
Graphs of Convex Sets with Applications to
Optimal Control and Motion Planning

by

Tobia Marcucci
B.S., University of Pisa (2013)
S.M., University of Pisa (2015)

Submitted to the Department of Electrical Engineering and Computer
Science in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2024

c○ 2024 Tobia Marcucci. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable,
royalty-free license to exercise any and all rights under copyright, including to

reproduce, preserve, distribute and publicly display copies of the thesis, or release
the thesis under an open-access license.

Authored by: Tobia Marcucci
Department of Electrical Engineering and Computer Science
May 14, 2024

Certified by: Russ Tedrake
Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Certified by: Pablo A. Parrilo
Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by: Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

Graphs of Convex Sets with Applications to
Optimal Control and Motion Planning

by
Tobia Marcucci

Submitted to the Department of Electrical Engineering and Computer Science
on May 14, 2024, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This thesis introduces a new class of problems at the interface of combinatorial and
convex optimization. We consider graphs where each vertex is paired with a convex
program, and each edge couples two programs through additional convex costs and
constraints. We call such a graph a Graph of Convex Sets (GCS). Over a GCS we can
formulate any optimization problem that we can formulate over an ordinary weighted
graph, with scalar costs on the vertices and edges. In fact, for any fixed choice of
the variables in the convex programs, a GCS reduces to a weighted graph where we
can seek, e.g., a path, a matching, a tour, or a spanning tree of minimum cost. The
challenge in a GCS problem lies in solving the discrete and the continuous components
of the problem jointly.

By combining the modelling power of graphs and convex optimization, GCSs are a
flexible framework to formulate and solve many real-world problems. The graph and
the combinatorial goal (e.g., finding a path or a tour) model the high-level discrete
skeleton of a problem. The convex costs and constraints fill in the low-level continu-
ous details. The primary contribution of this thesis is an efficient and unified method
for solving any GCS problem. Starting from an integer-linear-programming formula-
tion of an optimization problem over a weighted graph, this method formulates the
corresponding GCS problem as an efficient Mixed-Integer Convex Program (MICP).
This MICP can then be solved to global optimality using common branch-and-bound
solvers, or approximately by rounding the solution of its convex relaxation. Impor-
tantly, both the formulation of the MICP and its solution are fully automatic, and a
user of our framework does not need any expertise in mixed-integer optimization.

We first describe the GCS framework and the formulation of our MICP in general
terms, without presupposing the specific combinatorial problem to be solved over
the GCS. We illustrate our techniques through multiple examples spanning logistics,
transportation, scheduling, navigation, and computational geometry. Then we focus
on the Shortest-Path Problem (SPP) in GCS. This problem is particularly interesting
since it generalizes a wide variety of multi-stage decision-making problems and, using
our techniques, it can be solved very effectively. We consider two main applications
of the SPP in GCS: optimal control of dynamical systems and collision-free motion

i

planning. In these two areas, our techniques either generalize or significantly improve
upon algorithms and optimization methods that have been developed for decades and
are widely used in academia and industry.

Lastly, the techniques introduced in this thesis are implemented in the software
packages Drake and gcspy. The former is a large and mature software for robotics.
It is open-source and widely used by the community. The second is a very simple and
lightweight Python package which is also open source. In this thesis, we will illustrate
the usage of gcspy through multiple basic examples.

Thesis Supervisor: Russ Tedrake
Title: Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Pablo A. Parrilo
Title: Professor of Electrical Engineering and Computer Science

ii

Acknowledgments

The PhD at MIT has been the most exciting intellectual experience of my life. There
are many people that supported and helped me during this long journey, and I would
like to thank them all.

I begin with my advisors, Russ Tedrake and Pablo Parrilo. Russ hosted me seven
years ago as a visiting student and gave me the extraordinary opportunity of joining
the Robot Locomotion Group (RLG). His way of doing research and thinking about
science has shaped me as a researcher and, more importantly, as a person. He has
been a brilliant advisor, capable of both directing me towards fundamental research
questions and helping me with the lowest-level technical issues. In a time where
academic research is every day more frenetic, Russ has taught me the importance
of slowing down, understanding things carefully, and never being satisfied with su-
perficial explanations. I could not have asked for a more valuable lesson to learn.
Working with Pablo has been a unique learning experience, and I am deeply thankful
to have had this opportunity. I have been fortunate to meet multiple people that
have incredible wisdom and knowledge of their field, but none quite matches Pablo.
Pablo has been crucial for me to identify a research topic where theory and practice
meet, and mutually amplify each other.

I am deeply thankful to Stephen Boyd for all the time he dedicated to me, and
for hosting me at Stanford University during the last years of the PhD. Collaborating
with him has been a true privilege, as well as a great pleasure. I like to believe
that through the numerous meetings and conversations, I have absorbed even a tiny
fraction of his sharpness and clarity of thought.

I would like to thank all the members of the RLG. Jack Umenberger has been the
best collaborator I could ever imagine having, and also one of my closest friends. I
wish that in the future there will be opportunities of working together again. I am
very thankful to Robin Deits, who has been a fantastic mentor for my first few years at
MIT. I would like to thank Twan Koolen for the many research insights and chats, as
well as for all the lunches, dinners, and weekends together. Some of the material in the
last part of this thesis is fruit of the work of Mark Petersen and David von Wrangel,
to whom I am very grateful. A special thanks goes also to all the other members
of the RLG that I have interacted and collaborated with: Pang, Terry, Abhishek,
Yunzhu, Hongkai, Greg, Maggie, Max, Kaiqing, Lucas, Pete, Weiqiao, Shen, Sadra,
Frank, Alex, Peter, Savva, Bernhard, Lujie, and Tommy. I would also like to thank
Alexandre Megretski for the many meetings during the first half of my PhD.

I would not have started working on the topics of this thesis if it was not for the
inspiration that I got from my professors at the University of Pisa. In particular,

iii

Antonio Bicchi and Marco Gabiccini. I would like to thank them for setting me on
this fantastic journey, and for their patience during my first years of research. From
the days at the University of Pisa, a special thanks goes also to Cosimo Della Santina,
Manolo Garabini, and Alessio Artoni.

I have been fortunate to have Manfred Morari and Sertac Karaman as members
of my thesis committee. I am deeply thankful to them for the support over the last
few years, and for the many insightful suggestions on the material presented in this
thesis.

