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Abstract

Enabling robots to generates physically feasible and collision-frees trajectories is a fundamental

problem in robotics. Current solutions take one of two approaches, using sampling based motion

planners to probabilistically find a path between obstacles, or using trajectory optimization

to exactly handle the dynamic constraints of the robot. The sampling based motion planners

can handle the messy problem of planning a configuration-space trajectory in the presence

of task-space obstacles despite the nonlinear mapping between the two spaces. However,

they struggle as the dimension of the robot’s configuration space grows due to the curse

of dimensionality and cannot handle dynamic constraints directly. Meanwhile, trajectory

optimization can handle the nonlinear dynamics and scales well to high degree of freedom

robots, but the collision avoidance constraints make the optimization difficult, requiring

extensive solve times or good initialization.

We present a motion planning pipeline that seeks to fill the gap between these two approaches.

The pipeline starts by decomposing the free-space into convex collision-free regions of the con-

figuration space using Iterative Regional Inflation by Semidefinite & Nonlinear Programming

(IRIS-NP). These regions can then be planned between using Graph of Convex Sets (GCS)

Trajectory Optimization to create smooth collision-free trajectories. These trajectories can

be made dynamically feasible using existing time parametrization algorithms, such as Time

Optimal Path Parameterization by Reachability Analysis (TOPP-RA). Finally, we demon-

strate how GCS Trajectory Optimization can be expanded to plan sequential trajectories

using multi-modal planning where multiple interconnected graphs are planned through. We
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validate our algorithms performance on a variety of robot platforms and tasks, demonstrating

that they serve as a foundation for future work in collision-free motion planning.
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Chapter 1

Introduction

For decades, people have aspired to see robots taking on the dangerous and monotonous jobs

in our society. The ability of robots to help in roles from household cleaning to manufacturing,

from inspecting hazardous environments to fighting fires, has been steadily expanded by

roboticists, yet the widespread emergence of robots into our daily lives has not yet happened.

While the impressive capabilities of modern robotic hardware has been demonstrated [2, 3],

robots remain limited to deployment in very structured environments such as factories. One

of the limiting factor for most of these robots is the ability to plan their actions. For robots

to succeed in less structured environments outside the lab they need the ability to reason

about their own dynamic limits as well as the obstacles in their environment. Without this

capability, robots are prone to exceeding the limits of their hardware or causing damage to

themselves or the environment through collision. In addition, the speed at which robots can

generate plans that take their dynamic limits and obstacles into consideration is critical, as

faster planning allows the robot to be more reactive and more robust [4]

This thesis explores algorithms for addressing this need: looking at representations of collision

and the planning problems that allow the generation of more dynamic collision-free trajectories.

We present a pipeline that allows us to plan approximately globally optimal trajectories while
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considering some dynamic constraints on the trajectory. We also discuss how these trajectories

are well suited for a fast post-processing step that expands the class of dynamic constraints

that the trajectory obeys without sacrificing the promise of collision-free motion.

To fully understand the limitations of current approaches to collision-free motion planning

we start by digging into the main approaches used in the literature, trajectory optimization

and sampling-based motion planners, in Chapter 2. While both have found success in

various applications, the choice between them requires trade offs in terms of optimality,

dimensionality of the environment, complexity of the obstacles and the dynamic constraints

that can be handled. In addition, we look at how existing methods have represented non-

collision constraints and how that affects the ability of these methods to guarantee the entirety

of the trajectories are collision-free.

We then dive into the main contributions of this thesis, namely a pipeline for planning

collision-free trajectories. In Chapter 3, we introduce and demonstrate a method for explicitly

representing the parts of configuration space that are collision-free (C-free). Our algorithm

expands on the work of [1] to enable calculating convex regions of C-free for robots that have

nonlinear kinematic mappings between configuration space and task space. By representing

the non-collision constraint as containment in a set of safe regions, ensuring the safety of

the entire trajectory becomes simpler. We also demonstrate how this same approach can be

used to add additional nonlinear constraints, such as orientation of the end-effector, on the

generated collision-free regions.

This method for generating convex regions of C-free is then leveraged to build up a graph

representing the coverage of C-free. Along with Tobia Marcucci and David von Wrangel we

formulated a motion planner using the algorithm for graph search with continuous variables,

proposed by [5], that represents the planning problem as a Mixed Integer Convex Programs

(MICP) with tight relaxation in Chapter 4. While this tight relaxation allows commercial MICP

solvers to find solutions more efficiently, we also demonstrate a method for approximating

the true solution that is able to almost always find the globally optimal trajectory using
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only convex optimization. Our motion planner not only handles collision-avoidance but also

incorporates additional constraints on the derivatives of the trajectory, namely continuity,

differentiability, and velocity limits.

We then explore how our motion planning algorithm can be expanded to enable multi-modal

motion planning where a sequence of trajectories are generated collectively in Chapter 5. This

enables us to perform rather aggressive bimanual tasks that are fluid and dynamically feasible.

We discuss an additional step using Time Optimal Path Parameterization that ensures the

trajectories that we generate are dynamically feasible and can be executed on hardware.

We finish in Chapter 6 by providing final thoughts on the complete planning pipeline as well

as discussing the opportunities for future work that these methods open up.
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Chapter 2

Background

The capability to plan collision-free trajectories is foundational to most robotic systems,

especially robotic manipulators. While many techniques exist in the literature for tackling

this problem [6, 7], understanding the trade offs that the various methods make will help to

elucidate the gap that this thesis begins to fill. In this chapter we will dig into the two most

prevalent classes of approaches for collision-free motion planning: trajectory optimization

and sampling-based planners. We’ll also take a look at a historically less popular planning

method using Mixed-Integer Convex Programs (MICP) to find globally optimal trajectories.

Along the way, we will look at how each of these methods represents collision avoidance and

how that affects the guarantees that each of these methods can make about the safety of the

trajectory.

2.1 Trajectory Optimization

Trajectory optimization [8] approaches formulate the trajectory as a time-parameterized curve

through space and explicitly optimize the mathematical program. These methods usually

represent the trajectory as a sequence of knot points with xk ∈ Rn being the state of the robot

at the knot point and uk ∈ Rm being the control input between the knot points. The knot
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points can be stitched together into piecewise-polynomial curves [9, 4] or continuous Bézier

curves [10, Chapter 7.2] depending on the implementation. To optimize the knot points, these

problems minimize a cost function

J(X, U) = ℓf (xN ) +
N−1∑
k=0

(xk, uk) (2.1)

where X, U are the collection of all N knot points for state and input respectively. The costs

ℓ(xk, uk) can capture a wide array of aspects of the trajectory that we would like to minimize

including trajectory duration, overall path length, and control input required to track the

trajectory to name a few.

In addition, these methods incorporate potentially nonlinear constraints on the trajectory of

the form

c(X, U) ≥ 0. (2.2)

These can include simple constraints that can be specified with convex functions such as

velocity limits or input limits. There can also be more complex, inherently nonlinear constraints

such as dynamic feasibility and task-space constraints on an end effector.

Once the trajectory optimization problem has been transcribed as a mathematical program,

the resulting nonlinear program can be solved using off-the-shelf solver packages [11, 12]. Most

solvers used for these problems, work by locally optimizing an approximation of the costs and

constraints to choose the descent direction for the original problem [13, 14, 15]. As a result,

they scale very effectively to higher degrees of freedom, able to solve planning problems even

for full humanoids [16]. However these methods can also struggle to find the global optima,

instead getting stuck in either local minima or in locally infeasible configurations. Providing

good initial guesses is often critical to the success of these algorithms.1

Generally the most difficult constraint to enforce is the collision-free constraint. Typically

1The definition of a good initial guess is incredibly problem specific and depends on a host of factors
including the smoothness of the cost function and constraints as well as the shape of the feasible set.

5



Figure 2.1: A simple trajectory optimization asking a quadrotor to fly from one side of the curved
wall to another without colliding fails due to the nonlinear optimizer exploiting the discrete interval
collision checking. Since the checks occur at finite time intervals, the distance between the checks can be
increased by increasing the speed between time intervals. As a result, the trajectory optimization finds a
path that flies away from the wall so that the quadrotor has more room to accelerate before passing
straight through the wall. The quadrotor then has to decelerate, overshooting the goal and requiring it
to circle back.

this is enforced as

ϕ(xk; Oi, Oj) ≥ 0 (2.3)

where ϕ is the signed distance function that calculates the closest distance between a pair of

collision geometries Oi, Oj . This constraint is repeated for all pairs of collision geometries,

although some pairs may be filtered out by the user if collision between them should not

be considered. The majority of trajectory optimization implementations will only enforce

this constraint at the knot point or at discrete intervals between the knot points. While this

constraint can ensure that all the configurations that are explicitly checked are collision-free,

it cannot make any guarantees about the intervening trajectory between knot points. This

can lead to the trajectory simply clipping corners of obstacles or, in cases like the one shown

in Figure 2.1, accelerating significantly to spread out the knot points enough for the trajectory

to clip through the obstacle.

The collision-free constraints can be especially difficult for the nonlinear solvers to handle

as the feasible set is often disconnected. For example, given the problem of planning a path

around a tree, the set of trajectories that go to the left of the tree are disconnected from the
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set that go to the right around the tree. There is no way to smoothly transition from one

set to the other without going through infeasible trajectories that collide with the tree. As

a result, trajectory optimization will often fail to find a trajectory when the environment is

cluttered, unless the initial guess is in the same homotopy as the optimal trajectory. In these

cases, most roboticists fall back to sampling-based motion planners.

2.2 Sampling-Based Motion Planners

In sampling-based motion planners [17], configurations are randomly sampled from the state

space of the robot and then used to grow either a tree [18, 19] or graph structure [20] depending

on the algorithm. The first category of sampling-based motion planners is best exemplified by

Rapidly-Exploring Random Trees (RRT) [18]. These are designed primarily as single query

motion planners, building up an entire tree to plan the path from a single start to a single

goal. As random configurations are sampled from the state space (with rejection sampling for

samples that are in collision), the nearest node on the tree is found and the tree is extended

in the direction of the new sample by a user defined amount. During the extension process

the path between the closest node and the extended node is checked at regular intervals to

ensure that it is collison-free. Once the tree has grown to reach the goal, a path can be found

by walking back up the tree to the initial starting configuration. Various sampling schemes

can accelerate the process of finding a path [21].

The other main category of sampling-based motion planners is exemplified by Probabilitic

Road Maps (PRM) [20]. In this case a graph is constructed a priori to provide sufficient

coverage of the state space and then can be used for multiple start and goal queries. During

the graph building phase, as nodes are sampled they are connected to their nearest neighbors

so long as the path between them is collision-free. While not fundamental to this algorithm,

this is often accomplished similarly to RRT by checking regular intervals along the path for

collision. Once the graph is large enough it can then be used online. A start and goal node

are connected to the graph in the same way as previous samples (i.e. by connecting to the
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nearest neighbors with collision-free paths) and then graph search is used to find the shortest

path between the two nodes.

By randomly sampling throughout the entire state space, these algorithms are probabilistically

complete, meaning that no matter the complexity of the environment, if a feasible path

exists, it will be found with enough samples [22, Chapter 5]. While this works well for

low-dimensional environments, the curse of dimensionality means that as the dimension of

the robot’s state space increases, the number of samples needed to achieve sufficient coverage

will grow exponentially. As a result, there has been limited application of these methods

to robots that are more complex than a single arm [23] as the number of samples required

quickly becomes intractable.

2.2.1 Optimal Sampling-Based Planners

The other drawback to these algorithms is that, in their vanilla implementation, they do not

search for optimality, only feasibility. Extensions have been made to effectively all of these

algorithms to enable finding optimal paths [24, 19]. This optimality is achieved in most cases

by performing a rewiring of the tree or graph after a new node is added. If the new node

provides a shorter path to a given node than the current shortest path, an edge is added to

the tree or graph to connect the two nodes and remove the original path to the given node.

This ensures that at all times the tree or graph contains the shortest path between any two

nodes.

Despite these improvements, the paths planned by these optimal versions of sampling-based

motion planners still struggle to find high-quality, smooth trajectories in robotic arms or robots

with comparable numbers of degrees of freedom, due to the finite number of samples used in

practice. As a result, empirically, the trade off between computation time and optimality that

these methods make is often not worth it as the resulting trajectory must be put through a

trajectory smoother either way.
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2.2.2 Handling Dynamics in Sampling-Based Planners

The other drawback to sampling-based motion planners is they are designed to only consider

the path of the robot, not the full dynamic trajectory. As a result, if the robot has some under-

actuation, such that it cannot move equally easily in all directions, the sampling-based motion

planners do not consider that by default, happily returning a path that would be impossible

to execute on the real robot. Modifications of the underlying sampling based-motion planner

have been proposed that explicitly reason about the reachabilty of various states [25, 26]

to provide better distance metrics for the nearest node search, namely Kinodynamic RRT*

[27]. However, they have not been shown to scale well with both dimensionality of the state

space and complexity of the robot dynamics. An alternate approach is to combine sampling-

based planners with trajectory optimization as part of a pipeline [28]. By using the result

of a sampling-based planner to seed the trajectory optimization, the issue of the optimizer

finding the right homotopy class for the solutions is removed and the suboptimality of the

sampling-based trajectories are refined to local optimality. These multi-layered approaches,

though, do not provide a unified framework for planning that considers both the dynamic and

collision constraint for picking the homotopy of trajectories. As a result, these methods can

sometimes find paths that are collision-free but become suboptimal or even infeasible once

the dynamic constraints are considered. Lastly, the multi-layered approaches can still fail to

find an initial trajectory in complex, high dimensional environments.

2.3 MICP planners

The final approach for generating collision-free trajectories that we will touch on is the

least broadly used but has significant promise: planners based on Mixed-Integer Convex

Programming (MICP) [29, 30, 31, 32]. The goal of MICP planners is to take the benefits of

both trajectory optimization, specifically the ability to handle high degree of freedom robots,

and sampling-based planners, specifically their probabilistic completeness, to achieve global

optimality from a single optimization. However, the broader adoption of MICP based planners
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has been hindered by the long runtimes required to solve. Even for small-scale problems,

these methods can require several minutes to design a trajectory.

The basic formulation for all of these approaches is to represent the collision-free constraint

on each knot point as a collection of discrete convex constraints, at least one of which must be

obeyed. For [30, 31, 32] this means that each knot point must lie outside at least one face of

each obstacle. For [29], each knot point must lie within at least one of the convex collision-free

regions.

Both of these approaches to MICP based planners suffer from long runtimes due to the convex

relaxation of the MICP being rather loose. To solve an MICP to global optimality, the

branch and bound algorithm is most often used. In this algorithm the integer variables that

usually take on discrete values of {0, 1} are allowed to vary continuously in the range [0, 1],

converting the MICP to a convex problem. If this relaxation is tight, it gives a good estimate

of the true optimal cost and provides clear signal for the integer values. If it is loose, more

relaxations with progressively more of the integer variables set to a discrete value need to be

solved, increasing run time. As a side note, collision-free planners based entirely on convex

optimization have been recently proposed [33], but their application is currently limited to

purely-geometric path planning in low-dimensional spaces.

2.3.1 Graph Of Convex Sets

Recently, a new method for formulating MICP has been proposed that provides much tighter

relaxations than previous formulations. This approach, Graph Of Convex Sets (GCS) [5],

looks at an extension of the classical Shortest-Path Problem (SPP) on a graph. The typical

SPP involves a discrete graph with constant edge lengths. Finding the shortest path on this

graph can be formulated as the Mixed-Integer Problem

minimize
∑

e:=(u,v)∈Ep

ℓe

subject to p ∈ P

(2.4)
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where ℓe is the non-negative cost for traversing edge e, P is the family of all paths through the

graph from source to target, of which p is one instance, and Ep is the set of edges traversed by

the path p. The convex relaxation of this Mixed-Integer Problem is a Linear Program and is

well known to be tight [34, Theorem 7.5].

The SPP in GCS generalizes the classical SPP by allowing the nodes to expand into convex

sets and the edge costs to be non-negative functions of a point inside the set at each end of

the edge. More precisely, given a directed graph G := (V, E) with vertex set V and edge set

E ⊂ V2, each vertex v ∈ V is paired with a bounded convex set Xv, and a point xv contained

in it. The length of an edge e = (u, v) is determined by the continuous values of xu and xv via

the expression ℓe(xu, xv). The function ℓe is assumed to be convex and to take nonnegative

values. Convex constraints of the form (xu, xv) ∈ Xe are allowed to couple the endpoints of

edge e := (u, v). A path p in the graph G is defined as a sequence of distinct vertices that

connects the source vertex σ ∈ V to the target vertex τ ∈ V. Denoting with Ep the set of

edges traversed by the path p, and with P the family of all σ-τ paths in the graph G, the

SPP in graphs of convex sets is stated as

minimize
∑

e:=(u,v)∈Ep

ℓe(xu, xv) (2.5a)

subject to p ∈ P, (2.5b)

xv ∈ Xv, ∀v ∈ p, (2.5c)

(xu, xv) ∈ Xe, ∀e := (u, v) ∈ Ep. (2.5d)

Here, the decision variables are the discrete path p and the continuous values xv. The

objective (2.5a) minimizes the length of the path p, defined as the sum of the lengths of its

edges. Constraint (2.5b) asks p to be a valid path connecting σ to τ . Importantly, the convex

conditions (2.5c) and (2.5d) constrain only the continuous variables paired with the vertices

visited by the path p, and do not apply to the remaining vertices in the graph.

