
Jacobian-based Control of Soft Robots for

Manipulation Using Implicit Surface Models

by

Geronimo Mirano

Submitted to the Department of Electrical Engineering and Computer

Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2017

c○ Massachusetts Institute of Technology 2017. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Department of Electrical Engineering and Computer Science

May 26, 2017

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Russ Tedrake

Professor

Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Christopher J. Terman

Chairman, Department Committee on Graduate Theses



2



Jacobian-based Control of Soft Robots for Manipulation

Using Implicit Surface Models

by

Geronimo Mirano

Submitted to the Department of Electrical Engineering and Computer Science
on May 26, 2017, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Soft robot hands offer numerous advantages over rigid ones for manipulation, includ-
ing robustness and safety. Yet, compared to rigid robots, soft robots are character-
ized by continuous mechanics, and finite-element approximations with many degrees
of freedom present a significant obstacle for modern control approaches. The central
question my thesis explores is whether we can capture the benefits of soft robot hands
with relatively simple dynamical models. Specifically, we demonstrate a very simple
model of a 2D soft manipulator that uses pulleys and cables to model deformable
surfaces. This model captures much of the qualitative behavior of soft membranes,
while also proving amenable to modern control techniques. We validate this model
physically using a hardware set-up. We then demonstrate a simple quasi-static Ja-
cobian controller which solves a second-order cone program to achieve the task of
in-hand object repositioning.
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Chapter 1

Introduction

The field of soft robotics offers the promise of biologically-inspired manipulators whose

performance could meet or exceed the manipulators found in nature [7]. Due to

the compliant interface which they present to the manipuland, soft manipulators

can achieve robust, high-friction grasps with a much higher chance of success than

rigid-body manipulators. There have been numerous successes involving manipulator

designs which exploit this robustness [2][8]. Indeed, the power of soft hands is such

that basic force-closure grasps can be achieved with very high success rate even when

driven by open-loop control.

However, there are some applications which require more than just force-closure

grasps. One of the most pure such tasks is that of in-hand manipulation, the task of

repositioning an already-grasped object, which might be necessary in order to place

an object in a configuration that is beyond the reach of the arm itself. Another class

of fine manipulation tasks is manipulating in the face of external constraints, such as

when turning a doorknob or screwing a nut onto a bolt, where the axis of rotation is a

constraint imposed by the environment. Although it might be possible to accomplish

such tasks by means of a force-closure grasp and the kinematic repositioning of the

manipulator, this will likely require large kinematic repositioning on the part of the

rest of the robot’s body. In contrast, when a human is screwing in a nut, rather than

rotate their entire arm, the person will use fine control of their fingers at the contact

interface in order to achieve the motion at a greatly reduced energy and greatly

15



improved speed. A related motivating example comes from the field of upper-limb

prosthetic devices. Presently in such systems, the pinch grasps executed by the fingers

have one controllable degree of freedom. As a result, the angle that the fingers make

relative to the wrist is critical, as it determines which local reorientation maneuvers

the expert operator can perform without having to grossly reposition their entire arm

[1]. In this case, the most effective solution would be to have a hand that is capable of

fine in-hand manipulation techniques to circumvent this problem at all wrist angles,

and though compliant and actuated wrists have been introduced, this is still a field

which could see much benefit from improved robotic manipulation control.

For the above reasons, people have been exploring ways to apply the tools of

control theory to the task of manipulation via soft actuators. This involves tackling

the two difficult problems of controlling through contact and controlling potentially-

continuous soft robots.

One of the most daunting properties of soft materials from a modeling perspec-

tive is their continuously-deformable nature. For example, imagine we are impressing

rigid, complicated objects into the surface of a silicone block. For every such ob-

ject we could produce, the rubber contains the state degrees of freedom necessary to

conform to that shape exactly. This seems to stand in stark contrast to rigid body

models, which require only a handful of state variables to fully-characterize their

state-space. In addressing this high dimensionality, there are several approaches that

have been taken. Finite-element approximations to the continuously-deformable sur-

faces have offered a means to approximate these surfaces. By modeling a material as

a grid of discrete interacting pieces and solving the constitutive equations throughout

the soft material, one can capture the intricacies of the deformations at a specific

granularity [4]. Using these complicated models in tandem with higher-rate lineariza-

tions of those models, Jacobian-control type methods have been demonstrated [3] [6].

Although finite-element methods are fast enough for Jacobian control, the high di-

mensionality of these models precludes the ability to perform higher-level verification

or optimization-based feedback, techniques which scale poorly in state dimensions.

A different approach, known as constant curvature continuum robotics, preserves the

16



continuously-deformable nature of the system but captures these continuous inter-

faces via a reduced set of state variables thus allowing for feasible computations while

preserving the flexibility offered by these soft robots [10]. In this case, the dimension-

ality remains low, but the dynamics become more complicated, posing a challenge.

More importantly, these systems are not applied to modeling the contact surface be-

tween the soft body and other bodies, a major deficiency when controlling for the

task of manipulation.

In contrast to both of the above approaches, we propose a model that captures

the continuous kinematics and dynamics of soft-membrane interaction by encoding it

as a simple kinematic constraint on rigid-body systems. Specifically, we demonstrate

a model of a 2D soft manipulator that uses cables and springs to model deformable

surfaces. This model is low-dimensional, like the constant curve continuum models,

but it captures the full continuous dynamics of soft contact. We demonstrate via sim-

ulation and experimental validation that it captures much of the qualitative behavior

of several soft membrane systems. By capturing the dynamics of soft interaction

within the framework of constrained rigid-body dynamics, we hope to present a path

toward applying sophisticated control-theoretical tools to soft systems.
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Chapter 2

2D Cable Model for Soft Dynamics

2.1 Modeling Thin Elastic Membranes

Consider a thin, one-dimensional membrane embedded in two dimensions. We can

model this as a continuum of elements, each constrained relative to its neighbors to

capture tension stiffness and bending stiffness (Figure 2-1).

