coverage guarantees similar to probabilistic feedback
coverage as defined in Tedrake et al. (2010) can be
obtained. However, while the analysis shows that in the
long run, the algorithm tends to improve the generated
policies, there are no guarantees for finite iterations.
Therefore, we introduce a straightforward, statistical
method to assess generated policies in practice.

The second part of the paper focuses on the practical
application of the algorithm. We provide a detailed
example implementation, available in Extension 1,
and discuss design considerations. The implementation
is used to generate tree-policies for two example

nonlinear systems: A simple pendulum and a cart-
pole system. The cart-pole features both state- and
input-constraints and is an example of a system where
the original algorithm using SoS-verification is not
straightforward to apply.

The algorithm can be applied to control systems that
require high-bandwidth controllers, since a policy is
generated offline and is then used as a lookup-table.
This is demonstrated in experiments with a laboratory
cart-pole setup.

1.1 Structure and Focus of the Paper

The algorithm is presented in a top-to-bottom
approach: After a review of related work and some
preliminaries, the key ideas of the LQR-Tree algorithm
are reviewed on a conceptual level in Section 3. In
the following Section 4, we introduce the simulation-
based version and its key mechanism, the funnel
falsification. In the same section, we discuss the
theoretical properties of the algorithm. In Section 5,
we present a practice-oriented, detailed example
implementation of the algorithm. Finally, in Section 6,
the implementation is used to generate tree-policies
for the simple pendulum and the cart-pole, which are
evaluated in simulation and experiments.

The paper should allow the reader to implement
the algorithm in practice for experimental robotic
systems. Feedback policies are usually implemented on
computers and are therefore executed in discrete time.
For this reason, and because it makes the presentation
of some of the concepts more straightforward, the
algorithm description and example implementation are
in discrete time, such that the resulting policies can be
directly deployed to experimental systems. The time-
discretization steps required for generating policies for
continuous-time systems are discussed in Section 5.

1.2 Related Work

This paper is an extension to preliminary simulation
results presented in Reist and Tedrake (2010),
providing the following additional contributions:
Experimental results with a cart-pole system; a
systematic termination condition and a statistical
method to assess the quality of the generated policies;
a discussion of theoretical, asymptotic properties; and
a detailed example implementation of the algorithm.

The simulation-based LQR-Tree algorithm is a vari-
ant of the LQR-Tree algorithm introduced in Tedrake
(2009), where the funnels of trajectories are approx-
imated with sums-of-squares (SoS) programming.
Recent advances in funnel verification with SoS include
the verification of funnels around trajectories of an
experimental Acrobot system (Majumdar et al. 2013),
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and verification of funnels of limit cycles of walking
robots (Manchester et al. 2011). The LQR-Tree algo-
rithm has also been applied to controlling a fixed-
wing glider to perch on a string (Moore et al. 2014).
Related, an approach to combine simulations with
SoS-programming for finding a Lyapunov function
that verifies a region of attraction of stable system
equilibria is presented in Topcu et al. (2008). Further
related is the approach in Gillula et al. (2014) that
computes the viability-kernel, i.e. the set of states that
can be kept within state constraints by constrained
control inputs, for high-dimensional, sampled-data LTI
systems: An inner approximation to the kernel is built
from states on the kernel’s boundary that are found in
a randomized approach and point-wise viability-tests.

The LQR-Tree algorithm is inspired by randomized
motion planning, such as probabilistic road maps
(PRMs) (Kavraki et al. 1996) and rapidly-exploring
randomized trees (RRTs) (LaValle 2006), which have
proven to be effective in challenging environments
that are high-dimensional, nonlinear, and noncon-
vex (Kuffner et al. 2001; Frazzoli et al. 2002; Plaku
et al. 2005; Shkolnik and Tedrake 2009). The algo-
rithms have further been extended to return asymp-
totically optimal paths (Karaman and Frazzoli 2011)
by continuously improving the generated graphs and
trees.

An LQR-Tree policy is related to a PRM, which
is an undirected graph where the nodes are robot
configurations (i.e. system states) and the edges are
paths that connect the configurations. The PRM is
constructed by randomly drawing configurations from
the free space of an environment with obstacles, with
the goal of sparsely covering the free space with a
connected graph, which is then used to efficiently plan
a path between two robot configurations at run-time:
If both configurations can be connected to two graph
nodes with a fast, local motion planner, a graph search
provides a path between the two nodes, and a full path
is found. The tree of feedback-stabilized trajectories
in simulation-based LQR-Tree policies serves a similar
purpose, as it provides the basis for obtaining a control
policy that stabilizes an initial condition to a goal,
which implicitly generates a motion plan from the
initial condition to the goal. Since the goal is fixed,
however, the tree-policies are single-query. Another
difference to PRMs is that the samples used to generate
an LQR-Tree are not equilibria, as typically used in
PRMs (Kavraki et al. 1996; Agha-mohammadi et al.
2014).

A recent, related approach is presented in Levine
and Koltun (2013) and Mordatch and Todorov (2014),

where open-loop trajectories obtained with motion-
planning are used together with linear feedback
policies stabilizing the trajectories to learn a global
feedback policy represented by a neural network. The
optimization used for motion-planning is adapted such
that the generated trajectories can be represented by
the neural network, and the policy is obtained in an
iterative procedure that alternates between motion-
planning and policy-learning. A possible issue with this
approach is that the generalization of the resulting
policy is not systematically tested, which may cause
the policy to perform poorly for states that are
“far” from the trajectories used for policy-learning.
In contrast, the algorithm proposed here constantly
verifies the generalization of trajectory-policies, i.e.
the funnels, through sampling and simulation (or
rigorously through sums-of-squares verification in the
original version (Tedrake et al. 2010)). Another
advantage is that the choice of the motion-planning
tool, the design of the trajectory-policies, and the
generalization mechanism are decoupled. Furthermore,
the global tree-policy does not have to be parametrized
a priori (e.g. by choosing the number of hidden layers),
since the algorithm determines the required policy-
complexity at runtime, adding trajectories wherever
needed for coverage. The disadvantage is that the
memory-requirement for the tree-policy cannot be
fixed a priori, and may be higher than using function-
approximation.

Adding trajectories only where needed is comparable
to variable-resolution discretization, e.g. as in Munos
and Moore (2002), which addresses the curse of dimen-
sionality encountered when applying standard uni-
form state-space-discretization to dynamic program-
ming (Bertsekas 2005) or reinforcement-learning prob-
lems (Sutton and Barto 1998). Indeed, we find that
the tree-policies generated for the example-systems
in this paper contain a low number of nodes (i.e.
discretized states in the trajectories) compared to a
corresponding uniform state-space discretization, see
the discussion in Section 6.3. Another benefit of repre-
senting feedback policies with trajectories instead of a
state-space discretization is that interpolation issues
are avoided. This is also highlighted in Stolle and
Atkeson (2010), where the authors propose, similar to
LQR-Trees, building a library of trajectories leading
to a goal state to represent a control policy: Given
the current system state, the nominal control input
of the closest state in a trajectory in the library is
executed, where closeness is measured using a weighted
Euclidean norm. The library is initialized with a single
trajectory, and more trajectories are added to the
library when failures are observed in experiments,
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or simulations with process noise. Trajectory-library
policies are applied to a simulated biped walking robot
in Liu et al. (2013), where, in addition to the nominal
control input, a linear feedback input is applied, similar
to the trajectory-stabilizers used here. Trajectories are
added when the robot stumbles after a push, using
the robot’s state immediately after the push as an
initial condition for motion planning. The additional
trajectories then increase the robustness of the policy
against even larger pushes.

The estimation of funnels of trajectories can be
used in high-level motion planning. One of the first
approaches is introduced in Burridge et al. (1998),
where the authors present a cascaded control design
for a robotic arm that juggles balls in the presence
of obstacles. The basic idea behind the approach is
that each controller in the cascade stabilizes a set of
states to a goal set (picture a funnel). This goal set
is contained in the funnel of a subsequent controller,
and the controllers are switched once the system
state reaches the funnel of the next controller. Motion
planning is then reduced to stringing together a set of
policies and their funnels, such that the last funnel ends
in the goal region. A related, randomized feedback-
motion-planning approach for systematically building
controller concatenations to move kinematic robots
through environments with obstacles is presented
in Yang and LaValle (2004).

In Gillula et al. (2011), controller concatenation
is used to achieve a quadcopter backflip maneuver.
Since the dynamic-game approach Gillula et al.
(2011) use to calculate the regions of attraction
of the individual controllers can take disturbances
and model uncertainty into account, the resulting
controller sequence also provides safety guarantees.
Another systematic approach for the concatenation of
controllers has been proposed in Colledanchise and
Ogren (2014) based on ideas from Burridge et al.
(1998) and the concept of Behavior Trees in AI
design for computer games (Isla 2005). A challenge
in the composition of controllers is to characterize
their regions of attraction, which are key to switching
between controllers. The region of attraction of a tree-
policy is the union of its funnels, which could be used,
in addition to being a feedback-law, in the formal
construction of robot behaviors by concatenating
feedback policies.

2 Preliminaries

First, we introduce some notation and definitions
underlying the algorithm description.

2.1 System Dynamics

We consider systems with discrete-time, time-
invariant, nonlinear dynamics

xk+1 = f(xk,uk). (1)

At time k, the state of the system is xk ∈ Rn, and
the control input is uk, which is an element of a
bounded, open set of admissible inputs: uk ∈ U ⊂ Rm,
where ⊂ denotes a proper subset. State constraints are
described by the bounded, open set of admissible states
X ⊂ Rn.

2.2 Policies and Solutions

Next, we define a few concepts related to the control
and evolution of the system:

2.2.1 Policy: Let πππk(x) be a policy that maps a given
time k and state x to an admissible control input
u ∈ U . A special class of policies are finite, open-
loop input sequences, which are denoted by {ūk}N :=
{ū0, ū1, . . . , ūN−1}, where ūk ∈ U , ∀ k. Note that input
constraints are satisfied by definition.

2.2.2 Solutions: Given the state of the system at time
n, xn, and policy πππk(x), we can calculate the state at
time l, xl, by recursion of the dynamics (1). We denote
the solution with

xl =: φφφl−n(πππ,xn). (2)

2.2.3 Open-Loop Trajectories: An open-loop,
or nominal system trajectory is the pair
{ūk}N , {x̄k}N , where {x̄k}N := {x̄0, x̄1, . . . , x̄N}
is the state trajectory that results from applying
{ūk}N to the system with initial state x̄0:
{x̄k}N = {x̄0, φφφ

1({ūk}N , x̄0), . . . , φφφN ({ūk}N , x̄0)}.

2.3 State Sets

We further define the following sets of states:

2.3.1 Goal Set: G ⊆ X , where ⊆ denotes that G is a
subset of X , but may be equal to X . The open set G
contains the states to which the system state should
be stabilized to by the generated feedback policy. This
set can be user-defined, e.g. as in Moore et al. (2014),
or can be the approximated basin of attraction of a
feedback-stabilized goal state as in the examples shown
in Section 6.

2.3.2 Stabilizable Set: S ⊆ X : The set of states x that
can be driven to the goal set G in finite time without
violating state constraints. If x ∈ S, there exists a
finite open-loop trajectory {ūk}N , {x̄k}N , where x̄0 =
x, such that the final state is in the goal set, x̄N ∈ G,
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and the state trajectory does not violate any state
constraints: x̄k ∈ X , ∀k. In the following, we say that
an initial condition x is “stabilized to the goal set” by
a feedback policy if the closed-loop trajectory arrives
in the goal set in finite time without violating any state
constraints.

2.3.3 Design Set: D ⊆ X : The user-defined, open set
of states x for which the algorithm should generate a
feedback policy that stabilizes x to the goal set G if
x ∈ D ∩ S. Therefore, the set of states to be stabilized
to the goal is SD := S ∩ D.

In practice, a user defines the set of admissible states
and inputs X , U based on physical limitations of the
underlying mechanical system, and the design and goal
setsD, G based on the task to be achieved, e.g. perching
of a glider on a string from a set of initial states
produced by a launching mechanism (Moore et al.
2014). The stabilizable sets S and SD are typically
unknown and not straightforward to determine.

