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Abstract— The ability to detect and estimate external contacts
is essential for robot arms to operate in unstructured envi-
ronments occupied by humans. However, most robot arms are
not equipped with adequate sensors to detect contacts on their
entire body. What many robot arms do have is torque sensors
for individual joints. Through a quantitative analysis, we argue
that it is fairly likely for two distinct contacts on the robot’s
surface to generate almost identical joint torque measurements.
When this happens, the best contact estimate achievable is the
set of possible contact positions, all of which would reproduce
the measured joint torque. Searching for elements of this set is
equivalent to solving to global optimality a nonlinear program.

By combining rejection sampling with gradient descent, we
propose a contact estimation method which in practice finds
all local optima of the nonlinear program at real-time rates.
In addition, we propose an active contact exploration method
which falsifies spurious contact estimates in the set of local
optima by making small motions around the robot’s current
configuration. The proposed methods highlight the caveats
of contact estimation from only joint torque, which, coupled
with known limitations of such estimators, suggest that a
more capable sensor is probably needed for robust whole-body
contact estimation.

I. INTRODUCTION

No longer confined to factory-floor workcells repeating
painstakingly hand-coded trajectories, robot arms today have
been tasked with increasingly open-ended assignments such
as “put this shoe on the shelf” or “load the dish washer”,
where the robots need to operate in unknown, unstructured
environments potentially populated by humans. Naturally,
the safety of such operations hinges upon the robot’s ability
to reliably handle unplanned collisions between any part of
itself and the environment.

The ultimate sensor for collision detection is perhaps a
sensitive tactile skin covering the entire surface of the robot
[1], [2]. However, such skins are rarely seen outside research
labs, as they are usually expensive and prone to wear and tear.
On the other hand, joint-level proprioceptive torque sensors
are mature, robust and becoming more common in robot
arms designed for human-robot interactions [3], [4].

Several techniques have been developed to estimate both
the external contact force and its location on the whole robot
using only proprioceptive torque sensors [5]–[8]. However,
due to the sparse nature of proprioceptive measurements (one
torque measurement per link), estimation of contact force and
location from only joint torque has obvious limitations. For a
typical serial robot arm with 7 links, when link i (numbered
from the base) of the arm is in contact, there are i torque
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Fig. 1: For the true contact shown in (a), which generates little
torque about joint 6 and 7, the two contacts in (b) and (c),
represented by red cylinders, create almost identical torque mea-
surements as (a).

measurements available, and i ≤ 6 if the contact is not on
the end effector. The fact that the contact is pushing the
robot gives two additional constraints: the force being in the
friction cone and the position being on the robot’s surface.
In contrast, a contact position has 3 independent components
to estimate, and a contact wrench has 6. As a result of this
deficiency in available measurements, the literature on joint-
torque-based contact estimation commonly assumes that (i)
there exists at most one external contact, and (ii) the contact
generates negligible moments at the contact point [5], [8].

However, even within the boundary set by these simpli-
fying assumptions, joint-torque-based contact estimation is
still limited by the loss of detectability of contacts from
joint torque measurements, which we will discuss more
formally in Section. IV. Intuitively, as shown in Fig. 1,
it is likely that multiple contact positions and forces (Fig.
1b and 1c) create almost identical torque measurements,
making them impossible to distinguish by looking at joint
torque alone. Although this failure mode has been observed
in existing work [7], a thorough analysis on how often joint-
torque-based contact estimators fail and what can be done to
mitigate such failures appears to be absent from the literature.

In this work, we show quantitatively that two distinct
contacts generating almost identical joint torque measure-
ments is far from a 0-probability event. Moreover, this
probability can get alarmingly high for links whose geometry
is “concentrated” around their joint axes, such as links
of the IIWA arm. Therefore, we believe that solving for
a single contact estimate from joint torque measurements
is an inadequate problem formulation. Instead we propose
to estimate the set of possible contact positions consistent
with the measurements. Elements of this set can be cast
as the global optimal solution of a nonlinear optimization
problem, which is difficult to solve directly. Nevertheless,
by combining rejection sampling and gradient descent on



manifolds, we propose an estimator that searches for local
minima of the nonlinear optimization problem, and provide
an efficient implementation capable of running at real-time
rates. In practice, the proposed estimator usually finds all
local minima on the links it searches. In addition, given the
set of possible contact positions, we also propose an active
contact discrimination strategy that falsifies spurious contact
positions by slightly moving the robot.