Through carefully enumerating all the constraints specified by (2.5b), this SPP can be
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Figure 2.2: A classic example of the clipping collisions that occur when checking discrete intervals
along the trajectory. Although the collision is small, the collision is still sufficient for the robot to
damage either itself or the shelves if the trajectory was executed in hardware.

formulated as a compact MICP with very tight convex relaxation. This enables the branch

and bound algorithm to solve the MICP much more efficiently, making this type of problem

tractable. There is also a clear parallelism between SPP and motion planning that we leverage

in this thesis. We will dig into this approach further in Chapter 4.

2.4 Collision Avoidance Representation

In almost every approach discussed in this section, the constraints to avoid collision are only

enforced at the knot points and a discrete number of points between each knot point. As a

result, clipping collisions can occur between the points that are constrained to be collision-free

such as the one shown in Figure 2.2. While the chances of collision can generally be reduced by

increasing the density of samples along the trajectory that are checked, this cannot guarantee

the whole trajectory is safe. An alternate approach to reduce the chance of collision is to pad

every obstacle to make it larger. Unfortunately, this can make the planned path suboptimal

as it gives every obstacle an even wider berth and can in some cases make planned paths

infeasible by closing off narrow passages. Only [29] formulates the collision-free constraint
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such that the entire trajectory is guaranteed to be collision-free. In this thesis, we utilize a

similar approach to formulate the collision-free constraint that allows us to efficiently plan

complex motions in the configuration space of the robot.
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Chapter 3

Growing Convex Collision-Free

Regions in Configuration Space

using Nonlinear Programming

This chapter begins to buildup our pipeline for generating collision-free trajectories by

presenting a method for generating convex collision-free regions of configuration space that

can be used for planning. As mentioned in Chapter 2, decomposing free space into overlapping

convex sets provides one solution for formulating the planning problem in such a way that

the entire trajectory is constrained to be collision-free [29]. The fundamental challenge of

generating regions in configuration space is that the decomposition is non-trivial as obstacles

that are convex in task space can become nonconvex when mapped into the configuration

space of the robot.

In this chapter, we extends the original IRIS (Iterative Regional Inflation by Semidefinite

programming) algorithm proposed by [1] to compute convex, collision-free regions in con-

figuration space. IRIS relies on the assumption that the obstacles are convex. This works

well when looking for task-space collision-free regions in the presence of task-space convex
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obstacles. But when the user needs convex regions in configuration space and the description

of the obstacles are only convex in task space, the original version of IRIS does not work. The

algorithm does not consider the nonlinear kinematics mapping between task and configuration

space, requiring task-space obstacles to be explicitly mapped into configuration space which

thus far has proven to be an intractable problem.

Instead of explicitly mapping task-space obstacles to configuration space, we present a method

to utilize an implicit configuration-space representation of the obstacles through forward

kinematics. Our algorithm, IRIS-NP (Iterative Regional Inflation by Semidefinite & Nonlinear

Programming), generalizes the iterative process of IRIS by replacing the convex problem for

adding hyperplanes with a nonlinear problem. By doing this we not only can handle avoiding

task-space obstacles while moving in configuration space, we are also able to handle additional

nonlinear constraints on the configuration of the robot.

3.1 Related Work

The problem of decomposing a non-convex space into a collection of convex regions has

attracted several different approaches. Many of these seek to approximately decompose a

non-convex shape into approximately convex components. [35] performs the decomposition

by iteratively splitting the shape to remove the largest concavity. [36] instead formulates

the problem as a mixed integer optimization to find the best cuts to break the shape into

components with concavity below a given threshold. [37] clusters the faces of the shape to

find faces that together form components of the decomposition that are approximately convex.

All of these methods return only approximately convex components that cover the original

shape. Taking the convex hull of these shapes and using that for motion planning would

result in regions that intersect with obstacles. In addition, all of these methods require a

mesh representation of the space to decompose. In the case of generating configuration-space

regions among task-space obstacles, this requires not only mapping the obstacles from task to

configuration space, which is intractable to do explicitly, but also finding the complement of
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the resulting configuration-space obstacle mesh.

An alternate approach, first proposed as IRIS [1], seeks to grow convex regions within the

non-convex space. This approach is well suited to the problem of finding collision-free regions

for two reason. First, the resulting decomposition is more conservative than the full description

of C-free, and can be made less conservative by adding successively more regions. As a result,

staying within the regions is sufficient to ensure no collisions occur. The other reason IRIS is

well suited to the problem is that it utilizes the the implicit representation of C-free, specifying

C-free as the space not within the obstacles. In most cases, no exact representation of C-free

is ever given. Instead the parts of space that are in collision are well defined and C-free is left

as the negative of this space.

IRIS calculates these convex regions through an iterative process that alternates between

building a polytope defined by the surface of obstacles and growing the largest hyperellipsoid

that fits within the polytope. IRIS starts with an initial seed and a small hypersphere defined

around it. Next, hyperplanes are added to an initial polytope, defined by domain limits, at

the point in each obstacle that lies on the smallest expansion of the initial hypersphere. These

hyperplanes are tangent to the expanded hypersphere to ensure that the expanded hypersphere

is fully separated from the obstacle. Once a hyperplane has been added for each obstacle (or

the obstacle has already been fully separated by a previously added hyperplane), IRIS finds

the largest hyperellipsoid that fits within the resulting polytope, using a semidefinite program.

This hyperellipsoid is then uniformly expanded for the next iteration of adding hyperplanes,

with the polytope reset to just the domain limits. This process repeats, with the volume of

the polytope after each iteration growing monotonically until termination.

An alternate extension to IRIS that consider the robot kinematics for converting between con-

figuration space and task space is C-IRIS (C-space Iterative Regional Inflation by Semidefinite

programming) [38]. C-IRIS utilizes a reparameterization of the robot configuration to convert

the forward-kinematics to a rational function that can be optimized using Sums-of-Squares

(SOS) programming. By formulating each step as a convex optimization that can be solved
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to global optimality, C-IRIS is able to provide rigorous guarantees that the entire region is

collision free.

IRIS-NP alternatively directly uses nonlinear optimization to handle forward-kinematics in

the iterative process. This allows the regions generated to be convex in the configuration-space

coordinates. As a result, the regions can only be probabilistically certified collision free,

though empirically we find very few colliding configurations within these regions and the

probability of colliding configurations can be reduced by solving the nonlinear optimization

from multiple initial guesses as we will discuss in section 3.3.2.

These two extension to IRIS can also be used in concert. IRIS-NP can be used to seed C-IRIS

by generating an initial region in the reparameterized coordinates. C-IRIS can then adjust

the region to quickly find certified collision-free regions.

3.2 Technical Approach

IRIS-NP mirrors IRIS by searching for the convex polytope with largest volume inscribed

hyperellipsoid. While the true goal is to generate a polytope of maximum volume, calculating

the volume of a polytope is NP-hard. Calculating the volume of the largest inscribed

hyperellipsoid can be done with convex optimization and maximizing the volume of that

hyperellipsoid achieves a similar goal as maximizing the polytope’s volume. As in [29], we

represent the hyperellipsoid as the image of the unit ball E(C, d) = {x|(x−d)T CT C(x−d) ≤ 1}

and the polytope as a collection of halfplanes P (A, b) = {x|Ax ≤ b}. Put together, the

optimization we would like to solve is

min
A,b,C,d

det C (3.1a)

s.t. W XOi(q) · Oipx ̸= W XOj (q) · Oj py

∀ Oipx ∈ Oi,
Oj py ∈ Oj , q | Aq ≤ b

(3.1b)

Aq ≤ b ∀ q | (q − d)T CT C(q − d) ≤ 1 (3.1c)
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where Oi and Oj represent a pair of collision geometries and is applied for all collision pairs

i, j in the set of possible collision pairs C. The set of possible collision pairs includes both

collisions between the robot and the world as well as collision between the robot and itself.

The notation Oipx describes a 3 dimensional vector corresponding to the position of x relative

to the origin of body Oi, expressed in the frame of Oi. W XOi(q) ·Oi px maps the point x

from its representation relative to Oi to a representation relative to the world frame when the

configuration of the robot is q.

This optimization will maximize the total volume of the hyperellipsoid 3.1a. The first constraint

3.1b ensures that, for each pair of collision bodies, Oi and Oj , there is no configuration q in the

polytope P where there exists points Oipx ∈ Oi,
Oj py ∈ Oj that are coincident. The second

constraint 3.1c ensures that the hyperellipsoid is fully contained within the polytope. Taken

together, these ensure that the polytope is as large as possible while still separating its interior

from the configurations that lead to collision. Since the forward kinematics for most robots

are nonlinear, this optimization is even more difficult to solve than the one given by Equation

1 in [1]. Specifically, the nonlinear portion of this problem can only be solved with local

optimization instead of the convex optimization that was used for the convex problems that

made up the iterative steps of IRIS. Despite this, we can still use the same iterative process

for splitting up the polytope optimization and the hyperellipsoid optimization. While only

using local nonlinear optimization prevents us from making guarantees that we have found a

globally-optimal solution, in practice we find that we can still find high-quality solutions that

achieve the goal of maximizing the volume of the collision-free polytope.

3.2.1 Initializing the Algorithm

As in [1], the algorithm starts with an initial seed configuration, q0, that is not in collision

around which the region will grow. Using the seed, the polytope P0 can be initialized using

the joint limits of the robot and the hyperellipsoid E0 can be initialized as a hypersphere with

small radius ϵ centered about the initial seed.
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Algorithm 1 Given a seed point q0, a list of collision pairs C, and a bounding box on
the regions limits (usually the robots joint limits) qupper & qlower for the upper and lower
limits respectively. Find a polytope P (A, b) = {x|Ax ≤ b} and hyperellipsoid E(C, d) =
{x|(x − d)T CT C(x − d) ≤ 1} such that E ⊂ P and no collision pair in C are in collision for
any configuration in P . The AddSeparatingHyperplanes method is expanded in Algorithm
2. The InscribedHyperellipsoid method is explained in Section 3.4 of [1].

A0, b0 = [I, −I]T , [qupper, −qlower]T
C0, d0 = ϵI, q0
i = 0
while i < iteration limit do

(Ai+1, bi+1) = AddSeparatingHyperplanes(Ei, C, P0)
(Ci+1, di+1) = InscribedHyperellipsoid(Ai+1, bi+1)
i = i + 1
if (detCi − detCi−1)/detCi−1 < tolerance then

break
if Aq > b then

breakreturn Ai, bi

q1

q2
ϵ

FK : Q → X FK(q1)

FK(q2)

Q X

Figure 3.1: The counterexample search consists of finding the first configuration on the surface of a
uniform expansion of the hyperellipsoid that results in collision.

3.2.2 Adding Separating Hyperplanes

In order to determine what hyperplanes to add to the polytope, the algorithm iterates over

all pairs of collision bodies and searches for configurations within the polytope that result in

collision. By finding these counterexamples, tangent planes can be added to the polytope P to

separate the collision-free configurations from the in-collision configurations. Conceptually, the

process of finding these counterexamples consists of uniformly expanding the hyperellipsoid

until a configuration on the surface of the hyperellipsoid is in collision. A visualization of this

idea is shown in Figure 3.1.
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For this algorithm, we assume the environment is known with all collision geometries of both

the robot and obstacles defined as convex sets in task space; all non-convex geometries have

been decomposed into convex components. This assumption also supports point cloud scans of

the environments collision geometry. In that case, a small collision sphere can be used for each

point, although that could result in minor collisions with the underlying object if the point

cloud does not densely cover the object. While IRIS-NP does not require that all collision

geometries are convex in task space, having only convex collision geometries makes two of

the constraints in the counterexample search convex, reducing the difficulty of the problem.

Representing non-convex collision geometry using a nonlinear containment constraint should

work in IRIS-NP without changes but this approach is not explored in this work.

The counterexample search can be written down as

min
q,Oi px,Oj py

(q − d)T CT C(q − d) (3.2a)

s.t. Oipx ∈ Oi,
Oj py ∈ Oj (3.2b)

W XOi(q) · Oipx = W XOj (q) · Oj py (3.2c)

Aq ≤ b (3.2d)

The cost for this optimization 3.2a searches for the configuration that is closest to the center

of the hyperellipsoid E using the distance metric, C, given by the hyperellipsoid. The convex

constraints 3.2b select points, Oipx and Oj py, that respectively lie within the geometries Oi

and Oj of the collision pair. 3.2d ensures that only configurations within the current polytope

are considered. Lastly, the constraint 3.2c specifies that the configuration q, when passed

through the forward kinematics, results in points x and y being coincident in the world frame.

All of the costs and constraints for this problem are convex, except for the kinematic constraint

3.2c. The forward kinematics make this a nonlinear optimization which can be solved using an

off-the-shelf nonlinear solver. This problem returns a feasible solution only when the polytope
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Figure 3.2: To separate obstacles that are concave in configuration space from the interior of the
polytope with finitely many hyperplanes, the configuration-space margin backs the hyperplane away from
the surface of the obstacle. Increasing this margin reduces the number of faces in the final polytope at
the expense of a more conservative region.

contains a configuration that results in collision.

Once a counterexample has been found, we add a hyperplane to the iteration’s polytope Pi to

ensure that other configurations that are in collision are excluded from the polytope. If the

obstacle is convex in configuration space, a hyperplane that is tangent to an expansion of the

hyperellipsoid at the counterexample point would fully separate the interior of the polytope

from collision. As in [1] such a hyperplane can be defined using the counterexample point and

the gradient of the hyperellipsoid’s boundary at that point

aj = CT C(q − d), bj = ajq. (3.3)

However, we cannot assume that the obstacle is convex in the configuration space. As a

result, we employ a configuration-space margin, δ, that backs the hyperplane away from the

obstacle by a user defined margin. In our implementation, δ takes the units of distance in the

configuration space, moving the hyperplane away from the obstacle by a fixed amount. This

makes the hyperplane more conservative than absolutely necessary but ensures that a finite

number of hyperplanes can separate the obstacle from the interior of the polytope as shown

in Figure 3.2. We use the same formula as Equation 3.3 but normalize the normal vector aj
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and subtract the configuration-space margin from bj

aj = CT C(q − d)
||CT C(q − d)|| , bj = ajq − δ. (3.4)

The counterexample search is performed repeatedly with the updated polytope and the same

collision pairs until the program returns infeasible, ensuring that enough hyperplanes have

been added to separate the collision geometries. We repeat this search for each pair of collision

geometries. However, with the counterexample search being a nonlinear optimization, the

solver reporting infeasibility does not guarantee that it is globally infeasible, meaning that a

colliding configuration could escape the counterexample search. A method for reducing the

probability of this happening is discussed in Section 3.3.2.

Algorithm 2 AddSeparatingHyperplanes Given an hyperellipsoid defined by C, d, add
separating hyperplanes to the polytope Pi(A, b) that are tangent to the expanded hyperellipsoid
to prevent collision pairs in the sorted list C from colliding.

for Oi, Oj in C do
Setup counterexample optimization Equation 3.2
failures = 0
while failures < max infeasible samples do

if Solve counterexample successful → q∗ then
aj = CT C(q∗−d)

||CT C(q∗−d)||
bj = ajq∗ − δ
Add aj , bj to A, b
failures = 0

else
failures = failures + 1

return A, b

3.2.3 Calculating the Largest Inscribed Hyperellipsoid

Once the counterexample search has been completed for each collision pair, the result is a

convex collision-free polytope in configuration space. The next step of the iterative process

is to find the inscribed hyperellipsoid of maximum volume. Given the representation of the

hyperellipsoid E(C, d) = {x|(x−d)T CT C(x−d) ≤ 1} and the polytope P (A, b) = {x|Ax ≤ b},

if we define C = C̃−1 the optimization we want to solve is
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max
C̃,d

log detC̃

s.t. ||aiC̃||2 ≤ bi − aid, ∀i

C̃ ⪰ 0.

(3.5)

as stated by [39] where ai are the rows of A and bi are the elements of b. This is a convex

optimization (a semidefinite program to be precise) that can be efficiently solved using

commercial solvers. For our implementation, we used both Mosek [40] and Gurobi [41] and

found comparable performance from each of them.