I would like to thank my family, that, despite the physical distance, has always
been very close to me. Lastly, I am grateful for having met Eleni, who has been the
most wonderful companion I could have ever imagined for this journey.

iv

Contents

1 Introduction 1
1.1 Motivation and goals . 1
1.2 Graphs of convex sets . 3
1.3 Related works . 7

1.3.1 Discrete-continuous optimization and decision-making 7
1.3.2 Graph problems . 8
1.3.3 Robot motion planning . 11

1.4 Thesis structure . 13

I Background 14

2 Convex analysis and optimization 15
2.1 Sets . 15

2.1.1 Homogenization . 17
2.1.2 Dual and polar cones . 18

2.2 From sets to functions . 19
2.3 Convex optimization . 21

2.3.1 Conic optimization . 22
2.3.2 Conic duality . 23
2.3.3 Disciplined convex programming 23

2.4 Supporting proofs . 24
2.4.1 Duality of homogenization and polar 24
2.4.2 Homogenization of a function 25
2.4.3 Implied valid inequalities . 25

3 Mixed-integer optimization 27
3.1 Mixed-integer programs . 27

3.1.1 Mixed-Boolean programs . 28

v

3.1.2 Mixed-integer convex programs 29
3.1.3 Mixed-integer conic programs 29
3.1.4 Integer programs . 30

3.2 What makes a good MIP? . 30
3.3 Solution methods . 32

3.3.1 Rounding . 32
3.3.2 Branch and bound . 33

4 Graphs 37
4.1 Graphs . 37
4.2 Subgraphs . 38
4.3 Special classes of graphs . 39
4.4 Graph optimization problems . 40

4.4.1 Shortest path . 41
4.4.2 Travelling salesperson . 43
4.4.3 Minimum spanning tree . 43
4.4.4 Facility location . 44
4.4.5 Minimum perfect matching . 45

II Framework and methodology 47

5 Graphs of convex sets 49
5.1 What is a graph of convex sets? . 49
5.2 GCS problems . 50
5.3 Mixed-integer formulation . 51

5.3.1 Nonconvex formulation . 51
5.3.2 Convex formulation . 53

5.4 Discussion . 55

6 Examples of GCS problems 57
6.1 Shortest path . 57

6.1.1 Example: helicopter flight . 59
6.2 Travelling salesperson . 61

6.2.1 Example: optimal car pooling 62
6.3 Minimum spanning tree . 63

6.3.1 Example: power network design 64
6.4 Facility location . 65

6.4.1 Example: sphere cover for robot collision checking 65

vi

6.5 Minimum perfect matching . 66

6.6 Inspection problem . 67

7 Software implementation 71

7.1 Interface . 71

7.1.1 Solving new GCS problems 75

7.2 Behind the scenes . 76

7.2.1 Edge variables . 77

8 Analysis of the convex relaxation 79

8.1 Set-based relaxation of bilinear constraints 79

8.2 Tightness of the relaxation . 81

8.3 Explicit description of the convex hull 83

8.4 Related relaxation techniques . 84

8.5 Back to graphs of convex sets . 85

III Shortest-path problem and its applications 87

9 Shortest-path problem 89

9.1 Problem statement . 89

9.2 Complexity analysis . 90

9.2.1 Alternative proofs of NP-hardness 92

9.3 Mixed-integer convex formulation . 93

9.3.1 Nonnegative costs . 93

9.3.2 No costs on the vertices . 95

9.3.3 Acyclic graphs . 96

9.4 Dual problem . 96

9.4.1 Dual of the SPP . 97

9.4.2 Dual of the SPP in GCS . 97

9.5 Heuristic solution via rounding . 98

9.6 Numerical experiments . 100

9.6.1 Two-dimensional example . 100

9.6.2 Large-scale random instances 102

9.6.3 Evaluation of the rounding algorithm 104

9.6.4 Symmetric problems . 105

vii

10 Applications in optimal control 109
10.1 Minimum-time control of discrete-time linear systems 109

10.1.1 Comparison with existing formulations 112
10.1.2 Numerical example: double integrator 113

10.2 Regulation of discrete-time piecewise-affine systems 114
10.2.1 Problem statement . 116
10.2.2 Small but weak formulations 117
10.2.3 Strong but large formulations 121
10.2.4 Big-M formulation . 123
10.2.5 Numerical example: footstep planning 124
10.2.6 Numerical example: ball and paddle 128

11 Applications in motion planning 135
11.1 Problem statement . 135
11.2 Minimum-length trajectories . 137

11.2.1 The graph . 138
11.2.2 The convex constraint sets . 140
11.2.3 The convex cost functions . 140
11.2.4 Solution methods . 140

11.3 Bézier curves . 141
11.3.1 Definition . 141
11.3.2 Endpoints . 142
11.3.3 Control polytope . 142
11.3.4 Derivatives . 143
11.3.5 Squared ℒ2 norm . 143
11.3.6 Integral upper bound . 143

11.4 Smooth trajectories . 144
11.4.1 Joint optimization of trajectory shape and timing 146

11.5 Numerical experiments . 146
11.5.1 Motion planning in a maze . 147
11.5.2 Quadrotor flying through buildings 149
11.5.3 Comparison with sampling-based planners 151
11.5.4 Coordinated Planning of Two Robot Arms 155

12 Conclusions 157

viii

Chapter 1

Introduction

1.1 Motivation and goals

Making optimal decisions quickly is a central theme in engineering. Hugely scalable
methods for discrete decision making are widely used in everyday life. For example,
through a graph search, Google Maps can find the fastest route from San Francisco
to New York in a fraction of a second. Similarly, continuous (specifically, convex)
optimization is the backbone of some of the most advanced engineering systems in the
world, such as the FALCON 9 rocket by SpaceX [18]. However, the efficient blending
of discrete and continuous decision making remains an open challenge. Examples of
this challenge can be found in almost any engineering field, e.g., power electronics,
energy systems, chemical processes, finance, and logistics. Below are three examples
that come from world-leading companies in robotics:

∙ The robot Atlas by Boston Dynamics is the most agile humanoid in the world
and has literally revolutionized people’s perception of robotics. To navigate
through the parkour course shown in the left of Figure 1-1, Atlas must deter-
mine both the sequence of parkour obstacles to overcome and the motion of its
center of mass and limbs. The first involves a discrete optimization problem,
where the robot matches each footstep with a flat region on the ground. The
second is a continuous optimization problem that requires computing a physi-
cally feasible way to run through the selected footsteps. Importantly, these two
problems are tightly coupled and need to be solved jointly for the robot to move
efficiently. Currently, Atlas relies on an engineer that hand-codes the solution of
the discrete problem [24]. Therefore, the robot is not able to autonomously plan
its motion through a novel parkour environment, or even adapt its motion along
a pre-established path if, e.g., a ramp is missing. The development of planning

1

Figure 1-1: Three examples of discrete-continuous decision making in robotics. Left:
the humanoid robot Atlas by Boston Dynamics doing parkour. Center: the robot arm
Robin by Amazon Robotics sorting packages. Right: a Skydio drone flying through
a forest.

and control algorithms that can reason about the discrete and the continuous
problems simultaneously is a major bottleneck towards the full autonomy of
this robot.

∙ The robot arm Robin in the center of Figure 1-1 has sorted more than one
billion packages in the Amazon warehouses [2]. Its sorting problem involves
a complex mix of continuous trajectory optimization and discrete bin sorting
and packing. The amount of packages that this robot handles in a unit of time
is almost proportional to the income of the company. Therefore, there is a
huge value in deploying advanced optimization methods that improve even by
a small percentage the productivity of this robot. A one-percent increase of
Robin’s operating speed would result in ten million extra packages processed
every year.