II. RELATED WORK

Although raw measurements from joint torque sensors
include gravitational and inertial effects, the torque generated
by external contacts, also known as the residual torque,
can be extracted from them using external torque observers
[5]. Having become an integral part in many robot arms’
firmware [3], [4], such observers can update residual torque
estimates at hundreds of Hz, providing the foundation for all
proprioceptive contact estimation methods.

The contact estimator by Haddadin et al. [5] first de-
termines the link in contact as the last link with non-zero
residual torque. It then solves for the line of action of the
contact force from a system of linear equations relating
torque measurements to the contact wrench. Finally, if the
contact geometry of the link is convex, intersecting the line
with the link will give two potential contact points, one
for pulling and the other for pushing. As contact forces
almost always push, the contact point can thus be uniquely
determined. However, solving for the line of force action
needs at least 6 torque measurements and a full-rank contact
Jacobian, which implies this method does not produce any
outcome on links more proximal to the base than link 6 or
when the robot is close to singular. Moreover, when a link
is not convex (e.g. link 5 in Fig. 1), the line of force action
may intersect the link at more than two locations, making it
impossible to uniquely determine the contact point.

Methods based on the Markov Chain Monte Carlo
(MCMC) methodology [6], [8] can theoretically work on
any link and with rank-deficient contact Jacobians, although
estimation accuracy typically degrades on links too close
to the base, or when the robot is close to singular. The
degradation is not a limitation of the methods themselves,
but a result of the loss of detectability of contacts from
joint torque measurements. Both [6] and [8] use random
walk on the robot’s surface as the proposal distribution, and
evaluate the likelihood of samples using the L2 norm of
the difference between the measured joint torque and the
joint torque created by the sample. The difference is that [6]
assumes frictional contacts whereas [8] assumes that contacts
are frictionless. The biggest drawback of MCMC methods is
that they typically converge to only one local minima of the
likelihood function, and are oblivious of other local minima
when they exist.

Proprioceptive contact estimator based on machine learn-
ing has also been explored. Zwiener et al. discretize a robot’s
surface into finitely many patches, and train a classification
network to predict the patch in contact from joint torque
[7]. Although the contact classifier works well on both the
training and validation data sets, its limitations and failure

modes are difficult to analyze; its ability to generalize beyond
the data set it is trained on is also hard to gauge.

III. PROBLEM FORMULATION

For given joint angles q ∈ Rnq and residual joint torque
τext ∈ Rnq created by one external contact at point C, the
problem is to find pC ∈ R3, the coordinate of contact point
C, and the contact force fC . In other words, we would like
to solve for pC and fC from the following equation:

τext = JC(q,pC)ᵀfC , (1)

where JC(q,pC) ∈ R3×nq the contact Jacobian that maps
joint velocity q̇ to the velocity of C.

As shown in Fig. 2a, C is confined to the robot’s surface,
and the contact force fC needs to stay inside the friction
cone at C:

∥∥fCf

∥∥ ≤ µ ‖fCn
‖. The second-order cone

can be approximated with the polyhedral cone in Fig. 2b,
which is generated by a set of nd extreme rays vC =
{vC1

, . . . ,vCnd
}, such that fC =

∑nd

i=1 vCi
βi = vCβ with

βi ≥ 0 [9].

Fig. 2: A contact force on Link 6 of the KUKA IIWA robot. The
orange mesh is the surface of the link. The triad represents the body
frame of the link. (a) second-order friction cone. (b) Polyhedral
approximation of the friction cone with nd = 4.

