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ABSTRACT

Planning in Graphs of Convex Sets (GCS) is a recently developed optimization framework
that seamlessly integrates discrete and continuous decision making. It naturally models
and effectively solves a wide range of challenging planning problems in robotics, including
collision-free motion planning, skill chaining, and control of hybrid systems. In this thesis,
we study the multi-query extension of planning through GCS, motivated by scenarios where
robots must operate swiftly within static environments. Our objective is to precompute
optimal plans between predefined sets of source and target conditions, in an effort to enable
fast online planning and reduce GCS solve times.

Our solution consists of two stages. Offline, we use semidefinite programming to compute
a coarse lower bound on the problem’s cost-to-go function. Then, online, this lower bound is
used to incrementally generate feasible plans by solving short-horizon convex programs. We
demonstrate the effectiveness of our approach through a variety of experimental domains:
collision-free motion planning for a warehouse robot arm, item sorting for a top-down suction
gripper, and footstep planning for a bipedal walker. In particular, in a warehouse-like scenario
involving a seven-joint robot arm, our method generates higher-quality paths up to 100 times
faster than existing motion planners.

Thesis supervisor: Russell L. Tedrake
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Motivation

A Graph of Convex Sets (GCS) is a recently developed generalization of a directed graph
where each vertex is paired with a convex set and a convex cost function [1]. Traversing a GCS
involves selecting a point from the convex set at each vertex and incurring a corresponding
convex cost, while edges impose additional convex costs and constraints that couple adjacent
vertex points. Many problems in classical graph theory, such as the shortest-path problem,
the traveling-salesman problem, the minimum-spanning-tree problem, and others, have been
extended to the GCS [2]. Among these, the Shortest-Path Problem (SPP) in GCS [1] has
received particular attention due to its applications in robotics. The objective is to find
a discrete path through the graph, together with the continuous vertex points along this
path, that minimize the cumulative edge and vertex costs. The SPP in GCS naturally
models problems where discrete and continuous decision-making are interleaved, making it a
powerful tool for robotics applications, including optimal control [1], collision-free motion
planning [3–5], planning through contact [6], and other problems [7, 8]. Prior work [9–11]
also highlighted that searching for a path (a sequence of distinct vertices) in a GCS can
be limiting. Allowing vertex revisits naturally models many planning problems in robotics
where actions, skills, or behaviors must be repeated. This is formalized in the Shortest-Walk
Problem (SWP) in GCS, where the vertices may be repeated and different points can be
selected upon each vertex visit. Together, we refer to the shortest-path and the shortest-walk
problems in GCS as planning in GCS.

While planning in GCS is NP-hard [1, Section 9.2], effective solution methods have been
proposed in [1, 11]. However, despite its versatility, planning in GCS can be too slow for
real-time applications on high-dimensional robotic systems. As a motivating example, consider
a 7-DoF KUKA iiwa robot arm, repeatedly performing online motion planning in a static
environment. When the environment is simple, the GCS is small, and the planning queries
can be solved quickly, in under 50ms [3]. However, when the environment is complex and
the configuration space must be covered thoroughly, as in Fig. 1.1, the GCS becomes large,
and the planning queries can take up to 600ms. This is not practical for high-productivity
applications, such as robot arms in warehouses, where the company’s income is nearly
proportional to the operational speed.
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Figure 1.1: Robotic arm in a simulated environment, tasked with moving items between
shelves and bins. Shown are four queries for collision-free motion planning.

1.2 Statement of work

In an effort to reduce solve times for online shortest-path and shortest-walk queries in GCS,
in this thesis, we seek an efficient way of precomputing optimal plans between given sets
of source and target conditions. We formulate this problem as a generalization of planning
in GCS that is analogous to the all-pairs and many-to-many generalizations of the classical
SPP in an ordinary graph [12, Ch. 23]. Our solution contains two phases. Offline, we solve
a semidefinite program that synthesizes a piecewise-convex-quadratic lower bound on the
problem’s cost-to-go function, with each convex quadratic piece defined over the convex set
associated with each GCS vertex. We derive tractable cost-to-go synthesis programs tailored
to both the shortest paths and the shortest walks in GCS. Then, online, we use this cost-to-go
lower bound to guide an incremental search algorithm to quickly retrieve a path or a walk.
Specifically, we use a multi-step lookahead greedy policy, guided by the cost-to-go lower bound,
to determine the next vertex to visit. A path or a walk are thus obtained incrementally, one
vertex at a time. Convexity of quadratic lower bounds at each vertex allows us to evaluate this
greedy policy by solving a set of small convex programs in parallel, which can be done quickly
and efficiently at run-time. Although the quadratic lower bound at each vertex can be coarse,
using the lookahead policy is equivalent to producing a piecewise-quadratic lower bound
over each vertex, which can be very expressive. As a result, the obtained plans are typically
nearly optimal in practice. Additionally, provably-optimal plans can be obtained using the
generalization of the classical A* search algorithm [11], at the expense of extra computational
cost. Applied to the complex scenario shown in Figure 1.1, our method requires just 6s of
offline computation to produce the cost-to-go lower bounds. Subsequent online queries take
2-11ms, which is up to two orders of magnitude faster than solving a planning in GCS query
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from scratch or obtaining plans via sampling-based competitors. Our experimental results
highlight that our approach effectively produces high-quality solutions to a wide range of
problems in robotics and control, including collision-free motion planning, skill chaining, and
control for hybrid dynamical systems.

1.3 Organization

The remainder of this thesis is organized as follows.
In Chapter 2, we review the SPP and the SWP in GCS. We begin with their classical

counterparts in ordinary discrete graphs, define the GCS framework and the shortest-path
and walk problems in a GCS, and highlight the similarities and differences between the two.

In Chapter 3, we introduce and study multi-query planning in GCS. We define the
problem and present our two-stage solution: the offline cost-to-go synthesis phase, described
in Section 3.4, and the online incremental search phase, described in Section 3.5.

In Chapter 4, we evaluate our framework through various numerical examples. We start
with a simple 2D illustration to build intuition, then analyze the impact of the cost-to-go
coarseness and greedy policy horizon on solution quality, and demonstrate the effectiveness
of our approach on three challenging robotic systems.

Finally, we conclude by discussing the key takeaways and limitations in Chapter 5.
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Chapter 2

Planning in Graphs of Convex Sets:
Shortest Paths and Shortest Walks

We begin with a background chapter on planning in GCS. In Section 2.1, we review the
classical SPP in a discrete graph and explain why the SWP is redundant in this context, as
it reduces to the SPP. Next, in Section 2.2, we introduce the GCS optimization framework
and formally define both the SPP and the SWP in GCS. In GCS, these two problems are
meaningfully different: in Section 2.3, we highlight the differences and similarities between
the two problems and discuss key properties that will be relevant for the subsequent chapters.

2.1 Shortest walks and paths in an ordinary graph

2.1.1 Walks and paths in a graph

Let G = (V , E) be a directed graph with vertex set V and edge set E . Given a source vertex s
and a target vertex t, an s-t walk is a sequence of vertices w = (v0, . . . , vK), such that v0 = s,
vK = t, and each consecutive pair of vertices (vk, vk+1) is connected by an edge ek ∈ E . We
define Ew =

(
(v0, v1), . . . , (vK−1, vK)

)
as the sequence of edges traversed by w.

A path is a walk where all vertices must be distinct. We emphasize this difference between
walks and paths: a walk may revisit vertices and edges, whereas a path cannot. Throughout
the thesis, we generally use w to denote walks and p to denote paths. We define Ws,t to be
the set of all s-t walks in G, and Ps,t to be the set of all s-t paths. We refer to a walk or a
path that traverses K + 1 vertices as a K-step walk or path. When speaking about walks, we
will often add a superscript K to WK

s,t to specifically denote the set of K-step s-t walks.

2.1.2 Classical Shortest-Path Problem (SPP)

Let us associate with every edge e ∈ E a non-negative edge cost ce ∈ R+, and with every
vertex v ∈ V a non-negative vertex cost cv ∈ R+. A shortest path p between the vertices s
and t minimizes the sum of the edge and vertex costs along the path:

min
p

∑
v∈p

cv +
∑
e∈Ep

ce s.t. p ∈ Ps,t.
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The optimal value of this program is called the cost-to-go between s and t, and is denoted by
J∗
s,t. The principle of optimality [13] holds in this context, stating that every subpath of a

shortest path is itself a shortest path; this forms the foundation for many efficient solution
algorithms to this problem.

2.1.3 Classical Shortest-Walk Problem (SWP)

Similarly to the shortest path, a shortest walk w between the vertices s and t minimizes the
sum of the edge and vertex costs along the walk:

min
w

∑
v∈w

cv +
∑
e∈Ew

ce s.t. w ∈ Ws,t.

The shortest-walk problem is rarely defined in the literature, as it is redundant: it is well-
known that for a graph with non-negative edge and vertex costs, this problem always admits
an optimal solution that is a path. This is because revisiting a vertex creates a cycle of
non-negative cost and makes no progress towards the target. This cycle can thus be removed
without increasing the total cost of the walk. As such, we define the shortest-walk problem
in an ordinary graph not because it is studied in its own right, but to mirror the exposition
of analogous problems in the GCS context.

2.2 Shortest walks and paths in Graphs of Convex Sets

2.2.1 Graph of Convex Sets (GCS)

A GCS is a directed graph G = (V , E) with vertex set V and edge set E , where each vertex
v ∈ V is paired with a compact, convex set Xv and a continuous, convex, non-negative cost
function lv : Xv → R+. Similarly, each edge e = (u, v) ∈ E is also paired with a convex set
Xe ⊆ Xu ×Xv and a continuous, convex, non-negative cost function le : Xe → R+. When
traversing a GCS, we must select a point xv ∈ Xv upon a visit to vertex v and incur the cost
lv(xv). When moving along an edge e = (u, v), the adjacent points (xu, xv) must satisfy the
constraint (xu, xv) ∈ Xe, and we incur the edge cost le(xu, xv) [2].

2.2.2 Walks and paths in a GCS

Let s, t be a pair of source and target vertices, and let x̄s ∈ Xs, x̄t ∈ Xt be a pair of source and
target points in the corresponding source and target convex sets. Let w = (v0, . . . , vK) ∈ Ws,t

be a K-step s-t walk through the graph G. We denote a trajectory that corresponds to a walk
w to be a sequence of vertex points τ = (x0, . . . , xK) that satisfies the following constraints:

x0 = x̄s, xK = x̄t, (2.1a)
(xk−1, xk) ∈ Xek , ∀k = 1, . . . , K. (2.1b)

In words, we require that the trajectory start at point x̄s, end at point x̄t, and that each
consecutive pairs of points (xk−1, xk) must lie in the corresponding edge constraint set Xek ,
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where ek = (vk−1, vk). Note that the assumption Xek ⊆ Xvk−1
×Xvk also ensures that the

relevant vertex constraints xk ∈ Xvk are satisfied along the walk. Given a walk w and a pair
of source and target points x̄s, x̄t, we denote the set of trajectories τ that satisfy (2.1a) and
(2.1b) as Tw(x̄s, x̄t).

We refer to the tuple (w, τ) as a walk in a GCS : it is a walk w through the graph G,
paired with a sequence of corresponding vertex points τ that satisfies the edge and vertex
constraints of the GCS. Note that, just as vertices and edges in a walk may be revisited,
distinct continuous points may be selected when revisiting the same vertex.