2.4 Motion Planning, Trajectory Stabilization,
and Funnels

The algorithm combines motion planning and feedback
control to generate control policies. The simulation-
based variant of the LQR-Tree algorithm allows
a modular implementation using different, existing
techniques from the fields of motion-planning and
feedback-control research. For example, we use a
direct optimal control method (Betts 2010) for motion
planning and time-varying LQR-feedback policies to
stabilize nominal trajectories. However, the algorithm
could, for example, also be implemented with an RRT-
based motion-planning method (LaValle 2006) and
MPC trajectory stabilizers (Garcia et al. 1989). Due
to this modularity, we use generic motion-planning and
feedback-control modules in the algorithm description.

2.4.1 Motion-Planning Module: Given a state in the
design set, x ∈ D, the module attempts to find an
open-loop trajectory {ūk}N , {x̄k}N , where x̄0 = x,
such that the final state is in the goal set, x̄N ∈ G,
and the state trajectory does not violate any state
constraints: x̄k ∈ X , ∀k. We assume that the motion
planner finds a valid system trajectory if the state
is in the stabilizable set, x ∈ SD, and fails if x /∈ SD.
Remark: Whether this assumption is valid in practice
is not straightforward to determine and depends on
the specific motion-planner and system dynamics.
We further discuss this assumption for the example
implementation in Section 5.4.2.

2.4.2 Feedback-Control Module: Let {ūk}N , {x̄k}N be
a finite open-loop trajectory, as produced by the

motion-planning module. Then, we assume that the
feedback module produces a (possibly time-varying)
policy πππk(x) that stabilizes a neighborhood of states
around the state trajectory to the goal set G without
violating any state constraints: Let

B(x̄n, εn) := {x : d(x, x̄n) < εn} (3)

be an open ball of radius εn > 0 that is centered at
the state x̄n, where d(·, ·) is a distance metric on Rn.
Then, for each x̄n in the trajectory, we assume there
exists an open ball that the policy πππk(x) stabilizes to
the goal set G in N− n steps, without violating any
state constraints:

∀n ∈{0, . . . , N−1},∃εn > 0

s.t. xn ∈ B(x̄n, εn)

implies φφφN−n(πππ,xn) ∈ G,
and φφφk−n(πππ,xn) ∈ X , ∀ k ∈ {n, . . . , N − 1}.

(4)

A feedback-stabilized trajectory is denoted by the
sequence J = {N0, . . . ,NN−1}, where the elements
Nk := {πππk, ūk, x̄k} are called nodes and contain the
policy, and nominal state and input at time k. Note
that since the final state of the trajectory is in the goal
G, it does not need a corresponding node.

2.4.3 Funnels: Finally, we define the set SJ ⊆ S as the
set of states around a feedback-stabilized trajectory J
that can be stabilized to the goal set G by its feedback
policy πππk(x) without violating any state constraints.
We call SJ the funnel of the trajectory, inspired by
Mason (1985) and Burridge et al. (1998).

2.4.4 Remarks about the Feedback-Control Module: A
trivial policy that may satisfy the “stabilizable balls”
property (4) of the feedback-control module is the
open-loop input sequence {ūk}N itself: For example,
if the dynamics f are locally Lipschitz, we can, for
a given final trajectory state x̄N in the open goal
set G, find an open ball centered at x̄N−1 ∈ X , in
which all states are stabilized to the goal: ∃εN−1 > 0 :
x ∈ B(x̄N−1, εN−1)⇒ f(x, ūN−1) ∈ G. Then, given
εN−1 for the ball around x̄N−1, we can proceed
analogously to find an open ball with radius εN−2

around x̄N−2, and so on.
The goal of the algorithm is to generate a policy

by covering the stabilizable set SD with the funnels
of trajectories. Therefore, even though an open-loop
input may be sufficient for stabilizing a neighborhood
of a trajectory to the goal, one would implement
more advanced feedback policies in practice: 1) For
“long” trajectories and typically unstable system
dynamics, the stabilizable balls and, analogously, the
funnels are “small” using an open-loop policy. A more
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advanced feedback policy enlarges the funnels around
the trajectories, which improves the “sparsity” of
the tree-policy since fewer trajectories are needed for
coverage of SD. 2) Stabilizing a system using open-
loop trajectories only works in theory. The underlying
physical system has unmodeled dynamics that are
likely to cause the open-loop policies to fail in practice.
Stabilizing the open-loop trajectories using feedback
helps to compensate for these unmodeled dynamics.

3 Conceptual LQR-Tree Algorithm

The key idea, introduced in Tedrake (2009), is that
the algorithm generates a tree of feedback-stabilized
trajectories T := {J1,J2, . . .} that cover the set of
states SD that are to be stabilized to the goal G with
the union of their funnels SJj . This set of trajectories
represents the tree-policy that stabilizes states in SD
to the goal G: Given a state x ∈ SD, we apply the
feedback policy of the trajectory Jj ∈ T whose funnel
SJj contains x.

The tree is generated iteratively with a randomized
sampling approach: In each iteration of the algorithm,
a random sample xS is drawn i.i.d. from D with a user-
defined probability density function that is positive
on D. If there is a trajectory in the current tree whose
feedback policy can stabilize xS to the goal G, i.e.
xS ∈ SJ of that trajectory, the algorithm proceeds to
the next iteration. If there is no such trajectory, the
motion-planner module attempts to find a trajectory
from xS to the goal G. If motion-planning is successful,
a feedback policy is generated by the feedback-control
module, and the new trajectory is added to the tree.
If motion-planning fails, xS is not in the stabilizable
set, xS /∈ SD, and the algorithm proceeds to the next
iteration. These steps are iterated until the set SD is
covered by the funnels of the trajectories in the tree, i.e.
until the tree-policy can stabilize all states in SD to the
goal G. This iterative procedure is outlined in pseudo-
code in Algorithm 1, and is illustrated in a sketch
in Fig. 1. The pseudo-code uses descriptive function
names that correspond to steps described above, but
that are not specifically defined.

Finally, note that we defined the motion-planning
module to generate trajectories from the sample
to the goal, which is motivated by the strategy
we use to initialize the motion-planner in the
example implementation, see Section 5.4.1. This is
another variation on the original algorithm introduced
in Tedrake (2009), where the motion-planner attempts
to connect a failed sample to states in existing
trajectories in the tree. The following concepts and
the simulation-based algorithm could be adapted

Algorithm 1 Conceptual LQR-Tree Algorithm

1: T ← empty set {Initialize the tree}
2: while isNotCovered(SD, T ) do
3: xS ← getRandomSample(D)
4: if isInAnyFunnel(xS, T ) then
5: continue {xS is already in a funnel}
6: else
7: {ūk}N , {x̄k}N←motionPlan(xS) {Attempt

to plan an open-loop trajectory from xS to
the goal G}

8: if motionPlanSuccessful then
9: πππ ← getFeedbackPolicy({ūk}N , {x̄k}N )

10: T ← addTrajectory(T , πππ, {ūk}N , {x̄k}N )
11: else
12: continue {xS is not in SD}
13: end if
14: end if
15: end while

straightforwardly to the original motion-planning
strategy.

3.1 Probabilistic Feedback Coverage

We show in the Appendix B.2 that the conceptual
LQR-Tree algorithm achieves probabilistic feedback
coverage of SD as defined in Tedrake et al. (2010).
The property implies that, as the number of algorithm
iterations tends to infinity, the tree-policy is able to
stabilize all states in SD to the goal set G, except
possibly a set of states with Lebesgue measure zero.
Since in the original algorithm (Tedrake et al. 2010),
provably conservative approximations to the funnels
are obtained, we use an analogous proof to Sec. 6
in Tedrake et al. (2010) to show the coverage property
for the conceptual algorithm. We restate the proof for
completeness, and since it inspired the proofs for the
simulation-based algorithm.

4 Simulation-Based Algorithm

Some of the steps in the conceptual description of the
algorithm are not straightforward to implement. For
example, the set SD is usually unknown and, therefore,
it is not straightforward to determine whether SD
is covered by the funnels of the tree. Practical
implementation details are discussed throughout the
following. First, we introduce the simulation-based
variant of the algorithm and its key mechanism:
The approximation of funnels using simulation and
falsification. Then, in Section 5, we present a detailed,
practical example implementation of the algorithm.
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x̄0

x̄1 x̄2
x̄3

x̄4 G

xi
S

xi+1
S

SD

SJ
D

G

SD

D

Figure 1. Sketch of the algorithm. Top: The tree T consists
of a single trajectory J with nominal states {x̄0, . . . , x̄4}.
The funnel SJ of J is shown in medium dark gray. The
intersection of the stabilizable set S (dashed outline) with
the design set D (box), SD = S ∩ D, is shown in light gray.
The random sample xi

S drawn at iteration i is not in SJ and
the algorithm adds a trajectory to the tree that connects xi

S

to the goal set G (dark gray). The next random sample xi+1
S

is not in SD, causing the motion-planner to fail, and the
algorithm proceeds to the next iteration. Bottom: The
algorithm terminates after enough trajectories were added to
cover SD with their funnels.

4.1 Funnel Approximation with Simulation and
Falsification

Key to the implementation of the LQR-Tree algorithm
are the funnels of the trajectories in the tree. The
funnel SJ of the trajectory J is the set of states
that can be stabilized to the goal G by its feedback
policy πππk(x) without violating state constraints.
Funnels are, in general, not straightforward to estimate
as they depend on the system dynamics, the feedback
policy, the state and input constraints, and the goal
set. In the original algorithm (Tedrake et al. 2010),
funnels are approximated using a formal approach

where Lyapunov function candidates are verified with
sums-of-squares programming (Parrilo 2003). Here, we
present an alternative method: The approximation of
funnels using simulation and falsification.

The method is straightforward: For each trajectory
in the tree, keep track of a funnel hypothesis, which is a
parametrized set of states. When a sample xS is within
the hypothesis, simulate the sample with the policy of
the trajectory. If the simulation fails because either the
system state does not reach the goal set G or state
constraints are violated, adapt the funnel parameters
to shrink the hypothesis to exclude xS. With growing
numbers of samples and simulations, the funnel
hypotheses in the tree shrink to a nonconservative
approximation of the true funnels SJ .

4.1.1 Node-Policies and Node-Funnels: Before we
describe the mechanism, we discuss how a trajectory’s
feedback policy can be applied to a sample xS, and
the implications on its funnel. Standard feedback
policies that stabilize trajectories are time-varying (for
example, we use time-varying LQR policies in the
example implementation in Section 5). Let πππk(x) be
the time-varying policy that stabilizes the nominal
trajectory {x̄k}N , {ūk}N , and let xS ∈ D be a random
sample that is the initial condition for a simulation
with the trajectory-policy. The sample xS has no
specific trajectory-index, i.e. time-index assigned with
respect to the time-varying trajectory-policy. We can
assign different trajectory-indices to xS that lead to
different simulations: For example, we can assign x0 :=
xS and obtain the final state xN = φφφN (πππ,x0), or we
assign x6 := xS and obtain x′N = φφφN−6(πππ,x6). Two
different tails of the trajectory-policy are applied to
xS that stabilize the nominal trajectory starting at
index 0 and at index 6, respectively. In the following,
we consider each tail of a trajectory-policy as a distinct
policy, and call the policy starting at index n the node-
policy of node Nn.

Returning to the example, it may be that xN ∈ G,
but x′N /∈ G: The node-policy of N0 can stabilize xS to
the goal, but the node-policy of N6 cannot. Therefore,
the funnel of a trajectory should be time-varying, i.e.
node-dependent, and we introduce the node-funnel, i.e.
the set of states that can be stabilized to the goal by
the node-policy of Nn in trajectory J :

SnN :=
{
xn : φφφN−n(πππ,xn) ∈ G and

φφφk−n(πππ,xn) ∈ X , ∀ k ∈ {n, . . . , N − 1}
}
.

(5)

Note that the nodes, policies, node-funnels, and
nominal trajectories should all carry a trajectory
index j, since they belong to a specific trajectory
Jj in the tree. For readability, however, we
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omit trajectory indices wherever possible without
introducing ambiguity.

4.1.2 Funnel Hypotheses: Note the similarity between
the time-varying funnel definition (5) and the
stabilizable balls property of the feedback-control
module (4). Any stabilizable ball around the nominal
state x̄n of node Nn is a subset of its funnel. Since balls
are straightforward to parametrize by their radius,
they are a natural (but not the only) choice for the
funnel hypotheses used in the simulation-based funnel
approximation.

We define the funnel hypothesis of node Nn as an
open ball with radius ε̂n > 0, centered at x̄n

B̂(x̄n, ε̂n) := {xn : d(xn, x̄n) < ε̂n} (6)

where d(·, ·) is some metric on Rn. The hypothesis to
be falsified is that the funnel hypothesis is contained
in the node-funnel: B̂(x̄n, ε̂n) ⊆ SnN . In other words, the

funnel hypothesis claims that all states xn ∈ B̂(x̄n, ε̂n)
can be stabilized to the goal by the policy of node Nn
without violating state constraints.

