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Abstract
Consider a bird perching on a branch. In the presence of environmental disturbances

and complicated fluid flow, the animal exploits post-stall pressure drag to rapidly decelerate
and land on a perch with a precision far beyond the capabilities of our best aircraft control
systems.

In this thesis, I present a controller synthesis technique for achieving robust, post-stall
perching with a fixed-wing Unmanned Aerial Vehicle (UAV). Using sum-of-squares (SOS)
programming and building on a novel control synthesis approach known as LQR-Trees,
I demonstrate the ability to improve the robustness of the post-stall perching manuever
to variable initial conditions, modeling error, and external disturbances. I achieve this by
developing methods for carrying out rigorous robust verification of the nonlinear aircraft
model along a time-varying nominal perching trajectory in the presence of both dynamic
and parametric uncertainty. I also present methods for carrying out stochastic verification
in the presence of Gaussian acceleration uncertainty and adaptive control techniques for
improving controller performance in the presence of parametric uncertainty.

Using the robust verification techniques for dynamic uncertainty, I proceed to gener-
ate a robust LQR-Tree controller and test that controller on real hardware using a small 24
inch wing span glider and a Vicon motion capture studio. The experiments show successful
perching for 94 percent of the 147 flights launched between 6 and 8 m/s. I further demon-
strate robustness to initial pitch variations by launching the glider by hand and showing
repeatable successful perching results.

Following these experiments, I then build a magnetic field sensing system capable of
estimating the position of the perching UAV using the magnetic field generated by a pow-
erline. I demonstrate on hardware that the aircraft is still capable of successfully executing
a closed-loop perching maneuver indoors using the lower fidelity state estimates. I then
move the entire experiment outdoors and begin testing the UAV’s perching performance in
the presence of wind gusts. Very quickly, it becomes apparent that the glider can not reli-
ably perch in wind. To address this, I describe a control approach for mitigating the effects
of wind on aircraft performance and propose an experiment for testing this approach.

Thesis Supervisor: Russ Tedrake
Title: X Consortium Associate Professor of EECS
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Chapter 1

Introduction

(a) (b)

Figure 1-1: (a) An Eagle lands on a branch in wind, compensating for the effects of the
external disturbance (Estrada, 2010). (b) A Eurasian Eagle Owl spreads its wings and
pitches up to a very high body angle (Turbary, 2010).

Birds routinely execute complicated flight maneuvers in the presence of aerodynamic

uncertainty and do so with the utmost accuracy and agility. Consider a bird landing on a

perch: As the bird approaches its target, it pitches up rapidly, spreads out its wings, and

enters a post-stall flow regime, using pressure drag to slow itself down and land on the perch

[6, 5, 35, 13]. What is even more astounding is that the bird can accomplish this maneuver

in the face of complex, uncertain post-stall aerodynamics and external disturbances such

as wind gusts. In contrast, few man-made aircraft even attempt to fly at such high angles

of attack [83], and those that do usually make use of thrust vectoring and a large thrust-to-

weight ratio [2]. These advanced aircraft, which can easily execute a post-stall maneuver in

open air, greatly reduce their angle of attack whenever they carry out a landing maneuver.
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Figure 1-2: An F-18 lands on an aircraft carrier (U.S. Navy, 2008). Notice that the fighter
jet lands at a relatively low angle of attack (about 8.1 degrees) in order to avoid stall. The
aircraft must be slowed down by a hook and tow cable as it lands.

Figure 1-3: Image shows the flow around an airfoil as the airfoil transitions into a stall
regime (van Dommelen, 2009). Notice how the flow in the third image is separated from
the wing and exhibiting transient vortex shedding.

For instance, when landing on an aircraft carrier, the automatic control system used on an

F-18 fighter jet maintains a 8.1 degree angle of attack [83]. Birds, in comparison, can reach

up to 90 degrees angle of attack when landing on the branch of a tree [14].

One primary reason why many man-made aircraft avoid post-stall flight is because

these conditions often correspond to a loss of control authority. When an airfoil transitions

in to post-stall flight, the airflow begins to separate from the wing’s leading edge, causing a

sudden drop in lift. This is often problematic because, with such a drastic reduction in lift,

many aircraft are unable to maintain their desired altitude. Moreover, this post-stall flow

is both unsteady and turbulent, severely complicating the effort to model and control the

aircraft. Birds, however, seem undaunted by the challenges posed by post-stall flight. By

pitching their bodies up rapidly, they are able to exploit the increased pressure drag in this
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Figure 1-4: A Navy X-47B Unmanned Combat Air System (U.S. Air Force, 2011). Cur-
rently, UAVs also must land at low angles of attack to avoid stall. Such unmanned systems
could benefit greatly from the development of robust fixed-wing perching maneuvers.

complicated flow regime to land quickly and accurately [14, 13].

In this thesis, I first describe an approach for achieving robust post-stall perching with

a fixed-wing UAV from a wide range of initial conditions in the presence of model un-

certainty. This approach involves applying a feedback motion planning algorithm known

as a robust LQR-Tree to account for uncertainty in the aircraft aerodynamics. Following

in the footsteps of the method outlined in [99], this algorithm generates a library of local

time-varying linear quadratic regulators (TVLQR) which can be combined together in to

a tree-like structure to cover a larger region of state-space than what would be otherwise

achievable by a single controller alone. However, unlike the algorithm in [99], the algo-

rithm in this thesis is able to include robustness to parametric and dynamic uncertainty

in the verification step, allowing the generation of a robust LQR-Tree. To validate my

approach, I demonstrate this method on hardware, first by showing improved perching per-

formance at higher initial launch speeds, and then by showing improved performance from

a wide range of initial pitch angles.

In the second part of this thesis, I address the problem of fixed-wing perching in the

presence of external disturbances. To do solve this problem, I develop a magnetic field

sensing system capable of localizing the aircraft in outdoor environments. This is accom-

plished by combining the measurements from a magnetoresistive magnetometer and an

17



inertial measurement unit and by using an extended Kalman filter (EKF) to estimate the

state of the aircraft. These magnetic field based estimates are then used in place of the state

estimates from Vicon motion capture to execute the TVLQR feedback law. After showing

that it is possible to successfully achieve closed-loop perching using magnetic field mea-

surements indoors, I move the magnetic sensing system outdoors to test the performance

of the system in wind gusts.

To mitigate the effect of windgusts on the perching maneuver, I incorporate the planar

wind velocities into the glider flight dynamics and model the wind in the x and z dimension

as white-noise passed through a first-order filter. I then proceed to augment the glider’s

seven states with two additional wind states to create a nine dimensional system, which

includes the wind dynamics. By modeling the wind in this manner, I reduce the system

uncertainty to white Gaussian noise on the system states. Moreover, since this is exactly

the type input disturbance LQR attempts to minimize, I continue to apply TVLQR as the

local feedback law.

To verify this system controller, I explore techniques for stochastic verification, where

I seek to verify the probability that the system will reach the goal state, and methods for

robust verification, where instead of unbounded white input noise, I consider bounded in-

put noise. Once I am able to verify these local controllers, I then construct an LQR-Tree

over a reasonable set of nominal wind speeds to achieve robust perching in the presence

of external disturbances. I successfully demonstrate this approach in simulation and use a

three-dimensional ultrasonic anemometer along with the powerline magnetic sensing sys-

tem to test this approach on real hardware in an outdoor environment.
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Chapter 2

The Post-Stall Perching Problem

The task of accurately landing an Unmanned Aerial Vehicle (UAV) with sufficiently

low speed to perch on a branch or ledge has long been a problem explored by controls

and aerospace engineers alike. In this chapter, I discuss my formulation of the perching

problem, which is identical to the formulation presented in [22], where post-stall pressure

drag is used to slow the vehicle down and land. However, I first describe the perching

aircraft that already exist, in order provide a suitable context for understanding the chosen

approach.

2.1 Perching UAVs

Perching UAVs have the potential to significantly expand the mission capabilities of au-

tonomous aerial vehicles. By being able to execute a controlled landing maneuver in a short

distance, these aircraft have the ability to land on a branch, ledge or powerline to conduct

perch and stare surveillance and dramatically increase mission duration by eliminating the

need for continuous flight. For this reason, the design and control of perching aircraft has

received considerable attention from the controls and aerospace communities. In recent

years, there have been many solutions proposed to solve the perching problem. Overall,

these approaches can be divided into two different categories: those that rely primarily on

novel vehicle design to achieve perching and those that use standard vehicle designs and

rely primarily on control system design.
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Figure 2-1: A timeline showing various micro UAV perching strategies. In many cases,
these strategies can be divided in to those that focus primarily on vehicle design and those
that focus primarily on control system design.

2.1.1 Vehicle Design Solutions

The morphing-wing approach to the perching problem investigated in [109, 110] is one

of the earliest examples of using novel vehicle design to achieve UAV perching. While this

method does employ an optimal control strategy for trajectory generation, it relies heavily

on its morphing airframe to rotate its fuselage upwards while keeping its wings at a low

angle of attack. In this way, the vehicle is able to exploit the post-stall pressure drag of

the fuselage to reduce speed while still making use of attached flow on the wings to apply

more conventional control strategies. A similar morphing wing approach was explored in

[58, 84], where the authors investigated the perching capabilities of a morphing wing with

multiple sections. Here, in a manner similar to [109, 110], the authors explored stalling the

inner sections of the wing while keeping the outermost sections at a low angle of attack.

A different vehicle design approach was explored in [25, 26], where a fixed-wing air-

craft was equipped with arrays of microspines capable of attaching to a wall. The authors

launched their aircraft by hand at a wall and used an ultrasonic range finder to measure the
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distance to the vertical surface. At a predetermined distance from the wall, they executed

an open loop trajectory to pitch the vehicle upwards. When the vehicle came in to con-

tact with the wall, the authors demonstrated that their micro-spine technology was robust

enough to repeatedly enable the aircraft to grip on to the vertical surface.

Like [25, 26], other researchers have also sought to solve the perching problem through

novel landing gear design. In [29], the authors developed an underactuated, avian-inspired

grasping mechanism for rotorcrafts. This work examined the bone and muscle structure of

bird legs to develop an underactuated gripper which could passively and robustly grasp to a

cylindrical object. In [44], research was carried out to develop a light weight landing gear

for attaching and detaching a fixed-wing UAV from walls using a dart-like mechanism.

2.1.2 Control Design Solutions

The second major class of perching UAVs encompasses those that use standard vehicle

platforms and rely primarily on control design strategies to accomplish successful perching.

Some of the earliest work in this area includes the development of perching aircraft using

vertical take-off and landing (VTOL) control strategies with standard aerobatic hobby air-

craft. Because these aerobatic aircraft have a very high thrust-to-weight ratio, it is possible

to use a vehicle’s powerful motor to hover it in place. While in this “prop-hang” configura-

tion, so long as adequate sensing is available, a simple hand-tuned proportional-derivative

(PD) controller can regulate the propeller speed and exploit the backwash of the propeller

over the control surfaces to provide the vehicle with a large region of stability [21]. By

adjusting the desired position set-points, this control strategy can then be used to achieve a

slow and energetically costly VTOL perching maneuver [32, 36, 8, 20].

Another control-based perching approach which exploits high thrust-to-weight ratios is

the recent work done on quadrotor perching in [67]. Building on their work in developing

techniques for allowing quadrotors to carry out aggressive maneuvers using minimum snap

trajectories [65, 64, 66], these authors have demonstrated experimentally robust approaches

for landing and perching with quadrotors using a Vicon motion capture studio. And while

these authors do use micro spines to enable quadrotor perching on vertical surfaces, the
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control design methods themselves are the central contribution of this work.

Motivated primarily by studies carried out on bird flight kinematics during perching,

such as [35], [5], and [6], which indicate that birds are exploiting high angles of attack

in ways conventional aircraft never have, the authors in [22] placed a large emphasis on

using control design to solve the perching problem. In [22, 38], the authors fully embraced

the complicated, post-stall flow regime associated with bird-like perching maneuvers and

built a nonlinear, post-stall model for a flat plat, unpowered glider. The authors then de-

signed an optimal open-loop trajectory for that glider, applied time-varying LQR about this

trajectory and successfully demonstrated their approach experimentally [20]. In [86], the

authors applied a local time-varying linear controller to the glider in [22] and evaluated the

controllability of the aircraft during a perching maneuver. This work effectively exposed

many of the fundamental challenges which make the perching problem hard, even though

the interpretation of the results was limited by the linearization-based analysis.

2.2 Post-Stall Perching

In the perching UAV approaches described above, few of the vehicles seek to make full

use of pressure drag, as birds do, to slow down and land on their target. As mentioned

previously, one reason for this is that the high angle of attack required for such maneuvers

is associated with a decrease in lift and a loss of control authority. As shown in Figure 1-3,

as the angle of attack of an airfoil increases, the air flow behind the wing begins to separate

and eventually stall. Not only does this post-stall flow lead to reduced lift, but it also is

extremely challenging to model and control, since the aerodynamics are both turbulent and

unsteady.

Of the approaches described above, only [22] fully exploits post-stall pressure drag to

land on a perch. To achieve the highest possible perching performance for a fixed-wing

UAV, I decided to build upon the work in [22, 20, 86], with the intent of improving the

robustness of the maneuver. Following the work described in [22], I constructed a fixed-

wing glider and used the post-stall pressure drag of both the body and wings to accomplish

the perching maneuver.
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In the following sections, I introduce the perching problem as first outlined in [22].

Though much of this experimental set-up was described in [22], I revisit it here for the

benefit of the reader, since all of the work that follows builds upon the initial efforts in [22].

2.3 Problem Formulation

Figure 2-2: A pigeon (Columbia livia) in flight (Wilson, 2006). The perching maneuver
described here has similar flow characteristics to that of a pigeon landing on a perch.

I consider the problem of landing on a string with a 62 cm wingspan glider (no onboard

propulsion) with a 9.8 cm cord. The size of the aircraft is comparable to that of common

rock pigeon (Columbia livia), which has a wingspan ranging between 60 and 71 cm [79].

As shown in Figure 2-3 and described in [22], the glider is launched at a distance of 3.5 m

from the perch with an initial speed of approximately 7 m/s (Re ≈ 50,000). It then must

decelerate to almost zero velocity and come to rest on the string in a fraction of a second.

This too matches well with the initial flow conditions observed in [6], where pigeons (a

chord of 22.3 cm) are recorded approaching a perch from 2 m away with initial speeds

around 4 m/s (Re ≈ 60,000) and landing with speeds below 1 m/s.

Figure 2-3: The fixed wing perching maneuver as defined in [22]. The aircraft starts 3.5m
from the perch at 7m/s, pitches up and lands with low speed in a small capture region.
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I claim that, with these specifications, the glider must execute a high angle of attack

maneuver, exploiting both viscous and pressure drag to achieve the required rapid decel-

eration. Despite the obvious nonlinearity and complexity of this dynamic regime and the

short-term loss of control authority on the stalled control surface, the glider’s center of

mass must land within 6.5 cm of the string, which is the approximate capture region for the

simple hook landing gear. This post-stall perching strategy is similar to what is employed

by the pigeon, which as reported in [6, 14], pitches up to body angles beyond 90 degrees

when landing.

2.4 Vehicle Design

Figure 2-4: The flat plate glider is constructed from foam with carbon reinforced wings
and a single actuator at the tail.

The experimental aircraft, whose design is derived from commercially available aer-

obatic aircraft, is an unpowered glider constructed from foam with 12-inch, carbon fiber

reinforced wings. This carbon fiber reinforcement imparts substantial stiffness to the wings

and eliminates all observable wing flexing during flight. To minimize complexity, I used

a single control surface at the tail (i.e., the elevator) to control the aircraft’s longitudinal

dynamics but forwent all other control surfaces and relied on passive stability (and short

flight durations) in roll and yaw. By simplifying the glider design and keeping the aircraft
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in a two-dimensional plane, I tried to experimentally isolate the aspect of the maneuver

which was of interest (i.e., post-stall perching). To actuate this control surface, I used a

HS-50 Hitec hobby servo motor.