3.2.4 Termination criteria

As with the original IRIS algorithm, this algorithm will converge to a maximal size as the

volume of the inscribed hyperellipsoid is monotonically increasing and bounded by the initial

joint limits. To account for the fact that no bounds on the number of iterations required to

achieve convergence are currently known, multiple termination criteria are provided for the

algorithm. These include:

• A threshold on growth rate of the inscribed hyperellipsoid’s volume

• An iteration limit

• Containment of the initial seed

Taken together these ensure the algorithm terminates in a timely manner while still generating

large regions.

3.3 Implementation

While the above approach is sufficient to generate convex collision-free regions in configuration

space, we found several implementation details that accelerated the region generation. The
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new formulation also made it possible to support additional constraints while generating

regions. In this section we first dive into implementation details that affect the runtime and

accuracy of the region. Then we look at how this algorithm can support novel constraints.

All of these are supported by our implementation in Drake [42].

3.3.1 Ordering Collision Pairs

As in the original IRIS algorithm, the order in which collision pairs are considered has a

significant impact on the runtime and number of hyperplanes added to the polytope. Adding

hyperplanes to separate close obstacles can also separate more distant obstacles, eliminating

the need to add a hyperplane for that obstacle later. If the more distant obstacle is considered

first, a hyperplane will be added to separate it, and later another hyperplane will be added to

separate the closer obstacle, rendering the first hyperplane redundant.

In the original IRIS paper, obstacles were sorted by distance from the seed point to ensure

closer obstacles are considered first. What we would like to do is sort the collision pairs in

a similar manner, by the distance in configuration space from seed to collision. However,

calculating this distance is non-trivial and effectively requires solving the optimization for

finding counterexamples. As a result, we instead sort the collision pairs based on the task-

space distance between the two collision bodies when the robot is in the seed configuration.

Empirically, this serves as a good heuristic for sorting the collision pairs and leads to closer

collision pairs being considered first.

3.3.2 Probabilistic Certification

IRIS-NP ensures that the convex region is collision free by searching the current polytope

for configurations that cause collision pairs to intersect. This search is done by solving a

nonlinear optimization, which means in some cases, the solver may report infeasibility when

a solution does exist. One way to get around this issue is to solve the optimization with

different initial guesses. Instead of stopping the counterexample search after the first failure

to solve, the search continues from different initial conditions until a user defined number
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of consecutive optimizations fail to find a solution. Initial conditions are sampled from the

current convex polytope using a Markov-chain-Monte-Carlo (MCMC) strategy describe in

[43] because uniform sampling within an arbitrary polytope is not feasible. As the number of

consecutive infeasible samples is increased, the probability of missing the local region about

a configuration that yields collision diminishes, providing a probabilistic certification of the

region. In addition, this gives the user a knob to trade off runtime of the algorithm with

strength of the collision-free guarantee. If we assume that the nonlinear optimization has some

non-empty region of attraction for every optimal counterexample, then the MCMC sampler is

sufficient to guarantee probabilistic completeness of our counterexample search.

3.3.3 Support for Additional Constraints

Since the process of adding hyperplanes to avoid collision consists of searching for points

that violate a nonlinear inequality constraint, this opens the door for IRIS-NP to support

general nonlinear inequality constraints. Any constraint of the form g(q) ≤ 0 is supported

and counterexamples that violate the constraint are searched for in a similar manner to the

search for collisions using the optimization

min
q

(q − d)T CT C(q − d)

s.t. g(q) ≥ 0

Aq ≤ b.

(3.6)

This formulation can be used to support constraints on such things as the orientation of a

kinematic frame, the position of an end-effector, or the distance between two task-space points.

So long as each is written as an inequality constraint and the feasible set has a sufficiently large

interior, the mechanics presented here work well. Equality constraints cannot be supported as

they collapses the region to lie on the lower dimensional surface of the constraint, making the

region zero volume [44]. Just as with the collision avoidance constraints, solving repeatedly
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from different initial conditions until a set number of consecutive optimizations have failed

decreases the chances of missing a counterexample, helping to ensure the constraint is satisfied

everywhere within the polytope.

3.3.4 Achieving Coverage with Multiple Regions

Up to this point, we have only considered generating individual collision-free regions. Generat-

ing multiple regions that provide an approximate cover of C-free can be useful for downstream

planning problems [45]. When growing individual regions, the explicit goal is to grow them as

large as possible. While this is desirable for a singular region, this can result in regions grown

from different seeds expanding to fill the same open space, away from tighter crevices that are

near to each seed. While each region is optimizing for coverage, the result is that the total

coverage of all the regions is not much larger than any of the individual regions. The goal

that we’d like to achieve is maximizing the coverage of all the regions collectively.

The heuristic we use to achieve this goal is to explicitly reduce the overlap between regions.

After generating one region, that region is treated as a configuration-space obstacle. We

can then interleave the process of adding separating hyperplane for existing regions from [1]

with the process of adding separating hyperplanes for obstacles discussed above. As a result,

the next polytope is prevented from overlapping with the previously found regions while

remaining collision free. Adding this to our iterative algorithm encourages the new regions to

expand into spaces that have not already been covered by existing regions, increasing total

coverage. Other heuristics for achieving this goal may perform better as overlapping regions

can have better coverage with fewer regions1. Searching for better heuristics is an active area

of study.

1Imagine a collision-free space in the shape of a cross. Using overlapping convex regions, the entire space
can be covered with two regions. If the convex regions are required not to overlap, three regions are needed to
achieve complete coverage.
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Figure 3.3: Three configuration that lie in the same convex collision-free region of configuration space
generated by IRIS-NP. A region initially generated without the mug on the shelf was refined to account
for collision with the mug.

3.3.5 Region Refinement for Runtime Obstacles

While IRIS-NP can efficiently calculate convex collision-free regions, as soon as collision

geometry changes in a way not specified by a change in configuration, the region may no

longer be collision free. While regions could be regenerated from seed points, this may not

be the most efficient approach, especially if the change in collision geometry is small. An

alternate approach is to take the original region and refine it by adding additional hyperplanes

to separate the new collisions.

Using the final hyperellipsoid as the starting metric, a single iteration of adding hyperplanes

can be performed, keeping the hyperplanes that defined the original region. By starting with

the final hyperellipsoid, the initial growth iterations needed to grow a region from a seed

can be bypassed. Alternatively, if refining the region using the final hyperellipsoid results

in a configuration of interest (such as the start or goal state for a planning problem) no

longer being contained in the refined region, that configuration can be used as an additional

seed point to grow a new region inside the original region. Only collision pairs involving

the changed geometries need to be considered as the remaining collision pairs were already
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separated during the original region generation. This approach is well suited to the case when

novel geometry that had not been previously considered is added to the scene. If geometry is

removed from the scene or moved to be less restrictive of the robot’s motion, the new parts of

C-free will not be covered by existing regions and the refinement process will not cover that

gap.

This refinement approach was used to generate the region shown in Figure 3.3. An initial

region was generated inside the shelf without any mugs in the scene. Then a mug was added

to the scene and the region was refined using a seed point with the gripper around the mug

prepared to grasp. An initial hypersphere, centered about the gripping position seed point

was used for a single iteration of refinement to add hyperplanes that cut down the region

and removed portions that were in collision. As is shown in Figure 3.3, refining the region to

be more restrictive still left the region large enough to contain both grasping and pre-grasp

configurations. We found this surprising! Using IRIS-NP a planner can plan straight to a

grasp configuration without having to specify a pre-grasp waypoint to plan to first.

3.4 Experiments

To test our implementation, we set up several experiments that demonstrate how each

component performs and how IRIS-NP scales. In all experiments shown SNOPT [12] was

used to solve the nonlinear counterexample search.

3.4.1 Collision Pair Ordering Ablation

To study the importance of the order in which collision pairs are considered, we compare

generating regions when the collision pairs are ordered by task-space distance as described in

Section 3.3.1 against generating regions when collision pairs are unordered. For this comparison,

we use a KUKA LBR iiwa with seven degrees of freedom, surrounded by randomly placed

pillars as depicted in Figure 3.5.

Using 100 randomly selected seed points that do not place the robot into collision with
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Table 3.1: Ordering the collision pairs by distance results in regions that are generated faster, with
fewer faces and without significant change in the volume of the inscribed hyperellipsoid. The average
number of faces of the polytope and the average run time are shown for regions generated from 100
random seeds. Because some sampled configurations are in very open spaces and others are in close
proximity to many obstacles we compare the largest volume regions.

Mean Polytope Faces Mean Run Time Maximum Volume
Ordered 146 ± 29 41.4 ± 11.7 86.02

Unordered 181 ± 27 54.2 ± 8.4 89.35

either itself or the environment, we generated regions about each of these seed point. Region

generation was done both with collision pairs unsorted and with collision pairs sorted by

their distance in task space when at the seed configuration. For the termination settings,

we required that the sample point stay inside the region, had an iteration limit of 5 and a

minimum growth rate between iterations of 2%. The configuration-space margin was set to

0.01 and we used 1 infeasible sample per collision pair.

The results of this ablation are shown in Table 3.1. On average the regions generated using

ordered collision pairs were generated faster and had fewer faces than the regions generated

with unsorted collision pairs. In addition, there was not a significant difference in the volume

of the maximum inscribed hyperellipsoid, suggesting that the volume of the overall regions

were comparable.

3.4.2 Probabilistic Certification

For this section, we look at the ability to provide a probabilistic certificate of the regions

generated with IRIS-NP. As mentioned previously, because the process of adding hyperplanes

to separate obstacles relies on a nonlinear optimization, we cannot guarantee that there are

no collisions inside the region, even when the solver reports infeasible. A possible solution is

to increase the number of consecutive infeasible optimizations that are solved from randomly

sampled initial guesses before ending the search for hyperplanes.

To test if this reduced the number of colliding configurations inside the region, we set up a

simple environment with a 4 link arm in the plane, with circular obstacles around the robot.
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Figure 3.4: As the number of infeasible counterexample searches required increases, the percent of
samples within the region that are in collision heads to zero. This trend allows the user to trade off
run time of region generation versus probabilistic certification of the region.2

The robot, environment, and seed were selected to make it very difficult to generate a region

that was completely collision free. In practice, most of the regions generated for real problems

had few if any collisions in the region, even with just a single infeasible sample. Regions

were generated about the same seed configuration while varying the number of consecutive

infeasible counterexample searches to perform. For the termination settings, we required that

the sample point stay inside the region, had an iteration limit of 5 and a minimum growth

rate between iterations of 2%. The configuration-space margin was set to 0.01. We then

randomly sampled configurations within the region (using rejection sampling) to calculate the

percentage of configurations within the region that are in collision. The results are shown in

Figure 3.4.

As we increased the number of infeasible problems the solver must perform before moving

on to a different collision pair, the percent of colliding configurations that were in the region
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Figure 3.5: A comparison of the convex collision-free regions generated without (left) and with (right)
an additional gripper orientation constraint designed to prevent a held mug from spilling its contents.

dropped. The decrease in percent of colliding configurations was not monotonic but that is

likely due to the interplay between adding more hyperplanes during the counterexample step

and the metric used to add hyperplanes, which is changed on the major iterations of IRIS-NP

when we calculate a new maximum inscribed hyperellipsoid. We do not claim the process is

monotonic, only that the percent of colliding configurations within the region converges to

zero in the limit.

3.4.3 Additional Constraints

As mentioned in Section 3.3.3, using the same machinery that is used to generate convex

collision-free regions, IRIS-NP can support additional nonlinear constraints on the config-

uration of the robot. One such constraint is an orientation constraint on the end effector

that prevents a grasped mug from spilling its contents. We demonstrate the support for

additional constraints using the same environment as was described in Section 3.4.1. We

compared generating a region that is only collision free with generating a region that has

the additional constraint that the gripper’s orientation must be kept within 0.15 radians of

level. Both regions were generated using a seed point where the arm is reaching around and
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between pillars, yielding the potential for multiple collisions. For the termination settings,

we do not require the sample point stay inside the region, the iteration limit is 5 and the

minimum growth rate between iterations is 2%. The configuration-space margin was set to

0.01 and we used 3 infeasible sample per collision pair.

A few configurations from each region are shown side by side in Figure 3.5. IRIS-NP is able

to quickly optimize a region that obeys the constraint, keeping the gripper close to level and

the held mug upright everywhere inside the region. As expected, the region without the

gripper orientation constraint is larger as there are more configurations that are collision-free

but violate the orientation constraint. Unexpectedly, the region with the added constraint is

generated faster than the region without it, 110 seconds and 129 seconds respectively. This is

not due to the number of faces added to the polytope, as the region with the constraint has

more at 576 faces than the one that does not at 172 faces. The speedup is likely due to the

fact that the added constraint quickly limited the set of configurations that could lie inside

the region, requiring fewer iterations to maximize region volume.

3.4.4 Scaling to High Dimensions

Since IRIS-NP relies on a local nonlinear optimization to grow large convex regions, it can

scale well to robots with larger numbers of degrees of freedom. To demonstrate this, we

generated regions for a bimanual manipulator consisting of two KUKA LBR iiwa for a total

of fourteen degrees of freedom. The environment, shown in Figure 3.6 contains a shelving

unit that the arms can reach into. For this environment, the region must not only confirm

that neither arm is in collision with any of the environment obstacles, it must also confirm

that the two arms do not collide with each other. IRIS-NP generates large regions in this

environment in 20 minutes for large open regions of the configuration space and as fast as

1 minute for the more constrained regions in the shelves. For further examples of IRIS-NP

scaling to 14 degrees of freedom, see 4.
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Figure 3.6: A bimanual environment consisting of two KUKA LBR iiwa and a shelving unit. IRIS-NP
can scale well to this 14 dimensional environment, constructing some regions in as little as 1 minute.

3.5 Conclusion

In this chapter, we have demonstrated an extension to IRIS to allow it to generate convex

collision-free regions in configuration space when the mapping to task space is nonlinear.

These regions can be generated efficiently and the algorithm, IRIS-NP, scales to high-degree-

of-freedom manipulators. The regions generated by IRIS-NP are incredibly valuable for

planning motions as will be shown in the next chapter and can be made probabilistically

certified. We’ve also shown how this process can handle additional nonlinear constraints on

the configuration and how regions can be refined to handle changes to the environment.

While the ability to refine these regions does enable adapting regions to changes in the

collision geometry, the current refinement process only works well for changes that add

collision geometry or shrink existing regions of C-free. Handling the cases where objects move

significantly or even leave the scene, without having to regenerate the regions from scratch
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is a focus of future work. In addition, understanding how the amount of overlap allowed

between regions affects the trade off between coverage of C-free and planning time, as well as

the impact on the downstream planning pipeline is something we continue to explore.
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Chapter 4

Motion Planning around Obstacles

with Convex Optimization

As the next piece of the motion planning pipeline, in this chapter we consider the problem

of designing continuous collision-free trajectories for robots moving in environments with

obstacles. This work was done in collaboration with Tobia Marcucci and David von Wrangel

and was first published in [45]. We consider a formulation of the collision-free planning

problem similar to the one from [29]. In particular, we assume the robot configuration space

to be partitioned into a collection of “safe” convex regions, i.e., regions that do not intersect

with any of the obstacles. In the special case of polygonal obstacles, this partition can be

constructed exactly.

More generally, approximate decompositions can be efficiently obtained using existing algo-

rithms [46, 1], as well as newly-developed techniques tailored to complex configuration spaces

such as IRIS-NP (discussed in the previous chapter) and C-IRIS [38]. Our goal is then to

design a continuous trajectory that is entirely contained in the union of the safe regions.

The optimality criterion and the additional constraints are allowed to depend on the shape,

the duration, and the velocity of the trajectory. We focus on a limited but important class
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of motion-planning problems with differential constraints, and we present a planner that,

although based on MICP, reliably solves very high-dimensional problems in a few seconds,

through a single convex program. We name this planner after its underlying optimization

framework: Graph of Convex Sets (GCS) Trajectory Optimization.

The main technical contribution of this chapter is showing that the trajectory-design problem

just described can be formulated as a shortest-path problem in Graphs of Convex Sets

(GCS): a recently-studied class of optimizations that lends itself to very efficient mixed-integer

programming [5]. Existing MICP planners parameterize a single trajectory and use binary

variables to assign each of its segments to a safe region. Conversely, with the proposed

planner, the safe regions are connected through an adjacency graph and are each assigned a

trajectory segment. The optimal probabilities of transitioning between the regions are then

computed via an efficient blending of convex and graph optimization. We show that the

MICPs constructed in this way have very tight convex relaxations and, in the great majority

of practical cases, a single convex program, together with a cheap rounding step, is sufficient

to identify a globally-optimal collision-free trajectory. Furthermore, by comparing the costs of

the convex relaxation and the rounded trajectory, GCS Trajectory Optimization automatically

provides a tight bound on the optimality of the motion plan.