We denote with l(w, τ) the sum of the edge and vertex costs along the walk (w, τ) and
refer to it as the cost of the walk in the GCS:

l(w, τ) =
K∑
k=0

lvk(xk) +
K∑
k=1

lek(xk−1, xk).

Finally, a path in a GCS is defined similarly: it is a tuple (p, τ), where p ∈ Ps,t and
τ ∈ Tp(x̄s, x̄t), with the only distinction being that the vertices and edges along the path
cannot be revisited. Since every path in a GCS is also a walk in a GCS, all definitions above
introduced for walks naturally extend to paths as well.

2.2.3 Shortest-Path Problem in a GCS

The shortest s-t path in a GCS between points x̄s and x̄t is a path of minimal cost. It is the
solution to the following optimization problem:

min
(p, τ)

l(p, τ) (2.2a)

s.t. p ∈ Ps,t, τ ∈ Tp(x̄s, x̄t). (2.2b)

The optimal solution to (2.2) is a tuple (path p and trajectory τ). We denote the optimal
objective value of (2.2) as J∗

s,t(x̄s, x̄t) and refer to it as the path cost-to-go from point x̄s of
vertex s to point x̄t of vertex t.

2.2.4 Shortest-Walk Problem in a GCS

Similarly, the shortest s-t walk in a GCS between points x̄s and x̄t is a walk of minimal cost.
There are subtle differences between searching for a shortest walk and a shortest path in a
GCS. To help us emphasize these differences, we define the shortest walk to be the solution
to the following, slightly different optimization problem:

inf
K

min
(w, τ)

l(w, τ) (2.3a)

s.t. w ∈ WK
s,t, τ ∈ Tw(x̄s, x̄t). (2.3b)

We have a two-level optimization here: we seek the shortest K-step walk (w, τ) at the inner
level, and take the infimum over K at the outer level. We thus optimize over the discrete
number of steps K, the walk through the graph, and the trajectory along this walk.
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The reason for the subtle difference in the definition of the shortest-walk and shortest-path
problems in GCS is that a finite shortest walk may not actually exist. Indeed, there are simple
GCS instances where no finite walk is optimal, but the infimum in the optimization problem
(2.3) does exist in the limit. This is illustrated in Section 2.3.2. Even if the optimal walks
are infinite, the optimization problem (2.3) remains well-defined. We denote the optimal
objective value of (2.3) as J ′

s,t(x̄s, x̄t) and refer to it as the walk cost-to-go from point x̄s of
vertex s to point x̄t of vertex t. We emphasize this difference in notation: J ′ denotes the
shortest-walk cost-to-go, while J∗ represents the shortest-path cost-to-go.

2.3 Key properties, differences, and similarities

We now review the key properties of the shortest paths and shortest walks in GCS that are
relevant to the subsequent chapters.

2.3.1 Shortest walks need not be paths

As discussed in Section 2.1.3, for an ordinary graph with non-negative edge and vertex costs,
the SWP reduces to the SPP because revisiting a vertex adds a non-negative cycle and makes
no progress towards the target. The same is not true in a GCS. When traversing a GCS,
revisiting the same vertex can be advantageous, as demonstrated by the following example.

Example 1. Consider the simple 2D problem depicted in Figure 2.1a. This GCS has 5
vertices V = {s, a, b, c, t} and 8 edges, drawn in green. The convex sets Xs,Xc,Xt are points,
Xb is a segment, and Xa is a square. For every edge e = (u, v), the edge cost is defined as
le(xu, xv) = 1 + ||xu − xv||22: the first term penalizes the number of steps taken, while the
squared displacement term penalizes the size of each step. There are no vertex costs, nor are
there any additional edge constraints. The solutions to the SPP and the SWP in this GCS
are shown in Figures 2.1b and 2.1c respectively. To avoid revisiting vertices, the shortest
path (orange) is forced to take larger steps, incurring large penalties. By taking smaller steps
and revisiting vertices, the shortest walk (blue) achieves a lower cost. Thus, though cycles in
the GCS still have a non-negative cost, they can actually make progress towards the target.

2.3.2 Shortest walks need not be finite

Consider again the GCS in Example 1. If the edge cost was le(xu, xv) = ||xu − xv||22, then the
optimal walk would involve taking infinitely many small steps through the vertex a. As a
result, no finite walk is optimal, though the solution does exist in the limit. This issue is the
reason for the infimum over the number of steps K in program (2.3).

The following is a simple sufficient condition for the optimal walk, if one exists, to be
finite:

min{le(xu, xv) | (xu, xv) ∈ Xe} > 0, (2.4)

for every edge e = (u, v) ∈ E . This condition ensures that the cost of every step in the walk
is bounded below by some positive value; thus an infinite walk must incur infinite cost, and
cannot be optimal. For practical purposes, this condition can be easily satisfied by adding
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s ta

b

c
(a) A GCS embedded in R2.

s t

(b) The shortest path between vertices s and t (orange) costs 35.

s t

(c) The shortest walk between vertices s and t (blue) costs 28. Vertices a and b are both revisited
along the walk: a is visited three times consecutively, and b is visited twice non-consecutively.

Figure 2.1: A GCS where the shortest walk is not a path.

a small ϵ > 0 to every edge cost le. In what follows, we assume that the condition above
holds; this assumption is both reasonable and non-intrusive, especially since we are targeting
robotics applications.

Assumption 1. We assume that the condition in (2.4) holds, ensuring that the shortest-walk
problem, if feasible, has a finite optimal solution.

2.3.3 Principle of optimality

For the classical SPP, the principle of optimality holds and the optimal policy is independent
of past decisions, which simplifies the problem and enables many efficient solution algorithms.
While this property holds for the SWP in GCS, it does not hold for the SPP in GCS.

Example 2. Consider again the GCS instance from Example 1, pictured in Figure 2.1a.
Due to the constraint that vertices cannot be revisited, the principle of optimality does

not hold for the SPP in GCS. This is demonstrated in Fig. 2.2a, where we plot the optimal
s-t path in orange and the optimal c-t path in red. The c-t subpath of the optimal s-t path
(orange) is not the optimal c-t path (red), and thus the principle of optimality does not
hold. We also observe that the optimal policy for the SPP in GCS is a function of the set of
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s ta

b

c
(a) For the shortest paths, the optimal policy at vertex c depends on previous decisions. If b has
been visited already, the optimal decision is to go to t (orange), otherwise it is to go to b (red).
Principle of optimality does not hold: c-t subpath of the optimal s-t path is not itself optimal.

s ta

b

c
(b) For the shortest walks, the optimal policy is independent of previous decisions. Shown are the
optimal s-t (blue) and c-t (red) solutions to the relaxed problem. Principle of optimality holds: c-t
subwalk of the optimal s-t walk is itself optimal.

Figure 2.2: Principle of optimality holds for the shortest walks but not the shortest paths.

previously visited vertices. Consider the optimal decision at vertex c: if b was visited before,
the optimal decision is to go to t (orange), otherwise the optimal decision is to go to b (red).
The optimal decision policy thus depends on the set of previously visited vertices.

For the shortest walks in GCS, the principle of optimality holds, stating that every subwalk
of the optimal walk is itself optimal. Indeed, if a subwalk was not itself optimal, then it
could be replaced with the actual optimal subwalk, resulting in a walk of lower cost than the
original shortest walk — a contradiction. This is visualized in Fig. 2.2b, where the optimal
s-t and c-t solutions to the SWP in GCS are shown in blue and red respectively. Since the
principle of optimality holds, the optimal decision policy is independent of the history of
previously visited vertices.

2.3.4 Computational complexity

Both SPP and SWP in GCS are NP-hard. In [2, §9.2], the authors reduced the well-known
NP-complete 3SAT problem [14] to the shortest path in an acyclic GCS, thus proving that
SPP in GCS is NP-hard. This reduction proves that the shortest walks in GCS are NP-hard
as well. Indeed, since every walk is a path in an acyclic graph, the SPP and the SWP in an
acyclic GCS are equivalent, and the NP-hardness of the shortest-walk problem follows.
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(a) (b)

Figure 2.3: A K-step optimal walk in the GCS in (a) corresponds to a K-step optimal path
in the layered GCS in (b), constructed by duplicating the original vertices across K− 1 layers.
Thus, the SWP in GCS in (a) can be solved via SPP queries over progressively larger GCS
instances in (b) as K → ∞.

2.3.5 Existing solution methods

Given that both SPP and SWP in GCS are NP-hard, it is unlikely that there is an efficient
(polynomial-time) solution to either of them. For this reason, existing methods either yield
heuristic solutions or have exponential solve time.

The SPP in GCS can be reformulated as a Mixed-Integer Convex Program (MICP) with
a strong convex relaxation [1]: using a rounding strategy from [3], this relaxation often yields
near-optimal solutions. This particular formulation has proven to be very effective in practice
and has been implemented in the software packages Drake [15] and gcspy.

Unlike the shortest paths in GCS, the optimization tools for the shortest walks are not as
strong. Fundamentally, this has to do with the fact that length of an optimal walk can be
arbitrarily long and can be difficult to guess from the problem statement. Thus, to compute
the solution (w, τ) via a single optimization problem, one would need to pre-allocate a fixed
number of decision variables and a fixed amount of memory, which inherently requires guess-
work. For this reason, solution methods for shortest walks are typically either enumerative or
incremental in nature.

A naive enumerative way to find the shortest walk in a GCS is to compute K-step optimal
walks for progressively larger K and maintain the best solution. As K → ∞, this converges
to the infimum in (2.3). A K-step optimal walk can be obtained by solving an SPP in a
different GCS, where we duplicate vertices as a way to allow revisits, as shown in Figure 2.3.
Given the original GCS in Figure 2.3a, we construct a new layered GCS in Figure 2.3b, with
each layer containing duplicates of the original vertices, and consecutive layers connected
based on the original edges. Solving the SPP in this layered GCS yields a K-step optimal
path, equivalent to a K-step optimal walk in the original GCS. This layered construction
was considered [2, §10.2.3], where it was shown to be computationally expensive. Moreover,
for the shortest walks, this approach is intractable as it requires solving SPP queries over
increasingly larger GCS instances.

Incremental search methods provide a unified framework for solving both the SPP and
SWP in GCS [9–11, 16]. The authors in [11] generalize the well-known A* algorithm to the
GCS, employing a heuristic approximation of the cost-to-go function to guide the search.
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When a good heuristic is available, greedy search with backtracking [9] is enough to quickly
produce effective heuristic solutions. In this thesis, we use incremental search to solve multi-
query planning in GCS, building on our earlier work [9] that was originally published in the
proceedings of the 16th international Workshop for Algorithmic Foundations of Robotics.
The performance of incremental search methods heavily depends on the quality of the guiding
heuristic; in this thesis, we develop effective heuristics tailored to both shortest paths and
walks in GCS.
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Chapter 3

Multi-query planning
in Graphs of Convex Sets

In this chapter, we introduce and study the problem of multi-query planning in GCS. In
Section 3.1, we formally define multi-query SPP and SWP in GCS. We formulate these
problems by generalizing the classical all-pairs SPP, which seeks shortest paths between every
pair of vertices in an ordinary graph. We review relevant literature in Section 3.2 and outline
our solution framework in Section 3.3, extending the classical all-pairs SPP methodology
to the GCS setting. Our approach has two phases: an offline phase (Section 3.4), where
we precompute lower bounds on the cost-to-go function over the GCS, and an online phase
(Section 3.5), where solutions are recovered incrementally through graph search.