The aircraft’s wings, tail and fuselage are simple flat plates, without any camber. The

wings are slightly tapered with a 98 mm mean chord and, together, the wings, elevator and

fuselage have a total surface area of 0.102 m2. Six 11 mm reflective markers were placed

along the fuselage and four on the elevator control surface to facilitate motion capture

tracking. Just below the center of mass, the vehicle has a small slider which moves along

a track on the cross-bow launching system. The slider stand-off doubles as a landing-gear

for the vehicle, which makes contact with the perch when the vehicle’s center of mass is

within a 6.5 cm capture region. A GWS four channel micro receiver receives commands

from a 72 MHz transmitter and the whole system is powered by a Full River 250 mAh

2-cell Lithium polymer battery for a total weight of 85 grams.

2.5 Experimental Setup

Figure 2-5: The Vicon motion capture arena shown above is equipped with 16 cameras to
capture the position of the aircraft in flight. I used a crossbow with a carbon fiber bow to
launch the aircraft.

To separate the control problem from the sensing problem and to improve experimen-

tal repeatability, I used an indoor Vicon motion capture arena. This arena consists of 16
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infrared cameras with a total capture region of 27m3 and the capability of tracking the po-

sitions of reflective markers to sub-millimeter accuracy. To prevent damage to the glider

during flight, I hung a net above the floor and behind the perch. For the perch, I used a

small string suspended at one end of the capture region.

I applied the reflective markers to the glider’s fuselage and elevator as well as the

perch’s position and used the Vicon motion capture system’s software to reconstruct the

positions and orientations of the aircraft in real-time. These raw motion capture measure-

ments were then passed in to a state estimator to produce the full-state required by the

perching control algorithm.

To launch the glider between 6 and 8 m/s, I used a crossbow launching mechanism

constructed with a carbon fiber bow. As soon the the glider was launched, I used the Vicon

motion capture system to detect the aircraft and send the aircraft’s positions and orientations

to a Linux base station at 90 Hz. After computing the state estimates, I used the controller

running on the base station to evaluate the servo command required to achieve fixed-wing

perching. This servo command was then sent to the RC Transmitter via the base station’s

serial port at 45 Hz and transmitted wirelessly to the glider’s onboard receiver.
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Chapter 3

System Identification and Modeling

Figure 3-1: Flow visualization of the perching glider carried out by Cory in [20]. Even
though the post-stall aerodynamics are turbulent and unsteady, they can be well approxi-
mated by average lift and drag coefficients.

For feedback control design and analysis, the aircraft was modeled as a rigid body

whose dynamics are governed by gravitational and aerodynamic forces. Initially, these

aerodynamic forces were derived by approximating all lifting surfaces as flat plates. How-

ever, to obtain high performance perching, I improved this model by using a more descrip-

tive functional approximation of the aircraft’s aerodynamic coefficients. This was achieved

by using the flat plate glider model as a baseline and augmenting the lift and drag coeffi-

cients using radial basis functions. Here I describe both the flat plate glider model and its

modifications.
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3.1 Flat Plate Glider Model

Following [22], the flat plate glider model is based on the aerodynamic coefficients put

forth in [95], which are given as

CL(α) = 2sin(α)cos(α) (3.1)

CD(α) = 2sin2(α), (3.2)

where α is the angle of attack of the lifting surface. As in [22], the model restricts the

aircraft dynamics to two dimensions, ignoring contributions from yaw, roll, and three di-

mensional aerodynamics. This leads to a seven dimensional control differential equation,

ẋ = f(x,u),

where the states are x-position (m), z-position (m), pitch (rad), elevator angle (rad), x-

velocity (m/s), z-velocity (m/s), and pitch rate (rad/s), as illustrated in Fig. 3-2. These

states are represented by x = [x,z,θ ,φ , ẋ, ż, θ̇ ] respectively. It is assumed that direct control

over the angular rate of the elevator, u = φ̇ , is possible.

(x, z)
m, I

θF

F

g

w

e
l

lw

el

-φ

Figure 3-2: Aircraft Model. x and z denote the positions of the center of mass, θ denotes
the pitch angle, and φ denotes the elevator angle.

As illustrated in Figure 3-2, the unit vectors are defined normal to the control surfaces
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Figure 3-3: (a-b) Plot of Lift and Drag Coefficients: Blue represents the flight data, red
represents the flat plate model, and green is the flat plate model augmented with radial
basis functions

in the directions of the force vectors as

nw =

−sθ

cθ

 , ne =

−sθ+φ

cθ+φ

 ,
where sγ = sin(γ) and cγ = cos(γ). This allows solving for the kinematics of the geometric

centroid of the aerodynamic surfaces, which, for the flat plate model, is equivalent to the

mean aerodynamic chord. This yields

xw =

x− lwcθ

z− lwsθ

 , xe =

x− lcθ − lecθ+φ

z− lsθ − lesθ+φ

 , (3.3)

ẋw =

ẋ+ lwθ̇sθ

ż− lwθ̇cθ

 , ẋe =

ẋ+ lθ̇sθ + le(θ̇ + φ̇)sθ+φ

ż− lθ̇cθ − le(θ̇ + φ̇)cθ+φ

 . (3.4)

Using flat plate theory, the resulting aerodynamic forces on the vehicle can be approximated
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by

αw =θ − tan−1(żw, ẋw), αe = θ +φ − tan−1(że, ẋe) (3.5)

Fw =
1
2

ρ|ẋw|2Sw
(
CL(αw)+CD(αw)

)
nw (3.6)

Fe =
1
2

ρ|ẋe|2Se
(
CL(αe)+CD(αe)

)
ne, (3.7)

where αw and αe are the angles of attack of the wing and elevator, respectively, ρ is the

density of air, and Sw and Se are the surface areas of the wing and tail control surfaces,

respectively. Finally, the dynamics are given by

m

ẍ

z̈

=Fw +Fe−

 0

mg

 (3.8)

Iθ̈ =

lw

0

×Fw +

−l− lecθ

−l + lesθ

×Fe. (3.9)

3.2 Radial Basis Function Augmentation

To improve the aircraft model, an effort was made to augment the aircraft lift and drag

coefficients with Guassian radial basis functions, using the aforementioned flat plate glider

as a baseline. To achieve this, data were collected by launching the aircraft approximately

50 times over a range of initial velocities from 6 to 8 m/s using a set of optimal elevator

trajectories computed for the flat plate model. To obtain the aircraft accelerations, the

position measurements produced by the Vicon motion capture system were differentiated

twice and filtered acausally.

Once all the data were collected, the accelerations predicted by flat plate theory were

subtracted from the aircraft’s accelerations. These residual accelerations were then as-

sumed to contribute to residual lift, drag, and moment coefficients of the entire aircraft. In

other words, residual aerodynamic coefficients Cl,r, Cd,r and Cm,r were modeled as func-

tions of both wing angle of attack and elevator position, using Gaussian radial basis func-
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tions specified on a two dimensional grid over a range of wing angle of attacks from µαw,k ∈

[0, π], elevator angles from µφ ,k ∈ [−π

4 , π

4 ], and a fixed covariance Σ = diag
[
0.1 0.1

]
,

such that:

Ci,r =
N

∑
k=1

ψke

− 1
2

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
αw−µαw,k

φ −µφ ,k


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

Σ . (3.10)

Here ψk represent the radial basis function magnitudes, which can be fit using regularized

least squares to build a more accurate aircraft model. Figure 3-3 compares the resulting

model’s aerodynamic coefficients with the data post-processed from Vicon.

31



32



Chapter 4

Local Linear Feedback

In this chapter, I describe the feedback method first proposed in [86] to stabilize the

aircraft and I also describe some alternatives to controlling the aircraft at high angles of

attack which are insufficient for achieving fixed-wing perching. In addition, I highlight

some of the shortcomings of the approach presented in [86], notably local nature of the

control design.

4.1 Post-Stall Control Approaches

In the aerospace controls community, substantial work has been done to design con-

trol systems for high performance aircraft in post-stall flight. Initially, much of the work

done in this area involved gain scheduling, where linear controllers were generated for

multiple operating conditions and the control gains were changed based on the state of the

gain scheduled variable [90]. In an effort to improve on this design, dynamic inversion

or feedback linearization was applied to transform the nonlinear aircraft dynamics into a

stable linear system [41, 91, 11]. In [1, 10], the authors applied robust controller syn-

thesis to account for dynamic uncertainties and, in [19], the authors augmented dynamic

inversion with adaptive control to improve the high angle attack performance when the dy-

namic model changes. Sliding mode methods were also explored for high-angle of attack

maneuvers, especially for aggressive missile maneuvers such as in [100].

While these high angle-of-attack approaches are useful for maintaining stability when
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the aircraft enters the post-stall regime, they are not necessarily useful for achieving accu-

rate trajectory tracking over all states; these methods can control both the pitch and speed

of the aircraft, but are unable to regulate aircraft position to achieve an accurate post-stall

landing without substantial thrust vectoring. As mentioned previously, the aircraft inves-

tigated in this work has neither thrust or thrust-vectoring capabilities. This is by design

in order to ensure that any control method chosen is required to reason intelligently about

the aircraft’s post-stall aerodynamics and exploit as much post-stall pressure drag as pos-

sible (If a propeller is added, it should only be to improve robustness, not to enable the

maneuver.). For this reason, it is extremely difficult, if not impossible, to conduct feedback

linearization or dynamic inversion. This will be shown in the next section.

4.2 Partial Feedback Linearization vs. Model Predictive

Methods

Because the aircraft dynamics are highly nonlinear, and because the perching maneuver

involves a large operating range, nonlinear control is essential for achieving successful

perching. Two clear nonlinear control methods for addressing this problem are feedback

linearization (which has been studied extensively) and model predictive control. In this

section, I try to show why, of the two strategies, the model predictive methods are better

suited to fixed-wing perching.

To explore the use of feedback linearization on the aircraft, I used the flat-plate baseline

model described in Section 3.1 and carried out partial feedback linearization to control the

pitch of the vehicle. The flat-plate model is in fact feedback linearizable in this dimension

and requires the solving of a fourth order polynomial equation. Figure 4-1 shows the re-

sults of applying this control. Notice that although excellent pitch tracking is achieved, as

expected, there is no convergence in any of the other states. Moreover, there is a great deal

of chatter present in the control input, due mostly to the fact that the controller is limited to

a 90 Hz update rate. Although this update rate is twice what is available on the hardware

platform, it is not fast enough to prevent large errors in the feedback linearization step.
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Figure 4-1: Partial feedback linearization to track a pitch trajectory (see (c) and (d)). As
seen in (e), the approach suffers greatly from chatter
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To explore dynamic inversion further, I added thrust along the longitudinal axis of the

simulated aircraft. With this thrust, I could then apply the contraction method described in

[56] to try to control additional states. As can be seen in 4-2, there was an improvement in

velocity tracking due to the contraction phenomenon which is enabled by the hierarchical

nature of the system and the dissipative nature of the aerodynamic forces. However, as

expected, the aircraft was still not able to successfully track position since integration from

velocity to position is only marginally stable. Moreover, the control input chatter still

existed.

Nonlinear Model Predictive Control (NMPC) or real-time trajectory optimization is

an alternative to feedback linearization which has shown promise for controlling highly

underactuated systems [55, 42]. However, these methods can be challenging to apply on

real systems, especially at real-time rates for systems with large state spaces. And while

there has been some effort to overcome this difficulty through fast trajectory generation

methods which exploit differential flatness, a differentially flat system is required to apply

them [74].

One viable alternative to NMPC is planning an optimal nominal trajectory offline and

stabilizing that trajectory with a local linear controller, such as a time-varying linear quadratic

regulator (TVLQR). This is the method proposed in [86], the results of which can be seen

in Figure 4-3. Note that, while the aircraft does not achieve perfect trajectory tracking, it

does in fact reach the desired goal state, due to a high cost on the final state. In the fol-

lowing sections, I describe my method for generating this local controller and compare its

results against NMPC.

4.3 Optimal Trajectory Design

The first step for applying both NMPC and TVLQR involves finding a nominal trajec-

tory for the perching maneuver. Despite the relative complexity of the aircraft dynamics,

standard tools for trajectory optimization work well for designing a nominal, locally op-

timal trajectory. To find an optimal trajectory for the glider, I used a direct-collocation

method [107] implemented using SNOPT [34]. I prefer this direct method for trajectory
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Figure 4-2: Partial feedback linearization with thrust. This approach enables tracking in
velocity due to contraction (see (e) and (f)), though the input still suffers from chatter (see
(b))
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ż
(m

/s
)

(f)

Figure 4-3: Perching results using Time-Varying LQR. Notice that, compared to the partial
feedback linearization approach, the TVLQR approach yields better perching results (see
(a)) as well as a more reasonable control input (see (b)).
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optimization over the shooting methods based on the adjoint equations [7] since, by treat-

ing both the control inputs {u0,u1, ...,uN−1} and the system states {x0,x1, ...,xN−1} as

variables in the optimization routine, it naturally allows for constraints to be placed on the

states and the inputs.

To find an optimal trajectory for the perching glider, I solved the following problem:

min
xn,un,h

J = h
N−1

∑
n=0

uT
n Run +xT

n Qxn (4.1)

s.t. xn+1 = xn +h f(xn,un). (4.2)

In the equation above, J is a cost function which places a quadratic cost on the state

and action of the nominal trajectory using weights Q and R respectively. Here, h is the

size of the time step, 1/90 s. By using SNOPT to minimize this quadratic cost function, I

was able to find a nominal trajectory {x0,x1, ...,xN−1} and control input {u0,u1, ...,uN−1}

which satisfied the dynamics in 3.1 (represented here by f(xn,un)) as well as the initial

and final state constraints of the vehicle which are used to shape the maneuver (low final

speed, final position at perch). To ensure that the trajectory was sufficiently smooth, I

set Q = diag[10,10,10,10,10,10,10], R = 100. To shape the perching maneuver, I set

the initial state vector to x(t0) = [−3.5,0.1,0,0,7,0,0] and the final state constraints to

xu(t f ) = [0,0, π

2 ,
π

8 ,2,0,∞] and xl(t f ) = [0,0, π

8 ,−
π

3 ,0,−2,−∞], where xu(t f ) and xl(t f )

represent upper and lower bounds on the final state, x(t f ). Lastly, to capture the limited

range and speed of the elevator, I placed constraints on φ as φ ∈ [−π

3 ,
π

8 ] and φ̇ as φ̇ ∈

[−13,13]. The resulting nominal trajectory is shown in Figure 4-4.

4.4 Time-Varying Linear Quadratic Regulator

The NMPC approach mentioned in 4.2 involves running the nonlinear optimization

routine described in 4.3 with a receding time horizon at every time step, which can be very

computationally demanding. One way to avoid the computational burden of NMPC is to

linearize the nonlinear system dynamics about the nominal trajectory described in Section

4.3 and use optimal control to derive a closed-form approximation to the NMPC problem
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Figure 4-4: Optimized nominal perching trajectory.

Ax+Bu

Figure 4-5: A graphical depiction of linearizing about a trajectory in time (Barry 2014).

which is valid in a local neighborhood around the trajectory. For the quadratic cost function

used here, this approximation is given by the solution to a time-varying linear quadratic

regulator (TVLQR) problem, the basic building block of the LQR-Tree controller.