The funnel hypothesis parameters ε̂n are key to
the generation and application of the tree-policy.
Therefore, we redefine the nodes of a trajectory to
Nn := {πn, ūn, x̄n, ε̂n}. Note that while the policy,
and nominal state and input are constant, the
funnel parameter is a variable that changes as
the algorithm is executed due to the falsification
mechanism described below. However, for readability,
we omit an additional superscript that indexes the
funnel parameter adaptations.

4.1.3 Funnel Hypothesis Test: The funnel approxima-
tion mechanism using simulation and falsification is
straightforward. Let the sample xS ∈ D be inside the
funnel hypothesis of node Nn in trajectory J , xS ∈
B̂(x̄n, ε̂n). We then test if the hypothesis holds for xS,
i.e. we check if xS is in the funnel SnN of node Nn. This
test is straightforward when xS is simulated with the
policy of node Nn:

1. Set xn = xS, simulate the system applying the
policy of nodeNn, and obtain the state trajectory

{xn = xS, xn+1 = φφφ1(πππ,xS),

. . . , xN = φφφN−n(πππ,xS)}.
(7)

2. Check if the funnel conditions given in (5) hold,
i.e. the state trajectory (7) must satisfy

xN ∈ G and xk ∈ X , ∀ k ∈ {n, . . . , N}. (8)

Recall that input constraints are satisfied by
definition by policies. We declare a simulation
successful if the conditions (8) are satisfied, and
failed otherwise.

xi
S = xn

G

xn+1 xN−1

xN

x̄n
x̄n+1

x̄N−1 x̄N

ǫ̂+n ǫ̂+n+1

ǫ̂−n ǫ̂−n+1 ǫ̂N−1

Figure 2. Adjusting funnel hypotheses after the failed
simulation of random sample xi

S (�) with the policy of node
Nn. The final state xN of the simulation trajectory (4)
failed to reach the goal set G. However, the funnel
hypotheses of nodes Nn and Nn+1, described by the funnel
parameters ε̂−n and ε̂−n+1, claim that a simulation would be

successful. Therefore, we set ε̂−n , ε̂
−
n+1 to ε̂+n , ε̂

+
n+1 according

to (9), resulting in the dashed hypotheses that do not
include xi

S and xn+1 anymore. The simulation state xN−1 is
not inside the hypothesis of node NN−1, and thus ε̂N−1
remains unchanged.

3. If the simulation is successful, do not adjust
the funnel hypothesis. If the simulation fails,
i.e. the hypothesis is falsified, shrink the
funnel hypothesis of node Nn such that it no
longer includes xS. Furthermore, the trajectory
generated in the failed simulation can be used
to test the funnel hypotheses of the nodes that
follow Nn. The trajectory {xn+1, . . . ,xN} is
the result of applying the policy of node Nn+1

to xn+1. If xn+1 is contained in the funnel
hypothesis of node Nn+1, xn+1 ∈ B̂(x̄n+1, ε̂n+1),
this hypothesis is also falsified. Therefore, after a
failed simulation, set

ε̂k ← min (d(xk, x̄k), ε̂k) ,∀ k ∈ {n, . . . , N − 1}.
(9)

The operation min(·, ·) returns the smaller of
its two scalar arguments and ensures that a
hypothesis is only adjusted if it contains xk,
i.e. the hypotheses can only shrink, and never
expand.

This key mechanism of the algorithm is illustrated
in Fig. 2. Finally, when a new trajectory is added to
the tree, all funnel hypotheses are initialized to cover
the whole design set D: ε̂k ←∞, ∀ k ∈ {0, . . . , N−
1} (the last node in the trajectory is in G). Then,
with a growing number of samples and simulations,
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the hypotheses are shrunk to a nonconservative
approximation of the true node-funnels.

4.2 Application of the Tree-Policy: Query
Phase

Before summarizing an iteration of the algorithm, we
clarify how the tree-policy T i at iteration i is applied
to a sample xiS ∈ D in the query phase. The same query
phase is used when the policy is deployed to stabilize
initial conditions xIC ∈ D to the goal G. Therefore, one
may read the random sample xiS as initial condition
xIC in the following.

The idea is to apply the policy of a node Nn in
the tree whose funnel hypothesis B̂(x̄n, ε̂n) contains xiS.
There may be multiple nodes in the tree whose funnel
hypotheses contain xiS, which introduces ambiguity in
what policy to apply to xiS. Therefore, we use the
following rule to assign a node-policy to a sample xiS:
Apply the policy of the node Nn whose nominal state
x̄n is closest to xiS, measured by the distance metric
d(·, ·) that defines its funnel hypothesis (6). Specifically,
we apply the policy of nodeN ∗ in the tree T i according
to

N ∗(xiS) = argmin
Nn∈T i

d(xiS, x̄n)

subject to: xiS ∈ B̂(x̄n, ε̂n), x̄n, ε̂n ∈ Nn.
(10)

Since it is not relevant what specific trajectory the node
N ∗(xiS) is an element of, we omit the trajectories for
clarity and refer to all nodes in the tree with Nn ∈ T i.

4.3 An Iteration of the Algorithm: Testing
Samples

An iteration of the algorithm can be summarized as
follows:

1. Draw an i.i.d. random sample xiS from D using
a probability density function that is positive
on D. We use a uniform distribution in the
examples in Section 6; a better option is to
use a distribution derived from measured initial
conditions of the real system.

2. Find N ∗(xiS) according to the minimization (10).
If no feasible N ∗(xiS) can be found, i.e. if xiS is
outside all funnel hypotheses, attempt to add a
new trajectory to the tree, and proceed to the
next iteration.

3. If there is a feasible N ∗(xiS), simulate xiS
with the policy of N ∗(xiS), and check the
success conditions (8). If successful, proceed to
the next iteration. If failed, adjust the funnel
parameters (9) and go back to Step 2: Since the

G

x̄a
1

x̄b
1

x̄a
2

x̄b
2

ǫ̂a1
ǫ̂b1

Figure 3. Overlap of funnel hypotheses (dashed circles) and
policy assignment. The metric d(·, ·) is the Euclidean
distance and there are two trajectories a and b. If the funnel
hypothesis of node N a

1 in Trajectory a never shrinks, the
gray set of states in the hypothesis of N b

1 in Trajectory b is
never tested since the states are closer to x̄a

1 than x̄b
1. In this

case, it may be that some states in the gray region cannot be
stabilized by the node-policy of N b

1 , but they are never tested
because the hypothesis of N a

1 hides them from the algorithm.

funnel of N ∗(xiS) does not include xiS anymore,
there may exist other feasible N ∗(xiS) in the tree
that could stabilize xiS to G.

4.3.1 Interpretation of Funnel Hypotheses: The specific
steps taken in an iteration of the algorithm have
an implication on the funnel hypotheses that is
not obvious, but that is useful to point out for
the interpretation of the generated tree-policy: First,
note that a sample xS can be in multiple funnel
hypotheses due to possible overlap. Second, note
that the algorithm immediately proceeds to the next
iteration after the first successful stabilization of the
sample xS. The consequence of both observations is
that some subsets of funnel hypotheses may never be
tested, and therefore may contain states that cannot
be stabilized by the respective node-policy. This is
illustrated in Fig. 3.

Better approximations to the actual funnels could
be achieved by testing a sample with the policies of
all nodes whose funnel hypotheses contain the sample,
such that no “unstabilizable” subsets of the hypotheses
remain undetected. The downsides of this strategy
are: 1) A single iteration of the algorithm becomes
computationally more expensive, since a sample is
typically in many funnel hypotheses (in a test with the
simple pendulum system introduced later in Section 6,
the runtime increase was about 7 fold); and 2) the
algorithm adds more nodes to the tree (in the test with
the simple pendulum, the node-increase was about
50%): Assume that all states in the funnel of node N b

1

in Fig. 3 are stabilizable, except for the gray states.
Then, if the gray states are detected and the funnel of
N b

1 shrinks, additional nodes are added to compensate
for the lost coverage. Furthermore, the goal of the
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algorithm is to generate a tree-policy that stabilizes
initial conditions to the goal, and not to approximate
the funnels of individual trajectories as well as possible.

These reasons lead to the design decision of
proceeding immediately after the first successful
stabilization, which implies that: 1) The main purpose
of the funnel hypotheses is to speed up an iteration
of the algorithm and to assign policies to initial
conditions; and 2) the tree-policy is a unit, where all
nodes must be considered in the query phase, since
their interplay is important.

4.4 Asymptotic Properties

We analyze the theoretical properties of the simulation-
based algorithm as the number of iterations and
samples tends to infinity. The focus is on two key
points: 1) The coverage of the stabilizable set SD by
the tree-policy, similar to the probabilistic-feedback-
coverage property of the original algorithm (Tedrake
et al. 2010); and 2) whether the funnel hypotheses
provide correct assignments of initial conditions to
stabilizing node-policies. The proofs are based on
the assumptions, summarized in Appendix B.1, made
in Section 2.4 and Section 4.3 about the motion-
planning and feedback modules, and the probability
density function used to generate state samples.

The analysis is more involved than for the original
algorithm: We need to consider the interactions
between the funnel hypotheses, and that the
hypotheses are outer approximations to the funnels.
For the same reasons, the conclusions that can
be drawn from the results are not as strong as
for the original algorithm, where conservative inner-
approximations to the funnels are obtained by verifying
Lyapunov-function-candidates (Tedrake et al. 2010).
However, the results still indicate that in the long run,
the simulation-based algorithm tends to improve both
coverage and node-policy assignments, which is key to
generating acceptable policies in practice.

4.4.1 Coverage: We can show that as the number
of algorithm iterations tends to infinity, there exists
a stabilizing node-policy in the tree for all states
in the stabilizable set SD, except possibly a set of
states with Lebesgue measure zero. A proof that
uses a similar approach to the proof of probabilistic
feedback coverage in Tedrake et al. (2010) is given in
Appendix B.3. Roughly speaking, the uncovered set
of states in SD must have measure zero in the limit,
because 1) the algorithm can always detect if a state x
is in the uncovered set, since then, either there exists
no feasible N ∗(x), or all candidate node policies fail
to stabilize x to the goal G, and, in addition, the
motion planner finds a trajectory from x to G; and

2) the algorithm keeps adding trajectories starting at
uncovered states until it cannot find uncovered states
anymore.

However, since the algorithm uses outer approxi-
mations to the funnels, this result does not allow to
conclude that in the limit, all initial conditions (except
a set of measure zero) in SD can be stabilized to the
goal G. In addition to coverage, we must show that
states are correctly assigned to stabilizing node-policies
by the funnel hypotheses.

4.4.2 Correct Policy Assignment: In the query phase,
the tree-policy relies on the funnel hypotheses to
provide a correct assignment of initial conditions xIC ∈
D to node-policies: If xIC is assigned to node Nn =
N ∗(xIC) according to (10), this should imply that xIC

can be stabilized to the goal G by the policy of node
Nn. A failure can be due to either 1) a stabilizable
xIC ∈ SD is wrongly assigned to Nn, and additional
shrinking of the hypothesis of Nn is required to correct
the assignment to another (possibly newly added) node
that can stabilize xIC; or 2) an unstabilizable xIC /∈ SD
is assigned to Nn, and additional shrinking is required
to exclude unstabilizable states from the hypothesis of
the node.

In Appendix B.4, we show that as the iterations
i→∞, the tree-policy provides a correct assignment
of states to a node Nn, i.e. in the limit, N ∗(x) =
Nn implies that the policy of Nn can stabilize x ∈
D to the goal G (again possibly except a set of
states with measure zero). The key to this property
is that the funnel hypotheses can only shrink,
which permanently excludes wrongly assigned states:
Roughly speaking, the algorithm keeps shrinking a
node’s funnel hypothesis after sampling states that are
assigned to the node and that fail to stabilize, until it
cannot find such wrongly assigned states anymore.

The result implies that in the long run, the algorithm
keeps improving the assignment of initial conditions
to a node. Note that the result does not imply that
all states in the node’s funnel hypothesis B̂(x̄n, ε̂n)
can be stabilized. It may well be that there are states
in the hypothesis that cannot be stabilized, but that
are hidden from the algorithm by an overlapping
hypothesis of another node, see Fig. 3 and the
discussion in Section 4.3.1.