Solving (1) with the friction cone constraint is equivalent
to solving the following optimization problem:

min.
β≥0, p̄C∈S

‖J(q, p̄C)ᵀβ − τext‖2, (2)

where J(q, p̄C) = vᵀCJC(q, p̄C) ∈ Rnd×nq , and S is
the manifold of the robot’s surface. The overbar in p̄C
emphasizes that the solution to (2) can be different from the
actual pC . For fixed q and τext, a contact position estimate
p̄C has an associated cost defined as

l(p̄C ; q, τext) := min.
β≥0
‖J(q, p̄C)ᵀβ − τext‖2 (3a)

=min.
β≥0

βᵀ JJᵀ︸︷︷︸
Q

β − 2

Jτext︸ ︷︷ ︸
−b

ᵀ

β + τᵀ
extτext

 . (3b)

The function l( · ; q, τext) : R3 → R is also called the
residual, and can be computed by solving (3b), which is
a convex QP. Using l(·), the set of solutions of (2) can be
described by the set

P0(q, τext) := {p̄C ∈ S : l(p̄C ; q, τext) = 0}. (4)

The true contact location pC is clearly in P0(q, τext).
However, it is possible that |P0| > 1, i.e. different contact
forces at different positions can generate the same joint



torque τext, as shown in Fig. 3. In general, it is not possible
to distinguish pC from other elements of P0(q, τext) using
only q and τext.

Fig. 3: The residual l(·) for 20000 sampled points on link 5 and 6 of
the IIWA arm. The true contact position and direction is indicated
by the red line. Multiple global minima of l(·) can be found on the
robot’s surface S.

IV. DETECTABILITY OF CONTACTS

The joint torque sensor of a link is only able to measure
the torque about the axis of the link’s revolute joint. It is
therefore possible for the torque sensor to register zero or
small torque measurement, even if the link is in contact
with significant contact force. In this section, we give a
quantitative analysis on how likely a contact force creates
little or no measurable torque by studying the simplest case
of a single link.

A. Detectability

We assume that a link’s joint axis is aligned with the z-
axis of the link’s body frame. Let pC ∈ S denote a generic
point on the robot’s surface, KC the friction cone at pC , and
τz(·) : R3 → R the function that returns the z-component of
the torque generated by a force. For illustrative purposes, the
friction coefficient µ is set to 1. We call the contact at pC
fully detectable1 if ∀fC ∈ KC , ‖fC‖ 6= 0 ⇒ τz(fC) 6= 0.
Similarly, the contact is partially detectable if ∃fC ∈ KC ,
‖fC‖ 6= 0 ⇒ τz(fC) 6= 0, and undetectable if ∀fC ∈ KC ,
τz(fC) = 0.

We first look at the condition under which a contact at
pC is fully detectable. A non-zero force at fC satisfies
τz(fC) = 0 if and only if its line of action intersects with
the z-axis. The set of such fC’s belong to the plane which
passes through both pC and the z-axis. We denote this plane
by PC . The contact at pC is fully detectable if and only if
KC ∩PC = {0}, which is equivalent to the following linear
program being infeasible:

Find β, subject to (5a)
(pC × ez)ᵀ (vCβ) = 0, (5b)

β ≥ 1, (5c)

where ez is the unit vector along the z-axis; (pC × ez) is
normal to PC . (5b) constrains the contact force fC = vCβ
to PC . (5c) makes sure that fC is non-zero.

To find out which part of a link is fully detectable, we can
sample uniformly on the link’s surface and solve (5) for all
samples. The results for two links with distinct geometries

1The term “detectable”, which is rigorously-defined in control theory,
is abused in this section in order to facilitate exposition.

are shown in Fig.4. As the IIWA link’s surface is “concen-
trated” around its joint axis, only a tiny fraction of the link’s
surface is fully detectable. In contrast, the “elongated” link
of UR5 has significantly more fully detectable surface, which
is located further away from the joint axis. On both links,
the majority of the samples are not fully detectable.

Fig. 4: Full detectability of (a) link 6 of the IIWA arm and (b)
“forearm” link of the UR5 arm. Out of the 20000 samples generated
on each link, 2.19% and 32.58% of the samples on (a) and (b) are
fully detectable, respectively. Fully detectable samples are shown
in cyan, others in black. The meshes of the links are shown in (c)
and (d).

B. Quantifying “undetectability”
A contact at C is fully detectable if any contact force in

KC generates any non-zero torque measurement. However,
as real torque sensor measurements are usually corrupted by
noise, it is useful to know when a contact force generates a
torque measurement no less than a threshold ε.