∙ A drone flying through a forest has to plan its continuous position and orienta-
tion, and simultaneously answer discrete questions like “Do I avoid the tree by
going left or right?”. Skydio drones (right of Figure 1-1) are some of the most
advanced autonomous drones in the world. They are exceptionally proficient in
short-term reactive collision avoidance [172], but can lack long-term reasoning
when avoiding obstacles in intricate environments.

Why are we unable to deal with these discrete-continuous problems efficiently?
The first hurdle is the number of moving pieces that these problems have. Just
writing on a computer the mathematical problem of optimizing the motion of a hu-
manoid robot requires days of work for an expert engineer. The second hurdle is
the computational hardness (typically NP-hardness) of these problems: even when
the optimization problem is formulated in full detail, solving it can be extremely
challenging and time consuming.

2

The objective of this thesis is the development of a modeling and computational
framework that meets the following criteria:

1. A framework that captures the essence of our decision-making problems. Specif-
ically, the interplay between the high-level discrete skeleton and the low-level
continuous details that appear in problems like the ones shown in Figure 1-1.
The framework should do so at the modelling level, by allowing a modular as-
sembly of a decision-making problem. It should also do so at the mathematical
level, by providing simple abstractions that allow us to make crisp statements
about our problems and algorithms.

2. A framework that is amenable to efficient optimization. Optimization concepts
and tools such as tight convex relaxations, strong mixed-integer formulations,
and approximation algorithms give us the vocabulary and the means to deal
with and overcome the hardness of our problems. Our decision-making frame-
work must take full advantage of the most powerful techniques that come from
combinatorial and convex optimization.

3. A framework that is high-level for the user. The optimization techniques just
mentioned allow us to cope with hard problems efficiently, but it is unrealistic to
expect that the average user of our framework will be familiar with them. Our
framework must then shield the user from the complexity of the optimization
tools that are used behind the scenes to solve the decision-making problems.

1.2 Graphs of convex sets

In this thesis we propose a framework that we call Graph of Convex Sets (GCS);
see Figure 1-2 for an illustration. A GCS is a graph (either directed or undirected)
where every vertex is paired with a convex program. Each convex program is defined
by a set of variables, a set of convex constraints, and a convex cost function that we
seek to minimize. Every edge in a GCS is associated with additional convex costs
and constraints that couple the convex programs at the endpoints of the edge.

Any optimization problem that we can formulate over an ordinary weighted graph
is naturally generalized to GCSs. In fact, if we fix the value of the variables in each
convex program, a GCS reduces to an ordinary weighted graph where vertex and edge
costs are scalars, obtained by evaluating the cost functions in the GCS. Then, in this
weighted graph, we can search for, e.g., a path, a tour, or a spanning tree of minimum
cost. The challenge in a GCS problem is the coupling between the continuous and
the discrete components of the problem: the continuous variables of each convex

3

edges
vertices

convex
programs

coupling costs
and constraints

Figure 1-2: Left: ordinary graph with vertices and edges. Right: graph of convex
sets, where vertices are paired with convex programs and edges with convex costs and
constraints.

program need to be chosen so that the optimal value of the resulting discrete problem
is minimum. This leads to an optimization problem that is mixed, continuous and
discrete.

As examples, Figure 1-3 illustrates the Shortest-Path Problem (SPP), the
Traveling-Salesperson Problem (TSP), and the Minimum-Spanning-Tree Prob-
lem (MSTP) in GCS. Let us consider the SPP first. In its canonical formulation,
the SPP asks for a path of minimum cost that connects two prescribed vertices of a
weighted graph. The cost of a path is defined as the sum of the costs of the vertices
and edges along the path. In the SPP in GCS the vertices in the selected path decide
which convex programs are activated and deactivated. Similarly, the edges in the
path decide which coupling costs and constraints are enforced. The cost of the path
is then the optimal value of a larger convex program, that includes all the activated
convex programs, coupling costs, and coupling constraints. A naive algorithm for the
SPP in GCS would then solve a convex program for each path in our graph, and
choose the path that yields the minimum optimal value. Of course this algorithm
would be very inefficient, since the number of paths in a graph can grow very quickly
with the size of the graph. Our goal is to devise an efficient way of optimizing the
discrete path through the graph and the continuous variables in the activated convex
programs jointly. The TSP in GCS and the MSTP in GCS are formulated through
analogous extensions of the ordinary TSP and MSTP.

The main contribution of this thesis is an efficient and unified method for solving
any GCS problem. This method starts from the formulation of a graph optimization
problem (e.g., the SPP, the TSP, or the MSTP) as an Integer Linear Program

4

Figure 1-3: Illustrative examples of GCS problems. Left: shortest-path problem in
GCS. Center: travelling-salesperson problem in GCS. Right: minimum-spanning-tree
problem in GCS.

(ILP).1 These ILPs are classical and very well studied. They typically have one binary
variable per vertex and edge in the graph. The role of these variables is to take unit
value if the corresponding vertex or edge is part of the optimal solution (e.g., the op-
timal path, tour, or spanning tree), and to take value of zero otherwise. Our method
takes this ILP that models the discrete graph problem and automatically translates
it into an efficient Mixed-Integer Convex Program (MICP) that models the cor-
responding GCS problem.2 This translation is based on perspective transformations
(or, as we will call them in this thesis, homogenization transformations). This is
a popular tool in mixed-integer optimization [34, 177, 68, 87, 89] that allows us to
activate and deactivate the convex costs and constraints in the GCS using the binary
variables from the ILP.

Using a Branch-and-Bound (BB) algorithm, MICPs can always be solved to
global optimality or declared infeasible if a solution does not exist. However, in
general, the runtime of these algorithms can be very large. Our MICP is efficient in
two main directions:

∙ It computationally lightweight, i.e., it has a small number of variables and
constraints.

∙ It has tight convex relaxation, i.e., the convex program obtained by allowing
the discrete variables to take continuous values approximates tightly the initial
nonconvex problem.

1An ILP is an optimization problem with affine cost, affine constraints, and integer decision
variables.

2An MICP is an optimization problem with convex cost and convex constraints. One part of the
variables is real valued, and the other part is integer valued.

5

Because of these two features of our MICPs, BB algorithms converge quickly and
reliably. Alternatively, our MICPs can be solved even faster, but approximately, by
directly rounding the solution of their convex relaxation.

How does the GCS framework perform in terms of the criteria listed in the previous
section?