To compute the TVLQR control law, I write the dynamics of the linearized system as

˙̄x(t) = A(t)x̄(t)+B(t)ū(t), (4.3)

where x̄(t) = x(t)−x0(t) and ū(t) = u(t)−u0(t). Although it is possible to solve explicitly

for a final state constraint [98], in practice I relax the final state constraint with a final state

cost, resulting in a cost function of the form:

J = x̄(t f )
T Q f x̄(t f )+

∫ T

0

[
x̄(t)T Qx̄(t)+ ū(t)T Rū(t)

]
dt. (4.4)

To fully define the cost function, I use Q = diag([10,10,10,1,1,1,1]), R = .1, and Q f =

diag([400,400, 1
9 ,

1
9 ,1,1,

1
9 ]), where Q was chosen to encourage the vehicle to stay close to
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the nominal trajectory (where the linearization is valid) and the cost on R was chosen so that

over a reasonable range of initial conditions, control saturations were limited. The entries

of Q f were selected by approximating the desired goal region as an ellipsoid, G = x̄T Q f x̄,

so that the maximum distances are defined by x̄ f ,max = [0.05,0.05,3,3,1,1,3] where Q f =

diag(x̄ f ,max)
−2. Furthermore, the entries for Q were also chosen with respect to Q f so that

the solutions to the Riccati equation remained well conditioned.

Finally, I numerically solve the differential Riccati equation

−Ṡ(t) = Q−S(t)BR−1BT S(t)+S(t)A+AT S(t) (4.5)

backwards in time with

S(t f ) = Q f . (4.6)

This yields the TVLQR control law

ū =−R−1BT S(t)x̄(t), (4.7)

and the cost-to-go

J = x̄T S(t)x̄. (4.8)

4.5 NMPC vs. TVLQR

The local linear approximation of the dynamics and the locally quadratic approxima-

tion of the objective provides a feedback control law which is trivial to compute at run time

(evaluating one piecewise polynomial spline which provides the feedback gains, then one

matrix multiplication), but one cannot necessarily expect this controller to perform well

for initial conditions far away from the nominal trajectory. To quantify this, I conducted

exhaustive numerical simulations of the closed-loop systems from a range of initial condi-

tions. Since the state space is ≥ 7 dimensions, this exhaustive evaluation is only possible

in small subspaces of initial conditions. Given a particular initial condition, the closed-
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Figure 4-6: Comparison of NMPC with TVLQR via exhaustive simulation from a subspace
of initial conditions. Cyan indicates the initial conditions for which the TVLQR controller
navigates the aircraft through the goal region, blue indicates the same for NMPC. (a) Initial
conditions were densely sampled from x(t0) = [x,z,0,0,7,0,0], (b) initial conditions were
densely sampled from ẋ(t0) = [−3.5,0.1,0,0, ẋ, ż,0].

loop system was considered successful if the state of the aircraft during forward simulation

entered the goal region around the perch at any time in the trajectory (a more generous

evaluation than only testing at the specific final time of the nominal trajectory). Figure 4-6

shows the results, which confirms that the nonlinear controller from NMPC significantly

outperforms the optimal time-varying linear controller. Unfortunately, this quantitative

comparison is limited to the simulation model, as I am unable to evaluate the NMPC con-

troller at real-time rates in the physical experiments due to the processing limitations of the

onboard computer.

However, a relatively simple solution presents itself. In order to reproduce the per-

formance of NMPC with a controller that can be evaluated efficiently at run-time, I will

compute a small library of TVLQR controllers, each constructed around a different nom-

inal trajectory from NMPC. Each controller will only be valid locally, but even in 7+

dimensions, I hope to fill the (closed and bounded) subspace of initial conditions of inter-

est since each TVLQR controller covers a non-negligible region. The run-time cost then

reduces to a one-time evaluation of the initial conditions to determine which controller to

run, followed by the cost of evaluating that TVLQR controller. Minimizing the number

of controllers in the library will be essential to mitigate this one-time cost, as well as the

memory and design-time creation cost of the library. This control library idea, along with
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a recipe for constructing an efficient library coverage with minimal controllers, is called

“LQR-Trees”[99].

In order to achieve coverage, the LQR-Trees algorithm needs to be able to efficiently

verify the local controllers, as in Figure 4-6. But this verification must work in the full

state-space of the model, not just a subspace of initial conditions; and to be practical it

must be much more efficient than the exhaustive simulations. To achieve this, I examine

algorithms for producing efficient inner-approximations of these verified regions.
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Chapter 5

Trajectory Verification

5.1 Verification Methods

The controls community has produced a number of approaches for verifying the behav-

ior of complex dynamical systems. In [69], the authors made use of game theory and solved

a Hamilton-Jacobi-Isaacs partial differential equation by discretizing on a grid to compute

the set of reachable states for a continuous dynamical system. In [103], this approach was

extended to handle hybrid systems. Besides grid-based methods, some researchers have

explored methods of approximating reachable sets through combining numerical simula-

tion with sensitivity analysis [28]. In [23], the authors merged this technique with rapidly

exploring random trees to explore the state space of a dynamical system.

Here, I explore an alternative approach to verification which uses sum-of-squares (SOS)

optimization [77] to compute an inner approximation of the regions displayed in Figure 4-

6, more formally defined as the “backwards reachable set to the goal”. This approach

has some merits compared to the techniques mentioned above. First of all, this method

reasons algebraically about the governing equations, eliminating the need to discretize the

system’s state space. This requires that the closed-loop system of interest be described

or approximated in closed-form using polynomials. Moreover, because computationally

costly PDE solvers are replaced with semi-definite program solvers, the SOS optimization

routines scale much more reasonably with state than other methods. Since the system of

interest has a large state space but is described with a smooth closed-form expression, I
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focus on the sum-of-squares approach here.

5.2 Sum-of-Squares Verification
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Figure 5-1: The reverse-time Van der Pol Oscillator is a system commonly used to test
region of attraction analysis methods. (a) Shows the the true region of attraction for the
reverse-time Van der Pol (blue), obtained through exhaustive simulation. The ellipse (yel-
low) depicts the bounds of the largest quadratic Lyapunov function found in this region,
also found through sampling the quadratic form xT Px. (b) Figure shows the vector field for
the reverse-time Van der Pol oscillator (blue) along with a few system trajectories (black)
and the largest quadratic region of attraction found using the sum-of-squares (SOS) ap-
proach (green).

Verification using sum-of-squares optimization is accomplished by searching for a ver-

ification certificate in the form of a Lyapunov function [77], which I will denote V (x).

For dynamical systems with polynomial vector fields, SOS makes it possible to verify the

Lyapunov conditions (V > 0,V̇ < 0) for a candidate Lyapunov function as a convex opti-

mization [77]. It is also possible to search for a Lyapunov function which satisfies these

conditions, to search for a Lyapunov function which proves stability in a bounded positively

invariant region, and/or to simultaneously optimize a controller in order to maximize a veri-

fied positively invariant region by solving a series of convex optimizations [59, 80, 94, 111].

Consider the time-invariant case where ẋ = f(x); in this case, computing the backwards

reachable set to a fixed-point is equivalent to computing the region of attraction to that

fixed point. I restrict my search to positive-definite Lyapunov functions, V (x), and define
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the region of interest, B, as a sub-level set of this positive function:

B = { x | V (x)< ρ},

for some positive scalar ρ . If I can find a positive V such that ∀x ∈ B that:

V̇ =
∂V (x)

∂x
f(x)< 0,

then this verifies that B is a positively invariant region of the closed-loop system, and that

all initial conditions in B will eventually reach the origin. In other words, B is an inner-

approximation of the region of attraction to the origin. If f(x) is polynomial and I restrict

my search to polynomial Lyapunov functions, then the search for this certificate of regional

stability is reduced to a search over positive polynomials.

In SOS optimization, the test for positivity is replaced with the condition that the poly-

nomial is a sum-of-squares. To isolate the analysis to the region defined by the sub-level

set of B, I apply a technique called the S-procedure [77] which is analogous to the use of

Lagrange multipliers in constrained optimization. Using Σ to denote the sum-of-squares

polynomials over x, I write

V ∈ Σ (5.1)

−V̇ + s1(V −ρ) ∈ Σ (5.2)

s1 ∈ Σ, (5.3)

where s1 is an additional polynomial that serves as a multiplier for the S-procedure. I seek

to maximize the size of B in order to find the largest inner-approximation of the true region

of attraction; here I approximate volume by enforcing a scale on V and maximizing ρ . In

order to optimize these polynomial constraints over the decision variables, V ,ρ , s1, I carry

out two steps of bilinear alternations [89].

If I let V = x̄T Sx̄, for some S = ST � 0, then the constraint in equation (5.1) is satisfied

trivially. I can now perform the optimization in the following steps:
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STEP 1:

maximize
s1,γ

γ

subject to γ > 0,

−V̇ + s1(V −ρ)− γ ∈ Σ. (5.4)

s1 ∈ Σ

STEP 2:

maximize
V,ρ

ρ

subject to ρ > 0,

−V̇ + s1(V −ρ) ∈ Σ. (5.5)

s1 ∈ Σ

These steps then repeat until convergence is observed in ρ .

5.3 Verification along Trajectories

The approach presented in the preceding section can also be applied to computing the

backwards reachable set to a goal region along finite-time trajectories. To do this, I build

on the work done in [102], but instead of only searching over a single rescaling of the level

set, I search over the entire Lyapunov function. My approach is as follows:

First, I generalize the Lyapunov function to be a positive function of time as well

as state, V (t,x). Then, rather than requiring stability to some fixed-point, I search for a

bounded positively invariant region

B(t) = {x|V (t,x)≤ ρ(t)},

which can be verified by ensuring that V̇ < ρ̇ for all states on the boundary of the region,

V = ρ . Following [99, 102], I refer to these bounded positively invariant regions “funnels”.
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(a) (b)

Figure 5-2: (a) A depiction of a quadratic Lyapunov function at a single operating point for
a two-dimensional system. The black dotted line represents the “One-Level Set”, the black
solid line represent the system trajectory in state space and the blue sold line represents the
decreasing value of the Lyapunov function over time. (b) A depiction of a time-varying
quadratic Lyapunov function along a trajectory. The black dotted lines represents the ρ

level set, which can be optimized to find the largest invariant set.

I am then able to reformulate the constraints as:

V (t,x) = ρ(t) =⇒ V̇ (t,x)− ρ̇(t)≤ 0, (5.6)

where

V̇ (t,x) =
∂V (t,x)

∂x
ẋ+

∂V (t,x)
∂ t

. (5.7)

Using the generalized S-Procedure, I can now write

−V̇ (t,x)+ ρ̇(t)−µ(t,x)(V (t,x)−ρ(t))≥ 0, (5.8)

where µ(t,x) is a polynomial Lagrange multiplier. To further simplify the problem, I sam-

ple in time to eliminate t from the above expression, as recommended in [102]. This results
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in N positivity constraints

−V̇ (ti,x)+ ρ̇(ti)−µi(x)(V (ti,x)−ρ(ti))≥ 0, (5.9)

where i = 1,2,3...N. To evaluate ρ(t) at t = ti, I choose ρ(t) to be a piecewise linear

polynomial such that

ρ(t) = ρi +(t− ti)ρ̇i, i = floor
(

t− t0
∆t

)
(5.10)

ρ̇i =
ρi+1−ρi

∆t
. (5.11)

I also let V (t,x) = x̄T S(t)x̄ where S(t) = S0(t)+Φ(t), S0(t) comes from the differential

Riccati equation, and I let Φ(t) be a piecewise polynomial such that

Φ(t) = Φi +(t− ti)Φ̇i, i = floor
(

t− t0
∆t

)
(5.12)

Φ
T
i = Φi � 0, Φ̇i =

Φi+1−Φi

∆t
. (5.13)

This ensures that ST (t) = S(t)� 0. Including S0 in the parametrization of S(t) is extremely

important for being able to find a feasible initialization for the bilinear SOS optimization

when Φ(t) is zero.

To search for Φi and ρi, I once again replace the test for positivity with the test for

sum-of-squares positivity. I then hold the scale of S(t) fixed and use bilinear alternations to

search iteratively over ρi and µi in a manner similar to the steps shown in equations (6.19)

and (6.20). In this instance, the alternations terminate when
N
∑

i=1
ρi attains a local maximum.

It is this ability to verify along trajectories that allows the application of these verifica-

tion methods to the perching maneuver. The “funnels” found for this system can be seen

in Figure 5-3. I also plot the case where the Lyapunov function is only parametrized by a

re-scaling of x̄T S0(t)x̄, as proposed in [102], to show the advantage over of parameterizing

the Lyapunov function by the entire S-matrix using the Φi terms.
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Figure 5-3: Slices of the high-dimensional funnel in the x-z and ẋ-ż plane obtained by
optimizing only over a rescaling of the level set as done in [102] (cyan), compared with the
respective slices of the funnel obtained by optimizing over the entire Lyapunov function as
done in [72] (gray).
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Figure 5-4: Comparison of the volumes of the funnels obtained from optimizing over ρ(t)
compared with optimizing over Φ(t).

Table 5.1: Funnel Comparison

Method µ-step V-step No. Iter. Total t Vol.
Tobenkin 21.7s 13.9s 7 250 s 3.17×10−4

Moore 30.3s 40.9s 14 997 s 1.47×10−2

Table 5.2: This table shows that even though more variables are required to parameterize
the entire S-matrix of the quadratic Lyapunov function, the required computation time is
not substantially greater than parameterizing the Lyapunov function by a scalar multiplier.
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5.4 SOS Verification Compared to Exhaustive Numerical

Simulation

To test the funnels, I repeated the exhaustive simulation approach to verification which

is more exact but restricted to two dimensional slices. Since the funnel is defined over the

entire finite time interval of the trajectory, I repeated these simulations at ten time slices

along the nominal trajectory. Sampling within the specified slices, I then ran the LQR

controller forward in time from each slice and tested if it reached the goal. The results can

be seen in Figure 5-5. Given all of the potential conservatism taken along the length of the

trajectory, the resulting quadratic approximation of the funnels is surprisingly tight. The

fact that they verify a relatively large subset of initial conditions makes them very useful in

producing a library of controllers.

5.5 LQR-Tree Controller

As demonstrated in [72], these verified regions can be combined together to form an

LQR-Tree to cover a sufficiently large region of state space. This is achieved by sampling

randomly from a set of initial conditions and checking if the sample is already in the veri-

fied region. If it is, then the set of initial conditions is re-sampled. However, if the sample

is not in the verified region, then a new trajectory is designed, where the trajectory’s ter-

minal constraints are specified to be along the tree’s already existing trajectories. Once a

trajectory from the initial condition to the goal is found, this trajectory is verified and a

new funnel is added to the tree. This process repeats until no sampled initial conditions are

outside the tree. An LQR-Tree for the glider is shown in Figure 5-6.

Notice how the LQR-Tree in Figure 5-6 verifies a much larger range of initial velocities

when compared to the region verified by any one funnel. It is also interesting to note that,

although attempts were made to reconnect initial conditions to the nearest point along the

original nominal trajectory, the algorithm still connected all the new trajectories to the goal

region. This is most likely because, given the aircraft’s extremely short flight time, it is

more optimal for the trajectories to terminate at the goal region rather than at some earlier
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ż
(m

/
s)

t = 0.267 s

3.5 4 4.5 5 5.5 6 6.5 7
−1

0

1

2
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ż
(m

/
s)

t = 0.711 s

0 1 2 3

−3

−2

−1

0
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Figure 5-5: (a-b) Comparison of SOS funnel’s x-z and ẋ-ż slices with the positively invari-
ant set found by simulating the full non-polynomial, nonlinear system forward from the
relevant initial conditions. (c-d) 2D plots of the x-z and ẋ-ż funnel slice time cross-sections
found in (a-b). Red represents simulated trajectories which failed to reach the goal region,
blue represents those that succeeded, and gray represents the final SOS funnel.
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Figure 5-6: Slice of the high-dimensional LQR-Tree in the x-z plane (left) and the ẋ-ż plane
(right). Notice the increased initial condition coverage

point along the nominal trajectory.
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Chapter 6

Verification of Uncertain Systems

Although I have demonstrated that the LQR-Tree approach can increase the set of initial

conditions for which the UAV can perch successfully, I have not addressed model uncer-

tainty. In Figure 6-1, I show simulations of the aircraft from a range of initial velocities

with a parametric offset in the x-accelerations and z- accelerations. Notice that as the para-

metric uncertainty increases, the admissible initial condition set begins to decrease in vol-

ume. This is because the parametric uncertainty adversely affects perching performance,

requiring the aircraft to start closer to the nominal initial conditions to achieve successful

perching. In the following sections, I discuss methods for incorporating these parametric

and dynamic uncertainties in to the sum-of-squares verification framework.