Consider the sorts of soft, thin membranes encountered in the real world. This

might encompass fabrics or elastic materials like rubber bands or latex. In such

systems, tension stiffness dominates their dynamics, whereas bending stiffness is often

negligible. If we allow bending stiffness to go to zero, and also assume our membrane

to be mass-less and friction-less, then we will have a membrane which uses only

tensile forces to affect the world. The major contribution of this paper is to evaluate

a broadly-applicable special case of thin-membrane models implemented entirely in

terms of constrained rigid-body dynamics.

We implement a model of soft dynamical systems using cables, pulleys, and

springs. Cables and pulleys are implemented as kinematic constraints which con-

strain the evolution of the rigid body system, and these cables terminate in springs

to incorporate tension stiffness and damping.

It might seem strange to model a soft membrane as stateless. However, there are

many materials which behave in a way that is qualitatively analogous to this. For

example, a rubber band will move so quickly in response to changes in its wrapping

19
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Figure 2-1: Examples of coarse finite-element models of soft membranes. Neighboring
elements exert both tension and bending forces on one another. The lower figure
would represent a higher-energy configuration, both in tension and in bending.

points that it can be difficult even to see the motion. The settling time of the rubber

band is much shorter than that of the surrounding system, and so a quasi-static

description of its motion will be a very close fit.

First, we give a general overview of constrained rigid body dynamics. Then,

we show how our model of a friction-less, mass-less, implicit surface membrane is

implemented as a constrained rigid body system.

2.2 Bilateral Constraints in Rigid-Body Dynamics

First, we will give a brief overview of rigid body dynamics. The major reference

for this overview is the online textbook Underactuated Robotics by Professor Russ

Tedrake [9].

Consider a dynamical system. It will consist of a position vector �⃗� ∈ R𝑁 , which

gives the poses of objects. Moreover, physical systems include a velocity vector �⃗� ∈

R𝑁𝑣 as part of their state. For many systems, we will simply have �⃗� := ˙⃗𝑞, but

having the ability to choose a more general �⃗� can be very useful for things such as

20



3D rotations. We thus denote the full state of a physical system as �⃗� =

⎡⎣�⃗�
�⃗�

⎤⎦.
From Lagrangian dynamics, one can derive that any physical second-order dy-

namical system is subject to the “manipulator equations”:

H(�⃗�) ˙⃗𝑣 + �⃗�(�⃗�, �⃗�) = B�⃗�

One convenient way to represent a kinematic constraint is as a scalar function which is

0 when the constraint is satisfied and nonzero otherwise, and whose signed magnitude

is proportional to the error in the constraint:

𝜑(�⃗�) = 0

Constraints remain satisfied by exerting forces on the system. Setting the constraint

and its derivatives equal to zero, one can solve for this force:

𝜑(�⃗�) = �̇�(�⃗�) = 𝜑(�⃗�) = 0 (2.1)

J(�⃗�) :=
𝜕𝜑(�⃗�)

𝜕�⃗�

H(�⃗�) ˙⃗𝑣 + �⃗�(�⃗�, �⃗�) = B�⃗� + J(�⃗�)⊤𝜆 (2.2)

𝜆 = −(JH−1J⊤)†(JH−1(B�⃗�− �⃗�) + J̇�⃗�) (2.3)

The generalized force term J(�⃗�)⊤𝜆 captures the intuitive fact that a constraint should

only apply forces in the direction in which it is constraining a configuration. This

shows how bilateral position constraints can be implemented in rigid body systems.

2.3 Cable Equations of Motion

We will implement cables which wrap through a number of radius-zero pulleys whose

locations are determined by the configuration �⃗� of our system. We restrict our anal-

ysis to radius-zero point pulleys in order to keep the mathematics simple, but for a
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treatment involving circular pulleys see Katzschmann, et al. [5].

The cable constraint says that sum of the lengths of cable between the wrap

points in our system should remain constant. Consider a cable which wraps through

𝑀 radius-zero pulleys, each of which is at a location 𝑝𝑖(�⃗�). Let 𝐿 be the nominal

length of our cable. We can then define our constraint function 𝜑 as:

𝜑(�⃗�) = −𝐿 +
𝑀−1∑︁
𝑖=1

||𝑝𝑖+1(�⃗�) − 𝑝𝑖(�⃗�)||2 = 0

With this in hand, equation 2.3 can be solved to simulate the system dynamics.

As an implementation detail, it will be useful to compute the quantities J(�⃗�),

J𝑣(�⃗�) and J̇𝑣(�⃗�)�⃗�. The Jacobian J(�⃗�) of this constraint can be computed as follows:

J(�⃗�) =
𝜕𝜑(�⃗�)

𝜕�⃗�
=

𝑀−1∑︁
𝑖

𝑝𝑖+1(�⃗�) − 𝑝𝑖(�⃗�)

||𝑝𝑖+1(�⃗�) − 𝑝𝑖(�⃗�)||2
(Jkin,𝑖+1 − Jkin,𝑖)

where Jkin,𝑖 = 𝜕𝑝𝑖(𝑞)
𝜕𝑞

, the gradient of the point 𝑝𝑖 with respect to �⃗�. It is convenient

to express our Jacobian in terms of this forward-kinematics Jacobian, as this allows

us to offload this calculation to a forward-kinematics computation pipeline.