1. GCS captures the essence of our decision-making problems. It encapsulates
the interaction and the feedback between the discrete and the continuous com-
ponents of our problems. The graph models the high-level discrete decision
making, e.g., the parkour obstacle sequence, the bin sorting, and the collision
avoidance for the problems in Figure 1-1. The convex programs describe the
low-level continuous elements, such as the robot dynamics and energy consump-
tion. A GCS problem can be defined in a modular fashion, one convex program
at the time. GCS problems are also easy to work with at a mathematical level.
For example, their computational complexity can be easily established via sim-
ple reduction arguments.

2. GCS is amenable to efficient optimization. Our framework takes full advan-
tage of fundamental results from combinatorial and graph optimization, and
naturally translates them into our mixed-integer setting. The MICPs that our
method generates automatically are highly efficient. In multiple areas, they gen-
eralize or significantly improve upon the mixed-integer formulations that have
been proposed in the literature to solve narrow special cases of our problems.

3. GCS is high-level for the user. Formulating a GCS problem requires only basic
familiarity with graphs and convex optimization. Then, the reformulation into
an MICP and the interplay between the discrete and the continuous components
of the problem is handled completely automatically.

The GCS framework has numerous applications, spanning logistics, transporta-
tion, scheduling, navigation, computational geometry, and data analysis. In this thesis
we will briefly mention some of these, but we will mostly focus on optimal control
of dynamical systems and collision-free motion planning of robotic systems. In these
two areas, our optimization techniques outperform algorithms that have been devel-
oped for decades. We also highlight that the techniques introduced in this thesis are
implemented in the software packages Drake [183] and gcspy. The former is a large
and mature software for robotics that is open-source and widely used in academia
and industry. The second is a very simple and lightweight Python package, the use
of which will be illustrated in this thesis through basic numerical examples.

6

1.3 Related works

1.3.1 Discrete-continuous optimization and decision-making

We overview existing frameworks for mixed discrete-continuous optimization and de-
cision making, using the three bullet points at the end of Section 1.1 as bases for the
comparison.

Mixed-integer optimization

A Mixed-Integer Program (MIP) is an optimization problem that involves both
discrete (integer) and continuous (real) variables. MIPs have been deeply studied
for decades [140, 66], and the techniques developed to solve these problems will form
the computational backbone of this thesis. The expressive power of mixed-integer
optimization is very large; in fact, most of the problems that we are interested in
this thesis can, and will eventually be, formulated as MIPs. On the other hand,
as a modelling language, mixed-integer optimization is too low-level for most of the
problems that we are interested in. Formulating, e.g., the problems in Figure 1-1
directly as MIPs would be extremely tedious; from the definition of the problem
variables to the encoding of all the necessary constraints that couple the continuous
and discrete choices. In addition, formulating an MIP is very error prone: there
are typically many ways in which a given problem can be formulated as an MIP,
and the efficiency of the formulation is highly sensitive to small modeling choices.
Understanding these interactions requires experience and a deep knowledge of the
downstream algorithms that are used to solve the MIP. Although our framework
will eventually call an MIP solver, our goal is to provide the users with a higher-level
interface that shields them from any concern regarding the efficiency of the underlying
MIP, which is constructed automatically.

Satisfiablity

Boolean satisfiability problems have also been interfaced to continuous (convex) opti-
mization, for example in [171]. These frameworks can effectively solve problems that
involve complex logical implications between continuous variables and constraints.
However, similarly to mixed-integer optimization, these languages can be too low-
level for most users, and they require a significant modeling effort and experience.

7

Hybrid dynamical systems

Hybrid systems are dynamical systems that exhibit both discrete and continuous be-
haviors [26, 12, 122, 187, 81]. Many problems that involve a mix of discrete and
continuous decision making can be seen as optimal-control problems for hybrid sys-
tems. On the other hand, general hybrid-system models can sometimes be too detailed
and unstructured for efficient optimization, and their control methods predominantly
leverage analytical techniques over numerical ones [117, 165].

Special classes of discrete-time hybrid systems that are amenable to numeri-
cal (mixed-integer) optimization include: Mixed Logical-Dynamic (MLD) systems,
PieceWise-Affine (PWA) systems, and Switched-Affine (SA) systems. (See [12] and [23,
Chapter 16] for more complete lists.) MLD systems are constrained linear systems
whose states and control inputs have mixed real and integer values. They have great
modelling power, but, from a computational point of view, they have similar draw-
backs to mixed-integer optimization: they are a low-level description of the system
dynamics, and their computation times can be sensitive to small modelling choices.
PWA and SA systems are described in terms of families of affine dynamics that are
activated depending on the current state and control action. Although, under mild
assumptions, their representation power is the same as MLD [92], these are more
high-level. Mainly because they do not require the user to explicitly encode the dis-
crete relations between the continuous states and control inputs. This is taken care
of in the transcription as an MIP, which can be done automatically with efficient
methods [137, 129].

Computation times are the main limitation to a widespread application of mixed-
integer optimization for the control of the hybrid systems above [139, 174, 130]. In
Chapter 10 we will see that optimal-control problems for PWA and SA systems are
naturally formulated as SPPs in GCS. The techniques introduced in this thesis re-
cover the results in [137, 129] as special cases, and also lead to novel mixed-integer
formulations that, for certain problems, are orders of magnitude faster to solve.

1.3.2 Graph problems

The GCS framework shares multiple similarities with problems that have been studied
before in the fields of graph theory and combinatorial optimization. Here we briefly
describe these works, highlighting their similarities and differences from the GCS
framework.

8

Network-based convex optimization

Identical structures to the our GCSs have been proposed to model convex optimization
problems in the software packages SnapVX [88] and Plasmo.jl [97]. These works
deal with purely continuous optimization problems, where the sparsity pattern of
the objective function and constraints is modelled by a graph. This graph structure
facilitates the modelling of a problem and is leveraged by the underlying optimization
algorithm. Our work adds an extra layer of complexity, since we pose combinatorial
problems over these graphs. First we must select a discrete subgraph among a certain
family (e.g., paths, tours, or spanning trees), and then we have to optimize the
continuous variables paired with the vertices in this subgraph. In other words, our
problem simplifies to the one in [88, 97] when the only subgraph that we can select
is the whole graph.

Graph problems with neighborhoods

Graph problems where the vertices are allowed to move within corresponding sets are
often called problems with neighborhoods. The TSP, the MSTP, and the Facility-
Location Problem (FLP) are three of the combinatorial problems that have been
studied most extensively in their variants with neighborhoods [4, 193, 27]. Exact
algorithms for these problems generally rely on expensive mixed-integer nonconvex
optimization [76, 19], and are mostly limited to neighborhoods in two or three dimen-
sions. GCS problems are a large superclass of these problems with neighborhoods,
and the techniques we introduce in this thesis can easily scale to high dimensions and
graphs with hundreds or thousands of vertices and edges.