The result further implies that if coverage of SD is
achieved by the tree-policy at a finite iteration and
therefore a finite number of nodes in the tree, the policy
assignments are correct in the limit, and all states in
SD can be stabilized to the goal G. However, since
funnel hypotheses provide an outer approximation, a
correct policy-assignment cannot be guaranteed in case
coverage is only achieved as the number of tree nodes

Prepared using sagej.cls



Reist et al. 11

tends to infinity together with the number of iterations:
Arbitrarily often, a new node is added to the tree,
and this nodes’ funnel hypothesis may contain wrongly
assigned states (a trivial example is when SD ⊂ D is
strict, since a node’s funnel hypothesis initially covers
D). A possible solution is to limit the number of nodes
that can be added to the tree; then, in the limit, a
correct policy assignment is achieved at the price of
the loss of the coverage guarantee.

While the theoretical analysis shows that the
algorithm tends to improve the policy in the long run, it
does not provide guarantees for tree-policies generated
in practice with finite iterations: Both coverage and
node assignments are likely to be imperfect. Therefore,
we next discuss a heuristic termination condition that
we found to produce tree-policies with acceptable
coverage and node-assignments, and a method to assess
these two key measures of generated policies.

4.5 Termination Condition and Assessment of
Policy Quality

We terminate the algorithm in either of two cases: 1) a
pre-determined iteration limit is reached, which limits
the maximal run time; or 2) a heuristic termination
condition is fulfilled. In order to assess the generated
tree-policy, we propose a simulation-based, statistical
method to estimate two quality measures: 1) An
estimate of the coverage of the tree-policy (i.e. the
funnels) of the design set D; and 2) an estimate of
the likelihood that an initial condition is stabilized
to the goal by the tree-policy, given that the initial
condition is inside a funnel. These measures can be
used to make a decision about whether the generated
policy is acceptable, or requires further refinement, i.e.
more iterations.

4.5.1 Heuristic Termination Condition: The heuristic
we propose is similar to the termination condition
presented in Yang and LaValle (2004), and resulted
in tree-policies with acceptable coverage and node-
assignments for the example systems considered
in Section 6: The algorithm terminates after a
consecutive sequence of M samples xiS ∈ D does not
cause the tree-policy to change: no funnels are adjusted
and no new trajectories are added. Therefore, a sample
xiS of the sequence is either successfully stabilized to
the goal by the policy of N ∗(xiS), or is not in any funnel
and motion planning fails (i.e. we assume xiS /∈ SD).
Note that even though the algorithm may attempt to
stabilize a sample xiS with more than one node-policy
in an iteration, see Section 4.3, a sample xiS of the
success sequence must be stabilized by the first policy
N ∗(xiS) that is applied, otherwise funnels are adjusted.

Since the samples are drawn i.i.d. from D, the
probability piα that a sample xiS does not cause the
tree-policy to change at iteration i is the underlying
parameter of a (nonstationary) Bernoulli process.
Every time the policy changes, piα may change as
well, since the funnel hypotheses and therefore node-
assignments change. However, if the policy is constant,
piα =: p̄α is constant as well. We use this observation to
derive the parameter M from the probability α = p̄M

α

of observing a sequence of M samples that do not cause
the policy to change starting at iteration i. Both 0 <
α < 1 and 0 < p̄α < 1 are design parameters. Solving
for M and rounding up (ceil), we obtain

M = ceil

(
log(α)

log(p̄α)

)
. (11)

Note that M, and therefore the heuristic, is
independent of the state and input dimensions.

As the algorithm runs, it keeps track of the current
streak of successful samples and terminates when the
“success count” reaches M. Since in the limit as i→∞,
any finite length of consecutive, successful samples can
eventually be observed for any positive underlying pα,
the termination condition does not provide guarantees
for the quality of the generated policy in terms of
pα. However, we found that in practice, appropriately
choosing the design parameters results in policies with
acceptable quality measures, which we describe below.

With the termination condition, we discussed
the final element of the simulation-based LQR-Tree
algorithm. A summary in pseudo-code is given in
Algorithm 2, where function and variable names are
not explicitly defined, but correspond directly to
descriptions in this section.

4.5.2 Statistical Assessment of Generated Tree-Policy:
Let T be the tree-policy after the algorithm
terminated. When applying the tree-policy T to initial
conditions xIC from the design set D, we care about:
1) The probability ρ that xIC is in a funnel hypothesis
of the tree, i.e. that there exists a node N ∗(xIC) ∈
T according to (10); and 2) given that there exists
an N ∗(xIC), the conditional probability p∗ that the
feedback policy of N ∗(xIC) is able to stabilize xIC to
the goal G. We call ρ the coverage ratio and p∗ the
success rate of the tree-policy.

The two probabilities can be estimated by testing
the tree-policy T in simulation with a set of Ns
i.i.d. random samples xiS ∈ D. The probability density
function (PDF) used to generate the samples could be
the same PDF used to generate the tree-policy, and
may be designed to put more weight on frequently
occurring initial conditions. For each sample xiS, there
are three possible outcomes: 1) There is no feasible
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Algorithm 2 Simulation-Based LQR-Tree Algorithm

1: T ← empty set {Init. the tree}
2: M← ceil(log(α)/ log(p̄α)) {Term. heuristic}
3: nSuccess, i← 0 {Init. success and iteration

counters}
4: while nSuccess < M and i < maxIterations do
5: {Iterate until termination heuristic is fulfilled or

maximal number of iterations is reached}
6: i← i + 1 {Increment iteration}
7: isStabilized← false {Reset stabilized

boolean}
8: xS ← getRandomSample(D)
9: while isInAnyFunnelHypothesis(xS, T ) do

10: N ∗(xS)← getNodeStar(xS, T )
11: xTraj← simulateSystem(xS, N ∗(xS))

{Apply policy of N ∗(xS), obtain state
trajectory xTraj}

12: isStabilized←
checkSimulation(xTraj,X ,G) {Check
xTraj according to Eq. (8)}

13: if isStabilized then
14: nSuccess← nSuccess + 1
15: break {Proceed to next sample xi+1

S }
16: else
17: T ← adjustFunnels(xTraj, T )
18: nSuccess← 0 {Policy changed, reset

nSuccess}
19: end if
20: end while
21: if not isStabilized then
22: {The sample xS could not be stabilized,

attempt to plan an open-loop trajectory from
xS to the goal G}

23: {ūk}N , {x̄k}N←motionPlan(xS)
24: if motionPlanSuccessful then
25: πππ ← getFeedbackPolicy({ūk}N , {x̄k}N )
26: J ← initTrajectory(πππ, {ūk}N , {x̄k}N )

{Set funnel hypothesis of trajectory to
cover D: ε̂k ←∞, ∀ k}

27: T ← T ∪ J {add trajectory to tree}
28: nSuccess← 0 {Policy changed, reset

nSuccess}
29: else
30: {Do nothing; assume xS /∈ SD}
31: end if
32: end if
33: end while

N ∗(xiS) ∈ T , i.e. the sample is not in any funnel
hypothesis in T ; 2) there exists an N ∗(xiS) and xiS
is successfully stabilized to G, or 3) there exists
an N ∗(xiS) and xiS fails. During testing, no funnel

hypotheses are adjusted and no new trajectories are
added to the tree, such that the tree-policy and its
underlying parameters p∗ and ρ remain unchanged.

Let Nρ be the number of samples xiS for which there
exists an N ∗(xiS); and Np be the number of samples
xiS that are successfully stabilized to G by the policy of
N ∗(xiS). We calculate the respective estimates ρ̂ and
p̂∗ from

ρ̂ =
Nρ
Ns

, and p̂∗ =
Np
Nρ

. (12)

Assuming that when the tree-policy T is deployed,
the initial conditions xIC are drawn from the same
PDF used for estimating ρ̂ and p̂∗, we expect the rate
of xIC for which there exists an N ∗(xIC) in T to be
approximately ρ̂. Similarly, the rate at which xIC are
stabilized to G, given that there exists an N ∗(xIC),
should be approximately p̂∗. Finally, the product p̂∗ · ρ̂
estimates the probability of a given initial condition xIC

to be stabilized, and is a lower bound on the probability
density contained in SD, or, if a uniform PDF is used
for testing, a lower bound on the relative volume of SD
in D.

How well the estimates approximate the true
parameters can be analyzed with confidence intervals
for the parameters ρ and p∗. Since Nρ and Np have
a binomial distribution, one can use, for example,
Clopper-Pearson intervals (Clopper and Pearson 1934).
The intervals allow choosing the number Ns of samples
to be tested, since more samples result in tighter
confidence intervals; and making a decision about the
tree-policy T being acceptable or not, for example by
requiring that p̂∗ is above some desired lower bound
by a statistically significant amount. However, while
we know that ideally, p∗ = 1, the maximally achievable
coverage ratio ρ is unknown, since SD is unknown.

In practice, we found a link between the success-
rate quality measure and the termination heuristic: In
the examples, choosing α sufficiently small (we used
α = 0.01) and setting p̄α to a desired success rate
p∗ resulted in success rate estimates p̂∗ that were
mostly above the desired p∗ by a statistically significant
amount.

5 Example Implementation

We present a detailed example implementation of
algorithm and discuss practical design decisions. The
implementation is used to generate tree-policies for
the two example systems in Section 6: 1) A simple
pendulum that is controlled by a torque at the pivot
joint; and 2) a cart-pole system, where an actuated
cart moving on a limited rail balances an inverted
pendulum. The task for both systems is to stabilize the
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system from a “large” design set D of initial conditions
to a goal state xG where the pendulum is stabilized at
its unstable equilibrium (and the cart is at rest at the
center of the rail).

In order to achieve the task, the tree-policy stabilizes
the design set D to a goal set G that is contained in
the basin of attraction of the goal state xG, which is
stabilized with a linear controller (an LQR design).
The basin of attraction of xG is the set of states that
the linear controller can asymptotically stabilize to xG,
see the definition in Section 6.4 in Strogatz (2014).
This allows a straightforward two-step control strategy
to stabilize an initial condition xIC ∈ D to the goal
state xG: First, apply the finite-time node-policy of
N ∗(xIC) to stabilize xIC to G; then, switch to the
policy that stabilizes the system at xG. Since G is
in the basin of attraction of the feedback-stabilized
goal state, the system state converges to xG. Before
the motion-planning and feedback-control modules of
the algorithm are described, we present the goal-
state controller and a straightforward strategy to
approximate a goal set G that is contained in the basin
of attraction of xG.

Since both systems are continuous-time, we present
the necessary time-discretization steps that allow
a straightforward implementation of the generated
policies on digital control hardware, which is typically
used for robot control. The goal of this section is
to allow the reader to implement the algorithm in
practice, together with the concepts introduced in
Section 4. Furthermore, MATLAB code of the example
implementation is available in Extension 1.

5.1 Continuous-Time System Dynamics

The systems considered in this section are both
continuous-time (CT). In the following, we use the
nonlinear, CT dynamics

ẋ(t) = fc(x(t),u(t)) (13)

to represent the time-invariant dynamics of the two
example systems, where x(t) ∈ Rn and u(t) ∈ Rm

are the system state and control input at time t,
respectively. Analogous to the discrete-time (DT)
definitions in Section 2, we define a solution to (13),
i.e. the state x(t1) at time t1 as

x(t1) =: φφφt1−t0c (u(t),x(t0)) (14)

where x(t0) is the initial state at time t0. The solution
is usually obtained by numerical integration of (13); for
example, we use the MATLAB ode45 function. For the
discrete-time control approach presented here, we often
require the solution (14) for a single sampling period τ̄

and a zero-order hold input (which is how the control
input is generated in many experimental systems).
Therefore, we define the discrete-time dynamics

xk+1 = f(xk,uk) := φφφτ̄c (u(t),x(0) = xk)

with u(t) := uk, 0 ≤ t < τ̄
(15)

where we used the time-invariance of the dynam-
ics (13). Remark: We use sampled state-trajectories
obtained with (15) when testing funnels in simula-
tions, and, specifically, when checking whether state
constraints are violated, see (8). Therefore, it may be
that state constraints are violated by the continuous
trajectory in between samples. We ignored this issue in
the example implementation since the chosen sampling
times are small; for larger sampling times, one could
appropriately pre-shrink the state constraints, similar
to the approach presented in Gillula et al. (2014).