3.1 Problem statement

Let S ⊂ V be a set of source vertices and T ⊂ V be a set of target vertices. The goal of
multi-query SWP in GCS is to find the shortest walks between every pair of source and target
points x̄s ∈ Xs and x̄t ∈ Xt, and every pair of source and target vertices s ∈ S and t ∈ T .
Analogously, the goal of multi-query SPP in GCS is to find the shortest paths between every
pair of source and target points and vertices. Note that since both the shortest-walk and the
shortest-path problems in GCS are NP-hard, their multi-query generalizations are at least
NP-hard as well.

3.2 Related literature

Multi-query generalizations of the classical SPP, such as the many-to-many SPP, which seeks
shortest paths between specified sets of source and target vertices, and the all-pairs SPP1,
which seeks shortest paths for every vertex pair in the graph, are foundational in graph theory
and algorithms research [12, Ch. 23]. The widespread applicability of these problems has led
to a rich body of work focused on their solutions.

1In the literature, the acronym APSP is more commonly used for the All-Pairs Shortest Path problem; to
reduce the number of unique acronyms in this thesis, we use all-pairs SPP instead of APSP.
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At the core of these solutions is the Bellman’s principle of optimality [17], which states
that every subpath of a shortest path is itself a shortest path. This principle enables the use
of recursive methods for solving the classical SPP. The shortest path from a vertex s to a
target t can be determined recursively, by evaluating the cost of a shortest path from each
successor v of vertex s, and greedily selecting the best one among them. Thus, the cost of
the shortest paths between pairs of vertices, known as the cost-to-go function, is sufficient for
optimal decision making. This recursive relationship is encapsulated in the celebrated Bellman
equation, which characterizes the optimality condition on this problem’s cost-to-go function.
The cost-to-go can be computed efficiently by solving the Bellman equation recursively via
dynamic programming [18].

Unfortunately, explicit solutions to the Bellman equation exist only in a handful of
contexts. In the purely discrete graph setting, efficient algorithms such as Floyd-Warshall [19,
20] Johnson’s algorithm [21], and others [22] compute the cost-to-go function into a matrix,
often referred to as the distance oracle [23]. Despite their efficiency, the storage requirement
for the cost-to-go grows quadratically with the graph size (while the computation time is
roughly cubic in graph size), making these methods impractical for large graphs. For this
reason, approximate distance oracles and the shortest paths have been studied extensively [24,
25]; see [22, p. 5.3.2] for a recent review.

For continuous-space systems, a notable example where the exact solution is known is
the Linear Quadratic Regulator (LQR) in control theory [26, 27]. When the system has
linear dynamics and the cost function is quadratic, the cost-to-go function is quadratic and
can be computed by solving the famous algebraic Riccati equation [28–31]. When linear
constraints are placed on the system’s control inputs, the problem is known as the explicit
Model Predictive Control (MPC), and the cost-to-go is this setting is known to be piecewise
quadratic [32]. However, the number of pieces grows exponentially with the number of linear
constraints and the horizon of the problem, and is thus intractable for all but the simplest
scenarios [33].

For general continuous-space control systems, solving the Bellman equation is intractable.
This has motivated extensive research into approximate methods for computing the cost-to-go.

Linear programming-based approaches approximate the cost-to-go function by solving an
optimization problem over a finite set of points, thus discretizing the continuous space [34–37].
However, these methods suffer from the curse of dimensionality: for the cost-to-go description
to be effective, the number of discretization points typically grows exponentially with the
dimension of the configuration space and environment’s complexity [38].

Other techniques utilize functional approximations over the continuous space. Among
these, neurodynamic programming represents an influential class of techniques, approximating
the cost-to-go function using neural networks. The literature on this subject is vast; we
refer the reader to [39] and [40] for classic textbooks. Leveraging the expressive power of
neural networks, these methods provide tractable solutions for high-dimensional continuous
spaces. Effective methods for approximately enforcing the Bellman equation in these setting
have been developed, iteratively refining the approximations; see [41, p. 6.3][42–45] for a
handful of classic techniques. While effective, these approaches often demand meticulous
hyperparameter tuning and are notably sensitive to a multitude of factors like initialization,
network architecture, training schedules, and specific application setting.

Semidefinite programming (SDP) and sum-of-squares (SOS) techniques offer a principled
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convex framework for constructing polynomial approximations to the cost-to-go function [46–
48]. Relatedly, a substantial body of work in the controls literature has employed SOS-
based methods for verifying and synthesizing Lyapunov functions [49–52] and control-barrier
functions [53, 54]. Although polynomials are much less expressive than neural networks, they
are computationally tractable and robust. The approach proposed in this paper uses similar
techniques, extending their applicability to Graphs of Convex Sets (GCS). Specifically, we
develop a computationally efficient framework for approximating the cost-to-go function over
GCS, enabling the solution of multi-query SPP and SWP in this setting.

3.3 Solution outline

We propose a general solution strategy for both multi-query shortest-walk and shortest-path
problems in GCS. We proceed in two phases. Offline, we compute a coarse lower bound on
the cost-to-go function between relevant pairs of GCS vertices. Then online, we use these
cost-to-go lower bounds to guide a greedy incremental search algorithm, quickly recovering a
solution one vertex at a time.

Our strategy is inspired by a similar methodology commonly used for solving the classical
all-pairs SPP. Before describing our solution, we briefly outline this classical all-pairs SPP
methodology and discuss the key challenges in extending it to the GCS setting.

3.3.1 Classical all-pairs SPP review

The goal of the classical all-pairs SPP is to compute the shortest paths between all pairs of
vertices in the graph. Efficient solutions to this problem leverage the principle of optimality.
Instead of computing the full path for each pair of vertices, it suffices to compute only the
immediate successor along each path, which crucially depends solely on the current and target
vertices. The full path can then be constructed incrementally, one vertex at a time.

It is common to implicitly encode the solution to the classical all-pairs SPP into the
cost-to-go function J∗

v,t for every pair of vertices v and t. The successor is then computed by
greedily picking a vertex that minimizes the one-step lookahead with respect to the cost-to-go.
Given the current and target vertices u and t the greedy decision policy π selects the next
vertex along the shortest u-t path:

π(u, t) = argmin
v

cu + ce + J∗
v,t (3.1a)

s.t. e = (u, v) ∈ E . (3.1b)

When the exact cost-to-go J∗
v,t is available, this greedy policy is the optimal decision policy.

Naturally, if only an approximate or heuristic cost-to-go is available, the greedy policy yields
heuristic and not necessarily optimal solutions. Optimal solutions can still be obtained via
incremental search (e.g., A*).

3.3.2 Limitations when generalizing to GCS

Shortest walks in GCS. Since the principle of optimality holds for the SWP in GCS, the
solution to this problem can also be efficiently encoded via the cost-to-go function. If we had
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access to this cost-to-go, a GCS generalization of the greedy policy (3.1) would constitute
the optimal decision policy for this problem.

Unfortunately, similar to the explicit MPC [32, 33], the exact shortest-walk cost-to-go
function can be arbitrarily complex even for simple GCS instances; computing it is intractable.
Instead, we produce a coarse piecewise-quadratic lower bound on the cost-to-go. Similar to
the classical all-pairs SPP, we are then able to produce quick heuristic solutions via greedy
search, or provably optimal solutions via a GCS generalization of the A* algorithm.

Shortest paths in GCS. Unlike the classical all-pairs SPP and the SWP in GCS, the
optimal decision policy for the SPP in GCS depends on the set of previously visited vertices
(as demonstrated in Section 2.3.3 and Example 2). Explicitly capturing this dependency
requires 2|V|−1 different cost-to-go functions per vertex: one for every possible set of previously
visited vertices, which is combinatorially intractable. Moreover, similar to the shortest walks
in GCS and the explicit MPC, these cost-to-go functions can be arbitrarily complex in general,
and thus intractable to compute exactly.

We proceed with the same general approach described above: we synthesize a coarse lower
bound on the cost-to-go and use incremental search to obtain a solution. Similarly, we can
quickly obtain heuristic paths with a greedy policy, or provably optimal paths via A*.

3.4 Offline phase: synthesis of cost-to-go lower bounds

We now develop the optimization problems that synthesize shortest-walk and shortest-path
cost-to-go lower bounds over the GCS. First, in Section 3.4.1, we derive the Bellman equation
for the shortest walks in GCS, which gives a recursive condition on optimality of the cost-to-go
function in this setting. Next, in Section 3.4.2, we solve this Bellman equation, obtaining
the exact shortest-walk cost-to-go function as the solution to an infinite-dimensional Linear
Program (LP). We then extend and strengthen this program to produce (not necessarily
tight) lower bounds on the shortest-path cost-to-go in Section 3.4.3. Finally, in Section 3.4.4,
we present a tractable numerical approximation to these infinite-dimensional LPs, producing
piecewise-quadratic cost-to-go lower bounds.

For clarity of presentation, we make some simplifying assumptions. We refer the reader
to Appendix A for the extension of our method where these assumptions are lifted.

Assumption 2. First, we assume that we have just one source vertex and one target vertex,
i.e., S = {s} and T = {t}. Second, we assume that the convex set Xt corresponding to the
target vertex t is a single point: Xt = {x̄t}. Since we have a unique target point x̄t, we also
simplify the notation and refer to the shortest-path cost-to-go function J∗

v,t(xv, x̄t) as J∗
v (xv),

and the shortest-walk cost-to-go J ′
v,t(xv, x̄t) as J ′

v(xv).

3.4.1 Bellman equation for the shortest walks

As discussed in Section 2.3.3, the principle of optimality holds for the SWP in GCS: every
subwalk of a shortest walk is itself a shortest walk. Leveraging this property, we derive the
Bellman equation that characterizes the cost-to-go function for this problem.
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Recall that for every vertex v ∈ V and point xv ∈ Xv, J ′
v(xv) denotes the shortest-walk

cost-to-go from the point xv to the fixed target point x̄t. Consider a point xu of vertex u, and
let the point xv of vertex v be next along a shortest walk from xu (where vertices u, v need
not be distinct, since this is a walk). Then by the principle of optimality, the cost-to-go J ′

u(xu)
must be the sum of the incurred costs lu(xu) + l(u,v)(xu, xv) and the subsequent cost-to-go
J ′
v(xv). Furthermore, since the transition to xv of vertex v is optimal, it must minimize this

sum among all other feasible transitions. This is summarized in the Bellman equation below:

J ′
u(xu) = min

xv , v
lu(xu) + le(xu, xv) + J ′

v(xv)

s.t. e = (u, v) ∈ E ,
(xu, xv) ∈ Xe.

(3.2)

Although the minimization above should generally be replaced with the inf, the Assumption 1
ensures that the optimal walks are finite, making the minimization in (3.2) valid.