As we consider higher-order terms, we will also need to define a new term, the

“velocity Jacobian” J𝑣(�⃗�). This type of Jacobian will be necessary due to the fact

that �⃗� and �⃗� might potentially be expressed in different coordinate frames. Whereas

the typical Jacobian is capable of mapping ˙⃗𝑞 into some output
˙⃗
𝜑(�⃗�) by means of

multiplication and the chain rule, the velocity Jacobian will produce the same result

when applied to �⃗� (thus, J ˙⃗𝑞 = J𝑣�⃗�( ˙⃗𝑞), ∀ ˙⃗𝑞). Due to the nice properties of the chain

rule, our constraint’s velocity Jacobian J𝑣(�⃗�) can again be written in terms of the

forward kinematics Jacobian:

J𝑣(�⃗�) =
𝑀−1∑︁

𝑖

𝑝𝑖+1(�⃗�) − 𝑝𝑖(�⃗�)

||𝑝𝑖+1(�⃗�) − 𝑝𝑖(�⃗�)||2
(J𝑣,kin,𝑖+1 − J𝑣,kin,𝑖)

where J𝑣,kin,𝑖 is the velocity Jacobian of the point 𝑝𝑖(𝑞). Finally, a little calculus
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suffices to show that J̇𝑣(�⃗�)�⃗� can be computed as:

J̇𝑣(�⃗�)�⃗� =

(𝑝𝑖+1 − 𝑝𝑖)
⊤

|𝑝𝑖+1 − 𝑝𝑖|
(J̇𝑣,kin,𝑖+1�⃗� − J̇𝑣,kin,𝑖�⃗�)

+

�⃗�⊤
[︂

1

|𝑝𝑖+1 − 𝑝𝑖|
− (𝑝𝑖+1 − 𝑝𝑖)(𝑝𝑖+1 − 𝑝𝑖)

⊤

|𝑝𝑖+1 − 𝑝𝑖|3

]︂
�⃗�

with

�⃗� := J𝑣,kin,𝑖+1�⃗� − J𝑣,kin,𝑖�⃗�

Conveniently, we have computed this in terms of J̇𝑣,kin,𝑖�⃗�, so we only require that

J̇𝑣,kin,𝑖�⃗� be computed by our forward kinematics pipeline in order to compute J̇𝑣�⃗� for

our constraint.

2.4 Dynamic Collisions Between Pulleys and Cables

We now have an implementation of the cable constraint for any fixed set of points

{𝑝𝑖}. However, we will find that it will be convenient to allow for this set of points to

change over time. For example, consider the case of a hexagonal pulley (Figure 2-2).

In this case, the locations of the terminal wrap points determines which vertices of

the hexagon will be engaged.

2.4.1 General Proof of Non-Impulsive Pulley Collisions

Unlike colliding rigid-body systems, we will show that the velocity 𝑣 of this system will

not jump discontinuously as points are added to or removed from the cable constraint.

Theorem 1. For any configuration of points {𝑝𝑖(�⃗�)}, consider the addition of a point

𝑝(�⃗�) at time 𝑡 = 0 between points 𝑝𝑗(�⃗�), 𝑝𝑗+1(�⃗�) which satisfies

𝑝(�⃗�0) = 𝛼 · 𝑝𝑗(�⃗�0) + (1 − 𝛼) · 𝑝𝑗+1(�⃗�0) ; 0 < 𝛼 < 1.
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This addition will be non-impulsive provided that J(�⃗�0) has full row-rank and H(�⃗�0)

is positive definite.

Proof. We will demonstrate that, so long as J(�⃗�0) has full row-rank, then there is a

consistent non-impulsive solution to the manipulator equations and the system will

not undergo an impulse. In order to reason about this formally, let terms subscripted

with a minus sign (“−”) represent represent the values of these variables before the

point is added, and let the terms subscripted with a plus sign (“+”) represent the

values after the point is added. In this case, the terms to consider are:

˙⃗𝑞, ¨⃗𝑞, 𝜑, �̇�, 𝜑,J, J̇

It is straightforward to observe that the constraint value 𝜑(�⃗�0) is unchanged under

the addition of a wrap point to an already-extant segment. Furthermore, the Jacobian

J(�⃗�0) with respect to �⃗� must also be unchanged, as the point which was added lies

precisely on the line segment between its predecessor and successor, meaning that it

occupies a local minimum for the length function that the constraint evaluates and

thus satisfies 𝜕𝜑
𝜕𝑝

= 0. Formally, we can write

𝜑(�⃗�0) := 𝜑−(�⃗�0) = 𝜑+(�⃗�0)

J(�⃗�0) := J−(�⃗�0) = J+(�⃗�0).

Figure 2-2: This figure shows an example where we may wish to allow for dynamic
changing of the wrap point set. Comparing the three figures, one can see that the
pose �⃗� of the objects not only determines the continuous locations 𝑝𝑖 of the wrap
points, but also determines which wrap points are used and in what order.
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Before adding the point 𝑝 to our cable, the system satisfied the following dynamics

equations:

H¨⃗𝑞− + 𝑐(�⃗�, ˙⃗𝑞−) = J⊤𝜆− (2.4)

𝜑 = 0 (2.5)

�̇�− = J ˙⃗𝑞− = 0 (2.6)

𝜑− = J¨⃗𝑞− + J̇− ˙⃗𝑞− = 0 (2.7)

After adding the point 𝑝 to our cable, the system must satisfy the following dynamics

equations:

H¨⃗𝑞+ + 𝑐(�⃗�, ˙⃗𝑞+) = J⊤𝜆+ (2.8)

𝜑 = 0 (2.9)

�̇�+ = J ˙⃗𝑞+ = 0 (2.10)

𝜑+ = J¨⃗𝑞+ + J̇+
˙⃗𝑞+ = 0 (2.11)

Note that equation 2.9 is satisfied already. If there is not to be an impulse, then we

will have ˙⃗𝑞+ = ˙⃗𝑞−. In this case, equation 2.10 will automatically be satisfied, following

from equation 2.6. The remaining equations are:

H¨⃗𝑞+ + 𝑐(�⃗�, ˙⃗𝑞) = J⊤𝜆+ (2.12)

J¨⃗𝑞+ + J̇+
˙⃗𝑞 = 0 (2.13)

The scalar term J̇+
˙⃗𝑞 may differ from its predecessor J̇− ˙⃗𝑞 under the addition of the

new point, because 𝑑
𝑑𝑡

[︁
𝜕𝜑
𝜕𝑝

]︁
is not necessarily zero. We can solve this new system of

equations for 𝜆+
1:

𝜆+ = −(JH−1J⊤)†(J̇+
˙⃗𝑞 − JH−1𝑐(�⃗�, ˙⃗𝑞))

1This is very close to the derivation for generic bilateral constraints found in Underactuated

Robotics: Appendix A [9].
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As long as J has full row-rank and H is positive-definite, the above shall be solvable

and there shall be a consistent assignment to 𝜆+, 𝑞+ which preserves the dynamics

without impulse.

We have demonstrated that these constraints will be non-impulsive under the

addition of a point along a pre-existing length of the cable. In the next section, we

will see an example of this non-impulsivity.

2.4.2 Example: Cable, Point, and Ballast

Let us consider an example of Theorem 1. Consider the case of a point 𝑝(�⃗�) which

is about to make contact with a cable system. This system consists of a cable which

is taut between two fixed pulleys and which terminates in a ballast mass initially

at rest (Figure 2-3). In this system, two of the cable wrap points are affixed to the

environment, and the free-moving pieces are the point and the ballast mass:

�⃗� =

⎡⎢⎢⎢⎣
𝑝𝑥

𝑝𝑦

𝑏𝑥

⎤⎥⎥⎥⎦ , �⃗� =

⎡⎢⎢⎢⎣
�̇�𝑥

�̇�𝑦

�̇�𝑥

⎤⎥⎥⎥⎦

The initial velocity of this point can be written as �⃗�0 := 𝜕𝑝
𝜕𝑞

˙⃗𝑞. We shall leave 𝑣0

a free parameter to show that this example is non-impulsive under any velocity. In

this example, we will start with the object positioned at the center of the cable and

the ballast a distance 𝑙 to the right (we’ll define this pose to be �⃗�0 =
[︁
0 0 0

]︁⊤
). At

time 𝑡 = 0−, the point 𝑝 was moving with velocity ˙⃗𝑝 = �⃗�0 and the ballast was at rest

with �̇�𝑥 = 0 (as it had to be for the cable to have �̇�(�⃗�) = 0). We will show that these

same velocities are consistent at time 0+ after adding the object as part of the cable.
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Figure 2-3: The set-up for the non-impulsivity example. There are 2 fixed-in-place
wrap points represented by black cross-hairs. Connected to the right-hand cross-
hair is the ballast mass, which is free to slide frictionlessly along the table in the
𝑥-direction. Between the two anchors is a point mass which is being instantaneously
added to the cable system at the current timestep.

The manipulator equations for this system are very simple:

H ˙⃗𝑣 = J⊤𝜆

𝜑(�⃗�) = 0

�̇�(�⃗�) = J�⃗� = 0

𝜑(�⃗�) = J ˙⃗𝑣 + J̇�⃗� = 0

We can find J by considering the constraint equations

𝜑(�⃗�) = −3𝑙 +
√︁

𝑝2𝑦 + (𝑝𝑥 − 𝑙)2 +
√︁
𝑝2𝑦 + (𝑝𝑥 + 𝑙)2 + 𝑏𝑥

J =
𝜕𝜑

𝜕�⃗�
=

[︂ (︂
𝑝𝑥−𝑙√

𝑝2𝑦+(𝑝𝑥−𝑙)2
+ 𝑝𝑥+𝑙√

𝑝2𝑦+(𝑝𝑥+𝑙)2

)︂ (︂
𝑝𝑦√

𝑝2𝑦+(𝑝𝑥−𝑙)2
+ 𝑝𝑦√

𝑝2𝑦+(𝑝𝑥+𝑙)2

)︂
1

]︂
J̇ =

𝑑

𝑑𝑡

𝜕𝜑

𝜕�⃗�
=

[︂ (︂
𝑝2𝑦 �̇�𝑥

(𝑝2𝑦+(𝑝𝑥−𝑙)2)
3
2

+
𝑝2𝑦 �̇�𝑦

(𝑝2𝑦+(𝑝𝑥+𝑙)2)
3
2

)︂ (︂
(𝑝𝑥−𝑙)2�̇�𝑦

(𝑝2𝑦+(𝑝𝑥−𝑙)2)
3
2

+ (𝑝𝑥+𝑙)2�̇�𝑦

(𝑝2𝑦+(𝑝𝑥+𝑙)2)
3
2

)︂
0

]︂
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The manipulator equations are therefore:⎡⎢⎢⎢⎣
𝑚𝑝 0 0

0 𝑚𝑝 0

0 0 𝑚𝑏

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑝𝑥

𝑝𝑦

𝑏𝑥

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0

0

1

⎤⎥⎥⎥⎦𝜆 (2.14)

�̇�(�⃗�) =
[︁
0 0 1

]︁⎡⎢⎢⎢⎣
𝑣0,𝑥

𝑣0,𝑦

0

⎤⎥⎥⎥⎦ = 0 (2.15)

𝜑(�⃗�) =

⎡⎢⎢⎢⎣
0

0

1

⎤⎥⎥⎥⎦
⊤ ⎡⎢⎢⎢⎣

𝑝𝑥

𝑝𝑦

𝑏𝑥

⎤⎥⎥⎥⎦ +

⎡⎢⎢⎢⎣
0

2𝑣0,𝑦
𝑙

0

⎤⎥⎥⎥⎦
⊤ ⎡⎢⎢⎢⎣

𝑣0,𝑥

𝑣0,𝑦

0

⎤⎥⎥⎥⎦ = 0 (2.16)

And we can solve them straightforwardly to yield consistent accelerations:

�̈�𝑥 = −
2𝑣20,𝑦
𝑙

(𝑚𝑥𝑏𝑥 = 𝜆)

𝑝𝑥 = 𝑝𝑦 = 0

Thus, although we observe a jump discontinuity in �̈�𝑥 (from 0 to −2𝑣20,𝑦
𝑙
), the velocities

of the system did not undergo any impulsive changes, irrespective of the velocity �⃗�0

of the newly-contacting body.