Moreover, for contacts that are not fully detectable, it
is worth noting that the extent of their “undetectability”
varies. For example, point A in Fig. 4c is undetectable, as
it is the intersection of the z-axis and the link’s surface.
Although both point D (Fig. 4d) and B (Fig. 4c) are partially
detectable, it generally takes a smaller force to generate
τz > ε at D than at B, as D is further away from its joint
axis.

The degree of a contact’s “undetectability” with respect to
the threshold ε can be quantified by:

ηε(pC) :=
Area(Dεc)
Area(Dc)

∈ [0, 1], (6a)

DC := {fC ∈ R2 : ‖fC‖ = 1,fC ∈ KC}, (6b)
DεC := {fC ∈ DC : τz(fC) ≤ ε}, (6c)

where DC is a “dome” in the friction cone consisting of unit-
norm forces, and DεC is the subset of DC consisting of forces
whose torque measurement τz(fC) is less than ε. Intuitively,
ηε(pC) is the proportion of contact forces in KC that create
small (≤ ε) torque measurements. The closer η(pC) is to 1,
the less detectable pC becomes. Using Fig. 4c and 4d again
as examples, we expect ηε(pA) = 1, ηε(pB) be close to 1,
and ηε(pD) < ηε(pB).

Computing ηε(pC) can be done analytically, but a sam-
pling based approach is much easier to implement. Uniform
samples on DC can be easily generated, and checking mem-
bership of DεC is trivial. We can then approximate ηε(pC) by
the ratio of samples in DεC to the total number of samples.



(a) ε=0.02. IIWA: ηmin = 0.011, ηmax = 1. UR5: ηmin = 0, ηmax = 1.

(b) ε=0.05. IIWA: ηmin = 0.249, ηmax = 1. UR5: ηmin = 0, ηmax = 1.

(c) ε=0.1. IIWA: ηmin = 1, ηmax = 1. UR5: ηmin = 0, ηmax = 1.

Fig. 5: ηε(·) of IIWA link 6 and UR5 forearm.

To evaluate the “undetectability” of an entire link, we
can once again compute ηε(·) for samples generated uni-
formly from the link’s surface. The results for two different
links using different ε’s are summarized in Fig. 5. As ε
increases, the surface close to the z-axis quickly becomes
fully undetectable. If we treat ε as a detection threshold, the
result becomes particularly alarming for links with a more
“concentrated” shape: even for ε = 0.02 (Fig. 5a): ηε ≥ 0.4
for 80% of the samples. In other words, if a force of 1N
is applied at a random point C along a random direction in
KC , the probability of not detecting the contact force is at
least 0.32.

C. Implications
The analysis in this section reveals a fundamental limita-

tion of existing joint-torque-based contact estimation meth-
ods: when a contact force generates small torque about
the axis of a link, the observed τext could be equally well
explained by a different contact point on a different link.

Haddadin’s method [5] determines the link in contact as
the most distal link with τz(·) ≥ ε. As there is a significant
chance that τz(pC) ≤ ε at the true contact position C, it
is likely that their strategy believes the contact to be on a
wrong link. MCMC methods [6], [8] evaluate the likelihood
of points being the true contact point C using the residual
(3). If ηε(pC) is large, it is likely for other points to have
a residual that is only larger by ε2 ‖fC‖2, thereby trapping
MCMC methods in a wrong local minimum of l(·).

V. CONTACT ESTIMATION FROM EXTERNAL TORQUE
MEASUREMENTS

We have demonstrated that the best contact estimate
achievable from q and τext is P0(q, τext) (Section III),
which is likely to have more than one element (Section
IV). Elements of P0(q, τext) are global optimizers of (2),

which are also global minima of the residual l(·; q, τext) on
S. However, due to the dependence of J on p̄C and the
manifold constraint p̄C ∈ S, (2) is nonlinear and difficult to
solve directly.

In this section, we present a contact estimation strategy
called RSGD, which is named after the combination of
Rejection Sampling and Gradient Descent. RSGD is able
to find every local minima of l(·; q, τext). Although not as
ideal as finding P0(q, τext), RSGD is stronger than MCMC
methods: it locates every point on S to which MCMC
methods may converge.