3.4.2 Cost-to-go lower bounds for the shortest walks

To solve the Bellman equation (3.2), we draw inspiration from the well-known linear program-
ming approach [34–37], which searches for cost-to-go lower bounds by imposing a relaxed
inequality version of the Bellman equation. Similar to these methods, the optimization
problem we derive in this section is also an LP, but it is infinite-dimensional and cannot be im-
mediately solved numerically. Later in Section 3.4.4 we develop a tractable finite-dimensional
approximation conducive to numerical methods.

The program we formulate searches over the space of lower-bounds on the shortest-walk
cost-to-go function J ′

v. For each vertex v ∈ V , we denote these lower bounds as Jv : Xv → R.
Note that we search over the space of functions Jv, not over the individual points xv. To
ensure that Jv is a lower bound on J ′

v, we impose a relaxed inequality version of the Bellman
equation (3.2) as a constraint:

Ju(xu) ≤ lu(xu) + le(xu, xv) + Jv(xv),

for every edge e = (u, v) ∈ E and for every feasible pair of points (xu, xv) ∈ Xe. This inequality
states that Ju(xu) is no higher than the incurred vertex and edge costs lu(xu) + le(xu, xv)
plus the subsequent value Jv(xv). Constraining Jt(x̄t) = lt(x̄t) at the target, the resulting
functions Ju must be lower bounds on the cost-to-go J ′

u, that is: Ju(xu) ≤ J ′
u(xu) for all

points xu ∈ Xu and vertices u ∈ V. To make Js a tight lower bound on the cost-to-go J ′
s at

the source vertex s, we maximize the average value of Js over the source set Xs. We obtain
the following optimization problem:

max
{Jv}v∈V

∫
Xs

Js(x)dϕs(x) (3.3a)

s.t. Jv : Xv → R, ∀v ∈ V , (3.3b)
Ju(xu) ≤ lu(xu) + le(xu, xv) + Jv(xv), (3.3c)

∀e = (u, v) ∈ E ,
∀(xu, xv) ∈ Xe,

Jt(x̄t) = lt(x̄t), (3.3d)
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where ϕs in the objective (3.3a) is a probability distribution of anticipated source conditions
over the set Xs

2. Constraints (3.3c) and (3.3d) enforce that Jv is a lower bound on J ′
v for

every vertex v ∈ V, while the integral in (3.3a) maximizes the weighted average of Js over
Xs, effectively “pushing up” the cost-to-go lower bound at the source vertex. The objective
function is maximized when Js(xs) = J ′

s(xs) for all xs ∈ Xs, and thus the optimal solution to
program (3.3) yields tight lower bounds on the shortest-walk cost-to-go over the source set.

Simultaneously maximizing the average value of Jv across all vertices v ∈ V yields tight
lower bounds on the shortest-walk cost-to-go over the entire GCS. This is similar to the
classical many-to-one SPP, lifting one of the simplifications made in Assumption 2. Further
details and extensions are provided in Appendix A.

We note that program (3.3) naturally generalizes the well-known cost-to-go synthesis LP
for the classical SPP. When each convex set Xv is a single point, the SWP in GCS reduces to
the classical SWP in an ordinary graph, which in turn reduces to the classical SPP, where
functions Jv are defined at single points and represented by a single decision variable per
vertex. Program (3.3) reduces to the well-known classical cost-to-go synthesis LP:

max
{Jv}v∈V

Js

s.t. Ju ≤ lu + le + Jv, ∀e = (u, v) ∈ E ,
Jt = lt.

Similar to this purely discrete classical setting, optimization problem (3.3) is also an LP;
however, it searches over the space of functions and is therefore infinite-dimensional. In
Section 3.4.4, we develop a tractable finite-dimensional approximation to program (3.3).

3.4.3 From walks to paths

We now turn to cost-to-go synthesis for the SPP in GCS. As shown in Section 2.3.3 and
Example 2, the principle of optimality does not hold for the shortest paths in GCS. Due
to the constraint that vertices cannot be revisited along the path, previous decisions now
have a bearing on the subsequent ones: that is, the optimal decision policy at every point
and every vertex depends on the set of visited vertices. Consequently, the shortest-path
cost-to-go function is also history-dependent. Explicitly capturing this dependency requires
2|V|−1 different functions per vertex: one for every set of possibly visited vertices, which is
combinatorially intractable. Instead, we opt to compute a single heuristic lower bound on
the cost-to-go function, which is then used to guide an incremental search policy.

The SWP cost-to-go function produced in program (3.3) already provides a valid lower
bound for the SPP cost-to-go: indeed, since every path is a walk, the cost of a shortest path is
at least that of a shortest walk. In this section, we strengthen program (3.3) to yield tighter

2At this stage, the choice of distribution ϕs is irrelevant so long as it is positive over the source set Xs. If
it is, then the optimal solution to the program (3.3) is a tight lower bound on the shortest-walk cost-to-go
function: Js = J ′

s. This is because Js has arbitrary expressive power, as we search over the infinite-dimensional
space of functions. However, when finite-dimensional approximations are introduced in Section 3.4.4, the
expressive power of Js becomes finite, and the choice of ϕs becomes important, as it effectively determines
what part of the set Xs the expressive power should be spent on.
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lower bounds on the SPP cost-to-go. Empirically, these tighter lower bounds serve as better
heuristics when producing paths via incremental search.

The lower bound on the cost-to-go is obtained using the following optimization problem:

max
{Jv ,hv}v∈V

∫
Xs

Js(x)dϕs(x) (3.4a)

s.t. Jv : Xv → R, ∀v ∈ V , (3.4b)
Ju(xu) ≤ lu(xu) + le(xu, xv) + hv + Jv(xv), ∀e = (u, v) ∈ E , (3.4c)

∀(xu, xv) ∈ Xe,

Jt(x̄t) = lt(x̄t)−
∑
v∈V

hv, (3.4d)

hv ≥ 0 ∀v ∈ V . (3.4e)

We now detail the differences between programs (3.3) and (3.4), and then prove the validity
of the lower bound produced in program (3.4) in Lemma 1 below.

The objective function (3.4a) and the constraint (3.4b) remain unchanged: for each vertex
v ∈ V, we associate a function Jv that serves as a lower bound on the cost-to-go J∗

v , while
the integral in the objective maximizes the weighted average of Js over the source set Xs.

In (3.4e), we introduce a non-negative penalty hv for every vertex v ∈ V . This penalty is
meant to discourage revisits to vertex v, which is a way to relax the constraint that a path
must not visit any vertex more than once.

To implement the penalty hv, we increment the edge cost le for every edge e ∈ E that
enters vertex v. This is formalized in (3.4c), which states that for every edge e = (u, v) and a
feasible transition (xu, xv) ∈ Xe, the value Ju(xu) is a lower bound on the sum of the vertex
cost lu(xu), penalty-incremented edge cost le(xu, xv) + hv, and the subsequent cost-to-go
lower bound Jv(xv). As written, the non-negative penalty hv increases the cost of the edges
leading into vertex v, thereby discouraging visits to v. However, since our goal is to only
discourage subsequent vertex revisits, we need to waive the penalty hv once. This is achieved
by setting the cost-to-go lower bound Jt(x̄t) to lt(x̄t)−

∑
v∈V hv in constraint (3.4d). Upon

reaching the target vertex, we incur the target vertex cost lt(x̄t) and subtract the sum of all
vertex penalties, effectively waiving the penalties once per vertex. We now show that these
constraints produce lower bounds on the cost-to-go function.

Lemma 1. Let {Ju, hu}∀u∈V be a feasible solution of problem (3.4). Then

Ju(xu) ≤ J∗
u(xu) for all u ∈ V .

Proof. Consider a feasible solution to program (3.4), and let u be some vertex. Let (p, τ) be
the shortest path in GCS from a point xu ∈ Xu to the target point x̄t of target vertex t. Since
vertex sequence p is a path, it contains no repeated vertices. Adding the constraint (3.4c)
along the edges Ep of this optimal path, we have:

Ju(xu) ≤
∑

e=(v,w)∈Ep

(
lv(xv) + le(xv, xw)

)
+
∑
v∈p

hv + Jt(x̄t), (3.5)
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where xv, xw are the vertex variables of the optimal trajectory τ corresponding to the path
p (note: here w is used to represent a vertex, not a walk). Constraint (3.4d) states that
Jt(x̄t) = lt(x̄t)−

∑
v∈V hv, while the sum of the edge costs le(xv, xw) along the optimal path

p is by definition the cost-to-go J∗
u(xu). Substituting and rearranging terms, we obtain:

Ju(xu) +
∑
v/∈p

hv ≤ J∗
u(xu). (3.6)

Since the penalties hv are non-negative by (3.4e), the conclusion follows.

By maximizing the weighted average of Js in the objective function (3.4a), the pro-
gram (3.4) seeks the best possible lower bound Js on the cost-to-go J∗

s , up to the relaxation
gap introduced by the vertex penalties. This gap is clear from (3.6): for xs ∈ Xs, the sum
of the off-the-optimal-path penalty terms

∑
v/∈p hv need not to be zero, so Js(xs) need not

be a tight lower bound on J∗
s (xs). In other words, recall that, upon reaching the target,

we waive the penalties hv for every vertex v ∈ V. As a result, we do not just waive the
first-time penalties on vertices along the optimal path p, we also waive the off-the-path
penalties

∑
v/∈p hv, which were never accrued in the first place3. Waiving these off-the-path

penalties introduces the gap between Js and J∗
s .

Lemma 1 proves that program (3.4) generates a lower bound on the shortest-path cost-
to-go function. Observe that by setting hv = 0 for every v ∈ V, we remove the penalties on
vertex revisits, and recover the program (3.3). Thus the optimal solution to (3.3) is a feasible
solution to (3.4), and the lower bound obtained in this section is at least as strong as the
shortest-walk lower bound derived earlier.

3.4.4 Numerical approximation via semidefinite programming

We now produce approximate solutions to the shortest-walk and shortest-path cost-to-go
synthesis programs (3.3) and (3.4). Since the SWP cost-to-go synthesis program (3.3) is a
special case of (3.4) (obtained by setting vertex penalties hv = 0), we focus just on the later
program. We restrict each function Jv to be convex quadratic, which allows us to cast (3.4)
as a tractable Semidefinite Program (SDP). SDPs are mathematical programs where the
objective function is linear and the constraints are either linear or linear matrix inequalities
(LMIs). To help with the presentation, we first state without proof three well-known facts.

Lemma 2 (e.g., [55, App. A.1]). A quadratic function f : Rn → R is non-negative if and
only if it is representable as a Positive-Semidefinite (PSD) quadratic form:

f(x) =

[
1
x

]⊤
Q

[
1
x

]
for some Q ⪰ 0.

Lemma 3 ([55, Section 3.2.4]). Let X = {x ∈ Rn | gi(x) ≥ 0, ∀i = 1, . . . ,m}. The function
f : Rn → R is non-negative on the set X if there exists λ ∈ Rm

+ , such that f(x)−
∑m

i=0 λigi(x)
is non-negative for every x ∈ Rn.

3Note that if the source set was a single point (Xs = {x̄s}), then this gap would be zero, and the lower bound
Js would be tight at x̄s. Though we still cannot solve this program exactly, as it is an infinite-dimensional LP.
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Corollary 1. Suppose that in Lemma 3, the function f is quadratic, and all gi functions
are affine or convex quadratic. Then we can apply Lemma 2 to verify Lemma 3 via an LMI,
i.e., we can verify if f is non-negative over X by searching for a PSD matrix in an affine
subspace.