To parameterize trajectories we use Bézier curves: a relatively common tool in motion planning

(see e.g. [47, 48, 49]) whose properties are very well suited for mixed-integer programming [50].

This parameterization enables simple convex formulations of the collision-avoidance constraints

and, when incorporated in our workflow, leads to very tractable convex optimizations; typically

Second-Order-Cone Programs (SOCPs). This is in contrast with existing MICP planners,

which require expensive semidefinite constraints to design trajectories that are differentiable

more than three times [29]. (Note that the requirement of smooth trajectories is of practical

nature: to exploit the differential-flatness properties of quadrotors, for example, it is necessary

to design trajectories that are differentiable at least four times [51].)

We demonstrate GCS Trajectory Optimization on a variety of planning problems, ranging from
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an intricate maze to a quadrotor flying through buildings and a fourteen-dimensional dual-arm

manipulation task. The numerical results show that, besides significantly improving on

state-of-the-art MICP planners, our relatively unoptimized implementation of GCS Trajectory

Optimization can also outperform widely-used sampling-based planners by finding higher-

quality trajectories in lower, and consistent, runtimes.

4.1 Problem Statement

In this section we state the motion-planning problem addressed in this chapter in abstract

terms, as an optimization over the infinite-dimensional space of trajectories. It will be the

goal of Section 4.4 to present our finite-dimensional transcription of this optimization, which

will then be tackled using practical convex programming.

As in [29], we look at the problem of planning around obstacles as the problem of navigating

within a collection of “safe” regions. More precisely, we assume the set Q ⊂ Rn of collision-free

robot configurations is decomposed into a family of (possibly overlapping) bounded convex

sets Qi ⊆ Q, with i in a finite index set I. For polyhedral obstacles this decomposition can

be exact, i.e.
⋃

i∈I Qi = Q, while more complex configuration spaces can be decomposed

approximately using efficient existing algorithms [1, 38, 52]. Given the regions Qi, our goal is

to find a time T ∈ R>0 and a trajectory q : [0, T ] → Q that are a solution of the following
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optimization problem:1

minimize aT + bL(q, T ) + cE(q̇, T ) (4.1a)

subject to q ∈ Cη, (4.1b)

q(t) ∈
⋃
i∈I

Qi, ∀t ∈ [0, T ], (4.1c)

q̇(t) ∈ D, ∀t ∈ [0, T ], (4.1d)

T ∈ [Tmin, Tmax], (4.1e)

q(0) = q0, q(T ) = qT , (4.1f)

q̇(0) = q̇0, q̇(T ) = q̇T . (4.1g)

The objective is a weighted sum, with user-specified weights a, b, c ∈ R≥0, of the trajectory

duration T , the length L(q, T ) of the trajectory, and the energy E(q̇, T ) of the time derivative

of the trajectory. Specifically, the latter two quantities are defined as

L(q, T ) :=
∫ T

0
∥q̇(t)∥2dt and E(q̇, T ) :=

∫ T

0
∥q̇(t)∥2

2dt. (4.2)

Constraint (4.1b) asks the trajectory to be continuously differentiable η times. Constraint (4.1c)

ensures that q is contained in the safe sets, and hence is collision free at all times. (Note

that this is a stronger constraint than is usual in sampling-based motion planning, where

trajectories are typically checked to be collision-free only at a finite number of points.) The

set D in (4.1d) is required to be convex and can be used to enforce hard limits on the robot

velocity. The bounds on the trajectory duration in (4.1e) are such that Tmax ≥ Tmin > 0.

Finally, the constraints (4.1f) and (4.1g) enforce the boundary conditions on q and its time

derivative.

The coupling between the trajectory q and its duration T makes it hard to work with

problem (4.1) directly. Similarly to [53], we break this coupling by introducing the path

coordinate s ∈ [0, S], where S has fixed positive value. We relate the coordinate s to the

1In Section 4.5 we show how penalties on the second and higher derivatives of q can be approximately
integrated in our problem formulation. Further costs and constraints are discussed in Section 4.7.1.
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time variable t via the scaling function t = h(s): the map h is required to be monotonically

increasing, and such that h(0) = 0 and h(S) = T . Expressing the trajectory q as a function

of s, we get the curve r(s) := q(h(s)). Through a few simple manipulations, we restate

problem (4.1) in terms of the decision variables r and h as

minimize ah(S) + bL(r, S) + cE
(
ṙ/
√

ḣ, S
)

(4.3a)

subject to r ◦ h−1 ∈ Cη, (4.3b)

r(s) ∈
⋃
i∈I

Qi, ∀s ∈ [0, S], (4.3c)

ṙ(s) ∈ ḣ(s)D, ḣ(s) > 0, ∀s ∈ [0, S], (4.3d)

h(0) = 0, h(S) ∈ [Tmin, Tmax], (4.3e)

r(0) = q0, r(S) = qT , (4.3f)

ṙ(0) = ḣ(0)q̇0, ṙ(S) = ḣ(S)q̇T . (4.3g)

In particular, we have used the chain rule to substitute q̇(t) with ṙ(s)/ḣ(s), and we have

changed integration variable in (4.2) from t to s. This makes ṙ/
√

ḣ : [0, S] → Rn the argument

of the energy function in the objective. The symbol ◦ in (4.3b) denotes the composition

operator: notice that the function h is guaranteed to be invertible by the positivity of ḣ

from (4.3d). Finally, again by the chain rule, the right-hand sides of the velocity constraints

in (4.3d) and (4.3g) are multiplied by the derivative ḣ of the time scaling.

4.2 Background on Bézier Curves

In order to tackle problem (4.3) numerically, it is necessary to parameterize the functions r

and h through a finite number of decision variables. To this end, in Section 4.4, we will employ

Bézier curves. The goal of this section is to recall the definition and the basic properties of

this family of curves.

A Bézier curve is constructed using Bernstein polynomials. The kth Bernstein polynomial of
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degree d, with k = 0, . . . , d, is defined as

βk,d(s) :=
(

d

k

)
sk(1 − s)d−k,

where s ∈ [0, 1]. Note that the Bernstein polynomials of degree d are nonnegative and, by

the binomial theorem, they sum up to one. Therefore, for each fixed s ∈ [0, 1], the scalars

{βk,d(s)}d
k=0 can be thought of as the coefficients of a convex combination. Bézier curves are

obtained using these coefficients to combine a given set of d + 1 control points γk ∈ Rn:

γ(s) :=
d∑

k=0
βk,d(s)γk.

It is easily verified that Bézier curves enjoy the following properties.

• Endpoint values. The curve γ starts at the first control point and ends at the last control

point: γ(0) = γ0 and γ(1) = γd.

• Convex hull. The curve γ is entirely contained in the convex hull of its control points:

γ(s) ∈ conv({γk}d
k=0) for all s ∈ [0, 1].

• Derivative. The derivative γ̇ of the curve γ is a Bézier curve of degree d − 1 with control

points γ̇k = d(γk+1 − γk) for k = 0, . . . , d − 1.

• Integral of convex function. For a convex function f : Rn → R, we have2

∫ 1

0
f(γ(s))ds ≤ 1

d + 1

d∑
k=0

f(γk). (4.4)

4.3 The Optimization Framework

Our strategy for solving problem (4.3) is to first transcribe it as a Shortest-Path Problem

(SPP) in GCS, and then use the techniques recently presented in [5] to formulate this SPP

2To prove (4.4), one uses the convexity of f , which gives f(γ(s)) ≤
∑d

k=0 βk,d(s)f(γk), and the formula∫ 1
0 βk,d(s)ds = 1/(d + 1) for the integration of Bernstein polynomials.

40



as a compact MICP. As we will see in Section 4.6, the convex relaxation of this MICP is

extremely tight in practice, up to the point that a cheap rounding of its solution is almost

always sufficient to design a globally-optimal trajectory. In this section, we give a formal

statement of the SPP in GCS and we propose a simple randomized rounding for the convex

relaxation of our MICP. The latter will effectively reduce the computational cost of the MICP

to that of a convex program.

4.3.1 Shortest Paths in Graphs of Convex Sets

As described in Section 2.3.1, the Shortest-Path Problem (SPP) in GCS generalizes the

classical SPP with nonnegative edge lengths. The optimization that the SPP in GCS seeks to

solve can be written as

minimize
∑

e:=(u,v)∈Ep

ℓe(xu, xv) (4.5a)

subject to p ∈ P, (4.5b)

xv ∈ Xv, ∀v ∈ p, (4.5c)

(xu, xv) ∈ Xe, ∀e := (u, v) ∈ Ep, (4.5d)

with the variables describe in detail in 2.3.1. Unlike the classical SPP with nonnegative

edge lengths, which is easily solvable in polynomial time, the SPP in GCS can be verified to

be NP-hard [5, Theorem 1]. However that work also demonstrated how to achieve a tight

relaxation that we can leverage to efficiently approximate the optimal solution. To formulate

a problem as an SPP in GCS we need to: define a graph G := (V, E), assign a set Xv to

each vertex v ∈ V, and pair each edge e ∈ E with a constraint set Xe and a length function

ℓe.

4.3.2 Rounding the Convex Relaxation of the Shortest-Path Problem

Using recently-developed techniques, once all the components that make up problem (4.5)

are defined, the problem can be formulated as a compact MICP with very tight convex

41



relaxation [5, Equation 21]. In this thesis, instead of tackling this MICP with an exact

branch-and-bound algorithm, we solve its convex relaxation and we recover an approximate

solution via a cheap randomized rounding, that is tailored to the graph structure beneath

problem (4.5). Given the hardness of (4.5), this approach cannot be guaranteed to work for

all instances. Nevertheless, for our planning problems, this strategy turns out to be extremely

effective in practice. In addition, this workflow automatically provides us with a bound on

the optimality of the approximate solution we identify. In fact, denoting with Crelax the cost

of the convex relaxation, with Copt the optimal value of (4.5), and with Cround the cost of the

rounded solution, we have Crelax ≤ Copt ≤ Cround. The optimality gap of the rounded solution

δopt := (Cround − Copt)/Copt can be then overestimated as δrelax := (Cround − Crelax)/Crelax

with no additional computation.

For the rounding step we propose a randomized strategy. The MICP from [5] parameterizes a

path p by using a binary variable φe per edge e ∈ E , with φe = 1 if and only if e ∈ Ep. In the

convex relaxation, the binary requirement is relaxed to φe ∈ [0, 1] and the optimal value of φe

is naturally interpreted as the probability of the edge e being a part of the shortest path. To

round these probabilities we then run a randomized depth-first search with backtracking. We

initialize our candidate path as p := (σ), and we denote with Eu the set of edges e := (u, v)

that connect u to a vertex v that the rounding algorithm has not visited yet. At each iteration,

calling u the last vertex in the path p, we traverse the edge e := (u, v) ∈ Eu with probability

φe/
∑

e′∈Eu
φe′ , and we append a new vertex v to the path p. If a dead end occurs, i.e. if

φe = 0 for all e ∈ Eu, we backtrack to the last vertex in p that admits a way out. The

algorithm terminates when v = τ and the target is reached.3 Once a path p is identified, its

cost, together with the optimal values of the continuous variables xv, is recovered by solving

3Making this rounding strategy deterministic by, e.g., selecting at each iteration the edge e ∈ Eu with larger
probability φe is, in general, a bad idea. To see this, imagine a graph where multiple paths represent the same
underlying decision (e.g. multiple symmetrical solutions). Since the convex relaxation will equally split the
probability of this decision being optimal between the edges of these many paths, a greedy deterministic search
might end up selecting an alternative path, corresponding to a decision that is overall less likely to be optimal.
Conversely, in the same scenario, a randomized rounding correctly weights the two decisions (in expectation).
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a small convex program:

minimize (2.5a) subject to (2.5c) and (2.5d). (4.6)

It is easily verified that this rounding strategy always finds a valid path (provided that the

convex relaxation of the MICP is feasible). On the other hand, the cost of the path p we

find can in principle be infinite, since there might not be an assignment for the continuous

variables {xv}v∈p that satisfies the constraints (2.5c) and (2.5d).

To increase our chances of finding a high-quality approximate solution, we apply the randomized

rounding multiple times. First we run the depth-first search until N distinct paths are identified,

or a maximum number M of trials is reached. Then we evaluate the cost of each distinct path

by solving a convex program of the form (4.6), and we return the rounded solution of lowest

cost Cround.4 We emphasize that this process is extremely cheap: the runtime of a depth-first

search is practically zero (since it is a purely-discrete search in the graph G), while the convex

programs (4.6) are tiny, very sparse, and parallelizable. In this paper we set N := 10 and

M := 100. These values lead to rounding times that are negligible with respect to the solution

time of the convex relaxation and, in our experiments, they are typically sufficient to solve

the planning problem to global optimality.

Many more details on the MICP formulation of (4.5) and its convex relaxation can be found

in [5]. For the scope of this thesis, we will treat the framework from [5] as a modeling language

that allows us to formulate, and efficiently solve, an SPP in GCS just by providing the graph

G, the edge lengths ℓe, and the sets Xv and Xe.

4This sequence of convex optimizations is stopped early if the cost of a path coincides with the cost of the
convex relaxation Crelax, since this proves the global optimality of the path at hand.
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4.4 Collision-Free Motion Planning using Graphs of Convex

Sets

We now illustrate how problem (4.3) can be transcribed as an SPP in GCS. As laid out in

the previous section, to formulate an SPP in GCS we need to: define a graph G := (V, E),

assign a set Xv to each vertex v ∈ V , and pair each edge e ∈ E with a constraint set Xe and a

length function ℓe. Below we describe how each of these components is constructed. At a high

level, the plan is to pair each safe region Qi with two Bézier curves: a trajectory segment

ri, and a time-scaling function hi that dictates the speed at which the curve ri is traveled.

The functions r and h in problem (4.3) will be then reconstructed by sequencing the Bézier

curves ri and hi paired with the regions Qi that are selected by the SPP. Figure 4.1 provides

a visual support to the upcoming discussion.

4.4.1 The Graph G

We let the vertex set V contain a vertex i per safe set Qi in the decomposition of the

configuration space.5 In addition, we introduce a source vertex σ and a target vertex τ :

these will be used to enforce the boundary conditions (4.3e)–(4.3g). Overall, we then have

V := I ∪ {σ, τ}.

We include in the edge set E all the edges (i, j) such that the intersection of Qi and Qj is

nonempty. Note that, by the symmetry of this condition, (i, j) ∈ E implies (j, i) ∈ E . Similarly,

we let (σ, i) ∈ E and (i, τ) ∈ E if the set Qi contains the points q0 and qT , respectively. In

symbols,

E := {(i, j) : Qi ∩ Qj ̸= ∅} ∪ {(σ, i) : q0 ∈ Qi} ∪ {(i, τ) : qT ∈ Qi}.

Figure 4.1c shows the graph corresponding to the collision-free regions Qi, the staring point

q0, and the ending point qT depicted in Figure 4.1b.

5As we will see in Section 4.4.2, the safe set Qi does not coincide with the convex set Xi paired with vertex
i in the SPP.
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Figure 4.1: Formulation of the collision-free motion-planning problem as an SPP in GCS. (A) Robot
environment with two obstacles in red and with the initial q0 and final qT configurations. (B) Exact
decomposition of the free space into convex safe regions Qi. (C) Intersection graph G for the space
decomposition, with a vertex i per region Qi and with the vertices σ and τ representing the initial and
final configurations. (D) A trajectory segment qi is assigned to each region Qi. (E,F) Traversing a
path p in the intersection graph activates costs and constraints on the joint shape of the corresponding
trajectory segments.

4.4.2 The Convex Sets Xv

The source σ and the target τ are auxiliary vertices used to enforce the boundary condi-

tions (4.3e)–(4.3g); they require no decision variables and can be safely paired with the empty

set Xσ := Xτ := ∅.