2.4.3 Choosing Cable Wrap Points

Theorem 1 assures us that our dynamics are non-impulsive across pulley collisions,

the types of cable wrap point changes which we wish to support.

Next, we must address the issue of choosing wrap points given the state �⃗� of the

system. Specifically, we will seek to handle the case of regular 𝑛-gonal pulleys, which

are versatile enough to be useful and which have convex shapes which make it easier

to reason about their windings.

Given the winding direction for a pulley, we can ascertain which wrap points the
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θ

θ

Figure 2-4: Dynamic wrap point selection for 𝑛-gonal pulleys is determined by which
point makes the greatest angle to the line between the two end points.

cable will pass through. Consider the example of the hexagonal pulley. The critical

decision to make is which two vertices (including the terminal points themselves) are

directly connected to the terminal points 𝑝𝐴, 𝑝𝐵.

Because this is a wrap point selection rule of the form shown in Theorem 1 (ie.

one where pre-/post- removal points were already on some segment of the cable),

we do not need to use guards to implement these dynamics. Instead, for any given

configuration, we can evaluate the wrap points as a pure function of �⃗� (though, see

later discussion on exceptional configurations, where guards may prove useful).

The relevant parameter is the angle each vertex makes with respect to the line

from 𝑝𝐴 to 𝑝𝐵. Whichever vertex makes the greatest angle, lower-bounded at 0 (by

the choice of the opposite terminal point itself), that point will be the wrap point.

Once the proximal wrap points have been determined for each terminal point, the

cable can be straightforwardly wrapped along the perimeter of the figure to connect

the two points. Figure 2-4 illustrates this procedure graphically.

There are some exceptional circumstances where these wrapping rules do not

supply qualitatively correct behavior. One exceptional case is when the neighboring

pulley to an 𝑛-gonal pulley enters within the hull of that pulley. Another is when

the 𝑛-gonal pulley lies on the side of the wrapping half-plane of the system, but

not between points 𝑝𝐴 and 𝑝𝐵. One solution to the halfspace issue would be to

employ guards to transition the system upon breaking contact from a system which

dynamically wraps the pulley to one which does not include that pulley, switching

back to the wrapping case when that pulley again crosses that half-plane between 𝑝𝐴
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Figure 2-5: A soft membrane is modeled as a cable which is stretched between two
radius-zero pulleys and which terminates in a Hooke’s law spring. The manipuland
interacting with this membrane can be treated as another pulley, situated between
these pulleys.

and 𝑝𝐵. For our purposes, we will not define the behavior for these exceptional areas

of operation. Instead, we will ensure that they never arise in the systems we create.

2.5 Modeling Deformable Surfaces Using Cables and

Springs

The simplest soft robot model that we investigate is a soft membrane stretched taught

between two points, with a linear spring at the end (Figure 2-5). The system behaves

similarly to an elastic membrane, even though all of the constraints are rigid at every

point.

Furthermore, we allow for dynamically engaging and disengaging pulley wrap loca-

tions, allowing for objects to briefly break and make contact with our soft membrane.

This relatively simple model captures a lot of the qualitative behaviors of a soft mem-

brane, include restorative forces directed toward the center of operation, and a force

that grows with the degree of deformation within the surface. We look more closely

at the energetics of this system in section 3.2, where we validate our model experi-

mentally, and in section 4.2, where we will reason about its steady-state behavior to

perform an in-hand manipulation task.
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Chapter 3

Physical Experiment

It is important that we validate our model as it pertains to physically realizable 2D

soft grip systems. In order to do this, we measured the static force exerted at a number

of deflections in a physical realization of a cable membrane. We took advantage of

the hardware setup which had been constructed by the authors of Katzschmann, et

al. for their work on controlling a restitutive elastic interaction [5]. In this case, a

rubber-band is used as the cable, which allows it to provide a restorative spring force

while also deforming in the same manner as the cable. Our results show a tight match

between our model and the empirical measurements.

3.1 Experiment Setup and Data Collection

Our experimental setup consists of a rubber band wrapped taut around three pulleys

(Figure 3-1). Two of these pulleys are spaced widely apart from one another, con-

stituting our soft membrane. The rubber band is pre-loaded with a good amount of

tension. Measurements were taken with a roller wheel as the interface between the

measuring device and the rubber band surface, essentially eliminating the effects of

longitudinal friction or shear in the system. Two types of measurement were made

at each location. The first measurement employed a strain gauge sensor to determine

the vertical component of the force at every point. The second measurement was

made using a special device to ascertain the direction of the force at every point.
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(a) (b)

Figure 3-1: The experimental setup used to validate our model. A rubber band
stretched taught between two pulleys serves as our soft membrane. Force is measured
at a number of deformation points of the cable, stretching the cable down to each
such point. The force was characterized via two types of measurement: (a) the
vertical component of the force was measured using a linearly-constrained strain gauge
apparatus with a roller wheel at the interface to the band, and (b) the angle of the
force at every point was measured using a swiveling apparatus which was free to
rotate to a minimal energy orientation, also with a rolling interface. For this second
device, the measurement was the angle made by the device when the roller was made
to settle at 𝑝.