Using these facts, we proceed to cast program (3.4) as an SDP.

Defining cost-to-go lower bounds in (3.4b). We restrict lower bounds Jv per vertex
v ∈ V to be convex quadratic functions. By Lemma 2, searching for such functions is
equivalent to searching for appropriate PSD matrices Qv. The decision variables are thus the
coefficients of the quadratic polynomials. As a result, we produce a coarse convex quadratic
lower bound on the optimal cost-to-go function at every vertex v.

Constraint (3.4e) is already linear, and constraint (3.4d) is linear in the coefficients of the
quadratic polynomial Jt and the decision variables hv. These constraints are thus already
suitable for the SDP.

Enforcing the lower-bound constraint (3.4c). To apply Corollary 1 to enforce this
constraint, we impose additional restrictions. First, we restrict vertex and edge sets Xv and
Xe to be intersections of ellipsoids and polyhedra. We also restrict vertex and edge costs lu, le
to be quadratic, ensuring that the expression in (3.4c) is quadratic. For non-quadratic edge
and vertex costs, such as the Euclidean distance, we use quadratic approximation instead.
Applying Corollary 1, we verify constraint (3.4c) with an LMI.

The objective function (3.4a). Since Js is a quadratic polynomial, the integral in (3.4a)
is linear in the coefficients of Js4, which are the decision variables of the program. Therefore,
the objective function (3.4a) is linear in the decision variables, as required for the SDP.

Empirically, we found quadratic lower bounds to be a good balance between computational
complexity and expressive power. Note that higher-degree polynomial lower bounds Jv can
be synthesized via the Sums-of-Squares (SOS) hierarchy [56–58]. However, in practice, the
resulting programs tend to be prohibitively expensive. On the other hand, restricting Jv to
be affine yields a program that almost exactly matches the dual to the convex relaxation of
the SPP in GCS, discussed in [1, App. B]. In other words, solving the SPP in GCS already
gives a coarse affine cost-to-go lower bound that can be used to solve multi-query SPP in
GCS. In Section 4.2, we show that empirically, these affine lower bounds have significantly
less expressive power than the quadratic lower bounds. Although quadratic cost-to-go lower
bounds are still coarse, we find them surprisingly effective in practice. In particular, we
are able to effectively mitigate this coarseness by using multi-step lookaheads in the greedy
search policy, which effectively produces piecewise quadratic lower bounds on the cost-to-go
function at every vertex. This is demonstrated in Section 4.1.

4Specifically, the objective is a product of the coefficients of Js and the moments of the distribution ϕs of
anticipated initial conditions over the source set Xs. Since the expressive power of the polynomial lower bound
Js is limited, ϕs serves as a preference weighting on the quality of the lower bound over Xs. Consequently, ϕs

should be chosen to prioritize parts of Xs where higher accuracy of the lower bound is most critical.
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3.5 Online phase: incremental search

After synthesizing lower bounds on the cost-to-go functions, we extract shortest walks and
paths using incremental search. Motivated by fast online solve times, we employ greedy
search, which generates high-quality solutions by taking locally-optimal decisions at each
step, greedily descending along the cost-to-go function. To mitigate the coarseness of the
quadratic lower bounds and better approximate the optimal decision policy, we use multi-step
lookahead greedy search, where n-step optimal decision sequences are computed at each step,
and the first decision is executed.

While fast and effective, greedy search provides no guarantees on optimality or complete-
ness. We note that for provably optimal walks or paths, best-first search can be used (such
as a GCS generalization of A* [11]). This method guarantees finding an optimal solution,
though in the worst case, its computational cost grows exponentially with the length of the
solution. We refer the reader to Appendix B for further details on best-first search.

We now formulate the multi-step lookahead greedy policy for the shortest paths and walks
in GCS, generalizing the one-step greedy policy (3.1) from the classical all-pairs SPP.

Greedy policy for the shortest paths. Suppose that at runtime, we are given a source
vertex v0 ∈ S and a source point x0 ∈ Xv0 . At iteration k of the policy rollout, let (vk, xk) be
the current vertex and vertex point, and let pk = (v0, . . . , vk) be the path so far. The greedy
policy, which we define shortly, uses this information to produce the next vertex vk+1 and
the corresponding vertex point xk+1. We then advance to the next iteration. The rollout
terminates when we reach the target vertex t, where we must select the target point x̄t. At
each iteration of the policy rollout, to determine the next vertex and point to go to, we solve
a greedy lookahead optimization problem with respect to the cost-to-go lower bounds.

Given a vertex v, a set of visited vertices p, and a lookahead horizon n, let P(v, p, n) be
the set of all candidate n-step paths that originate at v and do not include vertices in p.
Here we also consider candidate paths that terminate at the target vertex t early: we include
paths that start at v, end at t, and have fewer than n steps. We define the set P(v, p, n) to
include all such paths as well. The n-step lookahead program is then defined as follows:

min
(p, τ)

l(p, τ) + Jvk+n
(xk+n)− lvk+n

(xk+n) (3.7a)

s.t. p ∈ P(vk, pk, n), (3.7b)
τ ∈ Tp(xk, xk+n). (3.7c)

This program considers candidate n-step decision sequences (p, τ) that originate at (vk, xk),
and among them selects the one that minimizes the n-step lookahead cost-to-go.

We now explain program (3.7) line by line. In (3.7b), we consider all candidate n-step
paths p = (vk, . . . , vk+n) that start at the vertex vk and do not include vertices pk that have
already been visited. The set P(vk, pk, n) encompasses all such paths. In (3.7c), for each
candidate path p, we consider a trajectory τ = (xk, . . . , xk+n) along this path, which starts at
the fixed point xk and ends at a variable point xk+n. The set Tp(xk, xk+n) describes all such
feasible trajectories. If the candidate path p ends with the target vertex t, we modify the
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constraint (3.7c) to be τ ∈ Tp(xk, x̄t), so that the trajectory τ ends on the target point x̄t.
Together, path p and trajectory τ are a candidate n-step decision sequence through the GCS.

Through the objective (3.7a), we seek the decision sequence that minimizes the n-step
lookahead cost-to-go. The objective function consists of three terms. The first term l(p, τ)
is the sum of the vertex and edge cost incurred along the n-step path. The second term
Jvk+n

(xk+n) is the lower bound on the remaining cost-to-go from the last vertex vk+n and
point xk+n. To avoid double-counting, the third term −lvk+n

(xk+n) subtracts the vertex
cost incurred from visiting vk+n, as it is counted in both l(p, τ) and Jvk+n

(xk+n). Having
obtained the optimal n-step decision sequence (p, τ), we take just the first step, transition to
(vk+1, xk+1), and advance to the next iteration. The policy rollout terminates once we reach
the target vertex.

We emphasize that this multi-step lookahead formulation is key for mitigating the coarse-
ness of the quadratic cost-to-go lower bound Jv. This is because an n-step lookahead from
vertex v effectively produces a piecewise-quadratic lower bound on the optimal cost-to-go J∗

v

over Xv, which has significantly more expressive power. While these lower bounds can still
be loose in theory, multi-step lookaheads enable effective decision-making in practice.

Modifications for the shortest walks. The policy for the shortest walks is nearly
identical, with two minor changes. First, in (3.7b), instead of searching for a path that
originates at (vk, xk), we search for a walk, allowing vertex revisits. Second, the policy rollout
need not terminate upon reaching the target vertex t, as this vertex may also be revisited.
Instead, we have to consider multiple options: one where the target point x̄t is selected and
the rollout is terminated, and one where some other point is selected from the target set Xt

and the policy rollout continues.

Efficient implementation. To actually compute the minimizer of (3.7), we solve multiple
convex programs in parallel, one for each candidate n-step lookahead path, then select the
best path. For each candidate path p = (vk, . . . , vk+n) ∈ P(vk, pk, n), we solve the following
convex program to find the optimal trajectory τ = (xk, . . . , xk+n) along this candidate path:

min
τ

l(p, τ) + Jvk+n
(xk+n)− lvk+n

(xk+n)

s.t. τ ∈ Tp(xk, xk+n).

To make the convex structure of this program more clear, we expand l(p, τ) and Tp below:

min
(xk+1, ..., xk+n)

k+n∑
m=k+1

(
lvm−1(xm−1) + lem(xm−1, xm)

)
+ Jvk+n

(xk+n) (3.8a)

s.t. (xm−1, xm) ∈ Xem , ∀m = k + 1, . . . , k + n. (3.8b)

Here, the decision variables are the continuous vertex points (xk+1, . . . , xk+n) along the
candidate path; note that point xk is not a decision variable: it remains fixed. In (3.8b),
we enforce the edge constraints on the consecutive points; recall that vertex constraints
xm ∈ Xvm are enforced implicitly due to the assumption Xem ⊆ Xvm−1 ×Xvm . By definition,
these constraints are convex. The objective function (3.8a) is also convex, since it is the sum
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of convex functions: convex vertex and edge costs along the path and the convex cost-to-go
lower bound Jvk+n

(xk+n). We emphasize that this is the reason why we chose to synthesize
convex cost-to-go lower bounds: to ensure that the objective function (3.8a) is convex. As a
result, program (3.8) is convex, and can be solved quickly and efficiently at run-time.

To speed up online computation, parametric programming is used offline to pre-build these
n-step lookahead programs into binaries, thus avoiding the compilation overhead at run-time.
After synthesizing the cost-to-go lower bounds, we precompile a parametric program for
every possible n-step decision sequence, with xk as the parameter and (xk+1, . . . , xk+n) as
the decision variables. Program (3.8) is convex in both parameters and decision variables, as
per disciplined convex parametric programming [59]. At run-time, we solve these pre-built
programs in parallel using multithreading, enabling very fast execution in practice.

Lastly, several techniques can be employed to further reduce the number of convex
programs solved at run-time. One effective approach is to prune n-step decision sequences
that are inherently infeasible, regardless of the initial point. This can be achieved by solving
a simple feasibility program offline for each candidate n-step path p:

find x0, xn, τ s.t. τ ∈ Tp(x0, xn).

Sequences for which this program is infeasible can be safely discarded. Additionally, for
many robotic systems, certain candidate sequences can be heuristically pruned due to their
impracticality or lack of relevance. For example, paths that involve highly inefficient detours
or explore dead-ends can often be identified and discarded offline.

Post-processing. To further improve the quality of walks and paths obtained via greedy
search, we apply two post-processing steps upon termination of the policy rollout. First,
we extract the vertex sequence (v0, . . . , vt) and re-optimize the continuous vertex variables
(x0, . . . , xt), so as to produce a trajectory that is optimal within this walk or path. Second,
we use short-cutting, attempting to reduce the vertex sequence. Specifically, we look for
non-consecutive vertices vk and vm that are connected by an edge e = (vk, vm), with k < m. If
such vertices are found, we consider a new vertex sequence (v0, . . . , vk, vm, . . . , vt), re-optimize
the corresponding trajectory, and accept the new solution if it is feasible and has a lower cost.
For the shortest walks, this short-cutting procedure tends to eliminate unnecessary cycles
along the walk. Empirically, we observed short-cutting to substantially improve the solution
quality of both walks and paths. However, it can be computationally expensive due to a
potentially large number of short-cutting options, as well as the overhead of constructing
programs at run-time. Thus, the extent of short-cutting should be tailored to the available
time budget.