To each of the vertices i ∈ I, we assign two Bézier curves: ri : [0, 1] → Qi (depicted in

Figure 4.1d) and hi : [0, 1] → [0, Tmax]. Both these curves have a user-defined degree d ≥ η + 1,

where η is the required degree of differentiability of the overall trajectory q.6 The convex set

6The assumption that the curves r and h have the same degree is without loss of generality. The degree
elevation property of Bézier curves allows us to describe a Bézier curve γ of degree d as a Bézier curve γ′ of
arbitrary degree d′ ≥ d, with control points that are linear functions of the control points of γ. Any convex
cost or constraint on the control points of r and h, that takes advantage of their equal degree, can then be
mapped to an equivalent convex cost or constraint on the control points of curves r and h of different degree.
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Xi contains the control points of the two curves, i.e. xi := (ri,0, . . . , ri,d, hi,0, . . . , hi,d), and is

defined by the following conditions:

ri,k ∈ Qi, k = 0, . . . , d, (4.7a)

ḣi,k ≥ ḣmin, k = 0, . . . , d − 1, (4.7b)

ṙi,k ∈ ḣi,kD, k = 0, . . . , d − 1, (4.7c)

hi,0 ≥ 0, hi,d ≤ Tmax, (4.7d)

The convex constraint (4.7a) requires all the control points of ri to lie in the collision-free set

Qi. By the convex-hull property of the Bézier curves from Section 4.2, this implies that the

whole trajectory segment ri is contained in Qi. Again by the properties of Bézier curves, the

derivative ḣi of the time scaling hi is itself a Bézier curve. Condition (4.7b) lower bounds each

control point of this derivative with a small positive constant ḣmin which, unless differently

specified, is set to 10−6. By the convex-hull property, this implies that ḣi(s) is positive for

all s ∈ [0, 1], and hence that hi is strictly increasing. Since the control points of ḣi are linear

functions of the ones of hi, constraint (4.7b) is linear in xi. Using the definition of convexity

and the positivity of ḣi,k, condition (4.7c) can be verified to be convex in ṙi,k and ḣi,k: this

ensures that ṙi(s) ∈ ḣi(s)D for all s ∈ [0, 1], since the (n + 1)-dimensional Bézier curve (ṙi, ḣi)

is a convex combination of the control points (ṙi,k, ḣi,k). Finally, the constraints in (4.7d) are

conservative bounds that ensure the boundedness of Xi, as assumed in Section 4.3.1.

We remark that asking the control points of a Bézier curve to be in a convex set is only a

sufficient condition for the containment of the whole curve. Nonetheless, the conservativeness

of the conditions in (4.7) can be attenuated by increasing the degree of the curves ri and

hi.

4.4.3 The Convex Sets Xe

The first role of the edge constraints is to impose the boundary conditions (4.3e)–(4.3g).

To this end, for all edges e := (σ, i) ∈ E , we define Xe through the conditions ri,0 = q0,
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ṙi,0 = ḣi,0q̇0, and hi,0 = 0. Given the endpoint property of Bézier curves, these linear

constraints on the vector xi imply ri(0) = q0, ṙi(0) = ḣi(0)q̇0, and hi(0) = 0. Similarly, for all

the edges e := (i, τ), we define Xe via ri,d = qT , ṙi,d−1 = ḣi,d−1q̇T , and hi,d ∈ [Tmin, Tmax]. For

these edges, we then have ri(1) = qT , ṙi(1) = ḣi(1)q̇T , and hi(1) ∈ [Tmin, Tmax].

The second role of the edge constraints is to enforce the differentiability of the overall curves

r and h. For all the edges e := (i, j) ∈ E ∩ I2, we then define Xe through the following linear

equalities:

r
(l)
i,d−l = r

(l)
j,0 and h

(l)
i,d−l = h

(l)
j,0, l = 0, . . . , η. (4.8)

Here r
(l)
i,k denotes the kth control point of the lth derivative of ri. In particular, r

(0)
i,k = ri,k,

r
(1)
i,k = ṙi,k, and so on. The same notation is used for hi.

4.4.4 The Edge Lengths ℓe

The edge lengths ℓe must reproduce the cost in (4.3a) by appropriately weighting the cost of

each transition in the graph G. This is achieved by assigning to each edge (σ, i) outgoing the

source a length of zero, and to each edge (i, j) or (i, τ) the length

a(hi(1) − hi(0)) + bL(ri, 1) + cE

(
ṙi/
√

ḣi, 1
)

. (4.9)

While the first term in this sum is immediately restated as the linear cost a(hi,d − hi,0), the

other two terms require more work to be expressed as convex functions of xi that are amenable

to efficient numerical optimization.

One option is to approximate to arbitrary precision the last two terms in (4.9) using numerical

integration. Since both L and E can be verified to be convex in the functions ri and hi,

the resulting expression would be convex in xi, but its numerical implementation would

require a large number of second-order-cone constraints, proportional to the density of the

integration grid. Instead, we prefer to minimize the following upper bounds of the last two
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terms in (4.9):

L(ri, 1) ≤
d−1∑
k=0

∥ri,k+1 − ri,k∥2 and E

(
ṙi/
√

ḣi, 1
)

≤
d−1∑
k=0

∥ri,k+1 − ri,k∥2
2

hi,k+1 − hi,k
. (4.10)

The first inequality overestimates the length of ri by summing the distances between its

control points. The validity of this bound can be verified by applying inequality (4.4) to the

Bézier curve ṙi and the convex function ∥ṙi∥2. The second inequality does a similar operation

with the energy E, and can be checked by applying (4.4) to the Bézier curve (ṙi, ḣi) and the

function ∥ṙi∥2
2/ḣi, which is convex for ḣi > 0.

4.4.5 Reconstruction of a Collision-Free Trajectory

Once the SPP (2.5) is solved, the optimal path p determines the sequence of safe regions

Qi that the robot must traverse. To reconstruct the trajectory r and the time scaling h, we

sequence the Bézier curves ri and hi associated with these regions, as shown in Figure 4.1f

for η := 0. Precisely, if the optimal path is p := (σ, i0, . . . , iS−1, τ), for ν = 0, . . . , S − 1, we

define

r(s) := riν (s − ν) and h(s) := hiν (s − ν), ∀s ∈ [ν, ν + 1].

Let us verify that the functions r and h just defined form an optimal solution of problem (4.3),

up to the conservativeness of the constraints (4.7) and the cost bounds (4.10). The constraints

in (4.8) imply r, h ∈ Cη. This, in turn, gives h−1 ∈ Cη and (4.3b). That the collision-avoidance

constraint (4.3c) is met, is implied by (4.7a). The velocity constraint in (4.3d) is verified thanks

to (4.7c), while (4.7b) ensures that the function h is monotonically increasing, as required by

the second condition in (4.3d). The boundary conditions (4.3e)–(4.3g) are verified because of

the constraints on the edges (σ, i) and (i, τ) described in Section 4.4.3. Finally, summing the

edge lengths (4.9) for all the edges traversed by the path p we get back (4.3a).
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4.4.6 Class of Optimization Problems

Let us conclude this section by highlighting that, by feeding the SPP in GCS we just constructed

to the machinery from [5], we obtain very tractable optimization problems. The framework

in [5] relies on perspective functions [54, Section IV.2.2] to handle the interplay between the

discrete and continuous components of problem (2.5). These are used to effectively “turn off”

the edge costs ℓe and the convex constraints (xu, xv) ∈ Xe and xv ∈ Xv corresponding to the

edges e and the vertices v that do not lie along the path p, as required in problem (2.5). In

case of polytopic safe sets Qi and a purely-minimum-time objective (a := 1 and b := c := 0), it

can be verified that the perspective operations lead to a mixed-integer Linear Program (LP),

which, as discussed in Section 4.3.2, we tackle as a simple LP followed by a rounding stage.

More generally, when the safe sets Qi are quadratics or the cost weights b and c are nonzero, we

obtain a mixed-integer SOCP, which we solve as a single SOCP plus rounding. In both cases,

we then have simple convex optimizations for which very efficient solvers are available (e.g.

MOSEK and Gurobi). Conversely, in order to design trajectories that are differentiable more

than three times, existing MICP planners formulate prohibitive mixed-integer semidefinite

programs that cannot be tackled with common solvers [29].

4.5 Penalties on the Higher-Order Derivatives of the Trajec-

tory

In many practical applications, we find the need to expand our problem formulation (4.1) to

include convex penalties on the second and higher time derivatives of the trajectory q. These

can be used, for example, to indirectly limit the control efforts: for a robot manipulator, in

fact, the joint torques needed to execute a trajectory q are proportional to the acceleration

q̈ via the inertia matrix; while for a quadrotor the differential-flatness property makes the

thrusts a function of the snap q(4) [51]. Unfortunately, even though convex in q, these costs

become nonconvex when in problem (4.3) we optimize jointly over the shape r and the time

scaling h of our trajectories. While we are currently working on the design of tight convex
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approximations of these costs, in this section we show how simple regularization terms can be

added to our SPP in GCS to prevent the higher-order derivatives of q from growing excessively

in magnitude.

For simplicity, let us first consider the regularization of the second derivative. Using the chain

rule, we express the acceleration q̈ in terms of the derivatives of r and h:

q̈(t) = r̈(s) − q̇(t)ḧ(s)
ḣ(s)2 ,

where q̇(t) = ṙ(s)/ḣ(s) and s = h−1(t). Using this expression, we see that a convex function

of q̈ does not, in general, translate into a convex function of r and h, and hence it cannot

be directly minimized in our programs. However, provided that we choose a bounded set D

to constrain the velocity q̇, the magnitude of q̈ can be kept under control by increasing the

minimum value ḣmin of ḣ(s) and by penalizing the magnitudes of r̈ and ḧ. Letting ε be a

small positive scalar, a simple way to achieve the latter is the cost term

ε(E(r̈, S) + E(ḧ, S)), (4.11)

which can be enforced using the ideas from Section 4.4.4.

The regularization of the higher-order derivatives of q follows the same logic. Specifically, using

Faà di Bruno’s formula for differentiating composite functions, we see that the magnitude

of q(m) can be regularized by increasing ḣmin and by penalizing the magnitudes of r(l) and

h(l), for l = 2, . . . , m. The numerical results in the next section show that, even though these

regularization terms are not as tight as the velocity bounds in (4.10), they can sensibly smooth

the trajectories we design, while only minimally affecting their cost.

4.6 Numerical Results

We demonstrate the effectiveness of GCS Trajectory Optimization on a variety of numerical

examples. In Section 4.6.1 we analyze a simple two-dimensional problem, and we illustrate

how the different components of problem (4.1) affect the shape of the trajectories we design.
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In Section 4.6.2 we increase the environment complexity and we apply our algorithm to design

paths across an intricate maze. In Section 4.6.3, we run a statistical analysis of the performance

of GCS Trajectory Optimization on the task of planning the flight of a quadrotor through

randomly-generated buildings. In Section 4.6.4, we show that, with respect to widely-used

sampling-based algorithms, our algorithm is capable of designing higher-quality trajectories

in less runtime. Finally, in Section 4.6.5, we demonstrate the scalability of GCS Trajectory

Optimization with a bimanual manipulation problem in a fourteen-dimensional configuration

space.

The code necessary to reproduce all the results presented in this section can be found

at https://github.com/mpetersen94/gcs. It uses an implementation of the SPP in

GCS provided by Drake [42]. In addition to the techniques presented in [5], the convex

optimizations we solve in this paper feature additional tightening constraints, tailored to the

structure of the graphs in our planning problems, and a pre-processing step that eliminates the

redundancies in our graphs. These are described in detail in Appendix A.1. The optimization

solver used for the numerical experiments is MOSEK 9.2. All experiments are run on a

desktop computer with an Intel Core i7-6950X processor and 64 GB of memory.

4.6.1 Two-Dimensional Example

The goal of our first numerical example is to illustrate how the different parameters in

problem (4.1) affect the shape of the trajectories we design. To this end, we consider the

simple two-dimensional environment depicted in Figure 4.2a. The initial q0 := (0.2, 0.2) and

final qT := (4.8, 4.8) configurations are marked with a black cross; the obstacles are the red

polygons. The convex decomposition {Qi}i∈I of the free space Q is depicted in light blue in

Figure 4.2b.

The first planning problem we analyze asks to minimize the total Euclidean length of the

trajectory. The weights in the objective (4.1a) are then a := c := 0 and b := 1. The

trajectory q is only required to be continuous (η := 0), while velocity and time constraints
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Figure 4.2: Two-dimensional trajectory-design problem from Section 4.6.1. (a) Environment with
obstacles in red; the initial q0 and final qT configurations are marked with crosses. (b) Free space
decomposed in convex safe regions Qi (in light blue).

are irrelevant for a minimum-length problem. We let the degree of the Bézier curves r

and h be d := 1 (i.e. straight lines). Solving the convex relaxation of the SPP in GCS

we obtain the cost Crelax = 10.77, while the rounding step from Section 4.3.2 gives us the

feasible trajectory depicted in Figure 4.3a with cost Cround = 10.96. By comparing these

two numbers, GCS Trajectory Optimization automatically provides the optimality bound

δrelax := (Cround−Crelax)/Crelax = 1.7% for the rounded solution. However, by actually running

a slightly more expensive mixed-integer solver, it is possible to verify that the rounded solution

is indeed the global minimizer: Cround = Copt and δopt := (Cround − Copt)/Copt = 0%.

For the second scenario, we consider a minimum-time problem with velocity limits. The

weights in problem (4.1) are set to a := 1 and b := c := 0. We look for a continuous trajectory

(η := 0), whose velocity q̇ is contained in the box D := [−1, 1]2 for all times t. The bounds

on the trajectory duration are set to Tmin ≈ 0 and Tmax ≫ 0, so that they do not affect the

optimization problem. For this problem we let the optimizer decide the initial q̇(0) and final

q̇(T ) velocities by dropping the boundary conditions (4.1g). Once again, we use Bézier curves

of degree d := 1. The trajectory generated by GCS Trajectory Optimization is illustrated

in Figure 4.3b. The convex relaxation has cost Crelax = 9.88, while the rounded trajectory

has duration Cround = 10.60 and, therefore, it is certified to be within δrelax = 7.3% of the
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Figure 4.3: Trajectories (blue) designed by GCS Trajectory Optimization for the planning problems
in Section 4.6.1. (a) Minimum-length objective. (b) Minimum-time objective with velocity limits
q̇ ∈ [−1, 1]2. (c) Minimum-time objective with velocity limits, differentiability constraint q ∈ C2, and
regularized acceleration. GCS Trajectory Optimization finds the globally-optimal trajectory (δopt = 0%)
for each of these tasks by rounding the solution of a single convex program. With no additional
computation, it also certifies the following optimality gaps δrelax for the rounded solutions: 1.7% for
(a), 7.3% for (b), and 3.0% for (c).
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Figure 4.4: (a) Velocity profile for the minimum-time trajectory depicted in Figure 4.3b, with dotted
lines representing discontinuities. (b) Velocity profile for the smoothed trajectory in Figure 4.3c. The
horizontal component of q̇ is blue, the vertical is orange. In both the problems, the velocity components
are constrained to lie in the interval [−1, 1].

global minimum. As before, a mixed-integer solver can be used to verify that the trajectory

generated by GCS Trajectory Optimization is actually globally optimal (δopt = 0%).

In juxtaposition to the minimum-length case, the minimum-time trajectory in Figure 4.3b

passes below the central obstacle. This is because, although shorter, the trajectory in
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Figure 4.3a is everywhere almost horizontal or vertical, and in these directions the speed

is limited by the constraint set D to ∥q̇∥2 ≤ 1. The route below the obstacle is slightly

longer, but it allows diagonal motion with speed ∥q̇∥2 ≤
√

2. In Figure 4.4a we report the

velocity q̇ corresponding to the minimum-time trajectory: as expected, the optimal velocity is

discontinuous and, at all times t, either the horizontal or the vertical component of q̇ reaches

the upper bound of 1.

Finally, we show the effects of the regularization strategy discussed in Section 4.5 on the

smoothness of the minimum-time trajectory. We require the curve q to be twice continuously

differentiable (η := 2). The initial and final velocities are forced to be zero, q̇0 := q̇T := 0,

and we set the degree of the Bézier curves to d := 6. We increase ḣmin from its default

value of 10−6 to 10−1, and we add the penalty (4.11) with weight ε = 10−1. The resulting

trajectory is reported in Figures 4.3c and 4.4b. As can be seen, the regularization smooths the

optimal trajectory significantly and even changes its homotopy class. The costs of the convex

relaxation and the rounded solution increase to Crelax = 27.29 and Cround = 28.10, respectively.

The optimality gap certified by GCS Trajectory Optimization is hence δrelax = 3.0%, but,

once again, a mixed-integer solver can be used to verify that the rounded solution is actually

globally optimal (δopt = 0%). The duration of the smoothed trajectory is T = 13.65.

4.6.2 Motion Planning in a Maze

In this example we consider a two-dimensional planning problem of higher complexity than

the one just analyzed: we design trajectories through the maze depicted in Figure 4.5. The

maze has 50 · 50 = 2, 500 cells. The starting cell is the one at the bottom left, the goal cell is

in the top right. The graph of convex sets is constructed by making each cell into a safe set

Qi. Bidirectional edges are drawn between cells that are not separated by a wall. The maze

is generated using random depth-first search. Since mazes constructed using this algorithm

have all cells connected to the starting cell by a unique path, to make the planning problem

more challenging, we create multiple paths to the goal by randomly selecting and removing

100 walls from the maze.
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(a) (b)

Figure 4.5: Solutions of the motion-planning problems through a maze from Section 4.6.2.
(a) Minimum-length trajectory connecting the start (bottom-left cross) and the goal (top-right cross).
(b) Solution of the minimum-time problem with velocity constraint q̇ ∈ [−1, 1]2 and regularized acceler-
ation. The solutions of these two problems bifurcate at the red circle, and take different paths across
the maze. For both problems, GCS Trajectory Optimization identifies the globally-optimal trajectory
via a single SOCP.