A. Rejection sampling
Starting with P := {p̄C ∈ S}, a set of uniform samples

drawn from S, we can calculate the residual l(·) for all
samples in P , and keep the samples which satisfy l ≤ ε:

Pε(q, τext) := {p̄C ∈ S : l(p̄C ; q, τext) ≤ ε}. (7)

When using a dense P (Fig. 6a), |Pε| is usually sufficiently
large so that the local minima of l(·) can be estimated, for
instance, by clustering the points in Pε, finding the cluster
centers, and then projecting the centers back onto the robot
surface S. In contrast, when P is sparse (Fig. 6b), the few
samples in Pε are typically too noisy to make a reasonable
estimate.

The biggest drawback of rejection sampling is the high
rejection rate, which, for example, can get to approximately
98% for the robot and contact configuration in Fig. 6. Cal-
culating residuals for a very dense P is therefore needed for
an accurate contact estimate, which will incur prohibitively
high computational cost.

Fig. 6: Finding elements of Pε on link 5 and link 6 with ε =
0.005 using rejection sampling. A force of 10N is applied to the
robot along the green line. Enclosed by magenta boxes, the colored
squares represent accepted samples. (a) Dense P : 491 out of 20000
samples are accepted. (b) Sparse P : 24 out of 1000 samples are
accepted.

B. Rejection sampling + gradient descent (RSGD)
The high computational cost of vanilla rejection sampling,

due to the high rejection rate for small ε, can be reduced
significantly by

1) Generating a set of potential contact positions by rejec-
tion sampling using a sparse sample set P and a large
threshold δ: Pδ(q, τext) := {p̄C ∈ S : l(p̄C ; q, τext) ≤
δ}.

2) Running gradient descent (Algorithm 1) for every
p̄C ∈ Pδ(q, τext), collecting the converged points p̄∗C
into a set of locally optimal contact position estimates:
P ?δ (q, τext) := {p̄∗C ∈ S}.



As shown in Fig. 7, a large δ in Step 1 increases the
acceptance rate, ensuring that Pδ has enough samples even
if the initial sample set P is sparse. Although samples in Pδ
are spread out at the beginning, Step 2 runs them through
Algorithm 1, making most of them converge to local minima
of l(·).
Algorithm 1 Gradient descent on manifold S

1: Input: q, τext, p̄C ; Output: p̄∗C
2: while ‖∇p̄C

l(p̄C ; q, τext)‖ > εG do
3: t← (I3 − nCnᵀ

C)∇p̄C
l(p̄C ; q, τext)

4: a← LineSearch(p̄C , t)
5: p̄C ← p̄C + at
6: p̄C ← Retract(p̄C ,S)
7: end while
8: p̄∗C ← p̄C

Fig. 7: Running RSGD on the same robot and contact configuration
as Fig. 6. Step 1: 175 out of 1000 samples are accepted with
δ = 0.1, which are shown as small squares color-coded by their
residual values l. Step 2: 155 of the 175 samples in Pδ converge
after running Algorithm 1, which are shown as large squares. Every
p̄C ∈ Pδ is connected by a line to the corresponding element in
P ∗
δ to which it converges.

Algorithm 1 is the standard Gauss-Newton method for
Riemannian optimization. In Line 3, the gradient ∇p̄C

l is
projected to the local tangent plane, which has normal nC
and passes through p̄C . In Line 4, a standard line search
method is used to ensure that l is decreasing after taking the
gradient step at [10]. In Line 6, the new point in the local
tangent plane is projected back onto S.

Using (3b), the gradient ∇p̄C
l can be written as

(∇p̄C
l)

ᵀ
=

∂l

∂p̄C
=

∂l

∂Q

∂Q

∂p̄C
+
∂l

∂b

∂b

∂p̄C
(8)

where ∂Q
∂p̄C

and ∂b
∂p̄C

can be obtained using automatic differ-
entiation [11]; ∂l

∂Q and ∂l
∂b can be obtained from differentiat-

ing the implicit function defined by the optimality condition
of QP (3b) [12].

As shown in Fig. 8a, Algorithm 1 is effective at reducing
the residual l(·) of samples in Pδ . Note that about 60 samples
converge to positions on S with l = 0.003, which is a local
minimum on link 5, but not the global minimum on link 6.
An example gradient descent run is shown in Fig. 8b.