6.1 Prior Work

A number of approaches have been explored for robust region of attraction analysis.

Prior to the use of SOS programming, LMI methods were applied to try to estimate the

robust regions of attraction for uncertain polynomial systems [101]. However, with the

advent of SOS methods, researchers began to explore finding true regions of attraction

for polynomials with bounded uncertain inputs as well as parametric uncertainty [104,

106, 105]. These approaches have also been applied to hybrid systems [76] as well as to

finite-time polynomial systems with variable goal regions [61]. Here, I carry out robust

verification for a highly underactuated system by exploring the verification of the closed-
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Figure 6-1: These figures display the admissible initial velocity conditions for the aircraft
when an uncertain constant offset is added to the x and z accelerations. The acceration
offsets are applied from 0-1 m

s2 starting with the largest admissible offset in that range and
descreasing in increments of 0.1 m

s2 . Lighter blues represent a larger acceleration offset.
(a)-(b) represent a postive and negative offset in x-acceleration respectively and (c)-(d)
represent a positive and negative offset in z-acceleration respectively. Notice how the basins
decrease with increasing acceleration error.

loop perching glider system under both parametric and dynamic uncertainty.

6.2 Robust Verification

In this thesis, I divide model uncertainty in to two classes: parametric uncertainty and

dynamic uncertainty [105]. Parametric uncertainty exists when there is a constant parame-
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ter in the system dynamics that is unknown, or is only known to be within some bounded

set. Dynamic uncertainty, however, is uncertainty which varies with time and arises due to

unmodeled dynamics. In the following sections, I present verification approaches for both

uncertainty types.

6.2.1 Parametric Uncertainty

One common means of representing uncertainty in dynamical systems is by modeling

that uncertainty as an unknown parameter. The verification methods described in the previ-

ous chapter can easily be applied to situations where parametric uncertainty exists. All that

is required is to add extra variables to the SOS program, one for each unknown parameter.

Consider the uncertain system dynamics

ẋ = f(x,u,θ), (6.1)

where θ is a vector of uncertain constant parameters.

I can then write the following “common” Lyapunov function as

V (t,x,θ) =V0(t,x)+θ
T

Γ(t)θ, (6.2)

where V0 = xT S(t)x. Since θ is constant

V̇ (t,x,θ) =
∂V0(t,x)

∂x
ẋ+

∂V0(t,x)
∂ t

. (6.3)

Once again, I can write the constraint

V (t,x,θ) = ρ(t) =⇒ V̇ (t,x,θ)− ρ̇(t)≤ 0. (6.4)

and search for an invariant set using SOS. This is achieved through the same two step

bilinear optimization routine described in Section 5.2. To initialize this bilinear optimiza-

tion program, Γ(t) must be made very large so that, to start, the uncertain parameter is

constrained to a set of small values. A robust funnel for a constant offset in the glider’s
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Figure 6-2: Slices of the high-dimensional funnel in the x-z and ẋ-ż plane with (green) and
without (gray) accounting for uncertainty. For the robust funnel, the uncertainty is modeled
as a constant offset on the x-acceleration and reaches a maximum offset value of about 0.22
m
s2 .

x-acceleration can be observed in Figure 6-2.

One feature of this approach is that the parameter θ is part of the Lyapunov function.

This means that when evaluating the Lyapunov function, one must use the largest possible

value for θ, which has the potential to drastically reduce the volume of the funnel. In Figure

6-2, θ is set to zero to show the largest possible funnel.

Notice also that this particular approach can not be directly extended to the case where

dynamic uncertainty exists, because, in the case of dynamic uncertainty, the derivative of

the uncertainty is unknown. Here, because the analysis assumes parametric uncertainty, the

derivative of the uncertainty is zero, and the above formulation holds.

6.2.2 Dynamic Uncertainty

As mentioned above, the verification method presented in the previous section will

not hold if the derivative of the uncertainty is unknown. However, this SOS verification

approach can also be extended to situations where dynamic uncertainty exists, for instance,

in the case of some bounded, time-varying input noise on the system accelerations. To do

this, I search for a common Lyapunov function by using additional multipliers to constrain

the uncertainty to a bounded set. I also reduce the number of decision parameters in the

SOS formulation by making the Lyapunov function only depend on state (i.e., Γ = 0). In
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principle, the Lyapunov function could also depend on the uncertainty if multipliers were

used to bound the derivative of the uncertainty as well.

The constraints for this formulation can be written as

∀θi ∈ [θi,min,θi,max], V (t,x) = ρ(t) =⇒

V̇ (t,x,θ) =
∂V (t,x)

∂x
f(x,θ)+

∂V (t,x)
∂ t

< ρ̇(t) (6.5)

where θi is the ith bounded uncertain parameter and ρ(t) is the value of the level set of

interest. As before, SOS can be used to search for a positively invariant set about the

system’s nominal trajectory.

A challenge with this approach is finding a suitable initial Lyapunov function with

which to initialize the SOS optimization routine. The Lyapunov function used to initial-

ize the SOS optimization routine is no longer necessarily valid for a desired uncertainty

bound. For this reason, I use a three step bilinear optimization routine, which allows for

maximizing the size of the uncertainty bounds. The first two steps of this optimization

routine are similar to the two steps mentioned in the prior section. In the first step, I ini-

tialize the search for the multipliers with the uncertainty constrained to be zero. Then, in

the third step, I begin to grow the uncertainty bound. These three steps continue until the

uncertainty bounds reach the desired values or the optimization fails to find a feasible so-

lution. It is also important to note, that, in the third step, I only allow the level set and the

uncertainty bounds to change. This preserves the funnel volume increase achieved in the

second step due to searching over the entire Lyapunov function and only rescales the re-

sulting Lyapunov function to increase the uncertainty bound. These steps are summarized

as follows:

STEP 1:

maximize
s1,si+1,γ

γ

subject to γ > 0,

−V̇ + ρ̇− s1(V −ρ)+
N

∑
i=1

si+1(θ
2
i −δi)− γ ∈ Σ[x].
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STEP 2:

maximize
ρ,V

∑ρ

subject to ρ > 0,

−V̇ + ρ̇− s1(V −ρ)+
N

∑
i=1

si+1(θ
2
i −δi) ∈ Σ[x].

STEP 3:

maximize
ρ,δ

N

∑
i=1

δi

subject to ρ > 0,

δi > 0,

−V̇ + ρ̇− s1(V −ρ)+
N

∑
i=1

si+1(θ
2
i −δi) ∈ Σ[x].

For the glider, I applied the bounded uncertainty term as a bounded process noise on the

system dynamics. The resulting robust funnel is shown in Figure 6-3, where it is compared

to the funnel for the system without uncertainty. Note that, because the Lyapunov function

V (t,x) does not depend on θ (i.e., Γ = 0), the Lyapunov function can be exactly evaluated

at runtime.

6.3 Stochastic Verification

In a manner analogous to robust verification, stochastic verification can be applied to

account for model uncertainty. Typically, this is useful for handling dynamic uncertainty,

as it could provide less conservative results than the robust verification methods if the

dynamic uncertainty can be better approximated as some colored noise with known mean.

Following the methods outlined in [93, 82, 81], if one has a system driven by white noise,

one can compute backwards reachable sets which guarantee a probability of successfully

reaching the goal from a set of initial conditions.

To achieve this, I define a non-negative function V (t,x), also known as a supermartin-
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Figure 6-3: Slices of the high-dimensional funnel in the x-z and ẋ-ż plane with (green)
and without (gray) accounting for uncertainty. For the robust funnel, the uncertainty is
modeled as a bounded input disturbance on the x-acceleration with a +/- 0.2 m

s2 bound on
the acceleration uncertainty.

gale , where E[V̇ (t,x)]≤ c and c is some non-negative constant. From Markov’s inequality,

it can be observed that the probability that V (t,x(t))≥ 1 is at most V (0,x(0))+ ct.

Consider the stochastic differential equation dx(t) = f(x)dt +g(x)dw(t). Using the Itô

differential operator, I can show that

E[V̇ (t,x)] =
∂V
∂x

f(x)+
∂V
∂ t

+
1
2

trace(g(x)T ∂ 2V
∂x2 g(x)).

I can then set up the constraint

V (t,x)< 1 =⇒ E[V̇ (t,x)]< c.

As before, this constraint is easily enforced using sum-of-squares techniques. For this,

I utilize a two step SOS optimization routine. The optimization is initialized by making the

initial value for c very large. In the second step of the optimization routine, I seek to both

minimize c and increase ρ . This optimization routine is summarized as follows:
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STEP 1:

maximize
s1,γ

γ

subject to γ > 0,

−E[V̇ ]+ s1(V −1)+ c− γ ∈ Σ. (6.6)

s1 ∈ Σ

STEP 2:

maximize
V,c

Vol(V )

subject to V ∈ Σ,

c > 0,

−E[V̇ ]+ s1(V −1)+ c ∈ Σ. (6.7)

(6.8)

The stochastic funnel with Gaussian uncertainty on the x acceleration was computed

and plotted against the funnel for the nominal system. The results can be observed in

Figure 6-4. These stochastic funnels can be interpreted as guaranteeing that, given initial

condition x(0), the glider will land on the perch with a probability of 1− (V (x(0))+ cT ),

where T is the duration of the maneuver in seconds.

6.4 Design and Verification of Adaptive Controllers

A third approach for managing parametric uncertainty in control system design is through

adaptation. While I have demonstrated that it is possible to generate robust funnels for var-

ious classes of uncertainty for the perching glider system, it is also possible that, if the

uncertainty is parameteric (i.e. it does not vary with time), better performance could be

achieved by estimating the uncertainty during the course of the perching maneuver and

using those estimates to modify the controller online. In this section I explore developing
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Figure 6-4: Slices of the high-dimensional stochastic funnel in the x-z and ẋ-ż plane. For
this funnel c=0.09 and there is Gaussian noise on the x-accelerations with a standard devi-
ation of 0.1 m

s2 . Here, the stochastic funnel is shown in green and the nominal, non-robust
funnel is shown in gray.

adaptive controllers for underactuated systems and demonstrate on several systems, in-

cluding the perching glider system, that it is possible to increase the range of the system’s

tolerance to uncertainty when that uncertainty does not vary with time.

Unfortunately, there are relatively few methods for handling underactuated systems in

adaptive control design. In [87], the authors addressed adaptive control of underactuated

systems by applying partial feedback linearization to the collocated joint and carrying out

region of attraction (ROA) analysis on the non-collocated joint. In [88], the authors applied

backstepping to find a suitable Lyapunov function with which they can design an adaptive

controller for their autonomous underwater vehicle. Similarly, in [31], the authors devel-

oped an adaptive controller for an underactuated quadrotor UAV capable of compensating

for uncertain mass.

In this section, I follow the approach described in [45], which makes use of an adap-

tive control Lyapunov function (acLf) which can be found via backstepping. Using this

Lyapunov function, the authors were then able to derive a nonlinear adaptive controller in a

manner similar to that which is carried out in [92]. In this thesis, I replace the back-stepping

approach by automating the search for the controller and Lyapunov functions using SOS

optimization.
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6.4.1 Local Adaptive Control About a Fixed-Point

Before considering the design of an adaptive controller for the time-varying glider sys-

tem, I first consider the case of designing an adaptive controller which is only valid in a

bounded set about an operating point. To do this, I find a local Lyapunov function for the

adaptive system.

Consider the system

ẋ = f(x)+F(x)θ+g(x)u. (6.9)

The adaptive controller should have the form

u =α(x, θ̂) (6.10)

˙̂
θ =τ(x, θ̂). (6.11)

Now consider the Lyapunov function

V =Va(x, θ̂)+ θ̃
T

Γθ̃+θ
T

Ψθ, (6.12)

where θ̃ = θ− θ̂. In many cases, Va can be chosen as xT Sx, where S comes from solving

the Riccati equation. Taking the derivative of the Lyapunov function yields

V̇ =
∂Va(x, θ̂)

∂x
ẋ+

∂Va(x, θ̂)
∂ θ̂

˙̂
θ+ θ̃

T
Γ

˙̃
θ. (6.13)

If I choose the adaptive law such that

˙̂
θ = τ(x, θ̂) = Γ

−1
(

∂Va(x, θ̂)
∂x

F(x)
)T

, (6.14)
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then

V̇ =
∂Va(x, θ̂)

∂x
ẋ+

∂Va(x, θ̂)
∂ θ̂

˙̂
θ+(θ− θ̂)T

Γ(− ˙̂
θ) (6.15)

=
∂Va

∂x
(f(x)+F(x)θ)+

∂Va

∂ θ̂
Γ
−1
(

∂Va

∂x
F(x)

)T

+(θ− θ̂)T
(
− ∂Va

∂x
F(x)

)T

(6.16)

=
∂Va

∂x

(
f(x)+F(x)

(
θ̂+Γ

−1 ∂Va

∂ θ̂

T)
+g(x)α(x, θ̂)

)
. (6.17)

Thus, I am left with the conditions

V =Va(x, θ̂)+ θ̃
T

Γθ̃+θ
T

Ψθ < ρ

=⇒

V̇ =
∂Va

∂x

(
f(x)+F(x)

(
θ̂+Γ

−1 ∂Va

∂ θ̂

T)
+g(x)α(x, θ̂)

)
< 0. (6.18)

In the above constraints, many of the decision parameters (i.e., Γ) appear nonlinearly and

constructing a series of bilinear alternations is non-trivial. However, if one is willing to let
∂Va
∂ θ̂

= 0, then constructing a series of bilinear alternations is possible and these constraints

are easily verified with sum-of-squares techniques using a three step optimization routine

to search for the multipliers, V and α(x, θ̂). This optimization routine can be described as:

STEP 1:

maximize
s1,γ

γ

subject to γ > 0,

−V̇ + s1(V −ρ)− γ ∈ Σ. (6.19)

s1 ∈ Σ
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STEP 2:

maximize
V,Γ,Ψ,ρ

ρ

subject to ρ > 0,

−V̇ + s1(V −ρ) ∈ Σ. (6.20)

STEP 3:

maximize
α,ρ

ρ

subject to ρ > 0,

−V̇ + s1(V −ρ) ∈ Σ (6.21)

These steps then repeat until convergence is observed in ρ .

Adaptive Controller Results

Because the glider model does not have a fixed-point I can use to test the adaptive

control design approach, I tested my method on a canonical underactuated control task,

balancing the acrobot (see Figure 6-5) about the upright.

The equations of motion of the Acrobot have trigonometric terms in them; since these

appear simply, it is possible to either perform an exact change of coordinates to a poly-

nomial vectorfield, or to approximate the dynamics using Taylor expansion. In a manner

consistent with the previous SOS approaches, I used a Taylor expansion to third order.

For this problem, I parameterized the controller as α(x, θ̂) = KLQRx+ θ̂Kθx, where KLQR

comes from the solution for the linear quadratic regulator for the nominal system when

q = q0. θ was specifically chosen to be the (scalar) unknown damping coefficient on the

noncollocated (unactuated) shoulder joint.

To initialize the iterations, I chose Sa = S, where S comes from solving the Riccati

equation. I also chose ρ to be very small and det(Γ) and det(Ψ) to be very large. This is

a reasonable initialization procedure because V = xT Sx is a valid Lyapunov function with
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Figure 6-5: (a) The Acrobot system: The only actuation is at the elbow joint.(b) Slice
of four dimensional Acrobot region of attraction in the q1-q2. Notice that there is little
difference between the size of the ROA for the LQR controller (green) and the adaptive
controller (blue).

some robustness to parametric uncertainty in a small neighborhood around the nominal

point. The multipliers were chosen to be up to 4th order.