Recursive feasibility. Finally, we note that the lookahead program (3.7) is not guaranteed
to be recursively feasible. If we end up in a vertex where the lookahead program has no
solution, we backtrack to a previous vertex that has a different feasible candidate outgoing
edge, and retry from there. As a result, our planner is sound but not complete: it is not
guaranteed to produce a solution, but every solution it produces is feasible. A complete and
provably-optimal planner can be attained via best-first search — see Appendix B for details.
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Chapter 4

Experimental demonstrations

In this section, we evaluate the proposed solution method through a series of experiments.
First, in Section 4.1, we present a simple example to illustrate the algorithm’s offline and
online phases. Next, Section 4.2 examines how the coarseness of the cost-to-go lower bounds
and the horizon of the multi-step lookahead greedy policy affect the performance of our
algorithm. In Section 4.3, we apply our approach to the motivating example from Figure 1.1,
a robot arm performing motion planning in a warehouse setting, and compare its performance
against PRM, its natural sampling-based competitor. Finally, in Section 4.4 we illustrate the
applicability and effectiveness of our approach across several challenging robotics systems.

Unless otherwise specified, all experiments were run on a desktop computer with a 4.5Ghz
16-core AMD Ryzen 9 processor and 64GB 4800MHz DDR5 memory. We use Mosek 10.2.1 [60]
to solve all convex programs in this section.

4.1 Visual intuition

To illustrate our approach, we consider a simple two-dimensional GCS problem in Figure 4.1.
We have a graph G with |V| = 9 vertices, |E| = 25 edges, including multiple cycles. The
geometry of the convex sets Xv can be deduced from Figure 4.1a; no edge constraints Xe are
used. The edge costs le(xu, xv) = ∥xu − xv∥22 are the squared Euclidean distance, and there
are no vertex costs. The source vertex s is a box at the top, the target vertex t is a single
point at the bottom, and the goal is to find the shortest paths between them.

Offline we compute the convex quadratic lower bounds on the shortest-path cost-to-go
function at every vertex. The contour plots of these cost-to-go lower bounds are visualized
in Figure 4.1a. Then at run-time, we are given a specific point in the source set. In Figure 4.1b,
we depict the first three iterations of the 1-step lookahead rollout of the greedy policy (3.7).
At each iteration, we expand the neighbors of the current vertex and greedily select the next
vertex v and the vertex point xv that minimize the objective (3.7a). The rollout proceeds
until the target vertex t is reached.

We evaluate the quality of the cost-to-go lower bounds and the resulting solutions in
Figure 4.2. The optimal shortest path cost-to-go function J∗

s (green) is piecewise-quadratic.
Naturally, the convex quadratic lower bound Js (purple) is a poor lower bound to J∗

s . However,
the quality of the lower bound is greatly improved via multi-step lookaheads (solid lines,
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(a) Offline: synthesize a
cost-to-go lower bound
over the GCS. Contour
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(b) Online: at each iteration, we evaluate all candidate n-step paths from
the current vertex (n=1 shown) and greedily select the decision that
minimizes the n-step lookahead cost-to-go. The first three iterations
are shown, as the path is built incrementally.

Figure 4.1: Illustration of our methodology. The GCS instance is embedded in R2, with the
source vertex at the top and the target vertex at the bottom. The edges are shown as red
arrows, and the edge length is the squared Euclidean distance.

−4 −2 0 2

24

26 Cost-to-go (optimal)
Quadratic lower bound   
1-step lookahead lower bound
2-step lookahead lower bound
1-step lookahead rollout
2-step lookahead rollout

Horizontal position in the source set

O
bj

ec
ti
ve

 v
al

ue

Figure 4.2: Comparison of lower and upper bounds on the cost-to-go over a horizontal slice
of the source set Xs from Figure 4.1a. The shortest-path cost-to-go function J∗

s (green) is
piecewise-quadratic. Convex quadratic lower bound Js (purple) is naturally a poor lower-
bound. Multi-step lookaheads (solid orange, blue) produce tighter piecewise-quadratic lower
bounds. Upper bounds on the cost-to-go are obtained by rolling out the multi-step lookahead
policy (dashed orange, blue), which produces near-optimal solutions.

orange for 1-step, blue for 2-step). A horizon-n lookahead produces a piecewise-quadratic
lower bound to J∗

s , with up to as many quadratic pieces as there are different n-step paths
from the source vertex s. Though neither 1-step nor 2-step lookahead lower bounds are tight,
they successfully capture the general cost-to-go landscape, and are sufficient for near-optimal
decision making. The costs of the rollouts of the greedy policy are plotted as dashed lines; in
particular, 2-step lookahead rollouts (blue) attain optimal solutions nearly always.
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Figure 4.3: A 3-step lookahead policy with quadratic Jv (blue) yields diverse vertex paths
resembling the optimal solutions (green). A 3-step lookahead with affine Jv (orange) follows
a single vertex sequence regardless of the target point, accruing much higher cost.

4.2 Polynomial lower-bound and lookahead horizon:
effects on solution quality

In this section, we analyze how the coarseness of the cost-to-go lower bounds and the lookahead
horizon impact solution quality. First, we show that multi-step lookaheads with quadratic Jv
yield near-optimal solutions in very large graphs. Second, we demonstrate that quadratic
lower bounds significantly outperform the affine ones, which are available from the dual of
the convex relaxation of the SPP in GCS [1, App. B].

We consider a randomly generated environment depicted in Figure 4.3. We assign a
GCS vertex v for each teal box. Each convex set Xv is the set of control points of a cubic
Bézier curve within the box (see [3] for more details). The GCS vertices are connected by a
pair of edges if the corresponding teal boxes overlap. The resulting graph has 190 vertices
and 540 edges. For each edge, we constrain the vertex Bézier curves to be differentiable at
the transition point. The path cost is the sum of squared Euclidean distances between the
consecutive control points of the Bézier curves. The source vertex s is at the top, and the
target vertex t is at the bottom, and our goal is to find shortest paths between random source
and target points.

We synthesize the quadratic and affine lower bounds on the shortest-path cost-to-go
over the GCS, which takes 6s and 2s respectively. We then uniformly sample 120 pairs of
source and target conditions, and rollout the greedy policy using different lower bounds and
lookahead horizons. Optimal solutions are obtained by solving the MICP formulation of the
SPP in GCS. Numerical results are reported in Table 4.1.

Table 4.1 shows that our approach scales well to large problem instances, yielding much
better solve times than the SPP in GCS. A 2-3 step lookahead policy with a quadratic cost-to-
go lower bound produces near-optimal solutions (8-9% median suboptimality) in under 10ms.
The SPP in GCS produces slightly better solutions (7% median suboptimality), but due to
the size of the graph, the solve-time increases to over 1000ms. For large graph instances,
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Solution method Optimality gap, % Solve time, ms Failure rate, %
Quadratic Jv, 1-step 20.0 (62.1) 3 (3) 0.0
Quadratic Jv, 2-step 9.4 (22.3) 4 (4) 0.0
Quadratic Jv, 3-step 8.8 (15.7) 5 (6) 0.0

Affine Jv, 1-step 157.1 (N/A) 2 (657) 27.2
Affine Jv, 2-step 142.4 (418.8) 3 (914) 14.0
Affine Jv, 3-step 80.2 (348.3) 5 (808) 9.9
Affine Jv, 8-step 11.9 (37.4) 169 (1996) 3.3
Affine Jv, 9-step 7.0 (26.2) 388 (2454) 0.0

SPP in GCS 6.9 (12.0) 716 (1051) 0.0

Table 4.1: Impact of the degree of Jv and lookahead horizon on performance, over 120 queries
for the GCS in Figure 4.3. We report optimality gaps (ratio between solution cost and optimal
cost), solve times, and failure rates (rollout policy is terminated after 10,000 iterations). We
report median values, with the 75th percentile in the parenthesis. Low-horizon lookahead
policies with quadratic lower bounds yield near optimal solutions, perform much better than
the affine lower bounds.

incremental search through the graph via the multi-query SPP in GCS achieves competitive
solution quality while reducing solve times by up to two-three orders of magnitude.

Finally, Table 4.1 shows that quadratic lower bounds with short-horizon lookaheads offer a
good balance between expressive power and solve times. A 3-step lookahead policy with affine
lower bounds has a median suboptimality of 80.2%, compared to 8.8% with quadratic lower
bounds. Achieving similar solution quality with affine lower bounds requires a lookahead
horizon of 8-9 steps, but the resulting rollouts take significantly more time. Figure 4.3 shows
that 3-step lookahead rollouts with affine lower bounds fail to capture the diversity of optimal
solutions. Additionally, low-horizon lookahead policies with affine lower bounds often fail to
produce solutions within a reasonable number of iterations, as demonstrated by the failure
rate statistics. Overall, we observe that the lookahead policies with quadratic lower bounds
perform much better than those with affine ones.

We remark that the GCS used in this experiment is notably large, consisting of 190
vertices and 540 edges, with numerous cycles that complicate path planning. Despite this,
quadratic cost-to-go lower bounds remain highly informative. Using only a 3-step lookahead
greedy policy with respect to these lower bounds, we achieve near-optimal solutions, thus
illustrating that our approach scales effectively to large problem instances.

4.3 Case-study: collision-free motion planning
for a robot arm in a warehouse setting

We now evaluate our approach in a realistic scenario that reflects the motivation for our work:
quickly and effectively solving planning problems for a robot in a fixed environment. We study
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Figure 4.4: We repeat Figure 1.1 here for convenience and visual reference. Pictured is a
robotic arm in a simulated environment, tasked with moving items between shelves and bins.
Shown are four shortest-path queries for collision-free motion planning.

multi-query collision-free motion planning for the KUKA iiwa robotic arm (Figure 4.4), tasked
with moving virtual items between shelves and bins. Our methodology requires minimal
additional offline computation, while delivering significant online speed up with negligible
solution quality reduction.

To use GCS for this problem, we follow the methodology from [3]. We first produce an
approximate polytopic decomposition of the 7-dimensional collision-free configuration space
of the arm. This is done via the IRIS-NP algorithm [61], and we use IRIS clique seeding [62]
to obtain polytopes inside the shelves and bins. We assign a GCS vertex v per polytope in
this decomposition. The convex set Xv is the set of linear segments contained within the
collision-free region, with the segment represented by its endpoints. The vertex cost lv is
given by the Euclidean distance of the linear segment. Two GCS vertices are connected by an
edge if the corresponding regions overlap, and additional edge constraints are added to ensure
path continuity between adjacent segments; no edge costs are used. The resulting graph
contains 23 vertices and 68 edges. We define 12 source vertices (6 shelves, 2 vertices per shelf)
and 3 target vertices (inside the left, front, and right bins), and seek shortest paths between
the source and target points. To generate the quadratic lower bounds on the shortest-path
cost-to-go function, we use the generalization of (3.4) discussed in Appendix A.