The ability of an approach such as RSGD to find all
local minima depends on two factors: the sampling strategy

Fig. 8: (a) Distribution of residual l(·) of the Pδ and P ∗
δ from Fig.

7. (b) A gradient descent run on link 6 of IIWA. Algorithm 1 starts
at p̄C ∈ S and converges to p̄∗

C . Red lines represent the path taken
by gradient descent. White translucent disks represent local tangent
planes.

and the convergence properties of gradient descent. By
construction the entire surface of the robot is contained with
the support of the distribution of the sampling procedure. As
such, for every local minimum that has a non-measure-zero
region of attraction, the probability that we draw a sample
in that region and converge to the minimum in non-zero.
Characterizing these regions of attraction, however, is more
challenging, and one cannot rule out, e.g. saddle points and
limit cycles. Nevertheless, empirically, we observe that the
algorithm succeeds in finding all local minima for sufficiently
dense sampling.

VI. ACTIVE CONTACT DISCRIMINATION

In the event that RSGD returns multiple (possible) con-
tacts, some form of active exploration may be desirable to
discriminate the true contact from the spurious. Assuming
contact with a static object, that will remain (approximately)
in place irrespective of the robot’s motion, a simple strategy
to falsify a spurious contact is to move the robot so as
to break contact (pull away) at that location; if residual
torque remains, then this cannot have been the true contact
(assuming no additional contacts were introduced during the
robot’s motion). Similarly, the robot motion may preserve
(push into) a possible contact; if the residual torque vanishes,
then this (spurious) contact is falsified. Given N possible
contacts {pi}Ni=1, rather than test each (possible) contact
individually, it is more efficient to “pull away from” bN/2c
such contacts, and “push into” the other dN/2e, thereby
falsifying half of the contacts with each change of robot
pose. The following program searches for such a change in
pose, δq ∈ Rnq .

min
δq, b∈BN

|
∑N

i=1
bi − bN/2c| (9a)

nᵀ
i Jiδq ≤ ε

max
push − (εmax

push + εmin
pull)bi, i = 1, . . . , N (9b)

nᵀ
i Jiδq ≥ ε

min
push − (εmin

push + εmax
pull )bi, i = 1, . . . , N (9c)

|(I − ninᵀ
i )Jiδq| ≤ rorth, i = 1, . . . , N (9d)

|δq| ≤ δmax
q 1. (9e)

Here, b ∈ BN represents the decision(s) to pull away
(bi = 1) or push into (bi = 0) the ith contact. The objective
(9a) attempts to push into as close to half (bN/2c) of the
contacts as possible. The constraints (9b) and (9c) require



that, e.g., a “pull away” moves the ith possible contact point
(on the robot) at least εmin

pull, but at most εmax
pull , in the opposite

direction to the outward facing surface normal ni, assuming
a linearized relationship between the change in position and
change in pose, δp ≈ Jiδq . Constraint (9d) restricts the
motion (of each contact point) close to the corresponding
surface normal, to minimize the chance of introducing new
contacts after the change in pose. Constraint (9e) restricts
the change in each joint angle. An example of this method
in action is shown in Fig. 9.

Fig. 9: (a) Two possible contact positions to disambiguate. The
centers of the small red spheres are coincident with the candidate
contact positions. (b) Solving (9) finds a motion that pulls away
from the contact on link 6 and pushes into the contact on link 5.

There is no guarantee that this simple discrimination
strategy will falsify all spurious contacts; success depends
on problem specifics, e.g. robot pose, robot geometry,
and the contact locations. In particular, (9) may return
infeasible, or b ≡ 1 (b ≡ 0) (i.e. pull/push on all
contacts, which gathers no useful information). However,
problem (9) is a (convex) mixed-integer linear program
(MILP) that can be efficiently solved to global optimality
by commercial solvers. This means that, in the event of
failure, we have a certificate that no such (sequence of)
discriminating actions δq exist, at least not without relaxing
the constraints (9b)-(9e), or abandoning the linearized model
and resorting to nonlinear motion planning.

VII. IMPLEMENTATION

RSGD requires a lot more computation than existing
methods. Nevertheless, by leveraging efficient open-source
libraries, our implementation can run at real-time rates on a
single CPU thread.