As in the previous example, we consider a minimum-length problem and a minimum-time

problem with regularized acceleration. We set the parameters (a, b, c, η, D, Tmin, Tmax, q̇0, q̇T , d)

to the same values we adopted in the corresponding problems in Section 4.6.1. The optimal

trajectories across the maze corresponding to the two objective functions are reported in

Figures 4.5a and 4.5b. As it can be seen, the two curves visit different sequences of safe sets

(cells). In particular, the sharp turn taken by the minimum-length trajectory, circled in red

in Figure 4.5a, would be expensive for the second problem, where we have a penalty on the

magnitude of the acceleration. For the curve in Figure 4.5b, GCS Trajectory Optimization

decides then to take a longer but smoother route to the goal. For both the problems under

analysis, the convex relaxation returns a solution with binary probabilities φe. Rounding

is then unnecessary in this case, and the solution of the convex relaxation is automatically

certified to be globally optimal (δrelax = δopt = 0%).
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We find this example powerful because it highlights the transparency with which GCS

Trajectory Optimization blends discrete and continuous optimization. Finding a discrete

sequence of cells to traverse the maze in Figure 4.5 is a trivial graph search. Also finding a

path of minimum length, as in Figure 4.5a, is a relatively simple problem: in fact, in two

dimensions, the Euclidean SPP is solvable in polynomial time by constructing a discrete

visibility graph [55]. On the other hand, designing a trajectory like the minimum-time one in

Figure 4.5b is a substantially more involved operation. GCS Trajectory Optimization gives us

a unified mathematical framework that can tackle all these problems very efficiently, while

embracing both the higher-level combinatorial structure and the lower-level convexity of our

planning problems.

In conclusion of this example let us illustrate another axis in which GCS Trajectory Opti-

mization significantly improves on existing MICP planners. The worst-case runtime of a

mixed-integer solver is typically exponential in the number of binaries in the optimization

problem. Previous MICP planners parameterize a single trajectory and subdivide it in a fixed

number of segments, then they use a binary variable to assign each segment to each safe

region Qi [29]. Given that, in the worst case, the optimal trajectory might visit all the safe

regions Qi, this approach requires a total of |I|2 binary variables. For the maze in Figure 4.5,

we would then have |I|2 = 2, 5002 = 6.25 · 106 binaries: a quantity well beyond the capability

of today’s solvers. On the contrary, GCS Trajectory Optimization uses only two binaries per

pair of intersecting regions, and it yields an MICP with only 5198 ≈ 2|I| binaries, which is

solved exactly through a single SOCP.

4.6.3 Statistical Analysis: Quadrotor Flying through Buildings

In this section we present a statistical analysis of the performance of GCS Trajectory Op-

timization. Taking inspiration from [29], we test our algorithm on the task of planning the

motion of a quadrotor through randomly-generated buildings. An example of such a task

is illustrated in Figure 4.6: while moving from the brown to the green block, the quadrotor

needs to fly around trees, and through doors and windows. A brief description of how the
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Figure 4.6: One of the randomly-generated environments for the statistical analysis in Section 4.6.3.
The trajectory generated by GCS Trajectory Optimization for the center of mass of the quadrotor is
depicted in blue. The robot orientation is reconstructed taking advantage of the differential flatness
of the system dynamics. The snapshots show the starting and ending configurations, as well as the
quadrotor flying close to the obstacles in the environment.

buildings are generated can be found in Appendix A.2.

Even though the configuration space of a quadrotor is six dimensional, the differential-flatness

property of this system allows us to plan dynamically-feasible trajectories directly in the

three-dimensional Cartesian space. In fact, given a four-times-differentiable trajectory of the

position of the center of mass, the time evolution of the quadrotor’s orientation, together

with the necessary control signals, is uniquely defined and easily computed [51]. The space in

which we design trajectories is then Q ⊂ R3 and, given that all the obstacles have polyhedral

shape (as in Figure 4.6), the decomposition of this space into convex sets Qi can be done

exactly. Appendix A.2 provides more details on this decomposition.
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In the formulation of the planning problem (4.1), we penalize with equal weight the duration

and the length of the trajectory (a := b := 1 and c := 0). We parameterize the trajectories

using Bézier curves of degree d := 7 and, to take advantage of the differential flatness, we

require these curves to be continuously differentiable η := 4 times. The velocity is constrained

to be in the box D := [−10, 10]3 for all times.7 The limits Tmin and Tmax on the duration of

the trajectory have values that do not affect the optimal solution. As said, the initial q0 and

final qT positions are above the brown and green boxes, respectively. The boundary values of

the velocity are zero q̇0 := q̇T := 0, as well as the boundary values of the second and the third

derivatives of the trajectory.8 Because of the differential flatness, the latter ensure that the

quadrotor starts and ends the motion with horizontal orientation and zero angular velocity.

Finally, to regularize the acceleration of the quadrotor, as discussed in Section 4.5, we set

ḣmin := 10−3.

We plan the motion of the quadrotor through 100 random buildings. To assess the quality

of the trajectories generated by GCS Trajectory Optimization, we look at the optimality

gaps δopt and δrelax. As in the previous examples, the value of δopt is computed (just for

analysis purposes) by solving the planning problem to global optimality using a mixed-integer

algorithm, while δrelax is the upper bound on δopt that is automatically provided to us by GCS

Trajectory Optimization. The histograms of these two quantities across the 100 experiments

are reported in Figure 4.7. Figure 4.7a shows that on 95% of the environments GCS Trajectory

Optimization designs a trajectory whose optimality gap δopt is smaller than 1%, and, even

in the worst case, is only 2.9%. From Figure 4.7b, we see that on 68% (respectively 84%)

of the problems GCS Trajectory Optimization certifies that the returned solution is within

4% (respectively 7%) of the global optimum. The largest optimality gap δrelax certified by

GCS Trajectory Optimization is 27.1%, and it corresponds to an environment where we have

7To contextualize the velocity limits, consider that the random environments are squares with sides of
length 25, and the collision geometry of the quadrotor is a sphere of radius 0.2 (see also Appendix A.2).

8For l = 2, . . . , L, the derivative constraints q(l)(0) = q(l)(T ) = 0 in problem (4.1) map to the conditions
r(l)(0) = h(l)(0)q̇0 and r(l)(S) = h(l)(S)q̇T in problem (4.3). The latter are linear in the decision variables of
our SPP in GCS, and can be easily incorporated among the edge constraints listed in Section 4.4.3.
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Figure 4.7: Histograms of the optimality gaps registered in the statistical analysis in Section 4.6.3.
(a) Optimality gap δopt: percentage gap between the cost of the solution returned by GCS Trajectory
Optimization and the global optimum. On 95% of the environments GCS Trajectory Optimization
designs a trajectory with optimality gap smaller than 1%, and, even in the worst case, it finds a solution
whose cost is only 2.9% larger than the global minimum. (b) Optimality gap δrelax ≥ δopt automatically
certified by GCS Trajectory Optimization. On 68% (respectively 84%) of the problems GCS Trajectory
Optimization certifies that the returned solution has optimality gap smaller than 4% (respectively 7%).

δopt = 2.3%. Therefore, even for this problem instance, the moderately-large value of δrelax is

mostly due to the convex relaxation being slightly loose, rather than the rounded solution

being suboptimal.

We report that, for the statistical analysis in this subsection, we set the MOSEK parameter

MSK_IPAR_INTPNT_SOLVE_FORM = 1, which tells the interior-point solver to interpret our

optimizations in standard primal form [56]. Without this, MOSEK encountered numerical

issues in the solution of the convex relaxations of the motion-planning problems. This

parameter choice has the drawback of sensibly slowing down the planning times: the solve

times for the convex relaxations of the 100 motion plans have median 3.7 s, mean 6.4 s,

and maximum 31.2 s. However, we are very confident that a deeper analysis of these

numerical issues and a tailored pre-solve stage, can reduce these times by at least one order

of magnitude.
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Figure 4.8: Construction of the GCS for the motion planning of the robot arm in Section 4.6.4.
(a) Five seed poses {qk}5

k=1 for the region-inflating algorithm from [1]. These are chosen to fill the
space within the rack and the bins. (b) The remaining three seed poses {qk}8

k=6, chosen to approximately
fill the free configuration space. (c) The graph G obtained by processing the safe regions Qi. The
light-blue vertices correspond to the seed poses in (a), the light-brown ones to the additional seeds from
(b). Vertices are labeled with the subscripts of the corresponding poses.

4.6.4 Comparison with PRM: Motion Planning of a Robot Arm

In this subsection we consider the motion planning of a robot arm, and we compare GCS

Trajectory Optimization with commonly-used sampling-based planners. GCS Trajectory

Optimization is a multiple-query algorithm, meaning that the same data structure (the

graph of convex sets) can be used to plan the motion of the robot for many initial and final

conditions. Its natural sampling-based comparison is then the Probabilistic-RoadMap (PRM)

algorithm [20]. The robot arm we use in this benchmark is the KUKA LBR iiwa with n = 7

degrees of freedom: we have chosen a seven-dimensional configuration space Q since PRM

methods can struggle in larger spaces, and both algorithms under analysis can easily design

trajectories in lower dimensions.

The robot arm is depicted in Figure 4.8, and it is required to move within an environment

composed of a rack (in front of the robot) and two bins (on the sides). As opposed to the

examples considered so far, an exact decomposition of the free configuration space Q is

not feasible in this application. We then adopt the approximate decomposition algorithm,

IRIS, from [1]; more precisely, its extension to configuration spaces with nonconvex obstacles,

60



IrisInConfigurationSpace, implemented in Drake [42]. Given a “seed pose” of the

robot, this algorithm inflates a polytope of robot configurations that are not in collision

with the environment. While these polytopes could be rigorously certified to be collision

free [38], for the experiments reported here we use a fast implementation based on nonconvex

optimization that does not provide a rigorous certification, but that appears to be very reliable

in practice.

Automatic seeding of the regions is certainly possible, but we have found that producing

seeds manually via inverse kinematics, together with a simple visualization of the graph G to

check the connectivity between regions Qi, is straightforward and highly effective. We use

IRIS to construct a total of eight safe polytopes Qi, whose corresponding seed poses qi are

depicted in Figures 4.8. The seed poses {qi}5
i=1 in Figures 4.8a are chosen to create polytopes

Qi that cover the volume of configuration space for which the end effector is in the vicinity

of the rack and the bins. The poses {qi}8
i=6 in Figures 4.8b are picked to approximately fill

the rest of the free space. The construction of the safe regions is parallelized, and took us 53

seconds. By processing the safe regions Qi as described in Section 4.4.1, we obtain the graph

G depicted in Figure 4.8c. The vertices I = {1, . . . , 8} are the subscripts of the poses that we

use as seeds for the construction of each polytope, i.e., vertex i ∈ I is paired with the safe

polytope Qi obtained from the seed qi. As can be seen from the connectivity of the graph,

the polytopes Qi are sufficiently inflated to connect all the seed poses qi. At runtime, given

the initial q0 and final qT configuration, the source σ and the target τ vertices are added to

the graph and connected to other vertices as described in Section 4.4.1.

In practice, the plans generated by a PRM can be very suboptimal and are rarely commanded

to the robot directly. While asymptotically-optimal versions of the PRM method exist [24],

in our experience, in the relatively high-dimensional space we consider here, the increase in

performance of these variants is not worth their computational cost. A solution commonly

used in practice is then to post-process the plans generated by the PRM with a simple

short-cutting algorithm. This algorithm samples pairs of points along the PRM trajectory
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(a) (b) (c)

(d) (e)

Figure 4.9: The five motion-planning tasks for the comparison in Section 4.6.4. End-effector
trajectories are depicted in blue for GCS Trajectory Optimization, in yellow for the regular PRM, and
in red for the PRM with short-cutting. (a) Task 1: from end-effector above the rack (configuration ρ1)
to end-effector in the upper shelf (configuration ρ2). (b) Task 2: from upper shelf ρ2 to lower shelf ρ3.
(c) Task 3: from lower shelf ρ3 to left bin ρ4. (d) Task 4: from left bin ρ4 to right bin ρ5. (e) Task 5:
from right bin ρ5 to above the rack ρ1.

and connects them via straight segments: if a segment is verified to be collision free the

trajectory is successfully shortened. This step can dramatically shorten the PRM trajectories

but it requires time-consuming collision checks: for this reason, here we compare GCS

Trajectory Optimization with both the regular PRM and the PRM with short-cutting. For

both the PRM methods we use the implementation from [57]. More implementation details

can be found in Appendix A.3; here we only mention that our roadmap is composed of

15 · 103 sample configurations and its construction took, with our (not fully optimized) setup,

16 minutes.

The tasks require moving the arm between five waypoint configurations ρi ∈ Q, while avoiding

collisions with the rack and the bins. Each waypoint ρi is obtained from qi by perturbing
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Figure 4.10: Comparison of GCS Trajectory Optimization with the PRM method and its version with
short-cutting. (a) Length of the trajectories planned by each algorithm for the five tasks depicted in
Figure 4.9. (b) Corresponding runtimes. GCS Trajectory Optimization designs shorter trajectories
than the PRM method with short-cutting, and is faster than the regular PRM.

the position of the robot end-effector as shown in Figure 4.9. We have a total of five tasks:

for i = 1, . . . , 4, task i asks us to move the robot from ρi to ρi+1; task 5 requires moving the

robot from ρ5 back to ρ1. The objective is to connect the start and the goal configurations

with a continuous (η := 0) trajectory of minimum Euclidean length (a := c := 0 and b := 1).

Velocity and time constraints are irrelevant given our objective.

As a visual support to the analysis, Figure 4.9 illustrates the trajectories of the robot end-

effector generated by each planner for each task. The blue curves correspond to GCS Trajectory

Optimization, the yellow to the regular PRM, and the red to the PRM with short-cutting.

Let us emphasize, though, that shorter trajectories in configuration space do not necessarily

map to shorter trajectories in task space. The actual configuration-space lengths of these

trajectories are reported in Figure 4.10a, with the same color scheme. The runtimes required

by each planner can be found in Figure 4.10b.9 In all the tasks, GCS Trajectory Optimization

9The runtimes of GCS Trajectory Optimization are computed by summing the times necessary for the
pre-processing described in Appendix A.1.2, the solution of the convex relaxation of the SPP in GCS, and the
rounding step from Section 4.3.2.
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designs trajectories that are shorter than both PRM methods. Moreover, the runtimes of

GCS Trajectory Optimization are even smaller than the ones of the regular PRM. The PRM

with short-cutting designs higher-quality trajectories than the regular PRM, but its runtimes

are significantly larger. The pre-processing described in Appendix A.1.2 is the reason why

our method is extremely fast in solving task 2: in the graph G in Figure 4.8c there is only

one path that connects vertex 2 to vertex 3, and our pre-processing efficiently eliminates all

the edges in the graph but (2, 6) and (6, 3).

In conclusion, let us mention that in all the tasks the solution we identify via rounding is the

global optimum of the SPP in GCS (δopt = 0%). The certified optimality gap δrelax is 4.1%

on average, and achieves a maximum of 13.0% in the first task.

4.6.5 Coordinated Planning of Two Robot Arms

In the previous subsection we have compared GCS Trajectory Optimization to widely-used

PRM methods, choosing a robotic arm with n = 7 degrees of freedom because sampling-based

algorithms perform poorly in higher dimensions. Here we demonstrate that GCS Trajectory

Optimization can tackle planning problems in much higher-dimensional spaces. To this end,

we consider the dual-arm manipulator shown in Figure 4.11, composed of two KUKA LBR

iiwa with seven degrees of freedom each, yielding an overall configuration space Q of n = 14

dimensions. The environment is the same as in the previous subsection, but this time, besides

the collisions with the rack and the bins, GCS Trajectory Optimization must also prevent

collisions between the arms themselves.

To decompose the configuration space we proceed as in Section 4.6.4. This time we use a total

of 22 seed poses, chosen to approximately cover the workspace around the rack and the bins,

as well as the rest of the free space. Also in this case the seeds are produced manually, using

inverse kinematics and with the visual support provided by the connectivity of the graph

G. We analyze three tasks. In the first task, illustrated in Figure 4.11a, the arms start in a

neutral position and both reach into the top shelf. Task 2, in Figure 4.11b, asks the arms
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to cross: the left arm reaches above the rack on the right, and the right arm moves to the

left of the bottom shelf. Finally, in Figure 4.11c, task 3 requires the two arms to reach inside

the bins. To make the problem even more challenging, this time we do not limit ourselves to

the design of purely-geometric shortest curves as in Section 4.6.4, but we plan continuously

differentiable (η := 1) trajectories of degree d := 3. The weights in the objective (4.1a) are set

to a := b := 1 and c := 0. The constraint set D in (4.1d) ensures that the joint velocities are

no greater than 60% of the robot velocity limits. The duration bounds Tmin and Tmax are set

so that they do not affect the optimal trajectory, while the boundary values of the velocity

are zero (q̇0 := q̇T := 0). As described in Section 4.5, we penalize accelerations via a cost term

of the form (4.11), with weight ε = 10−3. With the same goal, we set ḣmin := 10−3.