We evaluate our algorithm in this multi-query scenario: at run-time, the arm is given a
random next position to go to, alternating between shelves and bins. We rollout a 1-step
lookahead policy to generate paths from shelves to bins, and reverse them to obtain paths
from bins to shelves. We evaluate our approach on a total of 120 queries. We compare our
algorithm against solving the SPP in GCS from scratch, as well as against the shortcut
PRM (sPRM) algorithm, which is its natural sampling based multi-query competitor. We
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Figure 4.5: For the robot arm scenario in Section 4.3, we compare path length and solve time
performance between the multi-query SPP in GCS, single-query SPP in GCS, and shortcut
PRM over 120 queries. The offline phases take 106s, 100s, and 0.9s respectively. Multi-query
SPP in GCS is on average 40 times faster than the SPP in GCS, with minimal reduction
in solution quality. Compared to sPRM, our multi-query approach is on average 110 times
faster.

use a high-performance implementation of sPRM based on [63], producing a large roadmap
with 10,000 vertices. Our solutions are visualized in Figure 4.4; performance comparison is
provided in Figure 4.5. Similar to how the quality of the PRM solutions depends on the
density of the PRM, the quality of solutions obtained with GCS depends on the quality of
the polytopic decomposition of the collision-free configuration space. We thus make no claims
about the optimality of the solutions in this section.

Offline, generating shortest-path cost-to-go lower bounds takes only 6 seconds, which is
just 6% of the time that it takes to generate the polytopic decomposition necessary to use
GCS in the first place. Then online, our policy rollouts are very fast, with a median solve
time of 5ms and a maximum of 11ms (we report parallelized solver time). Our method is on
average 40 times faster than the SPP in GCS, producing paths that are only 7% longer on
average. Compared to sPRM, our method is on average 110 times faster and produces paths
that are 5% shorter on average. We achieve consistent performance in both solve time and
path length, unlike sPRM, which shows high variance in both. Overall, compared to these
state-of-the-art baselines, multi-query SPP in GCS reduces online solve times significantly,
with minimal compromise in solution quality.

4.4 Qualitative demonstrations on robotic systems

In this section, to further demonstrate the applicability and effectiveness of our methodology,
we qualitatively evaluate our approach across two broad categories of robotic planning
problems. These include skill chaining, exemplified by item sorting with a suction gripper,
and optimal control of hybrid systems, demonstrated through bipedal footstep planning.
For each category, we formulate a general problem statement, recast it as planning in GCS,
and apply our multi-query framework to an experimental setup. We note that the following
experiments are run on a laptop with an Apple M1 MAX chip with 16GB of RAM, which is
slower than the desktop machine used in the previous sections.

38



4.4.1 Skill chaining

Problem statement

Consider a robotic system controlled by a discrete set of continuously parameterized skills
(also commonly referred to as motion primitives, actions, or behaviors in the literature)
that use low-level control policies to transition between configurations. Abstracting away
the low-level dynamics of these policies, the goal of skill chaining is to select a sequence of
skills and the corresponding control parameters that achieve the target state [64, 65]. In the
literature, related families of problems include sequential composition [66, 67] and Task and
Motion Planning (see [68] for a comprehensive review).

Formally, given an n-dimensional configuration space, we define each skill π via a set
Qπ ⊂ R2n of feasible configuration transitions (q, q′) ∈ Qπ that can be achieved by this skill.
Note that alternative definitions in the literature [66–71] describe skills through preconditions
(or a pre-image, domain, initiation set) and effects (or a reachable set, goal set, termination
condition), but these are generally interchangeable. Each skill also has an associated cost
function cπ : Qπ → R+, where cπ(q, q

′) is the cost of the transition from configuration q
to q′ under this skill. We assume that we are given sets of start and target configurations
Cs ⊂ Rn and Ct ⊂ Rn. Then, at run-time, we are presented with a pair of start and target
configurations q̄s ∈ Cs, q̄t ∈ Ct, and our goal is to find a sequence of skills (π1, . . . , πK) and the
sequence of corresponding transitions

(
(q0, q1), . . . , (qK−1, qK)

)
, such that q0 = q̄s, qK = q̄t,

and each transition (qk−1, qk) is achieved via the skill πk.
Various solution strategies for this problem have been developed in the literature. A

common approach alternates between sampling discrete skills and continuous transitions
(control parameters), guided by strong heuristics [72–76]. However, to be effective in complex
environments, these methods often rely on costly hand-crafted samplers and may stall without
them. In particular, these sampling-based approaches struggle when the desired poses lie on
a lower-dimensional manifold, as the probability of sampling such poses may be zero. To
more effectively explore the space of continuous transitions and better inform discrete search,
other approaches use optimization-based subroutines [77–80]. Our GCS-based formulation is
in this vein.

SWP in GCS transcription

To use GCS, we need the sets of source and target configurations Cs, Ct, the sets Qπ of
transitions under each skill, and the cost functions cπ to be convex. If they are not, we assume
that convex approximations or decompositions are available. In our GCS formulation, each
skill π corresponds to a vertex with a convex set Xπ = Qπ and a vertex cost lπ = cπ. Visiting
a vertex that correspond to skill π is thus equivalent to executing some transition (q, q′) and
incurring the cost cπ(q, q′). An edge connects two vertices if their skills can be chained: that
is, if there exist configurations q0, q1, q2 such that (q0, q1) ∈ Qπ1 and (q1, q2) ∈ Qπ2 . Ensuring
that the end point q1 of the first skill is also the start point of the second skill requires adding
an appropriate edge constraint. We then add a start vertex for the set of start configuration
Cs and connect it to the vertices that represent skills executable from any q̄s ∈ Cs. We
add a target vertex in a similar fashion. Given a pair of start and target configurations
q̄s ∈ Cs, q̄t ∈ Ct, the shortest walk in this GCS is exactly the solution to the skill chaining
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problem: it is a sequence of skills (π1, . . . , πK) together with the corresponding sequence of
transitions

(
(q0, q1), . . . , (qK−1, qK)

)
, where q0 = q̄s and qK = q̄t.

Item sorting for a top-down suction gripper

To provide a concrete example, we now consider a variation of the canonical pick-and-place
problem, illustrated in Figure 4.6. Our robot is a suction-cup gripper with a fixed vertical
orientation, described by a 1D horizontal position. The environment contains three movable
rectangular objects, described by their width, height, and the horizontal position. The robot
can pick and place objects using top grasps at their centers, or flip objects clockwise and
counterclockwise by grasping their corners. The task is to sort all objects into the target
region (a green horizontal interval). At run-time, we are given the target interval, the objects’
dimensions, and their initial positions, and the objective is to determine a sequence of actions
that successfully sorts the items.

We cast this problem as a shortest walk in a GCS, following the construction above. We
define the configuration space to include the horizontal positions of the objects and the arm,
along with the objects’ dimensions and the endpoints of the target interval. The robot’s
skills are defined as follows: (1) moving the arm from one position to another while the
objects remain intact, (2) grasping an object at its center and placing it at a new collision-free
location, and (3) flipping an object clockwise or counterclockwise by grasping its corner,
thereby swapping its width and height. The cost of skill execution is defined as 1 plus the
arm’s horizontal displacement, and the sets Xπ are defined to capture the feasible transitions
under each skill. Naturally, these sets are not convex: this is due to the collision avoidance
requirements and the combinatorial nature of selecting objects for manipulation. To address
this, we decompose the skills into convex sub-skills, resulting in 6 arm movement skills, 3
pick-and-place skills, and 6 object-flipping skills. We define the source set to include all
possible collision-free configurations, and the target set to include all possible collision-free
configurations where the objects are inside the target region. Naturally, these sets are also
non-convex: we decompose the source set into convex subsets and take the convex hull of the
target set. The resulting GCS contains a vertex for every sub-skill, one target vertex, and 6
source vertices: a total of 22 vertices and 120 edges. We maximize the average value of the
quadratic cost-to-go lower bounds over the source and target vertices, which takes only 20
seconds. The resulting structure efficiently supports shortest-walk queries for a variety of
source conditions.

At run-time, the initial configuration is provided, and the objective is to move the objects
into the target region. Notably, we do not prescribe a specific target configuration to achieve:
rather, it is selected greedily during the policy rollout. We simply select the next skill to
execute so as to greedily go down the cost-to-go lower bound (using a 2-step lookahead
horizon) until the rollout is terminated at the target vertex.

In Figure 4.6, we demonstrate an example solution to the SWP in this GCS. We’re given
a random initial condition (top left). Here, object 1 is already in the target region, but it
needs to be moved and reoriented to also fit object 2. This is a challenging puzzle, as we can
barely fit all three objects within the target region. For this reason, sampling-based planners
would struggle to find any solution at all: due to near-zero probability of sampling a feasible
target configuration. In contrast, our approach produces an optimal solution and avoids

40



1: grasp object 1. 2: flip object 1. 3: regrasp object 1.

4: move object 1 to target. 5: grasp object 2. 6: move object 2.

7: regrasp object 2. 8: flip object 2. 9: task is complete.

Figure 4.6: An 8-step plan where the top-down suction-cup arm is tasked with sorting three
objects into the green target region.

unnecessary skill executions: for instance, object 0 remains intact, as it already satisfies the
target conditions and doesn’t need to be moved to fit the other objects. With appropriate
pre-building of the programs used during incremental search, the solve times for producing
this and similar plans range from 0.5 to 1 second.

4.4.2 Hybrid optimal control

Problem statement

Many challenging problems in robotics, such as footstep planning, planning through contact,
and dexterous manipulation, involve systems with hybrid dynamics. It is well known that
such systems can be approximated arbitrarily-well with a Piecewise Affine (PWA) dynamical
model [81–83]. Motivated by this, we consider the problem of optimal control for discrete-time
PWA dynamical systems. We refer the reader to [84] for a recent review of approaches for
hybrid systems control, which highlights the SPP in GCS as an effective and competitive
strategy. Below we produce a shortest-walk formulation, which may offer an even more
effective strategy.

Let S and A be our system’s state and control spaces, and let the state-space be partitioned
into closed, polyhedral sets S = ∪iSi, commonly referred to as modes. A PWA control system
evolves according to different affine dynamics depending on the mode that the system is in.
That is, the system’s dynamics at time-step n are governed by:

sn+1 = Aisn +Bian + ci, if sn ∈ Si, an ∈ A.

Executing control input an at state sn ∈ Si of mode i incurs the mode-specific stage cost
li(sn, an). The PWA optimal control problem seeks a state, control, and mode trajectories
between source and target states s̄0 and s̄t, satisfying the PWA dynamics and minimizing
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Figure 4.7: An actuated pendulum with a soft wall (a) can be approximated as a PWA
system with two modes (no-contact and contact), which can be modeled as a GCS with two
vertices and four edges (b). An optimal state-space trajectory for regulating the pendulum to
the equilibrium position st = (0, 0) can be computed by solving a SWP in GCS, shown in (c).

the total stage cost. In the multi-query generalization, the goal is to find state, control, and
mode trajectories between any pair of states in the given sets of initial and target conditions.

SWP in GCS transcription

Hybrid optimal control can be naturally cast as a shortest walk in a GCS. For every mode i,
we define a GCS vertex i with a convex set Xi = Si×A. The source vertex is added similarly,
while the target is just the set of target states. Two vertices are connected with an edge if
there exists a feasible transition between some pair of states in the corresponding modes.
Affine dynamics are imposed as edge constraints, and the convex stage cost li is added as a
vertex cost. The shortest walk in this GCS is a vertex sequence w, corresponding to a PWA
mode trajectory, and a sequence of points τ , corresponding to state and control trajectories.