The SPP in GCS will be a major focus of this thesis, and its special case with
neighborhoods has not been studied as extensively as the problems above. The SPP
with neighborhoods has been analyzed in [53] under stringent assumptions that ensure
polynomial-time solvability: the sets are disjoint rectilinear polygons in the plane, and
the edge lengths penalize the ℒ1 distance between the vertices. The applications we
target with this thesis, however, do not satisfy any of these hypotheses. A well-studied
special case of the SPP with neighborhoods is the touring-polygon problem which,
in its unconstrained version, requires finding the shortest path between two points
that visits a set of polygons in a given order [54]. In case of convex polygons, this
problem is easily solved using convex optimization, whereas, for nonconvex polygons,
it is NP-hard [54, Theorem 6]. The SPP in GCS differs from this problem in that
the programs paired with the GCS vertices are convex, and the order in which we
visit them is not predefined. Similar in spirit are also some classical problems in

9

computational geometry: the safari [142], the zoo-keeper [191], and the watchman-
route [36] problems. (See also [114, Part IV] and the references therein.)

An important application of graph problems with neighborhoods is robot sensory
coverage [38, 73, 20, 29]. Exact formulations of these problems are also based on
mixed-integer nonconvex optimization, and are limited to relatively small coverage
tasks. Therefore, in practice, these problems are solved approximately [29]. The
techniques we propose in this thesis have the potential of significantly extending the
reach of exact methods also in this area.

Graph problems with clusters

Generalized Steiner problems [55], or generalized network-design problems [61, 156],
can be thought of as the discrete counterpart of the problems with neighborhoods.
The vertex set is partitioned into clusters and the problem constraints are expressed
in terms of these clusters, rather than the original vertices. For example, in the TSP
with clusters [141, 64] we seek a shortest tour that visits each cluster of vertices at
least or exactly once. Analogous generalizations have been studied for many other
problems (e.g., the MSTP [138, 56, 62], the vehicle routing problem [79], and graph
coloring [115, 48]). A clustered version of the SPP has been presented in [116]: each
vertex in the graph is assigned a nonnegative weight, and the total vertex weight
incurred by the shortest path within each cluster must not exceed a given value. In
the same paper, a pseudo-polynomial algorithm based on Dijkstra’s algorithm [52] is
proposed for the solution of this problem.

The problems that we analyze in this thesis can be approximated as graph prob-
lems with clusters in a natural way. In low-dimensional spaces, this approximation
can be computationally efficient and sufficiently accurate for many practical appli-
cations. However, this strategy is infeasible in high dimensions, where covering a
volume of space with a cluster requires an exponential number of points.

Euclidean shortest paths

Another problem that is close in spirit to the SPP in GCS is the Euclidean SPP [114].
In this problem we seek a continuous path that connects two points and does not
collide with a collection of polygonal obstacles. In two dimensions, the shortest path
is a polygonal line whose corners are vertices of the obstacles. By constructing a
visibility graph, the problem is then reduced to a discrete graph search and solvable
in polynomial time [121, 113]. In three dimensions or more this strategy breaks; in
fact, the problem becomes NP-hard [32, Theorem 2.3.2]. An approximation algorithm

10

for the three-dimensional case has been proposed [145]. Practical algorithms for the
multidimensional case based on a grid-discretization of the space have been considered
in [185, 107]. More recently, exact-geometry algorithms for problems of this nature
have been discussed in [49], and a moment-based technique for computing Euclidean
shortest paths in case of semialgebraic obstacles has been proposed in [59].

A main difference between the Euclidean SPP and the SPP in GCS is that in
the first problem we seek a continuous path, while in the second we optimize a finite
set of points. However, we will see in Chapter 11 that, given a decomposition of
the obstacle-free space into convex sets, the Euclidean SPP can be reduced to the
SPP in GCS exactly. It is important also to highlight that our techniques are not
limited to Euclidean distances but only assume convexity of the problem cost func-
tions. As an example, this allows us to define the distance between two points as the
energy consumed by a dynamical system to move between them (see the examples in
Chapter 10).

1.3.3 Robot motion planning

Collision-free robot motion planning will be one of the main applications considered
in this thesis. The efficient design of trajectories that avoid obstacles is a crucial
challenge in robot autonomy. From quadrotors to robot arms, from autonomous cars
to legged robots, almost every modern robotic system relies on a collision-avoidance
planner to move in its environment. We briefly discuss the techniques currently used
to solve these problems, and how the proposed framework improves on them.

Numerical optimization offers mature tools for motion planning in high-dimensional
spaces under kinematic and dynamic constraints (see, e.g., [17, 5, 180, 157, 168, 147,
195] among the many works in this area). However, by transcribing the planning prob-
lem as a nonconvex optimization, and by relying on local solvers, these techniques
can often fail in finding a feasible trajectory if there are obstacles in the environment.
Strategies to overcome local optima in trajectory optimization exist, and include
sampling trajectories from probability distributions [198, 100, 106], constructing tra-
jectory libraries offline [176, 182, 14, 123, 126], and breaking down the problem into a
sequence of subproblems of increasing difficulty [125, 35, 28]. Although these strate-
gies can be effective for many problems, roboticists typically prefer sampling-based
planners when facing cluttered environments [105, 112]. Sampling-based algorithms
are probabilistically complete, meaning that, if a feasible obstacle-free trajectory ex-
ists, they will eventually find one, regardless of the number of obstacles. However,
even using asymptotically optimal sampling-based planners [102, 103, 74, 98], the
trajectories that we design can be considerably suboptimal in high dimensions, where

11

dense sampling is infeasible. In addition, even though many of these algorithms
support kinodynamic constraints [101, 190, 82], continuous differential constraints
are difficult to impose on discrete samples, making these kinodynamic variants less
successful in practice.

The promise of the planners based on mixed-integer optimization [166, 161, 136,
47] is to take the best of the two worlds above: the completeness of sampling-based
algorithms, and the ease with which trajectory optimization handles the robot kine-
matics and dynamics, with the added bonus of global optimality. However, the spread
of these techniques has been severely limited by their runtimes, which even for small
problems can be on the order of minutes.

Convex optimization [25] is commonly viewed as a tool unsuitable for designing
trajectories around obstacles. On the one hand, this belief is well grounded given
the computational hardness of exact collision-free motion planning [160, 31]. On
the other hand, these negative results do not exclude the possibility of approximate
motion planners based on convex optimization that perform very well on the problems
we typically encounter in practice. The motion-planning method proposed in this
thesis is natively a mixed-integer algorithm. However, our MIPs are dramatically
more efficient than the ones proposed before: the convex relaxation of our programs
is very tight, and a cheap rounding of their solution is typically sufficient to design
globally-optimal trajectories. This reduces the MIP to a cheap convex program, and
automatically provides optimality bounds for the planned trajectories.

Task and motion planning

The problem of blending high-level discrete logic and low-level continuous motion
planning has been deeply studied by the artificial-intelligence community, under the
name of Task And Motion Planning (TAMP). The techniques developed in this
area are highly scalable, and have been used to successfully solve a variety of robotics
problems [75]. Although optimization methods are widely used within TAMP algo-
rithms [184], the TAMP formalism does not yield a simple mathematical abstraction
of our problems. In addition, existing solution methods for TAMP do not consider
the discrete-continuous problem as a whole, but are complex software stacks of high-
level logic planners and low-level motion planners [67]. The techniques presented in
this thesis can potentially lead to simpler and more effective optimization methods
for solving TAMP problems.