The results of searching for the controller can be observed in Figure 6-5, plotted as a

slice of the 4 dimensional ellipsoidal level-set V = ρ . While non-negligible gains Kθ were

found by the optimization procedure, these gains had little affect on the size of the region

of attraction. This is most likely due to the favorable robustness properties of LQR for a

time-invariant system.

This being said, there are cases where unknown constant parameters can cause LQR to

fail to achieve asymptotic stability. In these cases, we claim that our methods can design

an adaptive controller which enables a region of attraction to exist. Consider the case of a

constant, unknown offset appearing in the measurements provided to a LQR Controller. I

write these closed loop dynamics as

ẋ = f(x)+g(x)(K(x+θ)). (6.22)
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Since K is a constant matrix, I can rewrite this as

ẋ = f(x)+g(x)α(x, θ̂)+g(x)Kθ, (6.23)

which is identical to equation 6.9 when F(x) = g(x)K. To test my approach, I again imple-

mented this case using the Acrobot. I applied a single measurement offset to the Acrobot’s

shoulder joint and designed the adaptive controller using SOS. The results can be seen in

Figures 6-6, and 6-7. The ROA for the this adaptive controller is comparable to the ROAs

shown in Figure 6-5 above while the ROA about the upright for the system using the LQR

Controller does not exist.
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Figure 6-6: (a) A plot of q1 with time. Notice how the LQR Controller (green) fails to
converge to π , while the adaptive controller (blue) does.(b) A plot of q2 with time. Notice
how the adaptive controller (blue) converges to zero while the LQR Controller (green) does
not.

6.4.2 Adaptive Control Along Trajectories

Without feedback linearization, designing adaptive controllers with provable stability

properties becomes more complex. Given a desired trajectory, xd(t), defined for t ∈ [t0,∞],

and unknown model parameters, a natural goal is to design an adaptive control law for the

closed-loop system that converges asymptotically to the desired trajectory for all possible

parameters in some family. However, with no guaranteed ability to directly cancel para-
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Figure 6-7: A plot of θ̂ with time. Even though it is not guaranteed to converge, the
estimated parameter (blue) does converge to the true parameter (black).

metric uncertainty using feedback, for some systems it may be difficult or impossible to

achieve asymptotic convergence to a desired trajectory. Furthermore, I would argue that

for most real-world tasks this level of performance is not necessary.

Instead, I will use the notion of a funnel and only verify set invariance to design an

adaptive controller for the perching glider. As described in Section 4.3, I use direct tran-

scription to design the nominal trajectory. I then use TVLQR and the third step of the

SOS optimization routine described above to generate the control law dependent on the

parameter estimates.

Controller Parametrization

Because the control requirement is not exact trajectory following but staying in the

funnel while moving between two regions of state space, I found it advantageous to allow

for a θ̂-dependent shift of the nominal trajectory,

xd = x0 +w(θ̂), ud = u0 +v(θ̂),
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where w(θ̂) and v(θ̂) are a function that I can potentially design along with the controller.

Consider, as before, the system

ẋ = f(x)+g(x)u.

If x̃ = x−xd , ũ = u−ud , and ũ = Kx̃, then I can write

˙̃x = f(x)+g(x)(Kx̃+ud)− ẋd

ẋ = f(x)+g(x)(K(x−x0−w(θ̂))+u0 +v(θ̂)).

Now, if x̄ = x−x0, then

˙̄x = f(x)+g(x)(K(x̄−w(θ̂))+u0 +v(θ̂))− ẋ0

˙̄x = f(x)+g(x)(Kx̄+u0−Kw(θ̂)+v(θ̂))− ẋ0.

For simplicity, here I fix w(θ̂) = γ θ̂ and v(θ̂) = ψ θ̂ and let Kθ = Kγ−ψ . Then I have

˙̄x = f(x)+g(x)(Kx̄+u0−Kθ θ̂)− ẋ0.

and thus achieve the controller parametrization u = Kx̄+u0−Kθθ̂, where K = KLQR, θ̂

comes from integrating ˙̂
θ derived above, and Kθ is found using SOS optimization. This

control law allows for adjusting the nominal trajectory online using θ̂ and thus provides the

controller with a more reasonable xd to follow.

Adaptive Controller Results

To test this adaptive control design algorithm, I first implemented it on a simple cart-

pole system, where viscous friction at the non-collocated joint is unknown. I then tested

the adaptive control design algorithm on the perching glider system and considered the

case of an uncertain lift coefficient. This uncertain lift coefficient is created by adding an

unknown constant offset to the CL of the wing described in Section 3.1. Figures 6-8 and

6-9 demonstrate that the adaptive controllers provide a clear improvement in performance
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Figure 6-8: (a) The cart-pole system. Here, the uncertain parameter is at the pole’s unac-
tuated pivot. (b) Plot showing the cartpole system simulated from a range of initial tra-
jectories and parameter values. Both the gain-scheduling controller (red) and the adaptive
controller (green) provide an advantage over the TVLQR design (blue).

by increasing the given system’s tolerance to deviations in its uncertain parameter. In both

cases, even though the estimated parameter did not converge to the true parameter, the

parameter estimates generally converged to a constant value and evolved in such a way that

the overall performance of the system improved. However, lack of parameter convergence

is not surprising, since parameter convergence requires persistent excitation, and this metric

was not considered when designing the nominal trajectory for either system.
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Figure 6-9: (a) The perching glider system. Here, the uncertain parameter is the lift coeffi-
cient of the aircraft.(b) Plot showing the perching glider system simulated from a range of
initial trajectories and parameter values. Both the gain-scheduling controller (red) and the
adaptive controller (green) provide an advantage over the TVLQR design (blue).
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Chapter 7

Robust LQR-Tree Controller

Because the the acceleration uncertainty is dynamic in nature, using the adaptive method

presented in the preceding chapter is challenging, since it only accounts for parametric un-

certainty. While both the robust and stochastic verification approaches have the ability to

handle dynamic uncertainty, the robust methods also possess the ability to handle paramet-

ric uncertainty. Because of its ability to handle both types of uncertainty, I chose to proceed

with the robust verification approach. For the initial study, I added bounded uncertainty to

the system’s x-accelerations.

7.1 Verification Experiments

To test the robust funnels, I carried out a number of flights, varying the initial speed be-

tween 6.5 m/s and 7.5 m/s. I executed a TVLQR controller designed for a single trajectory

with a nominal speed of 7.0 m/s. As can be seen in Figure 7-2, 80 percent of the trajectories

that originated in the funnel, stayed in the funnel. And while a few of the trajectories did

leave the funnel, this is to be expected, since accounting for all sources of uncertainty is not

possible. Nevertheless, these results indicate that the robust verification can in fact provide

reasonably accurate guarantees of system performance when robustness is added.
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ẋ (m/s)

ż
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Figure 7-1: These figures show the robust funnel slices in the x-z plane and the ẋ-ż plane
with the experimental trajectories superimposed on top of them. Note: These plots only
serve as a visual aide. Because these are two-dimensional slices, one can not tell whether
or not the trajectory is truly inside of the funnel from these plots.

7.2 LQR-Tree Results

Following the verification experiments, I proceeded to generate an LQR-Tree using

the robust funnels. I then carried out a number of experiments in a Vicon motion capture

studio, varying the initial speed of the perching maneuver between 6 and 8 m/s. Figure 7-3

shows the results of this experiment when only an open loop trajectory is used to control

the aircraft. When the LQR-Tree algorithm is applied, astounding perching performance

is obtained (see Figure 7-4). Out of the approximately 150 launches, 94 percent landed

in the 6.5 centimeter capture region. Figure 7-5 compares the final perching positions

of open loop control, time-varying linear control for a single trajectory, and the LQR-

Tree approach. The LQR-Tree demonstrates a clear improvement over a single stabilized

trajectory for the higher initial launch speeds.

To further demonstrate the performance advantages of the LQR-Tree approach, I launched

the glider by hand. These hand thrown trajectories have a much larger variation in initial

pitch than those launched from a crossbow and therefore benefit from an LQR-Tree which

has funnels to accommodate these initial conditions. Figure 7-6 shows a video stills from

three sequential handthrown perching experiments, all of which have significantly different

initial pitch conditions. The results of these experiments can be seen in Figure 7-7. The
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Figure 7-2: (a) Experimental trajectory verification for single stabilized trajectory using
the nominal funnel. (b) Experimental trajectory verification for single stabilized trajectory
using a robust funnel. For the nominal funnel, approximately 50 percent of the trajectories
that start in the funnel stay in the funnel for all time, while 80 percent of the trajectories
stay in the robust funnel for all time.

figure shows that when additional funnels are added to the LQR-Tree to capture the high

initial pitch conditions associated with throwing the glider by hand, the perching perfor-

mance noticeably improves.
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Figure 7-3: Averaged x-z trajectories from open loop perching experiments. Each curve
represents an average of multiple trajectories with similar initial conditions; error bars are
included to show the spread of the trajectories. The colors, from cold to hot, represent the
variation in the initial speed of the aircraft. Only 31 percent of the trajectories, terminate in
the 6.5 cm goal region.
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Figure 7-4: Averaged x-z trajectories from LQR-Tree perching experiments. Each curve
represents an average of multiple trajectories with similar initial conditions; error bars are
included to show the spread of the trajectories. The colors, from cold to hot, represent
the variation in the initial speed of the aircraft. 94 percent of the trajectories, despite their
various initial speeds, terminate in the 6.5 cm goal region
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Figure 7-5: Plot shows perching performance of LQR-Tree controller versus the open-loop
controller and a single TVLQR Controller at 7 m/s. Each plane represents a set of trials
grouped by initial speed. The ellipses represent the variation in position error (x-axis) and
the variation in the initial speed (y-axis). The arrows represent the flight direction as well
as the number of flights in each bin. 94 percent of the trials using the LQR-Tree controller
landed in the 0.065 cm target range.
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(a) (b) (c)

Figure 7-6: These movie stills demonstrate three sequential handthrown perching trials.
Despite the noticeable initial pitch variation, the LQR-Tree is still able to guide the aircraft
to the perch.
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Figure 7-7: Handthrown perching results using LQR-Tree without (a) and with (b) high-
pitch funnels. The glider icons which depict the variation in initial pitch are shown on the
left and the final position of the aircraft with respect to the perch is shown on the right. The
plot points and error bars show the mean and variance in the final positions respectively.
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Chapter 8

Powerline Perching and Outdoor Flight

The previous chapters demonstrated that it was possible to achieve robust perching in-

doors using a Vicon motion capture studio. However, no effort was made to address the im-

pact of significant sensor noise or external disturbances on the control methods presented.

To do this, I tested the control approach outlined in this thesis using onboard sensors and

in an outdoor environment.

In recent years, there has been significant interest in perching UAVs on powerlines to

recharge and conduct perch and stare surveillance [17]. Not only is it possible to harvest

energy from the powerlines, but the magnetic field generated by the powerline provides a

unique opportunity to localize the aircraft during a perching maneuver. Using this poten-

tial real-world perching scenario as a sensing framework, I constructed an experimental

powerline and onboard sensing unit to estimate the position of the aircraft relative to the

powerline and explore the impact of wind gusts on the perching aircraft.

8.1 Experimental Set-up

Here, I describe the experimental powerline used in the outdoor perching experiments.

To construct this powerline, I used a 4 gauge welding wire looped three times to carry

an effective peak current near 100 amps. This current level was selected to represent the

current flowing through a 10 kV distribution line driving a 1 MW load. To generate the AC

current, I used a PWM motor amplifier fed by a 600 Watt DC power supply and driven by
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a conventional signal generator to adjust the frequency of the current. This feature allowed

for running the powerline at 80 Hz instead of 60 Hz to avoid the 60 Hz noise ubiquitous in

indoor environments. To create the dipole configuration, I built a wooden stand to support

a rectangular loop of wire 2.4 meters long by 0.3 meters wide. Furthermore, the wire

leads bringing current to and from the power electronics were arranged in a twisted pair

configuration so as to ensure that the only magnetic field being generated by the wire would

be due to the loop. Figure 8-1 shows a block diagram of the experimental powerline set up.

Figure 8-1: Powerline block diagram

8.2 Onboard System Architecture

After constructing the experimental powerline system, I developed specialized hard-

ware for real-time sensing, estimation, and control which could be carried onboard the

aircraft. The overall system architecture can be seen in Figure 8-2.

8.2.1 Hardware Design

The 1
r3 drop off in magnetic field strength and the sub-second duration of the perching

maneuver place strict design requirements on the hardware. For this reason, I developed

hardware capable of sensing low-level magnetic fields and providing reliable state estima-

tion at high update rates. The GOSHAWK magnetic sensing system, which can be seen in

Figures 8-3 and 8-4, emerged as a low-cost, light-weight solution. The GOSHAWK mag-

netic sensing system consists of a Honeywell magnetometer (HMC2003), a 24-bit high
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Figure 8-2: System Block Diagram

Figure 8-3: Top view of GOSHAWK sensing board.
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Figure 8-4: Exploded-view of GOSHAWK sensing board.

fidelity analog-to-digital converter (ADS1256), an ATMEGA128 microcontroller for low-

level signal processing, a Gumstix Overo motherboard for high level computation, and an

IMU for inertial measurement. Together, the sensing board and Gumstix Overo mother-

board weigh less than 35 grams and are able to measure magnetic field signals down to

100 µG with reasonable precision. Overall, the entire aircraft weighs around 115 grams.

8.3 Magnetic Field Modeling

Once the sensing hardware was developed, I turned my attention to generating position

estimates from the magnetic field measurements. To do this, it was necessary to build a

mathematical model of the magnetic field.

As mentioned in the previous section, a rectangular current loop was chosen as the

powerline configuration of interest. Here, I first describe my approach for modeling the

current loop’s static magnetic field, i.e., the field that would arise if the current were held

constant, as a function of position. Following this I then describe the slight modifications

made to the model to represent fields generated by alternating current sources.

8.3.1 Static Magnetic Field Model

In [71], a static model was derived for the rectangular current loop configuration using

Ampere’s Law by approximating the loop as two parallel wires (see Figure 8-5). How-

ever, this model proved to be inadequate, since it did not take into consideration the full

84



−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3  

x (m)

 

z
(m

)

−80

−60

−40

−20

0

20

Figure 8-5: Plot of the magnetic field magnitude generated by two infinite current carrying
wires.

rectangular loop configuration.

To model the rectangular current loop more accurately, I represented the loop as a

summation of infinitesimal current elements and used the Biot-Savart law to compute the

total magnetic field.

Following the conventions displayed in Figure 8-6, the Biot-Savart Law can be formu-

lated as,

B =
∫

µ0Idl× r
4πr3 , (8.1)

where µ0 is the magnetic permeability of free space, I is the current in the wire, D is the

distance between the long parallel wires, L is the distance between the end wires, dl is the

infinitesimal current element, and r is the distance from the infinitesimal current element

to the aircraft location. In the case of the first wire, as shown in Figure 8-6, these terms can

be rewritten as,

l =−yĵ (8.2)

dl =−dyĵ (8.3)

r = (x0− D
2 )î+(y0− y)ĵ+ z0k̂, (8.4)
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(a) (b)

Figure 8-6: (a) Top view of rectangular current loop. (b) Side view of rectangular current
loop. In both images, the location of the magnetic field sensor is represented by the green
circle.

where x0, y0, and z0 are the position of the aircraft, and î, ĵ, and k̂ represent the Cartesian

unit vectors. Taking the cross product between dl and r yields,

dl× r = (−z0 î+(x0− D
2 )k̂)dy. (8.5)

Substituting into the Biot-Savart Integral yields,

B =
∫ L

2

− L
2

µ0I(−z0î+(x0− D
2 )k̂)dy

4π(
√
(x0− D

2 )
2 +(y0− y)2 + z2

0)
3
, (8.6)

which is a vector containing the x and z components of the magnetic field, Bx,1 and Bx,2,

as a function of position from the first wire. In the same way, three other integrals can be

evaluated to obtain By,3,By,4,Bz,1,Bz,2,Bz,3 and Bz,4, which are the vector field contributions
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from the three remaining wires. The full static magnetic field equations then become

Bx = Bx,1 +Bx,2 (8.7)

By = By,3 +By,4 (8.8)

Bz = Bz,1 +Bz,2 +Bz,3 +Bz,4, (8.9)

where B =
[
Bx By Bz

]T
. To simplify the model, I only considered the two-dimensional

plane where y = 0. (Note that this model and its derivations could be easily re-generalized

for a three-dimensional system if needed.) The model then becomes B =
[
Bx Bz

]T
.