As a simple and concrete visual example, we demonstrate this construction using a
pendulum with a soft wall — a canonical benchmark for control through contact — illustrated
in Figure 4.7. The system has two contact modes: C for contact and N for no-contact. Prior
to adding the source and target vertices, the resulting GCS consists of two vertices and four
edges, as shown in Figure 4.7b. The dynamics are imposed on the edges by linearizing the
nonlinear dynamics for each mode. In particular, note that the linear dynamics along the
edges (N,C) and (C,N) are different. An example trajectory is depicted in Figure 4.7c.

Footstep planning for a ZMP walker

We now turn to a more complex robotic example: footstep planning for a bipedal robot
navigating over stepping stones in a flat 2D x-y plane. The robot, shown in Figure 4.8, must
reach the target by planning a sequence of footsteps and contact forces through the stepping
stones, ensuring stability and avoiding foot collisions.

We use the the well-known Zero-Moment Point (ZMP) formulation to model the robot’s
dynamics; see [85, 86] for classic reviews. We constrain the robot’s Center of Pressure (CoP)
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(which is also the ZMP) to remain within the support polygon formed by the feet — this
ensures that the robot can generate the ground reaction forces necessary to maintain dynamic
stability. We also constrain the ground reaction forces to lie inside the friction cone. We
assume that the robot has massless legs, that the acceleration along the vertical axis is zero,
and that the robot does not rotate (i.e., zero angular acceleration). This results in an affine
relationship between the robot’s CoP and CoM dynamics. The dynamics become piecewise
affine when we account for footstep planning, with three primary contact modes: both feet
on the ground, only the left foot, or only the right foot. Foot placement on stepping stones
introduces up to O(N2) potential contact modes (N options for each foot), but many are
infeasible due to constraints on the distance between the feet. In practice, the modes scale as
O(DN), where D is the average number of adjacent stones. Additional constraints ensure
collision avoidance between the feet. The resulting PWA system jointly considers safe footstep
placement, contact forces, centroidal dynamics, and stability enforced by the ZMP condition.

Following the formulation above, we cast the discrete-time trajectory planning problem
for this PWA system as the SWP in a GCS. A GCS vertex is added for each PWA mode,
and a target vertex is added to represent the desired location. This results in a GCS with 24
vertices and 58 edges for the scenario in Figure 4.8a, and 21 vertices and 50 edges for the
scenario in Figure 4.8b. We compute quadratic cost-to-go lower bounds, maximizing their
average value across all vertices, which takes 2.3 and 3.7 seconds respectively. Guided by these
lower bounds, the 2-step lookahead greedy search generates an 10-step plan in Figure 4.8a
within 110ms and a 16-step plan in Figure 4.8b within 330ms. Multi-step lookahead greedy
search effectively functions as a receding-horizon control policy, counteracting disturbances
and mitigating the effects of imperfect plan tracking. At run-time, we can rollout greedy
search until we run out of the fixed time budget, execute the first step, and iteratively replan
from the resulting state. Similarly, the computed quadratic cost-to-go lower bounds can also
be effectively used as part of a finite horizon MPC policy.
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(a) A footstep plan for a bipedal robot, navigating a set of stepping stones.

(b) With one stone removed, the robot must take a longer detour.

Figure 4.8: Visualizations of the footstep plans across stepping stones for the Atlas bipedal
robot. Our approach jointly optimizes for safe footstep placement, contact forces, and
centroidal dynamics, while maintaining stability enforced by the ZMP condition. Both plans
are produced in under 330ms on a laptop, and can be run online in MPC fashion as a policy.
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Chapter 5

Conclusions

5.1 Summary

In this thesis, we considered the problem of multi-query planning in Graphs of Convex
Sets. We generalized the classical all-pairs shortest-path problem to the GCS, and developed
practical approximate numerical methods for solving the resulting problem, both for the
shortest walks and the shortest paths in GCS. We demonstrated that a coarse lower bound
on the cost-to-go with a multi-step lookahead greedy policy effectively produce near-optimal
solutions, while significantly reducing solve times. Our methodology scales well to high-
dimensional scenarios and large graph instances, enabling practical applications in multi-query
robotic settings, including collision-free motion planing, skill chaining, and optimal control
for hybrid systems.

5.2 Limitations

First, using GCS inherently requires the effort to construct it, which can be computationally
intensive and may involve manual tuning. This is the case with generating collision-free
regions with the IRIS algorithm in Section 4.3, convex skill decomposition in Section 4.4.1,
and PWA decomposition of the dynamics in Section 4.4.2. While potentially tedious, this
stage is an unavoidable part of working with the GCS framework.

Next, the offline cost-to-go synthesis step requires solving a potentially large SDP. For
large graphs and high-dimensional robotic systems, these programs can become massive, and
conic solvers like MOSEK [60] and Clarabel [87] often struggle to handle them. One key
challenge is the significant memory required to store and manipulate big constraint matrices,
cones, and solution matrices, which can quickly exceed available RAM for particularly large
GCS instances. Additionally, these solvers rely heavily on numerical linear algebra, and
depending on the choice of convex sets and constraints, the resulting matrices may be sparse
or ill-conditioned, leading to numerical instability.

Finally, achieving the fast solve times reported for the online greedy search stage requires
pre-compiling programs into binaries and solving them in parallel, as described in Section 3.5.
Specifically, we assumed the ability to solve up to 10 programs in parallel and reported
simulated parallelized solve times based on this assumption. Achieving these solve times in
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practice would require additional engineering effort, which should be considered as part of
the overall implementation cost.
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Appendix A

Cost-to-go synthesis:
extensions and variations

We briefly remark on various natural generalizations to programs (3.3) and (3.4). In particular,
we focus on (3.4), as (3.3) can be derived from it by setting the vertex penalties to zero.

1. Suppose the set of source vertices S has more than one vertex. To simultaneously “push
up” lower bounds Js per vertex s ∈ S, we add extra integral terms to the objective
function (3.4a).

2. Suppose the target set Xt is not a singleton, but a compact convex set. First, we modify
the constraint (3.4b) to search for Jv,t : Xv × Xt → R. Here, the function Jv,t(xv, xt)
is a lower bound on the cost-to-go of the shortest path from xv of vertex v to xt of
vertex t. Similarly, the probability distribution ϕs,t is now supported on Xs ×Xt: it is
the probability distribution over anticipated source-target pairs (xs, xt), so as to push
up on Js,t(xs, xt). The lower-bound constraint (3.4c) is adjusted to include xt ∈ Xt:

Ju,t(xu, xt) ≤ lu(xu) + le(xu, xv) + hv + Jv,t(xv, xt),

for all edges e = (u, v) ∈ E , and all points (xu, xv) ∈ Xe and xt ∈ Xt. Finally, the target
constraint (3.4d) is adjusted to be Jt,t(xt, xt) = lt(xt)−

∑
v∈V hv, for all xt ∈ Xt.

3. The scalar vertex penalty hv is generalized to be a non-negative function of the target
state xt, that is: hv,t : Xt → R+. We thus replace hv with hv,t(xt) in (3.4c) and update
the constraint (3.4d) as follows:

Jt,t(xt, xt) = lt(xt)−
∑
v∈V

hv(xt),

further tightening the resulting lower bounds.

4. Suppose the set of target vertices T has more than one vertex. To obtain the cost-to-go
lower bounds for every pair of vertices v ∈ V and t ∈ T , we solve multiple programs
(3.4) in parallel, one per target vertex t ∈ T .
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5. In general, the greedy policy (3.7) is also a function of target vertex t and target point
xt. The relevant adjustments to the policy are straight-forward.

6. Other penalties, similar to the vertex visitation penalties hv, can be added to improve
the quality of the lower bounds. For instance, consider a 2-cycle with edges (u, v) and
(v, u). We can add edge penalties hu,v = hv,u for traversing either edge. By subtracting
hu,v from the cost-to-go lower bound at the target, we effectively ensure that no penalty
is incurred for traversing just one (but not both) of the edges. This can be extended to
cycles of arbitrary length.
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Appendix B

Best-first search
for provably-optimal solutions

We now outline an alternative incremental search policy to the greedy policy discussed in
Section 3.5. Although greedy search quickly and effectively produces solutions to the SPP
and the SWP in GCS, it is heuristic (not guaranteed to return optimal solutions), and is not
complete (may fail to yield a solution if one exists). Best-first search addresses both of this
problems. We describe the algorithm for the shortest paths; the algorithm for the shortest
walks is nearly identical, with the modifications mirroring the ones discussed in Section 3.5.

Suppose that at run-time, we are given a source vertex s = v0 ∈ S and a source point
x̄s = x0 ∈ Xv0 , and our goal is to find a shortest path to the point x̄t of the target vertex
t. We maintain a priority queue of candidate subpaths p = (v0, . . . , vk), initiated simply
with the subpath p = (v0). Each subpath in the queue is a candidate prefix to the shortest
path in this GCS: a candidate for the beginning of the vertex sequence that may lead to a
full solution. Given a candidate subpath p = (v0, . . . , vk), we can evaluate its value J(p) by
solving the following optimization problem:

J(p) = min
τ

l(p, τ) + Jvk(xk)− lvk(xk) (B.1a)

s.t. τ = (x0, . . . , xk) ∈ Tp(x̄s, xk), (B.1b)

which searches for an optimal subtrajectory τ along the subpath p and uses the cost-to-go
lower bound Jvk(xk) to estimate the cost of the remainder of the shortest path. In the
language of A*, l(p, τ) is the cost-to-come, Jvk(xk) is the lower bound on the cost-to-go, and
we subtract lvk(xk) to avoid double counting, just as in Section 3.5. Thus, for a candidate
subpath p, J(p) is the lower bound on the cost of a full path between (s, x̄s) and (t, x̄t) that
is prefixed with p.

At each iteration of the best-first search algorithm, we pop from the priority queue a
candidate subpath p with the lowest value J(p). We then examine the last vertex vk of this
subpath and consider every vertex v that can be reached from vk (i.e., (vk, v) ∈ E) that
has not already been visited (v /∈ p). For each such vertex v, we extend the subpath p by
appending v to it, thus generating a new candidate subpath. If the program (B.1) is infeasible
for this new candidate subpath, then there exists no feasible trajectory along that subpath,
and it can be safely discarded. New candidate subpaths that are feasible are added to the
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queue, and the process continues by popping the next candidate subpath from the queue.
If a path from s to t is popped, the constraint (B.1b) is updated to τ ∈ Tp(x̄s, x̄t) to ensure
that the trajectory ends with the target point x̄t. If the resulting program is feasible, then
we terminate the process: the resulting tuple (p, τ) is guaranteed to be a shortest path in
this GCS. This is because all remaining candidate subpaths in the queue have costs at least
as high as the current path, rendering further exploration unnecessary. If the queue becomes
empty, then we must have considered every feasible candidate subpath that originates at
(s, x̄s), yet none of them reach (t, x̄t). We thus have a proof that no solution exists and can
terminate the search.

The number of candidate subpaths considered during best-first search depends on the
quality of the cost-to-go lower bounds; in general, it can be exponential in the length of the
shortest path (or walk). For this reason, we rely on this approach for obtaining ground-truth
optimal solutions, not to obtain fast online queries. We note that the number of considered
subpaths can be reduced via dominance checks, which allow pruning some candidate subpaths,
as described in [11].
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