12

1.4 Thesis structure

This thesis is composed of three parts. In the first part, we review the necessary back-
ground in convex optimization (Chapter 2), mixed-integer optimization (Chapter 3),
and graphs (Chapter 4). In the second part, we describe the GCS framework and
the formulation of our MICP (Chapter 5). Chapter 6 illustrates multiple real-world
applications spanning logistics, transportation, scheduling, navigation, and computa-
tional geometry. Chapter 7 describes gcspy, an open-source Python implementation
of the methods introduced in this thesis. In Chapter 8, we analyze in more abstract
terms the technique used to formulate our MICP, and we connect our approach to ex-
isting relaxation techniques for nonconvex optimization. The third part of this thesis
is focused on the SPP in GCS (Chapter 9), and its applications to optimal control
of dynamical systems (Chapter 10) and collision-free motion planning (Chapter 11).
We will see that in optimal control our techniques generalize existing approaches to
formulate control problems as MIPs, and also provide novel formulations that, for
some problems, can be orders of magnitude faster to solve. In motion planning our
methods outperform algorithms that have been developed for decades and are widely
used in academia and industry.

13

Part I

Background

14

Chapter 2

Convex analysis and optimization

In this chapter we collect some basic concepts from convex analysis and convex opti-
mization. We will only cover the material that is necessary for the upcoming chapters.
Most of the results on convex analysis that we report can also be found in [162]. Other
precious resources on this topic are [94, 15]. For the background on convex optimiza-
tion we point the reader to [25, 13].

2.1 Sets

A set 𝒦 ⊆ R𝑛 is said to be a cone if for all 𝑥 ∈ 𝒦 and 𝑦 > 0 we have

𝑦𝑥 ∈ 𝒦.

In other words, we say that 𝒦 is a cone if 𝑦𝒦 := {𝑦𝑥 : 𝑥 ∈ 𝒦} ⊆ 𝒦 for all 𝑦 > 0.
Note that if 𝑦 > 0 and 𝒦 is a cone, then 1/𝑦 > 0 and (1/𝑦)𝒦 ⊆ 𝒦. We can then
multiply both sides of the last inclusion by 𝑦 to obtain 𝒦 ⊆ 𝑦𝒦. We conclude that a
cone 𝒦 verifies the equality

𝑦𝒦 = 𝒦

for all 𝑦 > 0.
A set 𝒞 ⊆ R𝑛 is convex if the line segment connecting any two points in 𝒞 is also

contained in 𝒞. In formulas, 𝒞 is convex if for all 𝑥0,𝑥1 ∈ 𝒞 and 𝑦 ∈ [0, 1] we have

(1 − 𝑦)𝑥0 + 𝑦𝑥1 ∈ 𝒞.

Using the set notation, the set 𝒞 is convex if it satisfies

(1 − 𝑦)𝒞 + 𝑦𝒞 = 𝒞

15

for all 𝑦 ∈ [0, 1], where the plus sign denotes the Minkowski addition of two sets.
Note that the intersection of a (potentially infinite and even uncountable) collection
of convex sets is convex. Also any affine transformation of a convex set (e.g., the
projection onto a lower dimensional space) is convex.

The following examples of convex cones will be particularly important for us:

∙ The origin O𝑛 := {0 ∈ R𝑛}.

∙ The nonnegative orthant R𝑛
≥0 := {𝑥 ∈ R𝑛 : 𝑥 ≥ 0}.

∙ The second-order cone (or Lorentz cone) L𝑛 := {(𝑥, 𝑦) ∈ R𝑛 : ‖𝑥‖2 ≤ 𝑦}.

∙ The semidefinite cone S𝑛 := {𝑋 ∈ R𝑛×𝑛 : 𝑋 = 𝑋⊤,𝑎⊤𝑋𝑎 ≥ 0 for all 𝑎 ∈
R𝑛} is a convex cone in the space of 𝑛-by-𝑛 matrices. It is also isomorphic to a
convex cone in R𝑛(𝑛+1)/2, where the isomorphism stacks in a vector the entries
in the upper (or lower) triangle of the symmetric matrix 𝑋 ∈ S𝑛.

The convex hull of a set 𝒮 ⊆ R𝑛, denoted as conv(𝒮), is the smallest convex
set that contains 𝒮. Equivalently, it is the intersection of all the convex sets that
contain 𝒮. We call a point

∑︀𝑚
𝑖=1 𝑦𝑖𝑥𝑖 with 𝑦1, . . . , 𝑦𝑚 ≥ 0 and

∑︀𝑚
𝑖=1 𝑦𝑖 = 1 a convex

combination of the points 𝑥1, . . . ,𝑥𝑚 ∈ R𝑛. The convex hull of a set 𝒮 can be
verified to be the set of points that can be expressed as convex combinations of
points in 𝒮. A point 𝑥 of a convex set 𝒞 is said to be an extreme point if it cannot
be expressed as the convex combination of points 𝑥0, . . . ,𝑥𝑚 ∈ 𝒞 different from 𝑥.
We denote with ext(𝒞) the set of extreme points of a convex set 𝒞. It is easily verified
that a compact convex set is equal to the convex hull of its extreme points.

A polyhedron is a convex set of the form 𝒫 := {𝑥 ∈ R𝑛 : 𝐴𝑥 + 𝑏 ≥ 0} for
some matrix 𝐴 ∈ R𝑚×𝑛 and vector 𝑏 ∈ R𝑚. Geometrically, the polyhedron 𝒫 is the
intersection of 𝑚 closed halfspaces. A polyhedron has a finite number of extreme
points. A bounded polyhedron is called a polytope.

In practice, most of the sets that we encounter in convex optimization are described
in conic form:

𝒞 := {𝑥 ∈ R𝑛 : 𝐴𝑥 + 𝑏 ∈ 𝒦} (2.1)

for some matrix 𝐴 ∈ R𝑚×𝑛, vector 𝑏 ∈ R𝑚, and closed convex cone 𝒦 ⊆ R𝑚. When
the cone 𝒦 is the origin O𝑚, we obtain an affine space. When 𝒦 is the nonnegative
orthant R𝑚

≥0, we have a polyhedron. Convex quadratic sets can be represented in
conic form by letting 𝒦 be the Cartesian product of second-order cones L𝑚1 , . . . ,L𝑚𝑘

such that 𝑚1 + . . .+𝑚𝑘 = 𝑚. A spectrahedron is a set of the form (2.1) where 𝒦 is
(isomorphic to) a semidefinite cone.