5.2 Control Design for Goal State Stabilization

Without loss of generality, we define the goal state and
input to be at the origin, xG := 0, uG := 0. The control
design involves three steps: 1) linearization of the CT
nonlinear system dynamics (13) about the goal state
and input; 2) discretization of the resulting CT linear
time-invariant (LTI) system; and 3) design of the DT
LQR controller. The first two steps are described in
Section 4.3.6 in Franklin et al. (1998) and are omitted
here, and the third in Section 3.3 in Anderson and
Moore (2007).

5.2.1 Time-Invariant LQR Design: After linearization
and discretization of the system (13) with a uniform
sampling period τ̄ , we obtain the DT LTI system

xk+1 = Axk + Buk. (16)

For both example systems, the pair A,B of the DT LTI
system (16) is controllable. Therefore, we can design
time-invariant (TI), DT LQR policies to stabilize the
goal states of the systems. The policies minimize the
infinite-horizon cost-to-go from an initial state x0

J (x0) :=

∞∑
k=0

[xT

kQGxk + uT

kRGuk] (17)

where T denotes the transpose; the matrix QG penalizes
state deviations and is positive semi-definite: QG ≥ 0;
and RG penalizes control effort and is positive definite:
RG > 0. Both QG and RG are user-defined tuning
parameters. It can be shown (Anderson and Moore
2007) that the optimal cost-to-go is

J∗(xk) = xT

kSGxk (18)
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with SG ≥ 0, and that the optimal linear feedback
policy is

πππTI(xk) := −KGxk. (19)

Both KG and SG can be obtained using the MATLAB
dlqr command. For both example systems, the input
uk is scalar and constrained to |uk| ≤ umax, where
umax is a constant based on the respective actuator
limits. Therefore, we define the goal-state feedback
policy that satisfies the constraints as

πππG(xk) :=

{
πππTI(xk), |πππTI(xk)| ≤ umax

sgn(πππTI(xk))umax, otherwise

(20)
where sgn is the signum function. For multi-input
systems, the above is applied element-wise. Note that
in order to keep the notation consistent in this section,
we keep the bold-face vector notation for the systems’
scalar inputs and policies.

For the LQR controllers in both example systems, we
choose QG > 0, from which follows that the pair A,G
is observable, with G any matrix such that QG = GTG.
From A,B controllable and A,G observable, it follows
that the closed-loop dynamics

xk+1 = (A−KGB)xk (21)

are asymptotically stable and SG > 0, see Section 3.3
in Anderson and Moore (2007). SG > 0 allows using the
optimal cost-to-go (18) as a distance metric to describe
the goal as the sub-level set

G := {x : J∗(x) < εG} (22)

where εG is a constant, which we determine a priori as
follows.

5.3 Approximating the Goal-State Basin of
Attraction

We present a straightforward, sampling-based
approach to approximate εG such that G, defined
in (22), is contained in the basin of attraction of the
LQR-stabilized goal state.

For the given linear closed-loop dynamics (21), J∗(x)
is a Lyapunov function, which implies that

J∗((A−KGB)x)− J∗(x) < 0 (23)

holds for all x 6= xG = 0, which implies global
asymptotic stability of xG (Anderson and Moore 2007).
For the nonlinear closed-loop dynamics (15)

J∗(f(x,πππG(x)))− J∗(x) < 0 (24)

does not typically hold for all x; however, it may
hold for a neighborhood of xG. Similar to previous

work (Reist and Tedrake 2010; Tedrake et al. 2010),
we find an εG for the goal set G according to (22) such
that for all x ∈ G, the inequality (24) holds, which
implies asymptotic stability of all x ∈ G. Instead of
verifying the Lyapunov function on G using sums-of-
squares programming as in Tedrake et al. (2010), we
use, analogous to the funnel falsification approach,
sampling and simulation to falsify that for all states
x in the goal basin hypothesis

Ĝ(ε̂G) := {x : J∗(x) < ε̂G} (25)

the inequality (24) holds. The parameter ε̂G is
determined with the straightforward procedure:

0. Initialize ε̂G > 0 such that Ĝ(ε̂G) ⊃ D.
1. Draw a random sample xS ∈ Ĝ(ε̂G) from a

uniform distribution on Ĝ(ε̂G). We use the
algorithm presented in Section 3.3.1 in Sun and
Farooq (2002).

2. Check state constraints: If xS ∈ X , proceed to
Step 3; otherwise, proceed to Step 4.

3. Calculate f (xS,πππ
G(xS)) using numerical integra-

tion. Check if the Lyapunov test (24) holds. If
yes, return to Step 1. If not, proceed to Step 4.

4. Shrink the hypothesis with

ε̂G ← xT

SSGxS (26)

and return to Step 1.

The procedure terminates when a consecutive sequence
of M samples fulfill the Lyapunov test, where M is
designed analogous to the termination condition for
the LQR-Tree algorithm (11). The quality measures
presented in Section 4.5.2 can be straightforwardly
adapted to test if the approximation Ĝ(ε̂G) is
acceptable. Sample MATLAB code of the procedure
is available in Extension 1.

In Fig. 4, we show the set Ĝ(ε̂G) that was
approximated for the simple pendulum system. The
approximation is compared to an estimated basin of
attraction (the nonstriped area), which was obtained
by simulating the nonlinear closed-loop system from
discretized states and checking whether the system
converges to xG in a user-defined, finite time. Also
shown (in gray) are the discretized states for which
the Lyapunov test (24) fails. While Ĝ(ε̂G) is a
nonconservative approximation to the set for which
J∗(x) is a valid Lyapunov function, it turns out that
Ĝ(ε̂G) appears to be a conservative approximation to
the basin of attraction. The intuition is that verifying
a Lyapunov function on a set of states is a sufficient,
but not a necessary condition for the set to be
contained in the basin of attraction. One may be able
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Figure 4. Approximated goal basin Ĝ(ε̂G) (ellipse) for the
simple pendulum with states pendulum angle θ and angular
velocity θ̇. The gray area are states for which the Lyapunov
test (24) fails; and in the white area the test succeeds. The
striped area marks the set of states that are not in the
numerically estimated basin of attraction.

find candidate Lyapunov functions that result in a
tighter approximation to the basin of attraction, see,
for example, the approach presented in Moore et al.
(2014).

An evident alternative approach is to falsify the
basin hypothesis Ĝ(ε̂G) directly by checking whether
the system converges to the goal state from a given
initial condition. This approach would result in a
tighter fit of the hypothesis to the basin of attraction,
but would introduce additional design parameters such
as a maximally allowed time for the system to converge
to within a user-defined neighborhood of the goal.
The Lyapunov approach allows to avoid defining these
additional parameters and can be evaluated more
efficiently, since only a single sampling period τ̄ is
simulated. Furthermore, a conservative approximation
is desirable for the two-step control strategy of first
applying the finite-time tree-policy and then switching
to the goal-state controller, since the strategy relies on
Ĝ(ε̂G) being in the basin of attraction of xG. However,
the conservativeness of Ĝ(ε̂G) in the example in Fig. 4
is a coincidence, and does not generalize: suppose SG

was identity in Fig. 4, then Ĝ(ε̂G) would overlap with
both the gray and striped regions. In practice, we
can accept if Ĝ(ε̂G) is not perfectly conservative: The
approximation is based on an inaccurate model of the
real system anyway, and one may, for example, tighten
the input constraints in the simulation to obtain more
conservative approximations, and to allow for extra

control authority on the real system to compensate for
modeling errors.

The goal set can also be a user-defined, task-specific
set of states, e.g. the set of states for which a glider
achieves perching on a string as shown in Moore et al.
(2014); or it can be approximated with a method based
on sum-of-squares verification (Tedrake et al. 2010;
Topcu et al. 2008).

5.4 The Motion Planning Module

A key component of the algorithm is the motion-
planning module that generates open-loop trajectories
starting at a random sample and ending inside the
goal set. In the example implementation, we use
an optimal-control-based, direct-transcription method
as described in Section 4.5 in Betts (2010). The
method attempts to find an open-loop trajectory
{ūk}N , {x̄k}N that is uniformly sampled with period
τ , that starts at the sample x̄0 = xS, and that ends
at the goal state x̄N = xG ∈ Ĝ(ε̂G) with the following
minimization problem:

Find τ, {ūk}N , {x̄k}N (27)

that minimize

N−1∑
k=0

τ (x̄T

kQx̄k + ūT

kRūk) (28)

subject to: x̄k+1 = f(ūk, x̄k),

x̄0 = xS and x̄N = xG,

|ūk| ≤ ump
max, ∀k,

x̄k ∈ Xmp, ∀k,
0 < τ ≤ τmax

(29)

where the matrices Q ≥ 0, R > 0 are design parame-
ters that, analogous to the TI LQR design, characterize
the quadratic cost function to minimize. In order to
reduce the number of design parameters, we use the
same matrices as for the trajectory-stabilizing TV LQR
controller described next in Section 5.5. The method
allows introducing the initial and final states as state
constraints, since it can explicitly handle input and
state constraints. The system dynamics are introduced
as a constraint on successive states in the trajec-
tory (29), where the solution (15) is approximated by
a standard 4th-order Runge-Kutta step. Finally, the
variable sampling time τ allows the method to explore
different time durations for the trajectory, up to a
maximal time N · τmax.

Lastly, we introduce ump
max as a design element with

the intent of imposing stricter (element-wise) input
constraints for motion-planning, i.e. ump

max < umax; for
example, we used ump

max = 0.6umax in the cart-pole
example in Section 6.2. The stricter input constraints
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result in more control authority for the trajectory-
stabilizing policy. Analogously, if there are state
constraints X , it can help to use a reduced set Xmp ⊂
X to allow for some deviations from nominal state
trajectories. Both stricter input- and state-constraints
should result in larger node-funnels.

The resulting nonlinear program is run with the
sequential quadratic programming tool SNOPT (Gill
et al. 2002). Since the problem is typically nonconvex,
the resulting trajectories are not necessarily global
minima of (28). Therefore, the example implementa-
tion does not generate an optimal policy, and an exam-
ple of a suboptimal trajectory is shown in Section 6.
However, the focus of the algorithm and example
implementation is on generating a policy that can
stabilize the system to the goal from a wide range of
initial conditions.

The length N of the trajectory is set a priori;
letting τ be a design variable allows the motion-planner
to scale time to satisfy, if feasible, the initial and
final state constraints. The disadvantage is that the
motion-planner yields varying sampling times for the
trajectories in the tree. If the tree-policy is to be
implemented on digital control hardware, homogeneous
sampling times are desirable. Therefore, we resample
the trajectories to a uniform sampling time τ̄ , which is
identical to the sampling time used in the discretization
step in the TI LQR design, see Section 5.2.1. If the
time τ found by the motion planner is above or
below a threshold, we rerun the optimization after the
interpolation step to refine the interpolated trajectory.
More details about the motion-planning approach we
use may be found in Betts (2010) and in Extension 1.

5.4.1 Initializing Motion-Planning: We find that the
motion-planner performs better if it is initialized
with an appropriate initial guess for the open-loop
trajectory. If available, we use one of the trajectories
generated by simulations that failed to stabilize the
sample xS. Specifically, assume that the j-th simulation
trajectory with length Nj is described by the state and

input sets {xjk}Nj , {ujk}Nj . Then, we initialize motion
planning with the failed trajectory that minimizes

(xjNj
)TSGx

j
Nj

+

Nj−1∑
k=0

(xjk)TQxjk + (ujk)TRujk (30)

which is the combination of the motion-planning (28)
and TI LQR costs (18). The rationale of this heuristic is
to initialize motion planning with a trajectory that got
“close” to the goal. In case that the sample is not in any
node funnel, we can obtain an initializing trajectory
by simulating the sample with the node-policy that
minimizes (10), ignoring the funnel constraint.

5.4.2 Remark related to the motion-planning assump-
tion made in the algorithm introduction in Section 2.4:
We argue that initializing the motion planner with
failed trajectories helps the algorithm to cover parts
of the stabilizable set SD for which motion planning
is difficult without a “good” initial guess. As the
algorithm grows the tree, there are trajectories added
in the vicinity of the difficult region. If the policies
of these trajectories are applied to samples from the
difficult region, the resulting failed trajectories provide
better initial guesses to the motion planner. Therefore,
while the motion planner may not succeed for all
samples initially, it may be that as the tree grows,
the motion planner is able to find trajectories for
previously failed samples. This reasoning is similar to
the discussion about the motion-planning assumption
in Tedrake et al. (2010).