3.2 Model and Results

We fit of our spring tension model to this system. Our rubber band has a length

of 35cm when loose, compared to a length of 115cm in its stretched configuration.

Thus, for this system, the spring is “pre-loaded” with a certain amount of tension, even

before our object penetrates the membrane surface. We thus fit our model using two

parameters: the spring constant 𝑘, and the amount of pre-loading 𝐿0 in the spring (ie.

how far away the spring has been stretched from its minimum-energy configuration).

In our experimental setup, we measured the static force 𝐹 exerted by the rubber

band for all point-deformations 𝑝 of the membrane. We can find this force in our

model using the energy of the system:
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𝐸(𝑝) =
1

2
𝑘(∆𝐿)2 =

1

2
𝑘(|𝑝− 𝑝1| + |𝑝− 𝑝2| − |𝑝1 − 𝑝2| − 𝐿0)

2

𝐹 = −𝜕𝐸(𝑝)

𝜕𝑝

⊤

=
1

2
𝑘(|𝑝− 𝑝1| + |𝑝− 𝑝2| − |𝑝1 − 𝑝2| − 𝐿0)

(︂
𝑝− 𝑝1
|𝑝− 𝑝1|

+
𝑝− 𝑝2
|𝑝− 𝑝2|

)︂

With this equation in hand, we can compare our model against the real measured

forces (Figures 3-2 and 3-3) and we find that it is a very close fit.

3.3 Discussion

We have validated our model using a stretched rubber band as our membrane. How-

ever, a more accurate physical representation of our system would be a fixed-length

cable, stretched between two pulleys and terminating in a spring. By fitting our model

to the rubber band setup, we demonstrate a degree of generalization to a different

class of soft membrane.

Friction is still being ignored in this experiment, and that should be addressed.

One can envision a scenario in which the friction of the interaction between the rubber

band and the manipuland is reduced—for example, if the manipuland is wet, or if it

is made of a very smooth plastic, or if it is itself covered in rollers—but, in most cases,

the rubber band will exert extreme frictional forces against any gripped object. In

such cases, particularly when the object being grasped has lots of mass, a major effect

of this will be an asymmetry in the tension on either side of the manipuland. These

shear forces could be useful for tasks such as screwing in a nut, where the frictional

interface can exert strong torques on the manipuland. In the future, extending our

low-dimensional model in such a way as to capture longitudinal friction forces could

be powerful way to expand its usefulness.
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Figure 3-2: Plot of empirically measured forces (red) matched to the predicted model
force (black) at every displacement point 𝑝. Each arrow corresponds to a single mea-
surement. For intuition, the horizontally mirrored forces (predicted to be symmetric
under our model) are included as well (cyan).

Figure 3-3: Plot of empirically measured forces (x-axis) versus model forces (y-axis).
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Chapter 4

Statics-Based Jacobian Control of

Soft Hand

We consider the in-hand repositioning of a rigid manipuland grasped by soft-tipped

fingers (Figure 4-1).

4.1 Hand Model

The hand model has the following state vector:

�⃗�manip =

⎡⎣𝑏𝑥
𝑏𝑦

⎤⎦ , �⃗�robot =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜃𝑝1

𝜃𝑙1

𝜃𝑑1

𝜃𝑠1

𝜃𝑝2

𝜃𝑙2

𝜃𝑑2

𝜃𝑠2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, �⃗� =

⎡⎣�⃗�manip

�⃗�robot

⎤⎦

For each of the top and bottom phalanges, there are four parameters: 𝜃𝑝, the

proximal angle, which represents the angle of the left-most joint; 𝜃𝑙, the linear dis-

placement along the horizontal linear degree of freedom; 𝜃𝑑, the distal angle, which
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Figure 4-1: A soft-fingered hand, implemented using the cable model. The hand
contains two soft membrane models, which are both engaged in gripping a red, four-
sided manipuland.
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represents the angle of the right-most joint with respect to the linear actuator; and

𝜃𝑠, a parameter specifying the displacement of the linear spring. Each phalanx is

actuated along 𝜃𝑝,𝜃𝑙, and 𝜃𝑑. The cables each terminate in a linear spring, also rigidly

affixed to the paddle, allowing for the membrane to deform according to a Hooke’s

law spring energy equation 𝑈 = 1
2
𝑘𝜃2𝑠 . This spring will also have a damping term, to

model the inelastic behavior of the soft membrane which we are trying to model.

The cables in the model are strung between the two corners of each paddle, making

contact with the manipuland in between. This manipuland is modeled as an 𝑛-gonal

pulley, and so our dynamics allow for it to make and break contact with the paddles.

For the remainder of this section, we will consider the case of square pulley which

does not reorient in theta. The values 𝑏𝑥, 𝑏𝑦 specify the box-shaped manipuland’s 𝑥-

and 𝑦- position.

4.2 SOCP to find Static Equilibrium

We are hoping to find the steady-state static equilibrium for our cable dynamical

system. The manipulator equations for this constrained dynamical system are:

H(𝑞) ˙⃗𝑣 + �⃗�(�⃗�, �⃗�) = B�⃗� + J⊤�⃗�

�⃗�(𝑞) =
˙⃗
𝜑(𝑞) =

¨⃗
𝜑(𝑞) = 0

We can find the steady-state static equilibrium by setting �⃗� = ˙⃗𝑣 = 0. Doing this in

the above reduces our manipulator equations down to

�⃗�(�⃗�, 0) = B�⃗� + J⊤�⃗� (4.1)

�⃗�(𝑞) = 0. (4.2)

We have dim(𝑞) + dim(𝜑) equations in dim(𝑞) + dim(𝜑) unknowns. Thus, the above

equations should encompass all the static equilibria of our system.
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Figure 4-2: Reduction from finding box steady-state to finding point steady-state for
fixed fingertip locations. We model the finger paddles which are making contact with
the manipuland via taut cables (left). Mathematically, we need only consider the
cable wrap points (middle). Because we assume the box does not undergo rotations,
we can shift the finger points by constant offsets in order to reduce the manipuland
to a point (right).