16

2.1.1 Homogenization

Every set 𝒮 in 𝑛 dimensions is naturally paired with a cone in 𝑛 + 1 dimensions
through an operation called homogenization:1

𝒮 := {(𝑥, 𝑦) ∈ R𝑛+1 : 𝑦 > 0, 𝑥 ∈ 𝑦𝒮}.

It is easy to show that the set 𝒮 is a cone and is convex if and only if the original set
𝒮 is convex. Note also that 𝑥 ∈ 𝒮 if and only if (𝑥, 1) ∈ 𝒮.

The homogenization 𝒮 does not contain the origin, and the cone 𝒮 is not closed
unless 𝒮 is empty. When doing numerical computations, we will always work with
the closure cl(𝒮) of the homogenization. Also, most of the times we will deal with
compact sets, for which the closure of 𝒮 is simply obtained by including the origin:

cl(𝒮) = {(𝑥, 𝑦) ∈ R𝑛+1 : 𝑦 ≥ 0, 𝑥 ∈ 𝑦𝒮} = 𝒮 ∪ {0}. (2.2)

Among its many uses, the operation of homogenization allows us to parameterize
in a convex fashion the convex hull of the union of a collection of convex sets. The
following result was first introduced for polyhedral sets in [9], and extended to convex
sets in [34].

Lemma 2.1. Let 𝒞1, . . . , 𝒞𝑚 be compact convex sets. We have

conv

(︃
𝑚⋃︁
𝑖=1

𝒞𝑖
)︃

=

{︃
𝑥 : (𝑥, 1) =

𝑚∑︁
𝑖=1

(𝑥𝑖, 𝑦𝑖), (𝑥𝑖, 𝑦𝑖) ∈ cl(𝒞𝑖) for 𝑖 = 1, . . . ,𝑚

}︃
. (2.3)

Proof. Let us call 𝒞 the set on the right-hand side. This set is convex, since it is the
orthogonal projection of a convex set in the space of the variables 𝑥, 𝑥𝑖, and 𝑦𝑖. The
set 𝒞 contains each set 𝒞𝑖, which is recovered by fixing 𝑦𝑖 = 1 in the definition of
𝒞. Therefore 𝒞 contains the convex hull of the union of the sets 𝒞𝑖. For the reverse
inclusion, we note that any point 𝑥 ∈ 𝒞 can be expressed as 𝑥 =

∑︀
𝑖∈ℐ 𝑦𝑖𝑥

′
𝑖, where ℐ

is the set of 𝑖 such that 𝑦𝑖 > 0 and 𝑥′
𝑖 := 𝑥𝑖/𝑦𝑖. Since 𝑥𝑖 ∈ 𝑦𝑖𝒞𝑖 we have that 𝑥′

𝑖 ∈ 𝒞𝑖.
Therefore 𝑥 is a convex combination of points in the sets 𝒞𝑖, and 𝒞 is contained in
the convex hull of the union of these sets.

The homogenization of a convex set 𝒞 described in conic form is computed very
easily. In fact, for 𝑦 > 0, we observe that

𝑦𝒞 = {𝑦𝑥 : 𝐴𝑥 + 𝑏 ∈ 𝒦} = {𝑦𝑥 : 𝐴(𝑦𝑥) + 𝑏𝑦 ∈ 𝑦𝒦} = {𝑥′ : 𝐴𝑥′ + 𝑏𝑦 ∈ 𝒦},
1The term homogenization is used, e.g., in [197, Definition 1.13]. Sometimes this is also called

perspective [94, Section IV.2.2] or conic hull [13, Section 3.3].

17

and this gives us

𝒞 = {(𝑥, 𝑦) : 𝑦 > 0, 𝐴𝑥 + 𝑏𝑦 ∈ 𝒦}. (2.4)

In addition, it is also easily verified that

cl(𝒞) = {(𝑥, 𝑦) : 𝑦 ≥ 0, 𝐴𝑥 + 𝑏𝑦 ∈ 𝒦}. (2.5)

The expressions (2.4) and (2.5) have great practical relevance. Roughly speaking,
they tell us that if we can efficiently do computations with a set 𝒞 described in conic
form, then the same is true for (the closure of) its homogenization 𝒞.

2.1.2 Dual and polar cones

Let 𝒦 ⊆ R𝑛 be a cone. The set

𝒦* := {𝑎 : 𝑥⊤𝑎 ≥ 0 for all 𝑥 ∈ 𝒦}

is called the dual cone of 𝒦. Since 𝒦* is the intersection of (infinitely many) closed
half-spaces, it is closed and convex, even if the original cone 𝒦 is neither closed nor
convex. Note that the dual cone is unchanged if we take the closure or the convex
hull of 𝒦. It can also be seen that by taking the dual of a cone twice we obtain the
closure of the convex hull of the original cone:

𝒦** = cl(conv(𝒦)). (2.6)

Therefore, if the cone 𝒦 is closed and convex, then we have 𝒦** = 𝒦.
We say that a linear inequality 𝑎⊤𝑥 + 𝑏 ≥ 0 is valid for a set 𝒮 ⊆ R𝑛 if it is

satisfied by all the points 𝑥 ∈ 𝒮. Valid inequalities give us a second cone in 𝑛 + 1

dimensions that is naturally associated to a set in 𝑛 dimensions. This cone is called
the polar of 𝒮 and contains the coefficients of all the valid inequalities:2

𝒮∘ := {(𝑎, 𝑏) : 𝑎⊤𝑥 + 𝑏 ≥ 0 for all 𝑥 ∈ 𝒮}.

Similarly to the dual cone, the polar is always closed and convex, even when 𝒮 is not.
The cones constructed by the operations of homogenization and polar are con-

nected by the following lemma.

2The name polar is a little unusual here: the polar is typically a set in 𝑛 dimensions.

18

Lemma 2.2. For a set 𝒮 ⊆ R𝑛, the polar 𝒮∘ and the closure of the convex hull of
the homogenization cl(conv(𝒮)) are dual cones to each other.

This lemma is immediately implied by multiple fundamental results in convex
analysis. In Section 2.4.1 below we give an elementary proof that does require any
prior knowledge.

As a corollary of Lemma 2.2, we have that a closed convex set 𝒞 is such that

cl(𝒞) = (𝒞∘)* = {(𝑥, 𝑦) : 𝑎⊤𝑥 + 𝑏𝑦 ≥ 0 for all (𝑎, 𝑏) ∈ 𝒞∘}. (2.7)

Also, by slicing the sets above with the hyperplane {(𝑥, 𝑦) : 𝑦 = 1}, we obtain the
well-known fact that a closed convex set is the intersection of all the closed halfspaces
that contain it:

𝒞 = {𝑥 : 𝑎⊤𝑥 + 𝑏 ≥ 0 for all (𝑎, 𝑏) ∈ 𝒞∘}. (2.8)

2.2 From sets to functions

Let 𝑓 : R𝑛 → R∪ {∞} be a function. The epigraph of 𝑓 is the set of points that lie
above the graph of 𝑓 :

epi(𝑓) := {(𝑥, 𝑦) ∈ R𝑛+1 : 𝑓(𝑥) ≤ 𝑦}.