5.5 Stabilizing Trajectories with Time-Varying
LQR Policies

The open-loop trajectories obtained from the motion
planner are stabilized with time-varying (TV) LQR
policies. The design steps are similar to the TI LQR
design: First, the nonlinear, CT dynamics (13) are
linearized about the nominal states and inputs of
the DT trajectory. Then, we discretize the linearized
dynamics assuming a constant control input and a
constant linearization during a single sampling period.
This results in a DT, linear time-varying (LTV)
system. Finally, we design an LTV LQR policy with a
backward iteration of a Riccati equation as presented
in Section 4.1 in Bertsekas (2005). Since the discrete-
time TV LQR design is not common in the literature,
we include more details in the following derivation.

5.5.1 Linearization and Discretization: Consider the
open-loop trajectory {ūk}N , {x̄k}N that is to be
stabilized by an LTV LQR policy. We first linearize
the CT system dynamics (13) about the DT nominal
trajectory and assume this linearization to be constant
during a sampling period:

˙̃x(t) = Ac
kx̃(t) + Bc

kũ(t), for kτ̄ ≤ t < (k + 1)τ̄ (31)

where

Ac
k :=

∂fc(x,u)

∂x

∣∣∣∣x=x̄k
u=ūk

, Bc
k :=

∂fc(x,u)

∂u

∣∣∣∣x=x̄k
u=ūk

(32)

are the linearizations about the nominal state and
input, and x̃(t) := x(t)− x̄k, ũ(t) := u(t)− ūk are
the state and input deviations from the respective
(assumed constant) nominal states and inputs.
Assuming a zero-order hold input, ũ(t) := ũk for kτ̄ ≤
t < (k + 1)τ̄ , we discretize the LTV system (31) with
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the matrix exponential, resulting in the DT LTV
system dynamics

x̃k+1 = Akx̃k + Bkũk (33)

with x̃k := xk − x̄k = x̃(t = kτ̄) and ũk := uk − ūk.

5.5.2 TV LQR Design: For the DT LTV system, we
design a TV LQR policy that minimizes

Jk (x̃k) := x̃T

NQN x̃N +

N−1∑
n=k

[x̃T

nQx̃n + ũT

nRũn] (34)

where QN ,Q ≥ 0, and R > 0 are penalty matrices
on the final state deviation and on state and input
deviations from the nominal trajectory, respectively.
We use the cost-to-go matrix of the TI LQR design for
QN = SG. It can be shown (Bertsekas 2005) that the
optimal cost-to-go is

J∗k (x̃k) = x̃T

kSkx̃k (35)

where Sk ≥ 0 is given by backwards-iterating the
Riccati equation

Sk = Q + AT

k

(
Sk+1− (36)

Sk+1Bk (R + BT

kSk+1Bk)
−1

BT

kSk+1

)
Ak

with the terminal condition SN = QN . The optimal
TV policy is

πππTV

k (xk) := − (R+BT

kSk+1Bk)
−1

BT

kSk+1Akx̃k. (37)

Finally, we incorporate the input constraints to define
the TV trajectory policy

πππJ
k (xk) :=

{
πππTV

k (xk), |πππTV

k (xk)| ≤ umax

sgn(πππTV

k (xk))umax, otherwise.

(38)

5.6 Node Funnel Hypotheses

Analogous to the goal basin hypothesis, we use the
cost-to-go obtained in the TV LQR design (35) to
describe the funnel hypothesis of a tree node Nn with

B̂(x̄n, ε̂n) := {xn : (xn − x̄n)TSk(xn − x̄n) < ε̂n}.
(39)

Note that the geometry of the funnel hypothesis
is a design parameter, and that input- and state-
constraints are considered by the hypothesis by
definition in Section 4.1.2.

The matrices Sk must be positive definite in order
to obtain a valid distance metric in (39). Since
the final cost matrix SN = SG > 0, and Q ≥ 0, R >
0, it follows that all Sk > 0 from the dynamic

programming update, see the argumentation in Section
4.1 in Bertsekas (2005).

Remarks: Similar to the discussion about Ĝ(ε̂G)
approximating the goal-state basin of attraction, it
is unlikely that an ellipse is the best geometrical
primitive to describe the funnel around a trajectory.
Simulation-based approximation of funnels allows
exploring different primitives that could potentially
yield tighter fits to the real funnel, further improving
the sparsity of the resulting tree. The advantages of the
hyper-ellipses we use here are their simple geometry,
and that their shape is based on the TV LQR design
that is tied to the system dynamics.

In the conceptual discussion of the algorithm,
the distance metric defining the funnel hypotheses
is identical for all nodes. While this is not the
case anymore with (39), it is not an issue for
the algorithm. The ability to use different distance
metrics for different nodes, and therefore also different
regions of the state space, highlights another intuition
behind the usefulness of funnel hypotheses: They
help with the difficulty of choosing suitable metrics
to measure distance between different states of a
dynamic system (LaValle 2006; Glassman and Tedrake
2010). Typically, the hypotheses are “small”, which
means that the metric must only provide a reasonable
heuristic for states “nearby” the nominal state
trajectories.

5.7 Query-Phase Implementation: Tree-Policy

Given an initial condition xIC from D, we find the
node N ∗(xIC) according to (10). Let the node N ∗(xIC)
be the n-th node in a trajectory of length N that
is stabilized by the TV LQR policy πππJ

k (xk), and set
xn = xIC. The following feedback policy defines the
tree-policy that is applied to xIC:

πππTree
k (xk) :=

{
πππJ
k (xk), for n ≤ k < N

πππG(xk), for k ≥ N (40)

i.e. first apply the TV LQR policy of node N ∗(xIC) and
then apply the goal-state-stabilizing TI LQR policy.
Finally, if there does not exist a feasible N ∗(xIC) in
the tree because xIC is not in any hypothesis, one may,
for example, apply some fall-back policy that stabilizes
the system to a “safe” region. Another possibility is to
relax the in-funnel-constraint in (10) when determining
N ∗(xIC), which results in the application of the policy
of the “closest” node as measured by the TV LQR
cost-to-go.
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Figure 5. The simple pendulum.

6 Example Systems and Results

With the algorithm implemented as described above,
we generated and evaluated tree-policies for two
example systems.

6.1 Simulated Example: Simple Pendulum

Examples of tree-policies are illustrated with a well-
visualizable system: the torque limited, damped simple
pendulum, shown in Fig. 5. The system dynamics are

θ̈ =
1

ml2

(
u+ mgl sin θ − bθ̇

)
(41)

where the pendulum angle is θ (rad) and the angular
velocity is θ̇ (rad/s). The system state is x := (θ, θ̇).
The input u (N ·m) is the torque applied to the
pendulum at the pivot point and is limited to |u| ≤
3 N ·m, requiring at least a single pump for a swing-
up from the lower equilibrium. There are no state
constraints. The system parameters are the same as in
the example in Tedrake et al. (2010): mass m = 1.0 kg,
length l = 0.5 m, gravity g = 9.8 m/s2, and damping
term b = 0.1 N ·m · s. The pendulum is upright at rest
when xG = 0, uG = 0, which are the goal state and
input, respectively. The box-shaped design set D is
defined by the bounds −3π/2 ≤ θ ≤ π/2 and |θ̇| ≤
10 rad/s. For simplicity, we do not take into account
that the pendulum angle wraps around, i.e. that θ =
0 rad and θ = 2π result in the same pendulum position.
Therefore, the state x = (2π, 0) is not a valid goal state,
and the policy will swing the pendulum back to xG = 0.

6.1.1 TI LQR Design and Goal Set: The feedback
policy that stabilizes the goal state is designed
as described in Section 5.2, with τ̄ = 0.05 s, QG =
diag(10, 1), and RG = 15, where diag refers to a
diagonal matrix with the corresponding entries starting
at the (1,1)-entry. The goal set G was approximated
with the procedure outlined in Section 5.3 using the
termination heuristic parameters α = 0.01 and p̄α =
0.99, requiring M = 459 consecutive samples for which
the Lyapunov condition (24) holds. The approximation
takes less than 10 s, and the resulting Ĝ(ε̂G) is shown
in Fig. 4, and as the dark gray ellipse in Fig. 6.

6.1.2 Motion Planning and TV LQR Design: Motion
planning and trajectory stabilization are implemented
as described in Section 5.4 and Section 5.5 using the
same penalty matrices as for the TI LQR design: Q =
QG and R = RG. The input constraints for motion
planning are reduced to ump

max = 2 N ·m, such that
there is some control authority available for the TV
LQR policy to stabilize open-loop trajectories. The
trajectories generated by the motion planner are
resampled to obtain a uniform sampling time of τ̄ =
0.05 s in the tree-policy.

6.1.3 Results: We generate the tree-policy according
to Section 4 and Section 5. The termination heuristic
is the same as for the goal set approximation, M =
459. Two example tree-policies are shown in Fig. 6,
along with their node, runtime, and iteration numbers.
The runtimes were obtained with a MATLAB
implementation on a desktop PC (CPU: i7-3770 with
3.4 GHz). On average over 100 generated tree-policies,
we found a mean runtime of 2.0 min with standard
deviation 36 s, and a mean number of tree-nodes of
227 with standard deviation 50.

A statistical policy evaluation according to Sec-
tion 4.5.2 is performed with Ns = 2000 random ini-
tial conditions drawn uniformly from D. Success was
determined by checking for convergence to the goal
state after simulating the system for another 3 s after
the TV LQR policy ends and the goal TI LQR policy
is activated according to Section 5.7 (to implicitly
test the goal basin approximation). Both examples
shown in Fig. 6 have coverage ratio estimates of 1.0,
i.e. it is likely that all initial conditions in D are
assigned to a node-policy. Both examples reached high
success rate estimates that are well above the design
parameter p̄α = 0.99 used in the termination condition.
All of the failed stabilizations in the evaluations did
not reach the goal G, i.e. were not due to a poor
approximation of the basin of attraction, which is
not surprising given the conservativeness of G shown
in Fig. 4. The coverage and success rates achieved
in the two examples are representative: In the 100
generated policies used to assess runtime, only one
policy did not achieve a coverage rate estimate of 1.0,
and the success rate estimate mean was 0.996 with
standard deviation 0.002.

A higher p̄α or a lower significance α would likely
result in a higher success rate at the cost of a longer
runtime of the algorithm. For example, increasing p̄α
to 0.995 and re-generating the tree-policy shown on
top in Fig. 6 using the same random-number-generator
seed resulted in an almost perfect success rate of p̂∗ =
0.9995 with 99% CI [0.9963, 1.0], still with a coverage of
ρ̂ = 1.0, at the cost of a runtime increase to 5.6 min. We
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Figure 6. Simple pendulum tree-policy examples. The
state-space shown corresponds to the design set D. The
funnel hypotheses are medium-gray, and for both examples,
we highlight the final funnel hypothesis of a single trajectory
in light gray. The goal set Ĝ(ε̂G) is shown in dark gray. Top:
Policy with 198 nodes in 4 trajectories, generated in 4328
iterations that took 1.3 min; coverage estimate ρ̂ = 1.0 with
99% confidence interval (CI) [0.997, 1.0]; success rate
estimate p̂∗ = 0.996 with 99% CI [0.991, 0.999]. Bottom:
Policy with 238 nodes in 4 trajectories, generated in 4916
iterations that took 1.4 min; coverage estimate ρ̂ = 1.0 with
99% CI [0.997, 1.0]; success rate estimate p̂∗ = 0.994 with
99% CI [0.987, 0.997].

would argue that the small increase in success rate does
not justify the increase in runtime, since we find that
in experiments, discussed below, a more likely source
of failures are modeling errors.

Finally, the second example in Fig. 6 illustrates
that the motion-planning method we use may add
suboptimal trajectories to the tree-policy; see the state-
trajectory that crosses itself. While the suboptimal
trajectories do not impact the quality of the policy

in terms of coverage and success rate, they result
in “inelegant” system behavior; see also Experiment
111 with the cart-pole shown in Extension 2. An
approach to improve the system behavior is to seed
the algorithm with carefully designed, possibly optimal
trajectories from typical initial conditions of the
system; a similar approach is used for seeding an
algorithm that generates a trajectory library in Stolle
and Atkeson (2010).

A MATLAB function that animates simulations with
the generated policy, and the files used to generate the
policies can be found in Extension 1.

6.2 Experimental Example: Cart-Pole
Swing-Up

The state-constraints capability of simulation-based
LQR-Tree policies is demonstrated in experiments with
a cart-pole system, sketched in Fig. 7. The task is
to swing up the pole from a wide range of initial
conditions to the goal state, where the cart is balancing
the pole upright at the center of the rail. The rail of
the experimental platform is limited, which imposes a
state constraint on the cart position that the algorithm
explicitly takes into account.