For our purposes, consider the task of using our soft hand to manipulate a box

which is able to translate but which cannot rotate. Let us assume that the top paddle

makes contact with both corners of the top surface of this box and that the bottom

paddle makes contact with the bottom surface. Our goal is to find the steady-state

equilibrium location of the manipuland 𝑝 given that the fingers are fixed in place. In

this case, we can reduce the problem to that of grasping a solitary point (Figure 4-2).

If we fix the finger paddles in place, then the state variables of our system consist

only of the point-manipuland 𝑝 and the spring offsets 𝑥1, 𝑥2:

�⃗� =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑝𝑥

𝑝𝑦

𝑥1

𝑥2

⎤⎥⎥⎥⎥⎥⎥⎦ , �⃗� =

⎡⎢⎢⎢⎢⎢⎢⎣
�̇�𝑥

�̇�𝑦

�̇�1

�̇�2

⎤⎥⎥⎥⎥⎥⎥⎦
The manipulator equations for this system have the form:

H ˙⃗𝑣 + G�⃗� = J⊤�⃗�

�⃗�(�⃗�) =

⎡⎣𝜑1(�⃗�)

𝜑2(�⃗�)

⎤⎦ = 0
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Thus, the steady-state can be found as:

G�⃗� = J⊤�⃗�

�⃗�(�⃗�) = 0

The potential force matrix 𝐺 encodes the spring forces exerted on 𝑥1 and 𝑥2.

G =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0

0 0 0 0

0 0 𝑘1 0

0 0 0 𝑘2

⎤⎥⎥⎥⎥⎥⎥⎦
And the Jacobian can be derived in a straightforward manner:

�⃗�(�⃗�) =

⎡⎣−𝐿1 + ||𝑝− 𝑝1𝑎||2 + ||𝑝1𝑏 − 𝑝||2 + 𝑥1

−𝐿2 + ||𝑝− 𝑝2𝑎||2 + ||𝑝2𝑏 − 𝑝||2 + 𝑥2

⎤⎦
J =

𝜕�⃗�

𝜕�⃗�
=

⎡⎣( 𝑝−𝑝1𝑎
||𝑝−𝑝1𝑎||2 + 𝑝1𝑏−𝑝

||𝑝1𝑏−𝑝||2 )⊤ 1 0

( 𝑝−𝑝2𝑎
||𝑝−𝑝2𝑎||2 + 𝑝2𝑏−𝑝

||𝑝2𝑏−𝑝||2 )⊤ 0 1

⎤⎦
This gives us the following equations:

0 = 𝜆1(
𝑝− 𝑝1𝑎

||𝑝− 𝑝1𝑎||2
+

𝑝1𝑏 − 𝑝

||𝑝1𝑏 − 𝑝||2
) + 𝜆2(

𝑝− 𝑝2𝑎
||𝑝− 𝑝2𝑎||2

+
𝑝2𝑏 − 𝑝

||𝑝2𝑏 − 𝑝||2
)

𝑘1𝑥1 = 𝜆1

𝑘2𝑥2 = 𝜆2

And finally we arrive at:

0 = 𝑘1 (𝐿1 − ||𝑝− 𝑝1𝑎||2 − ||𝑝1𝑏 − 𝑝||2)
𝜕𝜑1

𝜕�⃗�

+ 𝑘2 (𝐿2 − ||𝑝− 𝑝2𝑎||2 − ||𝑝2𝑏 − 𝑝||2)
𝜕𝜑2

𝜕�⃗�
(4.3)

The problem of solving for 𝑝 given �⃗� can be posed as a second-order cone program
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Figure 4-3: A pictorial representation of our optimization problem. The fingertip
points 𝑝𝑖𝑗 are fixed in place. The decision variable 𝑝 is free to move around, and
the decision variables 𝑙𝑖𝑗 should correspond to the norm lengths of the different cable
segments. The amount that each cable is deflected corresponds to the amount of
energy stored in the each spring. Our SOCP seeks an energy minimum, where the
forces on the at-rest manipuland are zero.

40



with Lorentz cone constraints. Solving equation 4.3 is equivalent to minimizing the

energy equation:

min
𝑝

1

2
𝑘1 (||𝑝− 𝑝1𝑎||2 + ||𝑝1𝑏 − 𝑝||2 − 𝐿1)

2

+
1

2
𝑘2 (||𝑝− 𝑝2𝑎||2 + ||𝑝2𝑏 − 𝑝||2 − 𝐿2)

2

By introducing decision variables 𝑙𝑖𝑗 to represent the norms, we can solve the above

optimization as follows:

min
𝑝,𝑙𝑖𝑗

𝑘1(𝑙1𝑎 + 𝑙1𝑏 − 𝐿1)
2 + 𝑘2(𝑙2𝑎 + 𝑙2𝑏 − 𝐿2)

2

𝑙𝑖𝑗 ≥ ||𝑝− 𝑝𝑖𝑗||2 , ∀(𝑖, 𝑗) ∈ {1, 2} × {𝑎, 𝑏}

In this case, we rely on the fact that our objective is pushing down on the decision

variables 𝑙𝑖𝑗 in order to drive them to equality on their constraints. This relies on

the important fact that the terms (𝑙1𝑎 + 𝑙1𝑏 − 𝐿1) and (𝑙2𝑎 + 𝑙2𝑏 − 𝐿2) will always be

nonnegative, which we can see by applying the triangle inequality to the Lorentz cone

constraints lower-bounding the variables 𝑙𝑖𝑗. Thus, a solved version of this problem

should satisfy 𝑙𝑖𝑗 = ||𝑝 − 𝑝𝑖𝑗||2. Thus, our objective will represent the true energy

minimum (Figure 4-3).