8.3.2 Time-varying Magnetic Field Model

Although the model derived in the previous section captures the three dimensional ef-

fects of the current loop, it still does not capture the time-varying (60 Hz) nature of the

field. To do this, I modeled the spatial magnetic field variations as being modulated by a

60 Hz sine wave. I defined the time-varying magnetic field Bm = Bcos(ωct +φ), where ωc

is the 60 Hz carrier frequency and φ is the phase of the current in the wire. (It is important

to note that even though I considered time-varying magnetic fields, I only explored ELF

fields, which can still be modeled using quasi-static approximations, i.e., ∇×E≈ 0 ).

8.4 Signal Processing

Even though this time-varying magnetic field model could be used directly, there are

some significant difficulties with including this modulated magnetic field in the estimator’s

measurement model. First of all, the 60 Hz carrier frequency is high enough to potentially

be a problem for real-time implementation. In fact, just to avoid aliasing, the estimator

would have to run at 120 Hz. Such a sparse sampling rate (2 samples per cycle) makes

tracking a nonlinear sinusoidal signal challenging, especially if an EKF were used. Ideally,

for a 60 Hz signal, sampling frequencies of 600 Hz or more would be desirable if one

wanted to preserve reasonable linearizations and good noise rejection. The second major

problem with this approach is that phase, φ , is unknown.
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To address the first challenge, I eliminated the carrier frequency altogether though sig-

nal processing. By separating the high frequency 60 Hz components from the aircraft

dynamics, this approach allowed for executing the estimator at a much more reasonable

update rate.

Complex Synchronous Demodulation

It is well known that any sinusoidal signal with a given phase can be decomposed into

both a cosine component and sine component [75]. Furthermore, the modulated message

signal, ym, is equivalent to,

ym(t) = m(t)cos(ωct +φ), (8.10)

where ωc is the carrier frequency in rad/s, t is time, m is the message signal, and φ is the

signal phase. When ym is multiplied by sinωct and cosωct, the result yields

ym,c(t) = m(t)
cos(2ωct +φ)+ cos(φ)

2
(8.11)

ym,s(t) = m(t)
sin(2ωct +φ)+ sin(φ)

2
. (8.12)

After these signals are low-pass filtered, the results are

ym,c(t) = m(t)
cos(φ)

2
(8.13)

ym,s(t) = m(t)
sin(φ)

2
. (8.14)

Notice that these two signal are 90 degrees out of phase with one another and together they

represent the real and complex components of the message signal.
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Demodulated Field Model

The new magnetic field model can now be constructed as follows:

Bx,c = Bx cos(φ) (8.15)

Bx,s = Bx sin(φ) (8.16)

Bz,c = Bz cos(φ) (8.17)

Bz,s = Bz sin(φ) (8.18)

φ = mt +b, (8.19)

where φ is the phase, m and b are unknown constants, and t is time. This could also be

written in complex form as

Bx,dm = Bx,c +Bx,si (8.20)

Bz,dm = Bz,c +Bz,si. (8.21)

In this case, I can define the new field model as Bdm =
[
Bx,c Bx,s Bz,c Bz,s

]T
.

Although this method allows for a magnetic field model with much lower frequency

content, it is still does not eliminate dependence on φ completely. Because of this, one

might be tempted to ignore phase completely and use only the magnitudes of Bx,dm and

Bz,dm as a magnetic field model. However, as is discussed in the next section, this approach

has its own shortcomings.

8.5 Measurement Ambiguity

As mentioned in the previous section, knowledge of the powerline’s phase does not exist

onboard the aircraft. This deficiency negatively impacts the performance of the modulated

and demodulated magnetic field models which depend explicitly on phase. As mentioned in

the previous section, it is tempting to ignore phase altogether, and use the field model Bdm =[
|Bx,dm| |Bz,dm|

]T
. However, when combined with the symmetry of the magnetic field,
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this model leads to eight positions where the aircraft will obtain identical measurements

(see Figure 8-7). If by some additional signal processing the relative sign of the x and

z magnetometer signals is known, the number of ambiguous measurements is reduced to

four. In contrast, when phase information is included, only two ambiguous measurements

exist, and they are on opposite sides of the powerline. To reconstruct this phase information

onboard the aircraft, reduce the measurement ambiguity, and provide the full system state

required by the controller, I employed state estimation.

I

II

III

IVV

V I

V II
V III

Figure 8-7: This figure graphically represents the phase-amplitude ambiguity which arises
due to the field’s inherent symmetries and its AC nature. Each octant represents a region of
potential ambiguity.

8.6 State Estimation

Typically a state estimator, or observer, combines a dynamic model (also known as a

process model) and a measurement model to reconstruct a system’s state. Because many

control methodologies rely on full-state feedback and perform best with minimal measure-

ment noise, using an estimator is essential for successful powerline perching. Moreover,

because the constant phase offset of the powerline is observable but can not be measured

onboard the aircraft, the state estimator can be used to reconstruct the phase offset and

resolve the measurement ambiguity.
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During the course of this investigation, several state estimation methods were explored,

including particle filters, Unscented Kalman Filters, and Extended Kalman Filters. All

three state estimation algorithms used some variation of the model of the magnetic field

as seen by the sensor as the measurement model. For the process model, both an aircraft

model based on flat-plate theory and a double integrator were used. In the end, it was

determined that the Extended Kalman Filter with an augmented state for phase tracking

provided the best performance given the required computational cost.

8.6.1 Extended Kalman Filter

The discrete-time Extended Kalman Filter (EKF) is a nonlinear form of the classical

discrete-time Kalman filter, which computes the observer gains by linearizing about the

current state estimate. The discrete-time EKF algorithm is as follows:

To start, the state at the next time step is computed using a nonlinear process model,

x̂k|k−1 = f(x̂k−1,uk), (8.22)

where x̂ is the system state, k is the time-sample, f represents a nonlinear function, and

uk is the system input. Then, the error covariance matrix as well as the Kalman gains are

determined in the following manner: First, the a priori error covariance matrix is computed

as,

Pk|k−1 = FkPkFT
k +Qk, (8.23)

where Qk is the process covariance matrix and Fk represents the process gradients. Next,

the observer gain matrix Kk is computed as,

Kk = Pk|k−1HT
k [HkPk|k−1HT

k +Rk]
−1, (8.24)

where Rk is the measurement covariance and Hk represents the measurement gradients.

Following this, the a posteriori error covariance matrix is computed as,

Pk = (I−KkHk)Pk|k−1. (8.25)
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Finally, the state estimate is updated by multiplying the Kalman gain matrix by the mea-

surement error as follows:

x̂k = x̂k|k−1 +Kk(yk−y(x̂k|k−1)). (8.26)

Here, y is the output of the measurement model and yk is the actual measurement at time-

step k.

8.6.2 Process Model

The estimator’s process model is primarily what enables the EKF to smooth the state

estimates. In most cases, it is a dynamical model which maps control inputs to state out-

puts. In this work, I used a double integrator process model of the form ẋ = f(x,u) with

an augmented state space to track the phase of the powerline’s current. In keeping with

the planarization of the magnetic field model, I also restricted the process model to two-

dimensions.

The double integrator model can be described as a model with the form ẋ = f(u), where

the state space is x =
[
x z θ ẋ ż

]T
and the inputs, u =

[
ẍ z̈ θ

]T
, are noisy ac-

celerometer and ptich measurements.

To track the powerline current’s phase, I augmented the double integrator model with

the unknown constant phase parameters m and b. The state then became x=
[
x z θ ẋ ż m b

]T
,

where ṁ = 0 and ḃ = 0.

8.6.3 Measurement Model

The measurement model of an estimator maps the system states to all the available

sensor outputs. This means that not only must the magnetic field model itself be considered,

but also how the individual sensors (such as a magnetometer) view those magnetic field

measurements must also be considered. I defined the static magnetic field in the frame of
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the sensor as

Br = Rθ B, (8.27)

where Rθ is the rotation matrix representing a change in pitch.

I then redefined Bm and Bdm, letting B = Br. In this work, I considered one measure-

ment model, namely

y =
[
Bx,c Bx,s Bz,c Bz,s θ θ̇

]T
. (8.28)

8.7 Experimental Results

Using the newly constructed experimental powerline, I tested my approach using the

hardware system described above in 8.2.1. With the estimator and the controller running

on board the glider at 340 Hz, I demonstrated successful position estimation using the

magnetic field-based state estimator. Furthermore, I demonstrated that these estimates were

good enough to enable successful closed-loop perching for the fixed-wing UAV.

8.7.1 Offboard Estimation

Before testing the performance of the estimator during a perching maneuver, I first

tested the estimator by taking a slow sweep in the space around the power line, using

the on-board sensing electronics. After collecting the sensor data, I ran the estimator with

phase tracking offline, using the double integrator with accelerometer inputs for the process

model and the complex magnetometer signals as the measurement model. Because the

purpose of this experiment was to test the impact of the magnetic field measurements on

estimator performance, I used pitch information from Vicon motion capture instead of from

the inertial measurement unit. Moreover, because I was in an indoor environment with

ample possibility for magnetic field distortion, I added a simple function Be(x,z) = ΘΦ,

where Φ = [xz,x,z,1]T , to the magnetic field model B and fit its parameters using motion

capture data to try to model these field distortions.
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The results of the experiments described above are shown in Figure 8-8. It can be

observed that reasonable position estimates were obtained up to about 4 meters from the

wire. As would be expected, because of the 1
r3 dependence of the field magnitude, the

signal to noise ratio is much better closer to the wire.
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Figure 8-8: Position estimation of the sensor unit in the magnetic field during a slow sweep.
The thin red line represents the position estimations while thick yellow line represents
Vicon motion capture measurements. The red circles signify the position of the powerline.

Next, the electronics were placed on board the aircraft (see Figure 8-9). I then launched

the aircraft from a crossbow at about 7.5 m/s and commanded it to execute an open loop

perching trajectory. The maneuver occurred quickly enough (< 1s) that planar approxima-

tions made earlier held. In this experiment I sought to examine the impact of high speed

flight and an extremely limited number of time samples (≈ 270) on position estimation.

Therefore, as before, I ran the estimator offline, using pitch information from Vicon mo-

tion capture. As seen in Figure 8-10, the state estimation demonstrated tracking with a

reasonable accuracy up to 4m from the wire.
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Figure 8-9: A photo of the instrumented glider.
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Figure 8-10: State estimation of aircraft position during a perching maneuver. The thin
red line represents the position estimations while the thick yellow line represents the Vicon
motion capture measurements.
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8.7.2 Onboard Estimation

I then implemented the estimator in C and used a separate observer to estimate the

pitch of the aircraft. To avoid the induced sensor noise associated with the high-g launches,

I reset the position estimator after launch, using the positions estimated before launch as

the initial conditions. I also employed a high-g accelerometer to obtain an initial velocity

estimate for the vehicle after launch. The performance of this completely onboard, motion

capture-free state estimator can be observed in Figure 8-12.

8.7.3 Closed-loop control

With the state estimator functioning onboard the aircraft, the final experiment was to

close the loop on the state estimates. Following the work carried out in the previous chap-

ters, I designed a new nominal perching trajectory for the heavier instrumented aircraft

using direct collocation and closed the loop using TVLQR.

I first tested this controller in simulation, using simulated magnetic field measurements

for feedback. When this was observed to yield satisfactory perching over a range of initial

velocities, I implemented the controller on the real system. The results of the closed-

loop, fixed-wing perching experiments using the magnetic field based state estimates for

feedback can be seen in Figures 8-11 and 8-12. The results showed conclusively that the

magnetic field based state estimates were sufficient to achieve fixed wing perching on a

level comparable to the Vicon motion capture system when the initial speed of the aircraft

was varied from 7.0-7.8 m/s.
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Figure 8-11: Comparison of the perching performance of open-loop control (left), feed-
back control using Vicon motion capture (middle), and feedback control using magnetic
field sensing (right). For each case, final distance from perch is used as a performance
metric, where 6.5 cm from the perch is considered to be a successful perch. As before, the
individual markers represent the mean of multiple trials with similar initial velocities and
the ellipses represent the spread in final positions and initial velocities.
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8.7.4 Outdoor Flight Tests

After demonstrating that it is possible to successfully perch indoors without the Vicon

motion capture system, the entire experimental powerline system was moved outdoors. I re-

peated the powerline perching experiments outdoors to test the performance of the perching

UAV in the presence of wind gusts. As can be seen in Figure 8-13, when wind speeds were

low, the perching experiments were successful. This figure shows three sequential perching

trials using the magnetic field sensing system. However, when the vehicle experienced a

significant wind disturbance, as shown in Figure 8-14, it failed quite catastrophically. In

these experiments, no compensation was made by the controller for the wind gusts. This

area of possible improvement will be explored further in the next two chapters.

98



−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x (m)

z
(m

)

 

 
Vicon
Estimate

(a)

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Radial Distance (m)

E
rr

or
 (

m
)

(b)

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

t (s)

x
(m

)

 

 
Vicon
Estimate

(c)

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

t (s)

z
(m

)

 

 
Vicon
Estimate

(d)

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
1

2

3

4

5

6

7

8

t (s)

ẋ
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ż
(m

/
s)

 

 
Vicon
Estimate

(f)

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t (s)

θ
(r
a
d
)

 

 
Vicon
Estimate

(g)

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−4

−3

−2

−1

0

1

2

3

4

5

t (s)

θ̇
(r
a
d
)

 

 
Vicon
Estimate

(h)
Figure 8-12: Plots comparing all major state estimates (green) with motion capture mea-
surements (blue). Each curve represents the average of 4-6 trajectories with similar initial
conditions. Error bars have been added to show estimate variation. The axis in the upper
right corner shows a decrease in position estimation error as the aircraft approaches the
perch.
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(a) (b) (c)

Figure 8-13: These movie stills demonstrate three sequential outdoor perching maneuvers,
using only onboard electronics. When there are not any significant winds, perching is
successful.
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(a) (b)

Figure 8-14: These movie stills demonstate the impact of winds gusts on outdoor perching.
The frames in (a) show a successful outdoor perch. The frames in (b) show a subsequent
flight where the aircraft is blown off course by wind.
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Chapter 9

Wind Gust Modeling

As the outdoor experiments in the previous section have demonstrated, there is a consid-

erable need to address the impact of external disturbances due to windgusts on the perching

maneuver. One means of addressing these disturbances, which is particularly relevant to

model-predictive control strategies, involves modeling the wind gusts themselves and then

developing control strategies based on those models.

9.1 Wind Turbulence

The aerodynamics community has long history of developing models for windgusts and

wind turbulence. While there are many ways to represent turbulent flows [16], the stochas-

tic approach to modeling turbulence has the longest history in the literature [63]. These sta-

tistical models of turbulence find their origins in the work of Reynolds [85], who concluded

from studying turbulence transitions in fluids that turbulence could not be modeled using

deterministic means. However, it is the work of Taylor, Von Karman, and Kolmogorov that

forms the foundation for the wind turbulence models used in the aerodynamics communi-

ties today.