The trajectories synthesized by GCS Trajectory Optimization for each of the three tasks

are represented in Figure 4.11, with the curves swept by the end-effectors depicted in blue.

The optimality gaps δrelax certified by GCS Trajectory Optimization for the three tasks

are 3.3%, 2.0%, and 0.6%. Running a mixed-integer solver, we verify that the first two

trajectories are, in fact, globally optimal, while the last trajectory has an optimality gap of

only δopt = 0.3%. As in Section 4.6.3, to circumvent numerical issues, we set the MOSEK

option MSK_IPAR_INTPNT_SOLVE_FORM = 1 in the solution of the convex relaxations.

This leads to the following computation times for the three tasks at hand: 4.0 s, 8.4 s, and

12.9 s. As already mentioned, we are confident that a tailored pre-solve stage can drastically

decrease these runtimes.

4.7 Discussion

On the one hand, transcribing the motion-planning problem as an SPP in GCS allows us to

use efficient convex optimization to design trajectories around obstacles. On the other hand,

our convexity requirements restrict the class of planning problems we can tackle, and limit the

families of trajectories we can parameterize. In this section we comment on the strengths and

the limitations of our approach, and we illustrate the pros and the cons of GCS Trajectory
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Figure 4.11: Manipulation tasks from Section 4.6.5. End-effector trajectories are in blue. (a) Task 1:
arms from neutral pose to top shelf. (b) Task 2: from top shelf to configuration with crossed arms.
(c) Task 3: from crossed arms to lateral bins. Despite the fourteen-dimensional configuration space,
the potential collisions between the arms, and the confined environment, GCS Trajectory Optimization
can reliably solve the three tasks in a few seconds via convex optimization.

Optimization over existing planning algorithms.

4.7.1 Additional Costs and Constraints

Besides the derivative penalties discussed in Section 4.5, there are many additional costs

and constraints that our problem statement (4.1) does not feature but that are relevant in

a variety of practical applications. Minimum-distance and minimum-time objectives might

lead to unsafe robot trajectories, that do not avoid obstacles with sufficient clearance. A

practical workaround in these cases is to discourage the control points of our trajectories

to get too close to certain boundaries of the safe regions Qi. This can be achieved through

66



convex barrier penalties, that are easily included among the edge costs in Section 4.4.4.

Equality constraints that couple the trajectory q to its time derivatives could be used to

enforce continuous-time dynamics. However, our choice of optimizing over the shape r and the

timing h of the trajectory jointly makes these constraints nonconvex, even for a linear control

system. Similarly, the nonlinearity of the kinematics of a robot manipulator makes task-space

constraints not directly suitable for our framework. To cope with these nonconvexities, in some

applications, it may be practical to post-process the output of GCS Trajectory Optimization

with a local nonconvex optimizer.

4.7.2 Comparison with Existing Mixed-Integer Planners

GCS Trajectory Optimization has three main advantages over existing MICP algorithms for

solving problems of the form (4.1):

1. The tightness of the convex relaxation of our MICPs, demonstrated empirically in the

numerical results in Section 4.6.

2. The reduced number of binary decision variables in our programs, illustrated in the

maze example from Section 4.6.2.

3. The simplicity of the class of optimization problems that our method leads to, discussed

in Section 4.4.6

The first and the second are achieved by leveraging the optimization framework from [5]. The

third is partly due to the first (since it is the tightness our MICP formulations that allows us

to tackle the motion planning problem as a single convex program, plus rounding), but it is

also due to the parameterization of trajectories as Bézier curves.

In Section 4.4.2, we have leveraged the properties of Bézier curves to enforce infinite families of

constraints through a finite number of conditions. For example, in (4.7a), we have transcribed

the safety requirement ri(s) ∈ Qi for all s ∈ [0, 1] as a constraint ri,k ∈ Qi per control point

k = 0, . . . , d. The MICP planner from [29] achieves the same result by using Sums-Of-Squares
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(SOS) polynomials [58], and semidefinite programming. These approaches are interchangeable

and lead to a tradeoff: Bézier curves yield simpler constraints, SOS polynomials parameterize

a richer class of trajectories.10 In the numerical examples analyzed in this chapter, we have

found this gap to be relatively narrow, and we have then prioritized simpler optimization

problems.

Finally, it is worth mentioning that the problem formulation from [29] features costs and

constraints on time derivatives of the trajectory q of any order. These, however, are handled

by fixing the duration of each trajectory segment beforehand. A similar result could be

achieved with GCS Trajectory Optimization by fixing the time that can be spent in each safe

set Qi.

4.7.3 Comparison with Sampling-Based Algorithms

As discussed in Section 4.6.4, among many sampling-based planners, PRM is the natural

comparison for GCS Trajectory Optimization. In fact, GCS Trajectory Optimization can be

thought of as a generalization of the PRM method, where each collision-free sample is expanded

to a collision-free convex region, that is inflated as much as the obstacles allow; reducing

in this way a dense roadmap to a compact GCS Trajectory Optimization. In Sections 4.6.4

and 4.6.5, we have shown that GCS Trajectory Optimization can outperform PRM in terms

of: runtimes, quality of the designed trajectories, scalability with the dimensionality n of

the configuration space Q, and variety of objective functions and trajectory constraints. In

addition, because of the parallel above, it is reasonable to imagine that many of the techniques

developed for PRM to handle, e.g., changes in the environments [59, 60] can be translated to

GCS Trajectory Optimization with relatively low effort.

One of the main reasons why sampling-based methods are widely used in academia and industry

is their simplicity. Conversely, the implementation of GCS Trajectory Optimization (and the

10Asking a univariate polynomial to be nonnegative by parameterizing it as a Bézier curve with nonnegative
control points is more stringent than asking it to be SOS (which, in the univariate case, is equivalent to
nonnegativity).
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underlying SPP in GCS framework) is very involved and requires familiarity with convex-

optimization techniques. Nonetheless, we believe that the framework from [5] lends itself to

an intuitive mathematical abstraction, and that the programming interface of GCS Trajectory

Optimization can be made very easy to use. We have provided a mature implementation of

the techniques for SPP in GCS from [5] within the open-source software Drake [42], and we

have developed a simple GCS Trajectory Optimization interface at https://github.com/

mpetersen94/gcs.

4.7.4 Comparison with Direct Trajectory Optimization

Direct-trajectory-optimization methods transcribe the motion-planning problem into a non-

convex optimization [13], and can virtually include any sort of cost terms and constraints,

including dynamic and task-space constraints. In practice, however, these nonconvex pro-

grams can only be tackled with local-optimization algorithms that are slow and unreliable.

GCS Trajectory Optimization is different in spirit, as we prioritize low runtimes and the

completeness of the planning algorithm over the modelling power.

4.8 Conclusions and Future Works

In this chapter we have introduced GCS Trajectory Optimization: an algorithm based on

convex optimization for efficient collision-free motion planning. GCS Trajectory Optimization

leverages the framework presented in [5] to design a very tight and lightweight convex relaxation

of the planning problem. This convex optimization (typically an SOCP) is quickly solved using

commonly-available software, and a cheap randomized rounding of its solution is almost always

sufficient to identify a globally-optimal trajectory. We have demonstrated GCS Trajectory

Optimization on a variety of scenarios: an intricate maze, a quadrotor flying through buildings,

and a manipulation task in a fourteen-dimensional configuration space. Furthermore, we have

compared GCS Trajectory Optimization to widely-used PRM methods, showing that our

method can find higher-quality trajectories in less time.
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This paper presents the first version of a new algorithm, which already compares favorably with

widely-used planners that have been optimized over decades. With a more customized solver

for these convex optimizations, runtimes of GCS Trajectory Optimization can be drastically

reduced. We are also highly optimistic that the class of cost functions and constraints that we

can handle will expand considerably in the future. We believe that our planner demonstrates

the value of formulating problems as SPPs in GCS, and it can already find multiple real-world

applications.
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Chapter 5

Multi-Modal Planning

One of the advantages of formulating the motion planning problem as an SPP in GCS is that

the planned motion can be more than just a single trajectory from the start to the goal. The

same mechanics can be used to plan motions through a sequence of waypoints. This enables

planning a sequence of motions to accomplish a task as well as selecting between multiple

discrete task sequences, such as picking up an object with the left or right hand in a bimanual

setup.

In this chapter, we show how the GCS Trajectory Optimization algorithm presented in the

previous chapter can be extended to perform sequential and mulit-modal motion planning.

We demonstrate the additional freedom that this provides the planning problem and walk

through the important elements of an efficient implementation. Finally, to demonstrate the

capabilities of this extension, we show a set of bimanual tasks executed in hardware.

5.1 Planning Sequential Motions

In Chapter 4, we used GCS Trajectory Optimization to plan motions from a source configura-

tion to a target configuration through a graph of interconnected collision-free regions. Using

the SPP formulation for GCS does not limit the planner to just this use case. It can also
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be used for planning a sequence of motions for a sequence of tasks. Instead of the graph

consisting of a single network of interconnected collision-free regions, we can build the graph

from several subgraphs of interconnected collision-free regions. These individual subgraphs

can then be linked up as though they are connected through waypoints of the task. When

the planner optimizes the trajectory from source to target, the resulting trajectory must pass

through a sequence of subgraphs that represent the individual components of the task.

The logical waypoints need not be specific points but can instead be a lower dimensional

convex manifold that allows some freedom of the exact path. This can allow the planner

to find paths that include moments where the system is partially constrained, such as one

hand picking up an object on a bimanual robot. Such an approach enables GCS Trajectory

Optimization to take a foray into Task and Motion Planning by encoding the task logic in the

connection between subgraphs. If the sequence of subgraphs have branches that separate and

reconvene between the source and target, this can represent a logical choice such as picking

an object with the left or right hand. The planner will therefore have to decide which logical

branch to take while selecting the exact path given the logical branch. Each of these examples

simply expands the size of the graph that GCS Trajectory Optimization is planning over

without changing the structure of the planning problem significantly. Figure 5.1 shows a

visual of the process to ground the discussion of this method. The numbered vertices and the

vertices with tildes over the numbers represent two different subgraphs.

As in Chapter 4, several transcriptions must be established to formulate the multi-modal

planning problem as an extension of GCS Trajectory Optimization. These include: the graph

G, the convex vertex sets Xv, the convex edge sets Xe and the edge lengths ℓe.

5.1.1 The Graph G

We initialize the vertex set V with a vertex i for each collision-free region Qj , i used in each

subgraph j. The set of collision-free regions may be repeated across subgraphs or they may

differ between subgraphs, depending on the problem (i.e. one subgraph could contain safe
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regions for when a robot arm is not holding anything and another could contain the safe

regions when the robot arm is grasping an object). Within each subgraph, edges are added

between vertices as described in Section 4.4.1, whenever there is an intersection between two

regions. This forms the foundation for the edge set E .

At this point the graph G consists of several disconnected subgraphs. These subgraphs are

connected together using the logical structure implied by the sequence of tasks. We let Gi be

a subgraph that we would like to connect to subgraph Gj using a waypoint set of the task

sequence w which may be either a single point or a lower-dimensional convex manifold. The

naive approach is to add a vertex for w and then for each region i ∈ Gi we add the edges

(i, w) to the edge set E if the intersection of i and w is nonempty. Similar edges (w, j) would

be added for each region j ∈ Gj based on intersection of j and w. However, this can cause

the convex relaxation of the MICP to become looser. To mitigate this, no extra vertex is

added for w and only edge (i, j) is added to the edge set E if the intersection of i, j and w is

nonempty. The constraint that ensured the trajectory passed through waypoint w instead

becomes a constraint on these added edges as discussed in the next section. Finally, vertices

and edges are added for the source σ and target τ as described in Section 4.4.1.

5.1.2 The Convex Sets Xv & Xe

Since the planning on each subgraph is equivalent to the GCS Trajectory Optimization

planning problem from Chapter 4, and the only vertices in the graph are those that make up

each subgraph, the source vertex and target vertex, the convex sets Xv for each vertex are

the same as in 4.4.2. This includes the collision-avoidance constraint 4.7a, the monotonically

increasing h constraint 4.7b, the velocity constraint 4.7c and the time constraints 4.7d.

Similarly for all edges within a subgraph, the edge constraints Xe are the same as in 4.4.3,

enforcing continuity of the requested order between the trajectory segments 4.8. For the edges

that span between subgraphs, the same continuity constraints are part of the set Xe with
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additional constraints that ensure the trajectory passes through waypoint w:

ri,d ∈ w (5.1)

for all edges that leave a region Qi and pass into a different subgraph through waypoint w.

This ensures that the trajectory segment in Qi ends at w and the trajectory segment in Qj

starts at w to maintain continuity between Qi and Qj .

With this formulation, the edge lengths for all edges and the process for reconstructing the

trajectory from the optimizer result are also identical to what was laid out in Chapter 4

5.2 Hardware Experiments

To demonstrate our pipeline for generating collision-free trajectories using IRIS-NP, GCS

Trajectory Optimization and its multi-modal extension, we performed tasks using a bimanual

robotic setup. Consisting of two KUKA LBR iiwa mounted to a large table for a total

configuration space of 14 dimension, our setup allowed us to perform three bimanual tasks,

shown in Figure 5.2. In the first task, the robot swaps the placement of two spray paint

cans and moves through configurations that are very close to self collision, requiring careful

coordination. For the second task, a sugar box was moved from one end of the table to the

other by picking it up with one arm and handing it off to the other. This demonstrated the

value of sequential planning, allowing one arm to move towards the handoff location while

the other went in for pickup. The final task consisted of the robot grasping two mugs from

the shelves in front of it, and swapping their placement. Here the freedom to select the order

in which the mugs were pick up and placed was also encoded in the GCS problem requiring

the solver to select the timing of each pick and place. Each task is formulated as a single

multi-modal GCS Trajectory Optimization and solved using convex optimization.
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5.2.1 Generating Regions For Planning

While IRIS-NP provides a method for generating convex collision-free regions from seed points,

the question that remains is how best to generate a collection of regions that yield sufficient

coverage of C-free and enable efficient planning. Two of the biggest factors that affect efficient

planning via GCS Trajectory Optimization are the connectedness of the graph and the amount

of overlap between the regions. As a graph becomes more connected, the number of edges

increases, growing the size of the optimization and slowing down the solve time. A more

connected graph also means there are fewer edges that cannot lie on an optimal path, reducing

the effectiveness of the pre-processing step. The amount of overlap between the regions on the

other hand, matters because as regions overlap more, the relaxation becomes looser. The same

path through space can be represented by multiple paths through the graph when there is

overlap making it harder for the optimizer to select a preferred path. This drives up runtime

without any benefit.

All of this means that careful selection of the seed points for generating regions with IRIS-NP

is critical. For these hardware experiments, seeds are selected so the generated regions cover

critical configurations as well as ensure the regions are connected in a way that contains the

optimal path. To achieve this, while also reducing overlap, regions are grown sequentially,

with each region using growing to avoid both task-space obstacles and slightly shrunk versions

of previously generated regions using the methods discussed in Section 3.3.4. This reduced

the overlap between regions and was helpful for ensuring the regions generated by various

seeds expanded into the corners of the free space, such as within the shelves. 1

Since each task involves rearranging obstacles in the environment, the collision geometry

changes each time an object is picked or placed. To account for the fact that the collision-

free regions would therefore change, each seeded region was regenerated for each obstacle

configuration. This allows us to account for the held object’s collision with the world when

1Another easily overlooked but critical step to improving the speed of region generation is collision filtering.
By finding all pairs of collision geometry that could never collide given the full kinematic range of the robot,
the number of collision pairs to check and therefore the run time of IRIS-NP can be greatly improved.
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planning held object trajectories but not when planning empty hand trajectories. Each set

of regions for a given obstacle configuration is hooked together to form a subgraph of a

multi-modal GCS Trajectory Optimization. These subgraphs can then be connected to specify

the way that picking and placing changes the collision geometries.

For the first task, regions were generated from seed in the following order:

• A nominal configuration to start and end at,

• A picking configuration,

• A placing configuration,

• A retracted pick configuration,

• A retracted place configuration,

• A midpoint near the expected midpoint of the trajectory where the two hands are

aligned,

• A weighted average between the nominal and retracted place configurations, and

• A weighted average between the midpoint and retracted place configutations.

The last three seeds were added to help ensure sufficient coverage of the configurations needed

for efficient retraction. Regions were generated about each of these seed for three collision

configurations: the paint cans were both in their starting position, the paint cans were welded

to the grippers in their grasping pose, or the paint cans had reached their end position. For

this and the following experiments, each collision configuration was run in parallel with the

seeds generating regions sequentially within each thread. All together, this resulted in 27

regions being generated.