The above does not provide a general solution to equations 4.1 and 4.2. In partic-

ular, the requirement that the objective always be pushing down on the norm decision

variables prevents adding in multiple moving points or other geometric transforms.

To solve these more general equations, local gradient-descent methods would likely

work well, as the search could be initiated at every time-step with the result from the

previous time-step.

As for which problems this second-order cone program could be made to solve

to global optimality, there are a few extensions which could be handled. As long as

there is still only one position decision variable 𝑝 that all cable segments connect to

(before terminating in springs), then this optimization should be able to handle any

number of additional cables. Furthermore, we discuss in section 3.2 that we might
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want to handle the case of springs with some pre-tensioning offsets 𝐿0,𝑖. As long as

these offsets increase the tension of the springs (not decrease), the above formulation

could handle this by simply adding these offsets into the 𝐿𝑖 terms.

4.3 In-Hand Manipulation Task: Positioning a 2D

Object

Figure 4-4: Results are shown for two different controllers that were made to move the
manipuland to specific locations (dots). The steady-state Jacobian controller achieves
a greater range of in-hand positionings (light region) than the range of motion of the
fingers themselves (dark region).

With the static equilibrium solver described in section 4.2, we can create a con-

troller that reasons about how our fingers influence the position of the manipuland.

Let �⃗� be the position of the manipuland in our state vector, and let �⃗�|𝑢 be those

elements of our state vector which are actuated. For a given positioning of the fin-

gertips 𝑝𝑖𝑗, our SOCP allows us to ascertain the predicted steady-state pose of the

manipuland. We can take the Jacobian 𝜕�⃗�
𝜕𝑝𝑖𝑗

of this pose to approximate the kinematic

relationship between the box and the fingertips. Furthermore, we can use forward-

kinematics to obtain the Jacobian of our fingertips with respect to the actuated state
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𝜕𝑝𝑖𝑗
𝜕𝑞|𝑢 . We have thus approximated the relevant Jacobian:

𝜕�⃗�

𝜕𝑞|𝑢
=

𝜕�⃗�

𝜕𝑝𝑖𝑗
· 𝜕𝑝𝑖𝑗
𝜕𝑞|𝑢

We can then use feedback control to bring the manipuland to its target pose as:

𝑞|𝑢,des = − 𝜕�⃗�

𝜕𝑞|𝑢

[︁
𝑘𝑝(⃗𝑏− �⃗�des) + 𝑘𝑑

˙⃗
𝑏
]︁

(4.4)

We implemented the cable constraint model and controller in the Drake software

library for robot simulation. Simulated results were obtained using a slower-than-life

simulation. We employed a two-stage controller: this included an inner-loop position

controller, which was keeping the hand in a specified pose, and an outer-loop PD

controller, which used the SOCP-derived Jacobian to change the desired hand pose

based on the error in the manipuland location (equation 4.4). In this case, we used the

parameters: 𝑘𝑠 = 150.0, 𝑏𝑠 = 550.0 (springs’ stiffness and damping), 𝑘𝑝,outer = 0.1,

𝑘𝑏,outer = 0.58, ∆ 𝑡 = 0.053, 𝑘𝑝,inner = 500.0, 𝑘𝑑,inner = − 2
√︀

𝑘𝑝,inner. The first

experiment involved ascertaining the set of reachable manipuland positions under the

Jacobian controller. As shown in Figure 4-4, the steady-state kinematic controller

was able to increase the in-hand manipulation range of the hand. It does this by

leveraging the cable mechanics, taking advantage of skew orientations of the fingers

to stably hold the manipuland at distances beyond the joint limits.

The second experiment concerned the dynamics of the system. Figure 4-5 shows

that the system is stable, and converges to the proper values. One issue is the

persistent offset that seems to appear for certain desired positions. Using a PID

controller rather than a PD controller might solve this problem.

Thus, for this relatively simple case, we have demonstrated the ability to apply

classical control techniques to a soft robotic system for grasping.
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(a) (b)

Figure 4-5: Some sample trajectories of the controller given a time-varying trajectory
�⃗�des. Desired location of the manipuland shown with dashed lines, actual system
response shown with solid lines. Figure (a) shows a constant desired location setting
of [0 0]⊤, whereas the desired location in Figure (b) changes linearly to [0.5 1.0]⊤. For
both of these runs, the hand was started in a non-grasping position, then was brought
swiftly by our controller into a pinching grasp, and then was smoothly controlled
thereafter. This startup activity accounts for the oscillatory settling period observed
at the beginning of each plot, before the extra dynamic energy is swiftly dissipated
by spring damping forces and the controller’s influence.
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Chapter 5

Discussion and Conclusion

We have presented a simple dynamical system which captures many of the qualitative

behaviors of real soft systems. The model does this while maintaining the simplicity

of constrained rigid body dynamics. Although the control techniques presented in this

paper were relatively simple, the next steps would be to move on to more sophisticated

validation techniques, such as trajectory optimization, model-predictive control, and

Lyapunov verification. These techniques require that the dimensionality of a system

remain relatively small, and thus our model is well-suited to them.

One limitation of the current form of the model is the lack of all friction at the

interface between the manipuland and the manipulator. Adding friction has the

potential to introduce a few more state variables, and leads to some of the intricacies

encountered in modeling rigid-body contact. However, whether a penetrative friction

model or a stateless friction model or third intermediate model were to be employed,

all such extensions should only add one or two new state variables to the space, and

so we would not expect to lose the power of this model for sophisticated analysis.
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