Fig. 10 shows the run-time breakdown of a typical iteration
of RSGD, collected on a Mac mini with Intel i7-8700B CPU
and 64GB of RAM. In Step 1, the residual l(·) is computed
for 1000 points drawn uniformly from S, of which 184 points
satisfy l < δ. In Step 2, Algorithm 1 is run on each of the
184 points until convergence, or until the limit on gradient
steps is reached.

Fig. 10: Run-time breakdown of a typical iteration of RSGD.

As most of the time is spent on running Algorithm 1 for
accepted samples in Pδ , how long one iteration of RSGD
takes is almost linearly proportional to |Pδ|. In this case,
|Pδ| = 184 leaves RSGD running at roughly 10Hz. This
can be improved, for instance, by using a sparser P , putting
an upper bound on |Pδ|, using more CPU threads, or a
combination of these strategies.

An average run of Algorithm 1 takes 472µs. The most
frequently-used atomic operation is computing the residual
l(·), which involves solving QP (3b). In every gradient step,
l(·) needs to be computed once to evaluate the gradient
∇p̄C

l(·), and a couple more times by line search. Moreover,
l(·) is also computed for every sample in P in the earlier
rejection sampling step. The lightweight QP solver OSQP
[13] allows us to compute l(·) quickly: it takes 6µs on
average to solve QP (3b).

Retracting points back onto the robot surface S is the
second most time-consuming operation in Algorithm 1. With
the robot surface S represented by triangle meshes, retraction
can be done efficiently by a mature proximity query routine
implemented in the Flexible Collision Library (FCL) [14].

The chain rule for computing ∇p̄C
l(·) in (8) is imple-

mented with Eigen [15], which takes only 2% of the total
time needed for Algorithm 1 to converge.

Algorithm 1 may fail to converge if gradient descent
passes through a region of S with almost discontinuous
surface normal, e.g. a groove or an engraved letter. Proximity
queries also occasionally return a point off the mesh, throw-
ing gradient descent off its track. Nonetheless, such failures
are relatively rare and easy to detect and reject when they
do occur.

Concerning the active contact discrimination, although
complexity of the MILP is exponential in the number of
contact locations to be falsified, moderate-size problems can
be solved efficiently with SOTA solvers, such as GUROBI
[16]; e.g., a problem with N = 10 contacts can be solved in
approximately 5ms.

VIII. CONCLUSIONS

With a detailed analysis on two notions of contact de-
tectability, we have demonstrated that a contact estimate from
joint torque measurements typically consists of more than
one possible contact positions, which are the global minima
of the residual function l(·). Finding all global minima of
l(·) is generally hard, but the proposed RSGD estimator
empirically locates all local minima of l(·). Considering that
joint torque measurements are inherently noisy, being able to
find contact points with a small but positive residual could
actually be beneficial. We have also provided a strategy
to search for small robot motions which falsify as many
spurious contact positions found by RSGD as possible.
Moreover, when this strategy fails, it provides a certificate
that no other small motion can do better.

On a robot that streams joint angle and residual torque
(τext) signals, such as the KUKA IIWA, deploying RSGD is
expected to be straightforward. Nevertheless, pre-processing
of the raw τext signal provided by the robot’s driver, which
filters out noise and ensures that the signal is unbiased, will
probably be necessary.



REFERENCES

[1] G. Cannata, M. Maggiali, G. Metta, and G. Sandini, “An embedded
artificial skin for humanoid robots,” in 2008 IEEE International con-
ference on multisensor fusion and integration for intelligent systems.
IEEE, 2008, pp. 434–438.

[2] A. Jain, M. D. Killpack, A. Edsinger, and C. C. Kemp, “Reaching in
clutter with whole-arm tactile sensing,” The International Journal of
Robotics Research, vol. 32, no. 4, pp. 458–482, 2013.
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T. Wimböck, and G. Hirzinger, “The dlr lightweight robot: design
and control concepts for robots in human environments,” Industrial
Robot: an international journal, 2007.

[4] Franka Emika GmbH, “Franka control interface documentation,” 2019.
[Online]. Available: https://frankaemika.github.io/docs/index.html

[5] S. Haddadin, A. De Luca, and A. Albu-Schäffer, “Robot collisions: A
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