In order to demonstrate the application of tree-
policies to highly dynamic systems, we choose motion-
planning cost matrices Q, R that result in a fast
swing-up of the pendulum: The mean swing-up time,
measured by the average duration of the open-loop
trajectories in the tree, is just 1.75 s, compared to
the period of about 1 s of the linearized pendulum
dynamics. The speed of the swing-up maneuvers can
also be observed in Extension 2. The continuous-time
dynamics of the cart-pole are

ξ̈ =
u+ mP sin θ

(
g cos θ − l θ̇2

)
mC + mP(1− cos2 θ)

(42)

θ̈ =
cos θ

(
u− l mPθ̇

2 sin θ
)

+ g sin θ (mC + mP)

l (mC + mP(1− cos2 θ))

where the cart position is ξ (m) and the pendulum
angle is θ (rad), and their respective velocities are
ξ̇ (m/s) and θ̇ (rad/s). The system state is x :=
(ξ, θ, ξ̇, θ̇). Analogous to the simple pendulum, we did
not consider wrap-around of the pendulum angle for
simplicity. The model parameters for the experimental
setup are: mC = 1.5 kg, mP = 0.175 kg, l = 0.28 m, and
g = 9.8 m/s2. The goal state and input are xG = 0 and
uG = 0, where the cart is at rest at the center of the
rail and the pendulum is at rest, pointing up. The
position is constrained to |ξ| ≤ 0.45 m by the limited
rail. Friction in the pendulum joint is not modeled.
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Figure 7. The cart-pole.

The control input u (N) acts on the cart in ξ-direction
and is limited to |u| ≤ 60 N. The box-shaped design set
D is defined by the bounds |ξ| ≤ 0.25 m, |ξ̇| ≤ 2 m/s,
−3π/2 ≤ θ ≤ π/2, and |θ̇| ≤

√
4g/l. The interval for θ̇

is derived from the maximal angular velocity that the
pendulum reaches if the cart is fixed and the pendulum
swings freely from its upright equilibrium.

6.2.1 Experimental Setup: The experimental setup is
shown in Extension 2. The cart is actuated by a timing
belt driven by a geared DC motor. The pendulum
consists of a thin, hollow pole with a mass attached to
its tip. Encoders at the pendulum’s and the DC motor’s
pivot are used to measure the pendulum angle and cart
position, respectively. Both the TV LQR trajectory
policy and the TI LQR goal policy require full-state
feedback. We estimate the velocities ξ̇ and θ̇ from the
position ξ and angle θ by numerical differentiation and
filtering with a second-order, finite-impulse-response
filter. The query-phase computations are implemented
in MATLAB, and the resulting TV LQR node-policy
is transferred to a dSpace DS1104 control-prototyping
system. The dSpace system then applies the node-
policy and activates the TI LQR policy after the finite-
time node-policy ends, see Section 5.7. If the cart hits
either bound of the rail, a limit switch cuts off the
power to the DC motor to avoid damage.

6.2.2 TI LQR Design and Goal Set: The TI LQR
policy is designed according to Section 5.2, with τ̄ =
0.01 s, QG = diag(5000, 50, 0.5, 5), and RG = 0.1. The
specific values for QG and RG were obtained by
manually tuning the policy on the experimental setup.
The goal set was determined with the same termination
condition as for the simple pendulum (M = 459), and
was approximated in less than 10 s.

6.2.3 Motion Planning and TV LQR Design: Motion
planning and trajectory stabilization are implemented
as described in Section 5.4 and Section 5.5. Similar
to the TI LQR design, we tuned the matrices Q
and R of the TV LQR policy on the experimental
system. First, we used motion planning to find a
swing-up trajectory from the lower equilibrium at x =
(0,−π, 0, 0), and then manually tuned Q and R to

achieve acceptable tracking performance. We found
that Q = diag(1000, 300, 1000, 100) and R = 0.1 work
well.

Motion planning uses the same cost matrices as
the TV LQR design. The low value for R results in
swing-up trajectories that are of short duration, see
the discussion above. We used conservative input and
state constraints: |ξmp| ≤ 0.36 m and ump

max = 36 N. The
stricter constraints leave more control authority for the
TV LQR policy to stabilize trajectories, and should
result in larger funnels. Finally, in order to obtain
homogeneous sampling times of the trajectories for the
TV LQR design, the trajectories were resampled to
τ̄ = 0.01 s according to Section 5.4.

6.2.4 LQR-Tree Policy: The swing-up trajectory used
to tune the TV LQR policy was re-optimized using
the motion planner and the values determined for
Q and R. The trajectory was then used as initial
seed the tree-policy, as discussed in Section 6.1.3. For
the termination heuristic, we again used α = 0.01 and
p̄α = 0.99, which results in M = 459.

The algorithm terminated after 95 595 iterations
in 3.9 h, generating a tree-policy with 40 137 nodes
in 218 trajectories. We assessed the generated tree-
policy with Ns = 2000 random initial conditions drawn
uniformly from D, according to Section 4.5.2. Success
was determined by checking for convergence to the
goal state after simulating the system for another 3 s
after the TV LQR policy ends and the goal TI LQR
policy is activated. We obtained a coverage ratio
estimate of ρ̂ = 1.0 with 99% confidence interval (CI)
[0.997, 1]. Since the success rate estimate was just p̂∗ =
0.991 with 99% CI [0.985, 0.996], we further refined
the tree-policy with a lower α′ = 0.008, resulting in
M′ = 481. The algorithm terminated after a cumulative
total of 127 983 iterations in a cumulative total of
4.8 h, generating a policy with 45 054 nodes in 245
trajectories. The refined policy still achieves ρ̂ = 1.0
and a higher p̂∗ = 0.998 with 99% CI [0.993, 0.999]. All
of the five failed stabilizations in the assessment are
due to violated state-constraints, i.e. were not due to
a poor approximation of G to the goal-state basin of
attraction.

In Fig. 8, the evolution of the number of trajectories
in the tree, and the time spent testing a sample xS with
candidate node-policies is shown. The average time for
testing a sample was 0.07 s, and the data shown in
Fig. 8 suggests that the expected time to test a sample
remains roughly constant even as the number of nodes
in the tree increases. This highlights the efficiency that
the funnel hypotheses add to the approach by limiting
the number of node-policies that have to be tested.
The spikes in testing time typically occur when a new

Prepared using sagej.cls



Reist et al. 21

0

0.2

0.4

Ti
m

e
(s

)

0 2 4 6 8 10 12
0

100

200

Iteration (×104)

#
Tr

aj
ec

to
ri

es

Figure 8. Number of trajectories (black) in the tree-policy
for the state-constrained cart-pole and time spent testing a
sample xS per iteration (gray). The light gray region
indicates the policy-refinement phase.

trajectory is added to the tree and many funnels are
shrunk.

A MATLAB script that animates simulations with
the tree-policy is available in Extension 1, which also
contains MATLAB code that allows reproducing the
policy.

6.2.5 Experiment Procedure: We generate initial con-
ditions from D on the experimental setup either by
manually exciting the pendulum with the cart at rest at
different positions, or, in order to achieve nonzero cart
velocities, by applying a step or sinusoidal open-loop
input. The policy is activated manually, upon which
the tree is queried for the node N ∗(xIC) based on the
initial condition xIC, and the node-policy of N ∗(xIC) is
applied according to Section 5.7. We deal with initial
conditions for which there does not exist an N ∗(xIC)
by applying the policy of the node that minimizes (10),
ignoring the funnel-constraint (i.e. the “closest” node
to xIC based on the TV LQR cost-to-go).

FindingN ∗(xIC) and transferring its TV LQR policy
from MATLAB to the dSpace system takes some time.
This delay causes a difference between the measured
initial condition xICM and the actual initial condition
of the system. We compensate for this by extrapolating
xICM by an empirically determined delay time. For the
tree-policy with about 45 000 nodes, we used a delay of
τC = 0.017 s and obtained the extrapolated state xICE

from xICM with the standard fourth-order Runge-
Kutta method. The extrapolation is then used to
find N ∗(xICE). The delay compensation improves the
performance, since the extrapolated xICE is typically
closer to the actual initial condition when the TV
LQR policy is activated. This is illustrated in Fig. 10.
A single experiment is successful if the time-invariant
(TI) LQR controller can stabilize the cart-pole at
the goal state. Specifically, success is determined by
measuring the average pendulum angle over 10 samples
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Figure 9. Extrapolated initial conditions of all 200
experiments. The gray rectangle represents the design set D.
Crosses indicate success while circles indicate failure. 34
initial conditions were not in D. The success rate was 94.6%
for the initial conditions in D.

after three seconds have elapsed after the TI LQR
policy is activated.

6.2.6 Results: We performed 200 experiments, of
which 187 were successful. This results in a success
rate of 93.5% with 95% CI [89.1%, 96.5%]. In 34
experiments, the extrapolated initial condition xICE

was outside the design region D. If we discard these
experiments, we find that 157 of 166 experiments
were successful, which results in a success rate of
94.6% with 95% CI [90.0%, 97.5%]. In Fig. 9, all
extrapolated initial conditions xICE of the experiments
are shown. In 102 of the total 200 experiments, a
nominal trajectory was selected that was not used in
any other experiment. In Fig. 10 , we show the phase
plots of a successful experiment. Extension 2 is a video
of selected experiments, and all measurement data and
scripts to visualize and analyze the data are available
in Extension 1.

We argue that the main reason for failures are
modeling errors (for example, the unmodeled friction
in the pendulum joint), which is supported by the
difference between the experimental success rate and
the almost perfect success rate obtained in simulation.
The effect of modeling errors can also be observed in
the phase plot of an experiment shown in Fig. 10:
Towards the end, the cart has to perform a large
corrective maneuver to keep the system state close
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to the nominal trajectory. These corrective maneuvers
can lead to the cart hitting the system bounds and
activating the limit switches, which was observed in
most failed experiments. Another contribution may be
from extrapolation errors, i.e. the difference between
the extrapolated initial condition xICE and the actual
initial condition when the node-policy of N ∗(xICE) is
activated. We found that in 174 of the 200 experiments,
a different node-policy thanN ∗(xICE) would be applied
to the initial condition measured at policy-activation.

While the tree-policy appears to be quite robust
against the modeling and extrapolation errors, the
performance may be further improved by performing a
more advanced system identification and regenerating
the tree-policy, and by using a more sophisticated state
observer that should lead to better extrapolations and
control-performance. Another opportunity to pursue
is the improvement of the tree-policy based on
experimental data: Possible approaches are adjusting
the funnels and growing the tree after a failed
experiment, similar to the ideas presented in Stolle
and Atkeson (2010) for adapting trajectory libraries;
or iterative learning control, see, for example Schoellig
et al. (2012), where the open-loop control input is
adjusted based on experimental data, such that the
nominal state trajectory is more accurately followed.

6.3 Remarks about Scalability

The significant increase in runtime and number of
tree-nodes required to generate a policy for the
cart-pole compared to the simple pendulum raises
concerns about the scalability of the approach, i.e. the
applicability to higher-dimensional problems. However,
it is not straightforward to compare the runtimes and
number of tree-nodes for different systems, as several
factors besides the problem dimension influence them.

In the cart-pole example, a significant portion of
both the runtime and the number of nodes can be
attributed to the state-constraints: A tree-policy with
identical parameters and quality measures, except with
the state-constraints removed, can be generated in
2.6 h (−45%) and contains just 13 298 nodes (−70%)
in 76 trajectories. Furthermore, the homogeneous
sampling time can also have a significant impact
on the number of nodes, and should not be chosen
unreasonably low: When we halved the sampling time
to τ = 0.005 s, we obtained, not surprisingly, about
twice as many tree nodes. Therefore, the systems’ time-
constants and required control-bandwidth factor in the
number of nodes and runtime. Related, if the feedback
policies stabilizing the trajectories only have limited
control authority due to system properties such as
tight input constraints or poor local controllability,
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Figure 10. Phase plots of a successful experiment (Exp.
#93). The extrapolated initial condition xICE is closer to the
actual initial condition (beginning of gray and dashed lines)
than the measured initial condition xICM. Also shown is the
trajectory obtained in simulation with the actual initial
condition, and the box-shaped design set D.

the resulting funnels are small and more nodes and
runtime are required to generate a policy, see also the
discussions in Section 2.4.4 and Section 5.4.