Inspired by Reynolds findings, G.I. Taylor was the first researcher to model turbulence

by the application of statistical methods [96]. Taylor’s methods were also supported ex-

perimentally by wind tunnel turbulence measurements in [97, 30]. Von Karman then built

on Taylor’s work by using correlation tensors to model the statistical relationship between
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fluid velocities at different positions in a turbulent flow [24]. In [43], Kolmogorov also

employed a statistical approach to turbulence modeling, but did so by deriving an Energy

spectrum for turbulent flows based on the way energy is dissipated in turbulent fluid struc-

tures.

Currently, in the aerodynamics literature, two major wind turbulence models have

emerged, namely the Dryden Wind Gust Model [54] and the Von Karman Wind Gust Model

[27]. Following in the steps of [96], [24] and [43], these models make some key assump-

tions about the turbulent nature of wind gusts and seek to derive relevant power spectra to

represent the frequency characteristics of the flow.

9.1.1 Dryden Wind Turbulence Model

The Dryden Wind Turbulence model, also known as the Liepmann spectrum [37], was

first described in [54] to model the response of an aircraft flying in a turbulent flow field. To

construct this model, Liepmann built upon the experimental work of Dryden [30] and the

analytical work of Taylor and Von Karman [96, 24]. Like those who came before him, he

assumed that the turbulence was both homogeneous (statistics do not vary with position)

and isotropic (statistics do not vary with coordinate frame). He also assumed that the

changes in the wind field due to turbulence were much smaller than an aircraft’s nominal

forward speed and that, for this reason, the turbulent flow field could be approximated as

stationary (not varying with time) in the global frame.

Using these assumptions, Liepmann applied Von Karman’s correlation tensor to model

the spatial dependence of the turbulent flow. He then converted this correlation tensor into a

correlation function, transformed the correlation function into the time domain and applied

the Fourier transform to find the corresponding power spectra. Because Liepmann selected

a Gaussian-Markov process for his correlation function, the Dryden Power Spectrum was

found to be:

Φu(ω) = σ
2
u

2L
πU

1
1+(Lω

U )2
(9.1)
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and

Φv(ω) = σ
2
v

L
πU

1+3(Lω

U )2

(1+(Lω

U )2)2
, (9.2)

where U is the nominal wind speed, L is the length scale of the turbulence, σu is the rms of

the longitudinal turbulence velocities, σv is rms the vertical turbulence velocities, and ω is

the temporal frequency.

9.1.2 Von Karman Wind Turbulence Model

A clear derivation of the Von Karman Wind Turbulence Model can be found in [40]. It

differs from the Dryden Wind Turbulence model in its choice of correlation function. To

find this correlation function, Von Karman defined an energy function, E(Ω), where Ω is

the spatial frequency defined as Ω = ω

U . To construct this energy function, he relied on

observations of turbulence made by Kolmogorov and Loitsyansky. In [43], Kolmogorov

states that at high wave numbers, for a given energy cascade rate ε ,

E(Ω) = f (ε,Ω)≈Cε
x
Ω

y ≈Cε
2/3

Ω
−5/3 (9.3)

and in [57], Loitsyansky holds that for low wave numbers

E(Ω)∼Ω
4. (9.4)

Using these principles, von Karman interpolated to construct the energy spectrum

E(Ω) =C
( Ω

Ω0
)4

(1+ Ω2

Ω2
0
)

17
6
, (9.5)

where

C =
55
9

L
π

σ
2
u (9.6)

and

Ω0 =
1

1.339L
. (9.7)
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The power spectra for the Von Karman turbulence model can then be derived from this

energy spectrum and shown to be

Φu(ω) = σ
2
u

2L
πU

1

(1+(1.339Lω

U )2)
5
6

(9.8)

and

Φv(ω) = σ
2
v

L
πU

1+ 8
3(

1.339Lω

U )2

(1+(1.339Lω

U )2)
11
6

. (9.9)

9.2 ARMA Modeling

While these wind-gust models provide a reasonable means of modeling wind turbulence

for large aircraft traveling at high speeds in a spatially varying turbulence field, they most

likely do not provide the best representation of windgusts for a bird-scale perching UAV.

Not only do they assume a very high forward speed for the vehicle compared to the wind

measurements, but they also require second order models to capture the frequency charac-

teristics of the turbulent flow. Because the aircraft will be executing a perching maneuver

with a largely variable forward speed profile over the duration of the trajectory and because

the SOS controller synthesis methods are limited in the number of systems states they can

tolerate, I chose a different approach for modeling wind gusts. Instead of trying to fit the pa-

rameters in a second order model like the Dryden Wind Turbulence model, I decided to use

tools from stochastic signal processing to fit a first order auto-regressive moving-average

model (ARMA) to wind measurement data. This led to a reasonably straight forward and

low-order approach for modeling the frequency characteristics of the wind. Also, unlike the

Dryden and Von Karman wind turbulence models, my model assumes that, due to glider’s

short flight distance, the wind gusts are not varying with space, but with time.

9.2.1 Wind Turbulence Modeling Experiments

To validate my wind modeling approach, I acquired a 3D ultrasonic anemometer, RY-

81000 which is able to measure velocities in all three axes down to 0.01 m/s with an update

rate of 30 Hz. On a moderately windy day (i.e., weather forecast predicting < 10 mph
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Figure 9-1: (a) RY-81000 ultrasonic anemometer. (b) Raw data measured over two hours
on a moderately windy day.

winds), I placed the ultrasonic anemometer outside for about two hours and collected wind

data. I then sought to fit a first order model to the wind dynamics. Using the MATLAB

system identification toolbox, I was able to achieve models with an accuracy of approxi-

mately 75 percent. The result of these first order transfer function fits can be observed in

Figures 9-2.

9.3 State Augmentation

To integrate the ARMA models described in the previous section into the glider dynam-

ics, I augmented the original glider states with the newly defined wind states and added the

velocity states to the nominal air velocities acting on the glider’s control surfaces in flight.

This can be further described as follows:

If the airspeed at the wing and elevator is given as

ẋw =

ẋ+ lwθ̇sθ

ż− lwθ̇cθ

−
u

v

 , ẋe =

ẋ+ lθ̇sθ + le(θ̇ + φ̇)sθ+φ

ż− lθ̇cθ − le(θ̇ + φ̇)cθ+φ

−
u

v

 ,
using flat plate theory, the resulting aerodynamic forces on the vehicle can be approximated
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Figure 9-2: Plots compare experimental power spectra from real anemometer data with the
first order AR models. (a) Shows the fit for the longitundinal component of the wind while
(b) shows the fit for the vertical component of the wind.

by

αw =θ − tan−1(żw, ẋw), αe = θ +φ − tan−1(że, ẋe)

Fw =ρSw|ẋw|2 sinαwnw = fwnw,

Fe =ρSe|ẋe|2 sinαene = fene.

The glider model then becomes

mẍ =− fwsθ − fesθ+φ

mz̈ = fwcθ + fecθ+φ −mg

Iθ̈ =− fwlw− fe(lcφ + le),

where the wind model is given as

u̇ =axu+bxwx

v̇ =azv+bzwz.

Here, u and v are the wind velocities, wx and wz are input uncertainty (bounded or stochas-

tic), and ai and bi are low-pass filter coefficients determined from data.
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Chapter 10

Aircraft Control in Wind

In the previous chapter, I described an approach for modeling the impact of windgusts

on the fixed-wing glider. In this chapter, I will continue with this model to design a con-

troller capable of including wind gusts measurements in the feedback law. I will then apply

the verification methods described in Section 5.3 to create an LQR-Tree capable of com-

pensating for significant wind disturbances. However, before I provide the details of this

approach, I will first review some of the other aircraft control strategies that have existed

for mitigating or even exploiting wind gusts.

10.1 Related Work

In the aerospace controls community, a number of efforts have been made to control

UAVs in wind. One such approach has been static soaring, where the UAV harvests energy

from atmospheric phenomena usually characterized by long-duration vertical airflows. By

exploiting these phenomena, which include thermals, updrafts from large structures, and

long period atmospheric oscillations, UAVs are able to gain altitude while maintaining

fairly static, low acceleration flight conditions. Of all the static soaring techniques, exploit-

ing thermals has probably received the greatest amount attention, most likely due to the use

of thermals in cross country soaring. In [4], Allen et al. developed a UAV system capable

of autonomously detecting and soaring on thermals. By keeping track of the system energy,

their algorithm was able to estimate the center, radius, and drift of the thermal, and use that
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information to apply human pilot-inspired controllers to ride the thermal and achieve pro-

longed flight time. In [68], Metzger et al. proposed an optimal approach for cross-country

soaring where they sought to minimize the time to the goal by reducing time spent circling

in the thermal while maintaining zero net altitude loss. Similarly, in [47], Langelaan used

tree-based trajectory planning through a known wind field to minimize the energy needed

to reach the goal region, and then extended this work in [15] through the use of an A*

search.

Like static soaring, dynamic soaring has also been explored as an energy harvesting

technique by many researchers. Unlike static soaring, which tends to keep the UAV in a

fixed configuration, dynamic soaring takes advantage of a wind field gradient and the vehi-

cle’s dynamic capabilities to extract energy from the environment. One of the most famous

examples of this occurs in nature where the wandering albatross uses the shear layer above

the ocean to fly for long distances. Inspired by the albatross and other dynamic soaring

birds, researchers have tried to implement these techniques on autonomous aircraft. In [9],

Boslough flew sailplanes in a steep shear gradient and developed a computational toolkit

for simulating and analyzing these energy harvesting maneuvers. In [112], Zhou generated

optimal dynamic soaring trajectories for achieving different tasks such as traveling and loi-

tering, and in [52], Lawrance et al. used a piecewise trajectory which consists of four flight

phases to achieve dynamic soaring. In [108], Wharington moved away from optimal con-

trol methods and explored various heuristics for dynamic soaring, such as controlling pitch

to achieve constant velocity and banking the vehicle away from horizontal air flows.

In addition to the aforementioned soaring methods, some researchers have even be-

gun to consider harvesting energy from wind gusts. Unlike static soaring and dynamic

soaring, this method of energy extraction requires reasoning about stochastic atmospheric

conditions. In [78], Patel et al. developed a method for exploiting wind gusts by modeling a

glider as a point mass and using the lift coefficient as a control input. Restricting themselves

only to vertical wind gusts, the authors formulated the control law as linear gains applied

to the aircraft’s relative velocity and the wind gust velocity and then proceeded to search

for these gains by running a genetic algorithm over multiple simulations. In [49], Lange-

laan et al. incorporated aircraft dynamics into the problem formulation and developed an
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algorithm consisting of an outer-loop controller which maximized the instantaneous energy

gain per distance and an inner-loop LQR controller which stabilized the aircraft’s attitude.

And while this approach did include the glider’s dynamics, the authors constrained the ve-

hicle to a near-level flight regime to keep the outer-loop controller from sending the vehicle

in to a dive. In an effort to improve on this control law, Langelaan then explored another

approach in [46], where instead of constraining the aircraft to trim conditions, he developed

a controller with gains on the wind velocities which acted as a disturbance to a stabilizing

controller. In a similar fashion to [78], Langelaan then ran a genetic algorithm on Dryden

wind turbulence fields to find the optimal wind velocity gains.

To supplement the UAV energy harvesting tasks outlined above, a few efforts have been

made to map the wind field itself, since knowledge of the spatial, time and stochastic char-

acteristics of the wind field are crucial for successful energy extraction. In [48], Langelaan

et al. developed a means of estimating the wind field with only air flow sensors, GPS, and

an inertial measurement unit, and in [50], they demonstrated their approach experimentally

by fitting a second-order polynomial to their wind field measurements. In [51], a different

approach was used to achieve a similar goal. Here, Lawrance and Sukkarieh used Gaussian

process regression to generate a stochastic map of the wind field and then used that map to

find energy-gain paths via an expanding tree algorithm.

In considering the approaches to wind field and wind gust exploitation described above,

it is important to note that, to my knowledge, there has not been any work done to exploit

wind gusts for short, dynamic aerobatic maneuvers. Most of the previously cited work ex-

amine open-loop trajectory design in known wind fields or instantaneous energy harvesting

in the presence of turbulence. To date, there has been little work done to reason about

the vehicle’s nonlinear dynamics under stochastic atmospheric disturbances or to incorpo-

rate wind gust velocities into nonlinear feedback design. In fact, most nonlinear feedback

methods for aerial systems that have taken wind gusts in to consideration have been applied

only to rotorcraft, which are not well suited to energy extraction due to their method of lift

generation. Some of these rotorcraft-based approaches, such as in [3], have sought to de-

sign a controller without explicitly considering wind gusts and, instead, proceeded to verify

its robustness to wind experimentally. Other approaches, such as [62, 18], have combined
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nonlinear controllers, often derived from backstepping algorithms, with high gain input

observers. These input observers estimate the perturbations due to wind on the rotorcraft

as well as any unmodeled aerodynamics, and allow the controller to carry out adaptive dis-

turbance cancellation. In addition to these adaptive approaches, there has been some work

done, such as in [33], to make use of more classical H-infinity methods for the development

a rotorcraft system robust to wind disturbances.

In contrast to the control approaches applied to rotorcraft, the design of controllers for

fixed wing aircraft that take wind gusts into consideration have relied mostly on stochastic

analysis. This work began with Liepmann in [54] and [53], where the impact of turbulence

was addressed for a linearized aircraft model by modeling turbulence as white noise passed

through a low pass filter. Linear stochastic theory was then used to derive the variance of the

aircraft pitch from the power spectrum of the turbulence and the dynamics of the aircraft.

In [39], Holley et al. built upon this work and developed a stochastic wind model which

was then used to examine a closed-loop control system for landing maneuvers. Finally,

Mutuel et al. applied a LQR controller to a linearized aircraft model in [73]. The authors

compared controller design with and without the wind velocities added to the state space

and used simulation to demonstrate that, when the wind velocities were added to the state

space for a low bandwidth turbulence model, the system showed improved performance.

10.2 The Stochastic Regulator

As described in [12], the optimal control problem which seeks the minimization of a

quadratic cost function in the presence of variable initial conditions, i.e. LQR, is identical

to the solution of the optimal control problem which seeks to minimize a quadratic cost in

the presence of Gaussian input disturbances. This is particularly advantageous here, since

this means that one can expect the minimization of the system response when the wind

states of the augmented fixed-wing glider model are being driven by white input noise.

For this reason, to control the system in 9.3, I will continue to use TVLQR to apply local

feedback along the nominal perching trajectories.

To test this feedback design, in Figures 10-1 and 10-2, I simulated the augmented glider
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Figure 10-1: Performance of TVLQR with (green) and without (blue) wind state feedback
for initial U wind velocity perturbation. The error bars indicate the variation with final cost
due to random initial conditions and input uncertainty.

system over a range of initial wind conditions and allowed for random initial wind states

along with random inputs to the wind state models. I used the first-order systems identified

in Section 9.2.1 to generate the simulated wind states and I also allowed for random initial

state conditions, which are indicated by the multiple sample points at each wind speed.

The results in Figures 10-1 and 10-2 demonstrate that there is a significant performance

advantage to including the wind states in the feedback design.

10.3 Robust Verification with Wind Models

10.3.1 Robust Verification

In Chapter 6, I demonstrated that funnels could be constructed for the case where the

dynamics of the system can be described as having some bounded, unknown uncertainty. I

can also apply this to the case of uncertain wind dynamics. Instead of modeling the wind

dynamics as being a low-pass filter driven by some white noise input, I can model the

wind as being a low-pass filter driven by bounded input uncertainty. I can then enforce the

following constraints using SOS:
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Figure 10-2: Performance of TVLQR with (green) and without (blue) wind state feedback
for initial V wind velocity perturbation. The error bars indicate the variation with final cost
due to random initial conditions and input uncertainty.