For the second task, the box handoff the seeds used to generate regions were:
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• A nominal configuration to start and end at,

• A right hand box picking configuration,

• A left hand box placing configuration, and

• A box handoff configuration.

To cover the changing collisions regions were generated about these seeds for four different

collision configurations: the box is in the starting position, the box is in the right hand, the

box is in the right hand, and the box is in the ending position. For some seeds in some

collision configurations, when we tried to generate a region about the seed, we found the seed

was already contained by another region. In those cases, we skipped generating that region,

resulting in a total of 14 regions.

The final mug swap task was the most involved requiring seeds for:

• A nominal configuration to start and end at,

• A picking configuration,

• A placing configuration,

• A retracted pick configuration to help with extraction,

• A retracted place configuration to help with insertion,

• A midpoint with both hands aligned with the shelf that separates the two mugs goal

positions,

• Two seeds where one hand was at the pick configuration and the other was at the

retracted pick configuration, and

• Two seeds where one hand was at the place configuration and the other was at the

retracted place configuration.
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To account for the asynchronous picking and placing many more collision configurations had

to be considered including: both mugs in initial state, left hand has picked, right hand has

picked, both hands are holding, left hand has placed, right hand has placed, and both mugs

in final configuration. All together this resulted in 49 regions. Several of the seed/collision

configuration combos did not result in generating a region as the seed was either already

contained in another region or was in collision.

5.2.2 Obeying Dynamic Constraints

The formulation of GCS Trajectory Optimization for motion planning presented in Chapter 4

supports continuity constraints of arbitrary degree and velocity limits on the trajectory. When

these constraints are combined with a cost to minimize path length and time, the resulting

trajectory can have aggressive accelerations, even when acceleration is penalized using the

costs discussed in Section 4.5. Combine this with the fact that the torque requirements needed

to track the trajectory are not considered, GCS Trajectory Optimization can yield trajectories

that have feasible paths but are not executable on real hardware. While incorporating

constraints on accelerations and torque is the ideal solution, as previously mentioned the

current formulation of GCS Trajectory Optimization makes both of these constraints nonconvex

and therefore does not fit our current implementation.

One simple workaround to the problem of unconstrained accelerations and torque is to

reparameterize the trajectory using a Time Optimal Path Parameterization (TOPP) [61, 62].

Time Optimal Path Parameterizations take a trajectory of the form q(s) and calculates a

path parameterization of the form s(t) such that the composed trajectory q(s(t)) obeys the

desired constraints on the trajectory. These algorithms work efficiently because, once the

path is fixed, many of the constraints that are nonlinear in the original decision variables

(e.g. acceleration limits, torque limits, end-effector velocity limits) become linear in the new

decision variables. As a result, the TOPP problem can often be solved very efficiently as a

fast post-process.
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For the hardware experiments in this chapter, we used Time Optimal Path Parameterization

by Reachability Analysis (TOPPRA) [63]. This algorithm parameterizes the path trajectory

s(t) as a piecewise quadratic that is continuous and differentiable. It enforces the desired

constraints (i.e. velocity limits, acceleration limits, torque limits) at the knot points of the

path and performs a reachability analysis while sweeping backward along the trajectory to

calculate the maximum and minimum speed ṡ(t) that can occur at each knot point while still

being able to reach the goal. A forward sweep then maximizes the acceleration s̈(t) while

ensuring the velocity remains within the reachable sets calculated on the backward pass. The

whole algorithm requires solving 3N linear programs, where N is the number of knot points,

each of which is of only 2 variables with a handful of constraints. As a result, even using on

the order of 104 knot points, optimizing a trajectory with TOPPRA generally takes 100ms or

less.

5.2.3 Bimanual Results

The trajectories generated for each task can be seen in Figure 5.2.

Using the generated regions discussed in 5.2.1, building the multi-modal GCS Trajectory

Optimization problem requires wiring up the subgraphs into a larger graph to plan over. For

all these planning problems, we plan twice-differentiable trajectories of order 4 with equal

penalty a = b = 1 on length and duration, and with a small acceleration cost of 10−3. The

robot velocity limits are enforced through a box-shaped constraint set D that is half the

velocity limits of the actual robot.

In the first task, the wiring is simple, the source vertex is connected to the subgraph of

regions generated with the cans at their starting position. This subgraph is connected to the

subgraph of regions with both cans held adding the pick configuration at zero velocity and

zero acceleration as constraints on the connecting edges. Similar constraints were added for

the place configuration when wiring the held cans subgraph to the subgraph of regions with

the cans in their final position which was then connected to the target vertex.
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For the second task, the wiring is almost as simple with the subgraphs wired in the sequence:

regions with the box at the start, regions with box in the right hand, regions with box in

the left hand, and regions with the box at the end. The edges representing the handoff are

required, as in the first task, to pass through the handoff configuration with zero velocity and

zero acceleration. The edges that represent pick and place are treated differently. Instead

of constraining the full state of the robot for these edges, only the arm that is involved in

the pick or place is constrained to be at its respective configuration with zero velocity and

acceleration. The other arm is free to choose a configuration and velocity that is consistent

with the existing constraints on the vertex (namely collision-free and within velocity bounds).

This is what enables the behavior we see in Figure 5.2 where the arm not involved in pick

begins moving towards handoff without pre-specifying a single waypoint.

The last task of swapping mugs is the most complex to connect together. Choosing between

a left or right pick first ensures that the subgraphs will not be nicely cascaded but rather

experience branching.

we construct 35 polytopes, seeded to cover the workspace ss laid out previously, under the

four possible collision geometries (mugs on shelves, mug in left hand, mug in right hand, mugs

in both hands). This covers all the possible mug positions and allows us to formulate the

multi-modal planning problem as one where the planner can decide which order to grab and

place the mugs in, grabbing with the left hand first, the right hand first, or both simultaneously.

To accomplish this, starting with the initial position subgraph it is wired to both the subraph

where the left hand picks first and the subgraph where the right han picks first. Both of these

are wired to the subgraph where both mugs are held. The reverse process is used for the

placing subgraphs. In each transition between subgraphs, only one arm has it’s configuration

constrained with zero velocity and acceleration, again providing freedom to the unconstrained

arm.

GCS Trajectory Optimization designs collision-free trajectories that efficiently accomplish

each of the three tasks. The largest optimality gap δrelax is in the first task, and it is only
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13.9%. After running a mixed-integer solver, we verify that the actual optimality gap for each

trajectory is not larger than δopt = 8.4%. Since the convex relaxations of these problems are

very large SOCPs, which push the limits of what GCS Trajectory Optimization is currently

capable of solving, the runtimes for these tasks are 132, 26, and 216 seconds,respectively.

However, we are confident that these times can be decreased substantially in the near

future.
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Figure 5.1: Planning sequential collision-free motions using connected subgraphs and GCS Trajectory
Optimization. (a) Robot environment with two obstacles in red and with the initial q0, waypoint qw

and final qT configurations. (b) Exact decomposition of the free space into convex safe regions Qi. (c)
Intersection graph G for the space decomposition, with each region doubled up to cover motion from a
the start vertex σ to the waypoint vertex w and from w to the goal vertex τ . While shown here as a
vertex for illustration purposes, in the implementation w would not be added to the graph. Instead node
5 would be directly connected to 5̃ and that edge would have a constraint that the path passed through
w. (d) The path p through the complete graph from sigma to tau. (e) The resulting trajectory between
the sequence of specified waypoints.
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Figure 5.2: Planning collision-free trajectories that can be dynamically executed on a bimanual setup,
despite the fourteen dimensional configuration space is non-trivial. Stills from three demos that require
the arms to work in tight proximity of each other are shown. Each task was planned as a single
trajectory using the sequential motion planning framework for GCS Trajectory Optimization.
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Chapter 6

Conclusion and Future Work

In this thesis we presented a pipeline for planning collision-free trajectories for robots with

nonlinear kinematics, especially robotic manipulators. This pipeline consisted of two novel

algorithms: IRIS-NP (Iterative Regional Inflation by Semidefinite & Nonlinear Programming)

a method for generating convex regions within C-free and GCS (Graph of Convex Sets)

Trajectory Optimization a method for planning smooth trajectories through a collection

of interconnected convex regions. When combined with careful heuristic seed selection for

IRIS-NP and a post-processing optimization to handle the dynamic constraints that are

not yet handled by GCS Trajectory Optimization, dynamically feasible trajectories can be

efficiently generated even for high degree of freedom systems. Longer horizon plans can also be

generated by constructing multi-modal GCS Trajectory Optimization that can select between

logical discrete paths (i.e. the ordering of picking up mugs). To encourage both further

development of these algorithms and broader applications, open-source implementations of

each algorithm used in this planning pipeline have been released via Drake [42] and our GCS

Trajectory Optimization repository https://github.com/mpetersen94/gcs.

The work presented here opens the door to many new avenues of research. While GCS

Trajectory Optimization is able to plan smooth paths, it is not able to handle any dynamic
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limits beyond velocity limits. Finding a new formulation for the trajectory that enables writing

convex constraints for the trajectories acceleration and higher derivatives is one approach.

Alternatively, the nonlinearity could be embraced by explicitly solving the GCS relaxation

with nonlinear constraints on the acceleration, torque or other dynamic quantities.

One could also expand GCS Trajectory Optimization to handle more complex planning

problems beyond collision-free trajectories. When planning through contact, previous work

has either used smooth approximations of contact [64], or formulated the planning problem

as an MIP [65]. The tighter relaxation of GCS may make the MIP formulation of planning

through contact more tractable. This will require an understanding of how to generate and

use convex regions on the contact manifold. Extending IRIS or IRIS-NP to generate regions

on a manifold would be incredibly useful in this direction.

Each of these avenues for future work expands the capabilities of the initial algorithms

proposed in this thesis. As the scope of this family of algorithm grows, they will begin to

unlock better dynamic planning capabilities, enabling robots to be more performant and

responsive. We hope that these algorithms open the door to robots one day having the tools

they need to work outside of the lab.
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Appendix A

Graph of Convex Sets

A.1 Further Details on the Implementation of GCS

In this appendix we illustrate two techniques that we employed in the numerical results in

Section 4.6 to tighten and compress the convex relaxations of our planning problems.

A.1.1 Two-Cycle-Elimination Constraints

The graph G constructed in Section 4.4.1 connects each pair Qi and Qj of overlapping safe

regions with a two-cycle: e := (i, j) and f := (j, i). Since by traversing both the edges e and

f we would visit vertex i twice, and this is not allowed by the definition of a path p, at least

one of these edges must be excluded from the shortest path. In other words, the indicator

variables φe and φf cannot be both equal to one. This observation can be used to tighten our

convex relaxations, and speed up our planner.

More precisely, for each pair of overlapping regions, we can write the linear constraints

φe + φf ≤ φi and φe + φf ≤ φj , (A.1)

where φi and φj represent the total probability flows traversing vertices i and j, respectively.
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(Note that, since the total flow through a vertex is at most one, these inequalities imply

the looser condition φe + φf ≤ 1.) Furthermore, by applying Lemma 1(b) from [5], the

two inequalities in (A.1) can be translated into a pair of convex constraints that tighten

the coupling between the flow variables φe and the continuous variables xv in our convex

programs. The number of these constraints is linear in the size |E| of the edge set, and they

can substantially increase the tightness of the convex relaxations of our planning problems.

They are enforced in all the numerical results presented in Section 4.6.

A.1.2 Graph Pre-Processing

The constraints described in Appendix A.1.1 represent only one of the multiple ways in which

we can leverage the knowledge that a path p is allowed to visit a vertex at most once. For

example, consider the graph in Figure 4.8c and task 2 from Section 4.6.4 of moving the robot

arm between the configurations ρ2 ∈ Q2 and ρ3 ∈ Q3. In this case, after connecting the

source σ to vertex 2 and vertex 3 to the target τ , we get a graph that admits a single σ-τ

path: p := (σ, 2, 6, 3, τ). Therefore, in this particular case, a pre-processing stage capable

of making such an inference would reduce our planning problem to a tiny convex program

(exactly).

In general, making the inference just described exactly is infeasible; however, in many practical

scenarios, a cheap approximate pre-processing can eliminate most of the redundancies in our

graphs G. More precisely, checking if an edge e := (u, v) can be traversed by a σ-τ path is

equivalent to solving a vertex-disjoint-paths problem. This problem asks to identify a path p1

from σ to u and a path p2 from v to τ such that the overall path p := (p1, p2) is a valid path

from σ to τ . In other words, the two subpaths p1 and p2 are not allowed to share any vertex.

This problem is NP-complete [66, Section 70.5], therefore it would not make sense to solve it

exactly as a pre-processing for our planner. Nevertheless, the vertex-disjoint-paths problem

admits a natural LP relaxation as a fractional multiflow problem [66, Section 70.1] that can

be solved very quickly, and can be used as a very-effective sufficient condition to check if an

edge is redundant.
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We have found this pre-processing to be particularly useful when the graph G is sparse and

has small size, and the convex sets Xv associated to its vertices live in high dimensions. In

these cases, the multiflow LPs (which can be tackled in parallel) are solved extremely fast

and they can drastically compress and tighten our convex optimizations. We have employed

this pre-processing strategy in the numerical examples from Sections 4.6.3, 4.6.4, and 4.6.5:

the runtimes of GCS Trajectory Optimization reported in these sections include the time

necessary for pre-processing.

A.2 Random Environment Generation for the Quadrotor Ex-

ample

In this appendix we briefly describe the algorithm we employed for the generation of the

random buildings in Section 4.6.3.

The buildings are constructed over a five-by-five grid, where each cell has sides of length 5.

The nine cells at the center of the grid are occupied either by a room, a tree, or obstacle-free

grass. The sixteen cells at the boundary of the grid are always occupied by grass. For all the

environments, the brown start block is in the cell (1, 1), while the green goal block is in the

cell (4, 3) (see Figure 4.6). To assemble a building we start from the goal cell, which we always

require to be a room. Then we mark each adjacent cell either as inside or outside the building,

and we repeat this process until the nine inner cells are occupied. For the cells that are marked

as outside the building, we decide at random whether to grow a tree or not. Walls divide the

rooms from the outside, and are built with either a doorway, a window, two windows, or no

openings at all. Walls are also used to divide the rooms; in this case we randomly select a

doorway, a vertical half wall, a horizontal half wall, or no wall. The positions of the trees are

also drawn at random, while their sizes are taken to be constant.

Given that the walls and the trees have polygonal shape, the decomposition of the configuration

space Q can be done exactly. Specifically, we pair rooms or cells that are occupied by grass
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with a single box Qi of free space, while the space around a tree is decomposed using four

non-overlapping boxes. Suitable box-shaped regions are added for each (inner or outer) wall

that contains one or more openings. Finally, the safe regions Qi are adequately shrunk to

take into account the collision geometry of the quadrotor, which is taken to be a sphere of

radius 0.2.

A.3 Implementation of the PRM Planner

In this appendix we report the main implementation details for the PRM and the short-cutting

algorithm used in the comparison in Section 4.6.4.

We construct the PRM using the implementation simple_prm_planner.hpp from the

library [57]. Trying to construct a roadmap just by sampling random robot poses turns out

to be infeasible for the application in Section 4.6.4. In fact, sampling a robot pose q ∈ R7 for

which the end effector is, e.g., inside one of the shelves in Figure 4.8 is extremely unlikely:

after 3 ·105 samples, and 90 hours of computations, we did not find any such point. As a result,

we construct the roadmap in two steps. In the first step, we connect the seed poses {qi}8
i=1

from Figure 4.8 using a collection of bidirectional Rapidly-exploring Random Trees (RRTs)

(simple_rrt_planner.hpp from [57]). The role of these trees is to form a skeleton for

the PRM, and, to keep this skeleton reasonably compact, we mimic the connectivity of our

graph G in Figure 4.4.1. In particular, we connect via RRT only the pairs of seed poses qi and

qj for which the vertices i and j are connected in G. This process gives us 12 trees, with a

total of approximately 2, 300 nodes. In the second step, we fill the rest of the space according

to the standard PRM algorithm. We stop the sampling when we reach a total of 15 · 103

nodes in the PRM, included the ones from the RRTs. (In our experience, a larger number

of PRM samples would have led to an increase in the runtimes without sensibly improving

the quality of the designed trajectories.) During this construction, the collision checks are

handled by Drake [42]. With this setup, generating the RRTs took a total of 60 seconds, while

the remaining PRM samples required 15 minutes. For the short-cutting algorithm we use the
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implementation in path_processing.hpp from [57].

The numerical parameters we use for the RRT, the PRM, and the short-cutting algorithm

are chosen to optimize the tradeoff between the quality of the designed paths and the overall

computation times.
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