Another observation is that the total time spent
testing samples was about 2.6 h, i.e. the algorithm
spent about 45% of the runtime in motion planning.
Furthermore, only about 30% of motion-planning
attempts succeeded (i.e. 468 attempts failed). The
failure-rate was likely due to poor initializations of the
motion-planner, given the high coverage that the tree-
policy ultimately achieved. A fast motion planner that
is robust to poor initialization is therefore desirable.
Furthermore, it may be beneficial to design the planner
to fail quickly, for example by using low SQP-iteration
limits in the method we use, especially when large
regions of the design set D are not stabilizable.

In general, the design set D should be kept as
small as possible, for example derived from typically
observed initial conditions of the system. The LQR-
Tree approach allows straightforward extension of
an existing policy for a larger set D, if required.
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Choosing D unnecessarily large significantly increases
the runtime and node-count by covering regions of the
state space that may never be visited.

It is remarkable that the tree-policies are represented
by just 45 000 or 13 000 nodes. The equivalent
resolution of a uniform state-space discretization
used in, for example, a standard value-iteration
approach (Bertsekas 2005) is about 45 0001/4 ≈ 15 or
13 0001/4 ≈ 11 grid points per dimension, which is
quite poor. The algorithm only adds trajectories/nodes
where needed, similar to adaptive discretization
approaches: The above node numbers are comparable
to the numbers obtained with variable-resolution
dynamic programming presented in Munos and Moore
(2002) (note that the problem setup is different,
though).

Both the runtime and node counts are problem-
specific, and the scalability of the approach should
be further explored using suitable systems that have
comparable properties such as constraints, design sets
D, and time-constants.

7 Conclusion

We presented a variant of the LQR-Tree algorithm
introduced in Tedrake (2009). The key difference to
previous work is that stabilizable sets of trajectories
are approximated with a simulation-based falsification
method, instead of the formal, Lyapunov-function-
based verification used in Tedrake (2009). The main
advantage is that the approach allows generating
tree-policies for a wider range of dynamic systems,
and feedback designs for trajectory stabilization.
Theoretical results showed that in the long run,
the algorithm tends to improve both the coverage
of the initial conditions to be stabilized, and the
approximations to the stabilizable sets. This result
is supported by simulation results, where the tree-
policies achieved both high coverage- and stabilization-
rates. The tree-policies for the example systems
were generated using an example implementation of
the algorithm that was described and discussed in
detail. The applicability to highly-dynamic and state-
constraint systems was demonstrated in experiments
with a cart-pole, where a stabilization rate of 93%
was achieved in 200 experiments. A comparison to
the close to 100% stabilization rate achieved in
simulation suggests that a key direction for future
work is to develop strategies to adapt tree-policies
based on experimental data, e.g. as in Schoellig et al.
(2012) or Stolle and Atkeson (2010), in order to
further improve experimental performance. Another
interesting topic is developing approaches to post-
process the generated tree-policies in order to reduce

the number of tree-nodes by removing redundant
trajectories, or to detect sub-optimal trajectories as
shown in Fig. 6 by checking the consistency of
a trajectory with nearby tree-trajectories. Finally,
the scalability of the approach to higher-dimensional
systems can be further analyzed by studying well-
scalable systems.
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A Index to multimedia extensions
Ext. Media Description
1 Code and Data MATLAB code of example

implementation, scripts to
visualize simulations of
the example systems, and
scripts to analyze and plot
the experimental data.

2 Video Video of selected cart-pole
experiments.

B Proofs of Asymptotic Algorithm
Properties

B.1 Assumptions

We restate the assumptions underlying the following
proofs from Section 2 and Section 3:

1. Motion planner: The motion planner is able
to find an open-loop trajectory from any state
x ∈ D to the goal G, given that x is stabilizable:
x ∈ SD. Note that the following proofs also work
with the assumption that the motion planner
finds an open-loop trajectory only with some
positive probability, which was used in Tedrake
et al. (2010).

2. Stabilizable balls: For every nominal state x̄k
in an open-loop trajectory, there exists an open
ball centered at x̄k, in which all states can be
stabilized to the goal by the trajectory’s feedback
policy without violating state constraints.

3. Probability density function (PDF) of random
samples: The state samples xS are drawn i.i.d.
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from the design set D with a PDF that is positive
on D.

B.2 Probabilistic Feedback Coverage for the
Conceptual Algorithm

The following proof closely follows Sec. 6 in Tedrake
et al. (2010), which we adapted to the notation
and definitions used in the conceptual algorithm. Let
the coverage set Ci be the union of the funnels of
the |T i| trajectories in the tree at iteration i, T i =
{J1, . . . ,J|T i|}:

Ci :=

|T i|⋃
j=1

SJj ∩ D (43)

where the restriction to D implies Ci ⊆ SD. If a
trajectory is added to the tree at iteration i, the
coverage set Ci grows, which implies Ci ⊆ Ci+1. The
limit set of the sequence Ci is

C∞ := lim
i→∞

Ci (44)

which is the set of states in SD that is covered by
funnels as the number of iterations tends to infinity.
The limit exists since the sequence Ci is ordered
by inclusion, Ci ⊆ Ci+1, and, therefore, lim sup Ci =
lim inf Ci = C∞; see Chapter 4 in Rockafellar et al.
(1998).

Adapting the definition of probabilistic feedback
coverage in Tedrake et al. (2010) to the notation and
definitions used here, it states: A feedback-motion-
planning algorithm achieves probabilistic feedback
coverage for the goal G if C∞ = cl(SD) with probability
one, where cl(·) is the closure of a set. Note that C∞ is
closed by definition (Rockafellar et al. 1998). We show
that the conceptual algorithm achieves probabilistic
feedback coverage by proving that

Lemma 1. The set F := SD \ C∞, which is the
relative complement of C∞ in SD, has Lebesgue
measure zero with probability one.

We show by contradiction that F cannot have
nonzero measure: Suppose that F has nonzero
measure. Since the random samples used to generate
the tree are drawn i.i.d. from a PDF that is positive
on D (Ass. 3), and therefore also positive on SD ⊆ D,
the probability of drawing a sample xS ∈ F ⊆ SD is
nonzero at any iteration i. Therefore, as i→∞, the
probability of drawing a sample xS ∈ F tends to one.
Since xS ∈ SD by definition of F , the motion-planning
and feedback modules add a new trajectory J to the
tree with nominal initial state x̄0 = xS (Ass. 1). The
funnel of the added trajectory is a subset of C∞ by

definition, and has a nonzero measure intersection with
F , as there is an open ball around x̄0 ∈ F that can be
stabilized to the goal by the feedback policy of the
trajectory (Ass. 2). This contradicts the definition of
F , and we conclude that with probability one, the set
F has Lebesgue measure zero.

B.3 Simulation-Based Algorithm: Coverage

We show that the funnels SnN of the nodes in the
tree cover SD as i→∞. The interpretation is that in
the limit, there exists a stabilizing feedback policy in
the tree for all states in SD, except possibly a set of
states with Lebesgue measure zero. The node funnels
SnN are unknown, but can be tested in simulations:
When the policy of node Nn with funnel hypothesis
B̂(x̄n, ε̂n) is applied to a sample xS ∈ B̂(x̄n, ε̂n) ∩ SnN ,
the simulation succeeds; and the simulation fails if
xS ∈ B̂(x̄n, ε̂n) \ SnN . In the following, we show that the

sets B̂(x̄n, ε̂n) ∩ SnN of the tree nodes cover SD in the
limit, which implies that the node funnels cover SD.
First, we define the set

Ĉi :=

V i⋃
n=1

B̂(x̄n, ε̂
i
n) ∩ SnN (45)

which contains all states in SD for which there exists
at least one stabilizing node-policy in the tree T i at
iteration i. We add an iteration superscript to the
funnel hypotheses radii ε̂in to highlight that the radii
may change (multiple times) in an iteration due to
falsification(s). For the following, it is irrelevant what
specific trajectory contains a node Nn; therefore, we
omit trajectories and define V i to be the total number
of nodes in T i.

Coverage of SD by Ĉi in the limit follows from
proving that the relative complement

F̂ i := SD \ Ĉi (46)

has measure zero as i→∞. However, unlike Ci (43),
the sequence F̂ i is not ordered by inclusion: At every
iteration, the algorithm may both increase coverage
by adding nodes, and decrease coverage by shrinking
funnel hypotheses. Therefore, the existence of the limit
of the sequence F̂ i is not given, and we resort to
considering its outer limit

lim sup
i→∞

F̂ i =

∞⋂
n=1

cl

( ∞⋃
i=n

F̂ i
)

(47)

which always exists (Rockafellar et al. 1998). The limit
superior lim sup F̂ i can be interpreted as the set of
states that appear infinitely often but not necessarily
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always in any tail of the sequence F̂ i. We show that
lim sup F̂ i has measure zero with probability one, from
which follows that in the limit, the sequence F̂ i also
has measure zero:

Lemma 2. The outer limit lim sup F̂ i has Lebesgue
measure zero with probability one.

We define F̄ := lim sup F̂ i. The proof is by
contradiction: Assume that F̄ has nonzero measure.
Since states in F̄ appear infinitely often in tails of
F̂ i ⊆ D, and samples xS are drawn i.i.d. from a PDF
positive on D (Ass. 3), a sample xS ∈ int(F̄) is drawn
with probability one, where int(·) denotes the interior
of a set. By definition of F̄ , the simulation with
initial condition xS fails: Either xS is not in any
funnel hypothesis, or the policies of all nodes whose
funnel hypotheses contain xS fail to stabilize xS to the
goal. Since xS ∈ SD by definition of F̄ , the motion-
planning and feedback modules add a new trajectory
to the tree with nominal initial state x̄ = xS (Ass.
1). Let B̂(x̄, ε̂) be the funnel hypothesis of the new
node at x̄, SN its funnel, and B ⊆ SN the stabilizable

ball at x̄ (Ass. 2). The intersection B̂(x̄, ε̂) ∩ B is a
lower, nonzero measure bound on B̂(x̄, ε̂) ∩ SN , and

all states in B̂(x̄, ε̂) ∩ B can be stabilized to the goal.
Since x̄ = xS ∈ F̄ , B̂(x̄, ε̂) ∩ B has a nonzero measure
intersection with F̄ , which contradicts the definition of
F̄ . We conclude that with probability one, the set F̄
has Lebesgue measure zero.

B.4 Simulation-Based Algorithm: Policy
Assignment

We show that as i→∞, the assignment of a state
x ∈ D to a node Nn by the assignment rule (10), i.e.
N ∗(x) = Nn, implies that x can be stabilized to the
goal by the policy of Nn. At iteration i, we define the
set of states x ∈ D that are assigned to node Nn, and
that cannot be stabilized to the goal by the node-policy
of Nn as

F in :=
{
x ∈ D ∩ B̂(x̄n, ε̂

i
n) \ SnN : N ∗(x) = Nn

}
. (48)

The sequence F in is not ordered by inclusion due
to the interaction of the funnel hypotheses in the
node assignment: The sets F in shrink and expand due
to falsifications and changing policy assignments. For
example, a node’s funnel hypothesis that overlaps with
the hypothesis of Nn may shrink in an iteration such
that states are newly assigned to Nn that are not
stabilizable by the policy of Nn, see Fig. 3 and the
discussion in Section 4.3.1. Therefore, the limit of F in
may not exist and we show, like above, that the outer
limit lim supF in has measure zero with probability one,

which implies that in the limit, the sequence F in also
has measure zero:

Lemma 3. The outer limit lim supF in has Lebesgue
measure zero with probability one.

We define F̄n := lim supF in. The proof is by
contradiction: Assume that F̄n has nonzero measure.
Since states in F̄n appear infinitely often in tails of
F in ⊆ D, and the samples xS are drawn i.i.d. from a
PDF positive on D (Ass. 3), a sample xS ∈ int(F̄n)
is drawn with probability one. By definition of F̄n,
the simulation with initial condition xS fails and the
funnel hypothesis of Nn is shrunk from B̂(x̄n, ε̂

−
n ) to

B̂(x̄n, ε̂
+
n ) with ε̂+n < ε̂−n , where −,+ denote pre- and

post-shrinking, respectively. The shrinking makes xS

a boundary point of B̂(x̄n, ε̂
+
n ), and the set int(F̄n) \

B̂(x̄n, ε̂
+
n ) has nonzero measure. This contradicts the

definition of F̄n, since all states in int(F̄n) must be
inside the funnel hypothesis of Nn. We conclude that
with probability one, the set F̄n has Lebesgue measure
zero.
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