V (t,x)< ρ(t) =⇒

V̇ (t,x,w) =
∂V (t,x)

∂x
(f(x,w)+g(x,w)u)+

∂V (t,x)
∂ t

< ρ̇(t)

∀w ∈ [w1,w2]

where w is

wx

wz

 and ρ(t) is the value of the level set of interest.

Here I show an example of a robust funnel for a system which applies feedback to

wind gust measurements, where the windgusts are modeled as a low-pass filter driven by

a bounded input noise. The low pass filter has a time constant of 10 s, a gain of 1, and a

bounded uncertain input of +/- 1.

As before, these funnels can be used to build an LQR-Tree over a space of nominal

wind speeds to build a feedback law capable of controlling the glider over a much larger

range of wind disturbances.
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Figure 10-3: (a) depicts a slice in the x-z and (b) a slice in the ẋ-ż dimension.

10.3.2 Stochastic Verification

In a manner similar to robust verification methods described above, it is also possible

to apply the stochastic verification methods described in Section 6.3. Instead of bounding

the uncertain inputs to the wind gust models, I can instead incorporate the statistics of that

white noise input directly in to the verification procedure. However, because the stochastic

funnels in Section 6.3 were overly conservative in the case of dynamic uncertainty, I do not

proceed with them any further here.

10.3.3 Adaptive Control Design and Verification

There is yet a third approach to achieve fixed-wing perching in wind gusts and that

is through adaptive control. As mentioned in Section 6.4.2, it is possible to use the SOS

verification approach to design adaptive controllers which can adapt to constant uncertain

parameters that appear linearly in the dynamics. If mean wind speeds change very slowly

compared to the length of the maneuver, instead of modeling the wind dynamics as white

noise passed through a low-pass filter, the wind can be modeled as a constant unknown

parameter which enters nonlinearly in to the dynamics. Although the methods described

in Section 6.4.2 only apply when the uncertain parameter enters linearly in the dynamics,

I can modify the approach to design adaptive controllers for the case where the parameter

enters non-linearly in the dynamics.
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Consider the system

ẋ = f (x,θ)+g(x)α(x, θ̂),

and the Lyapunov function

V =Va +
1
2

θ̃
T

Γθ̃+
1
2

θ
T

Ψθ,

where θ̃ = θ̂−θ. Taking the derivative, I then have

V̇ = xT Sa(f(x,θ)+g(x)α(x, θ̂))+ ˙̃
θ

T
Γθ̃.

If I choose α(x, θ̂) = KLQRx+ z(x)θ̂, I can then write

V̇ = xT Saf(x,θ)+xT Sag(x)(KLQRx+ z(x)θ̂)+ ˙̃
θ

T
Γθ̃

= xT Sa f (x,θ)+xT Sag(x)KLQRx+xT Sag(x)z(x)θ̂+ ˙̃
θ

T
Γθ̃.

Choosing ˙̂
θT =−xT Sag(x)z(x)Γ−1 and remembering that ˙̃

θT = ˙̂
θT , I have

V̇ =xT Saf(x,θ)+xT Sag(x)KLQRx+xT Sag(x)z(x)θ≤ 0.

An inspection of V̇ reveals that SOS verifcation will produce an adaptation law which

can be derived even when θ enters the dynamics nonlinearly. Unfortunately, as before,

while useful for generating an adaptive control law, the LQR-Tree approach suffers because

θ̂ and θ are part of the Lyapunov function, making evaluating the funnels at real-time

impossible. Because I expect the nominal wind speeds to vary significantly from one flight

to another, it would be impossible to know at run time which controller in the tree to choose,

since in the adaptive approach (i.e., no wind sensor), the nominal wind speed would not be

known apriori.
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Figure 10-4: Performance of TVLQR with (green) and without (blue) wind state feedback
for initial U wind velocity perturbation. The error bars indicate the variation with final cost
due to random initial conditions and input uncertainty. These simulations use a second-
order wind model.

10.4 Impact of Wind Model on Control

Although it is possible to achieve robust verification by bounding the magnitude of the

input disturbance to the wind gust model, this approach still does not address other sources

of model uncertainty, such as higher order wind dynamics.

10.4.1 Impact of Wind Model Order on Control

Many of the conventional wind gust models described in 9.3 are actually second-order

low-pass filters rather than simple first-order systems. To test the impact of model order on

the controller, I designed the TVLQR controller using a first-order model, but I simulated

the controller’s response using a second-order wind model with a unity gain and approx-

imately the same cut-off frequency. The results can be seen in Figures 10-4, 10-5, and

10-9. As is clearly illustrated, there is little difference between simulating the system with

a first-order and second-order wind model.
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Figure 10-5: Performance of TVLQR with (green) and without (blue) wind state feedback
for initial V wind velocity perturbation. The error bars indicate the variation with final cost
due to random initial conditions and input uncertainty. These simulations use a second-
order wind model.

10.4.2 Impact of Wind Model Cut-off Frequency

As was mentioned in the previous subsections, changing the order of the wind gust

model seems to have little effect on the performance of the TVLQR Controller; this is most

likely due to the role that cut-off frequency has on the controller performance. The TVLQR

approach has the ability to generate a controller for a system which is slowly converging.

That is, by the time the horizon time has been reached, not all of the states are required to

have converged to the nominal trajectory. Rather, it is only necessary that the cost of the

system be decreasing along the nominal trajectory. Therefore, TVLQR works quite well

for designing a controller to handle a constant offset in nominal wind speed. As mentioned

above, it also is well suited for designing a controller in the situation where there are small

stochastic perturbations in that constant wind speed, so long as these perturbations can be

measured. For this reason, the closer the cut-off frequency of the wind model is to zero, the

better the controller is at compensating for the wind speed variations. This was also noted

in [73] for the LTI case.

To demonstrate this, I simulated the TVLQR controller under a range of initial wind
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Figure 10-6: Performance of TVLQR with wind state feedback as a function of wind model
time constant. Note that as the time constant falls below the length of the maneuver ( 1s),
the controller begins to perform much more poorly.

speed offsets (from -0.3 to 0.3 m/s) as well as wind model time constants (from 1000 s

to 0.01 s) and plotted the final position of the glider. As can be seen in Figure 10-6, as

the frequency increases, the controller performance worsens even though the gain of the

low-pass filter and the magnitude of the input disturbances remain the same.

10.5 LQR-Tree Approach

Unfortunately, these single time-varying controllers are only able to control the aircraft

over a small set of wind speeds. As mentioned above, to improve the perching performance

of the aircraft over a larger range of wind conditions, an LQR-Tree could be used. In

Section 5.5, an LQR-Tree was used to improve perching performance under variable initial

conditions. By applying our first-order wind speed model and effectively treating the wind

gusts as a slowly varying wind speed offset, the same approach can be used to improve

perching performance in wind. Following the work described in Section 5.5, I generated an

LQR-Tree for the augmented glider system and attempted to improve coverage over initial

wind speed as well as the other state variables. Figure 10-8 compares the performance of
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Figure 10-7: Slice of LQR-Tree in x and z dimensions designed for varying horizontal
wind speeds. Notice that for larger head winds, the aircraft dips down lower to execute the
perching maneuver.

the LQR-Tree with that of a single nominal TVLQR stabilized trajectory which does not

account wind gusts. The results show a dramatic improvement in robustness to windgusts

compared to that of a single stabilized trajectory. I also applied the control strategy to

a higher (second) order wind model and demonstrated that the LQR-Tree controller still

performed adequately (see Figure 10-9).

10.6 Outdoor Wind Experiments

The powerline perching hardware presented in Chapter 8.7.4 provides a unique opportu-

nity to test the methods I have proposed for perching outdoors when wind is non-negligible.

In this section, I will describe an experimental approach for testing the performance of my

control designs in windy environments, and I will summarize some of the preliminary re-

sults of these experiments.

10.6.1 Outdoor Experimental Set-up

To test the controller on real hardware, I used the powerline experimental system de-

scribed in Chapter 8.7.4 and the three-dimensional ultrasonic anemometer described in

Chapter 9.3 to acquire the state estimates for the aircraft and the wind. I attempted to
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Figure 10-8: Performance of LQR-Tree (green) and single TVLQR trajectory (blue) with
wind state feedback for initial U wind velocity perturbation. The error bars indicate the
variation with final cost due to random initial conditions and input uncertainty. The per-
formance of TVLQR without wind state feedback (cyan) is provided as a reference. These
simulations all use a first-order wind model.
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Figure 10-9: Performance of LQR-Tree (green) and single TVLQR trajectory (blue) with
wind state feedback for initial U wind velocity perturbation. The error bars indicate the
variation with final cost due to random initial conditions and input uncertainty. The per-
formance of TVLQR without wind state feedback (cyan) is provided as a reference. These
simulations all use a second-order wind model.
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Figure 10-10: Outdoor experimental setup.

position the outdoor experimental set up in an area with low cross winds and place the

ultrasonic anemometer close to the perch but well away from the flightpath of the vehicle.

Sensor data was sent from the ultrasonic anemometer to the base station via ethernet and

then from the base station to the aircraft via Wi-Fi. These wind speed measurements were

then included as part of the estimated UAV state and therefore acted as an input to the

control law. The base station also monitored the wind speed in the vicinity of the perch,

sounding an alarm when the wind was within a reasonable range (< +/- 1 m/s in all direc-

tions). It was the goal of these experiments to demonstrate some improvement in perching

response when the wind gusts were incorporated in to the control design. A photo of this

outdoor experimental set-up can be seen in Figure 10-10.

10.6.2 Control Approach

To improve the perching performance of the UAV in wind gusts, I followed the work

carried out in the previous section and designed a small LQR-Tree which attempted to

more adequately cover the initial wind velocities encountered by the glider. In the end, the

LQR-Tree consisted of five stabilized trajectories, the nominal, two trajectories designed

for a head wind of 0.5 m/s and 1.0 m/s, and two trajectories designed for up and down

drafts of 0.5 m/s. At run time, the glider sensed the wind speed and selected the controller
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to maximize its perching performance. Some preliminary perching results using wind for

feedback can be seen in Figure 10-11. In this figure, the glider is perturbed by a head

wind, as can be seen in the vehicle’s sudden change in yaw. However, by using the wind

measurements, the controller is able to intelligently reason about this headwind and ensure

that the glider still lands on the perch.
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Figure 10-11: Outdoor perching results with wind feedback.
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Chapter 11

Conclusion

The work presented in this thesis demonstrates on real hardware the value of SOS veri-

fication techniques in generating a library of local nonlinear controllers which, when com-

bined, can produce extremely robust performance for highly underactuated systems. Not

only has this thesis addressed improving robustness to variable initial conditions, but it has

also presented methods for handling dynamic and parametric model uncertainty, as well

as methods for handling external environmental disturbances. However, there are several

issues with the approach presented in this thesis which need to be explored further.

Three-dimensional effects are one set of phenomena which have not been addressed in

this thesis, neither for the control nor the estimation problem. For the estimation problem,

an effort has been made in [70], to address them, but I will summarize the main points

of that discussion here. Interestingly enough, it is moving away from the experimental

set-up and into the field that solves the three-dimensional estimation problem. In a real

world scenario, all powerlines will possess significant sag due to the weight of the cable.

This sag produces magnetic field components in the lateral directions, and if the amount

of sag in the wire is known, this provides the required information to estimate the aircraft

in all three dimensions. The sag of the wire, while not known a priori, can be estimated

online by adding a second sensor on to the vehicle and incorporating the constant wire sag

parameter into the state of the Extend Kalman Filter. Both current and wire spacing can

also be estimated similarly, as is shown in [70].

The control approach extends quite naturally to three dimensions, though some care
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may be required to reduce the number of states for verification. Both the nonlinear opti-

mization method and the time-varying linear feedback can be applied directly to a three

dimensional model of the aircraft. For system identification, a three dimensional flat-plate

model can still be used for a baseline, while radial basis functions can be still be added to the

three-dimensional aerodynamic coefficients to improve model accuracy. With the increase

in state, however, SOS verification will become much more costly. If the same flat-plate

baseline model is used, the total number of states for the three-dimensional aircraft will be

15 - the very limit for what can be handled by most SOS optimization software. Even if

three states are removed, and direct control over control surface position is assumed, the

aircraft will still possess 12 states. It should be possible to generate funnels for such a

high dimensional system with the existing software tools. Nevertheless, there will be very

little room, if any, for adding variables to compensate for uncertainty or adaptation. For

this reason, for these three dimensional systems, it will be necessary to explore other SOS

techniques for verification. Recently, a few new approaches for verifying high dimensional

systems have emerged [60]. These approaches, known as DSOS and SDSOS, restrict the

set of polynomials to a specific subclass which can be searched over more efficiently using

Linear Programming or Second Order Cone Programming instead of a Semidefinite Pro-

gramming. In [60], the authors demonstrate their approach on a system with 30 states and

14 inputs! This incredible feat lends credibility to the claim that the methods presented in

this thesis will be able to scale effectively not only to three dimensions, but also to many

more complex, real-world robotic systems.

In fact, these new DSOS and SDSOS approaches open a wide range of possibilities for

additional studies with the perching glider system. Because of state size limitations, no

effort was made in this thesis to try to verify the entire powerline perching system, that is,

the system which comprises both the controller and the estimator. For the purposes of my

experiments, I assumed perfect state information when executing the LQR-Tree controller.

However, the state estimator for the powerline perching UAV will undoubtedly have its

own dynamics and noise that will impact size of the backwards reachable set. One could

imagine including the estimator dynamics and the sensor noise in to the SOS verification

step to get a more accurate representation of the true backwards reachable set. Similarly,
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the adaptive control design approach presented in this thesis suddenly becomes much more

tractable. In Section 6.4, I mention that two SOS variables are added for every unknown

parameter. This could easily yield unwieldy SOS programs for systems of reasonable size,

like the glider. With an unknown constant offset on each acceleration, suddenly, the number

of SOS variables jumps from 7 in the nominal case to 13 in the adaptive controller case.

With DSOS or SDSOS, however, such an increase in state size will not be as detrimental

A third area of potential investigation involves trying to reduce the conservatism of

the funnels that are generated using SOS. Because a quadratic form was chosen for the

time-varying Lyapunov function, this inevitably restricts the tightness of the backwards

reachable set. For instance, because the true backwards reachable set is not symmetric

about the nominal trajectory, only searching over the set of symmetric forms may stunt

funnel growth when it reaches the boundary of the set in one direction but not the other.

This is especially true for the robust verification case, where, as seen in Figure 6-1, the

backwards reachable set can take on all sorts of non-symmetric, non-convex shapes. One

could imagine that this restricted Lyapunov function parametrization could, in some cases,

severely limit the range of uncertainty that can be verified. One method to improve on this

would be to allow the Lyapunov function to be represented by a higher degree polynomial,

though this has the potential to drastically increase optimization run time. Another means

of addressing this issue would be to also optimize over the quadratic form’s center as well.

Because the methods presented here only check the boundary of the funnel without guar-

anteeing convergence to the nominal trajectory, this could be a feasible means of reducing

some of the conservatism due to symmetry.

Overall, however, the results presented in this thesis provide convincing evidence that

verification techniques can be useful for controller synthesis and improved system perfor-

mance. I am able to show that an incredibly underactuated system is able to perch robustly

from a wide range of initial conditions, even when faced with sensor noise and external

disturbances. The work also highlights the effectiveness of model predictive control strate-

gies in situations where exploiting system dynamics is essential. The author hopes that the

reader will be encouraged by the promising results presented in this thesis, so much so,

that the reader tries to apply some of the methods described here to whatever challenging,
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underactuated control problem he or she may be faced with. For too long, many in the

controls community have viewed controller verification with skepticism, since much of its

treatment has been theoretical and simulation based in nature. It is my hope that this thesis

provides clear and convincing evidence that controller verification and feedback motion

planning can be a useful and practical tool for control system design.
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