Note that the epigraph does not “cover” the points 𝑥 where 𝑓 takes infinite value.
Through this mapping, any function in 𝑛 variables is uniquely associated with a set
in 𝑛+ 1 dimensions.

Conversely, to retrieve a function in 𝑛 variables from a set 𝒮 ∈ R𝑛+1, we define
the operation

ipo(𝒮)(𝑥) := inf{𝑦 : (𝑥, 𝑦) ∈ 𝒮}, (2.9)

where the infimum of an empty set is defined to be infinite. Pictorially, the graph of
the function ipo(𝒮) is the “lower boundary” of the set 𝒮.3 If the set 𝒮 is convex, then
the function ipo(𝒮) is also convex.

The equality
𝑓 = ipo(epi(𝑓))

3The operation in (2.9) is widely used in convex analysis, but to the best of our knowledge it
does not have a commonly accepted name. Here the word ipo (Greek prefix for “below”) is meant
to contrast the word epi (Greek prefix for “above”).

19

holds for any function 𝑓 . Therefore the function ipo is the left inverse of the function
epi. Conversely, if we start from a set 𝒮, we can have that 𝒮 ≠ epi(ipo(𝒮)), since the
function ipo(𝒮) loses all the information about the “upper boundary” of 𝒮.

The properties of a function 𝑓 are inherited by the properties of its epigraph. A
function 𝑓 is said to be closed if its epigraph is a closed set. While the closure of a
function is defined as

cl(𝑓) := ipo(cl(epi(𝑓))).

In words, we construct the epigraph of 𝑓 , we take its closure, and then we map this
closed set back to a closed function.

We say that a function 𝑓 : R𝑛 → R ∪ {∞} is positively homogeneous if its
epigraph is a cone. This implicit definition is easily seen to be equivalent to the
following explicit definition: a function 𝑓 is positively homogeneous if for all 𝑦 > 0

we have
𝑦𝑓(𝑥) = 𝑓(𝑦𝑥).

Note that the closure of any positively homogeneous function has value equal to zero
at the origin.

The function 𝑓 is called convex if its epigraph is convex. The equivalent explicit
definition is that 𝑓 is convex if, for all 𝑥0, 𝑥1 and 𝑦 ∈ [0, 1], we have

𝑓((1 − 𝑦)𝑥0 + 𝑦𝑥1) ≤ (1 − 𝑦)𝑓(𝑥0) + 𝑦𝑓(𝑥1).

In words, every line segment connecting two points on the graph of 𝑓 lies entirely
above the graph of 𝑓 . This formula is easily extended to convex combinations that
involve more than two points. Given scalars 𝑦𝑖 ≥ 0 such that

∑︀𝑚
𝑖=1 𝑦𝑖 = 1, we have

𝑓

(︃
𝑚∑︁
𝑖=1

𝑦𝑖𝑥𝑖

)︃
≤

𝑚∑︁
𝑖=1

𝑦𝑖𝑓(𝑥𝑖). (2.10)

Note that a convex function that takes only finite values 𝑓 : R𝑛 → R is necessarily
closed.

The homogenization of a function 𝑓 is constructed similarly to the closure:

𝑓 := ipo
(︁

ẽpi(𝑓)
)︁
.

We lift the function to its epigraph, we homogenize, and we take the infimum to
retrieve a function.4 Note that 𝑓 is a function in 𝑛 + 1 variables, since the homoge-

4To be more precise, this construction necessitates reordering the variables, as the outer infimum
is with respect to the variable introduced by the epigraph, not the homogenization.

20

nization increases the dimension of the space by one. The function 𝑓 is convex if and
only if 𝑓 is convex. In addition, 𝑓 is positively homogeneous, since its epigraph is a
cone. An equivalent explicit definition of the homogenization of a function is

𝑓(𝑥, 𝑦) :=

⎧⎨⎩𝑦𝑓(𝑥/𝑦) if 𝑦 > 0

∞ otherwise
.

Since this operation is not very common, for completeness, we report in Section 2.4.2
below a proof of the equivalence of the two definitions of homogenization of a function.

Similarly to the homogenization of a set, in practice, we always work with the
closure of 𝑓 . If the original function 𝑓 is closed, by taking the closure we change the
value of the homogenization 𝑓 only for 𝑦 = 0. In particular, we ensure that

cl(𝑓)(0, 0) = 0. (2.11)

The values cl(𝑓)(𝑥, 0) for 𝑥 ̸= 0 are a little more complicated to describe, but also
irrelevant to the results in this thesis.

A set 𝒞 in conic form (2.1) is said to be a conic representation of a function
𝑓 if epi(𝑓) = 𝒞. We will also say that a function 𝑓 is described in conic form if
we have a conic representation of it. In convex optimization, we often work with
conic representations of functions instead than with the explicit descriptions of them.
Important for this thesis is the observation that if we are given a conic representa-
tion of a function 𝑓 then a conic representation of 𝑓 is easily computed using the
formula (2.4). While (2.5) can be used to describe cl(𝑓) in conic form.

2.3 Convex optimization

A Convex Program (CP) is an optimization problem of the form

minimize 𝑓(𝑥) (2.12a)

subject to 𝑥 ∈ 𝒞, (2.12b)

where the objective function 𝑓 : R𝑛 → R and the constraint set 𝒞 ⊂ R𝑛 are convex.
Sometimes we will refer to the set 𝒞 as the feasible set of the CP, and to its elements
as feasible solutions. The CP is said to be feasible if a feasible solution exists, i.e.,
if 𝒞 ̸= ∅. A feasible solution 𝑥opt is optimal if 𝑓(𝑥opt) ≤ 𝑓(𝑥) for all 𝑥 ∈ 𝒞. If an
optimal solution exists, we call 𝑓opt := 𝑓(𝑥opt) the optimal value of the CP.

A fundamental property of CPs is that any locally optimal solution (i.e., any

21

point 𝑥opt such that 𝑓(𝑥opt) ≤ 𝑓(𝑥) for all 𝑥 in a neighborhood of 𝑥opt) is also an
optimal solution according to the (global) definition just given [25, Section 4.2.2]. A
commonly satisfied assumption for the existence of an optimal solution is that the
feasible set 𝒞 is nonempty and compact.

CPs are a fundamental class of optimization problems, with applications in essen-
tially every engineering discipline. The great majority of the CPs that we encounter
in practice can be solved efficiently and reliably using interior-point methods (or other
specialized algorithms such as the simplex method). However, strictly speaking, it is
not always true that a CP can be solved efficiently: for example, the set of nonneg-
ative polynomials is a convex cone (in the space of the polynomial coefficients), but
checking if a polynomial is nonnegative is NP-hard. In this thesis we will be a little
imprecise, and use the term “convex optimization problem” almost as a synonym of
“optimization problem that is efficiently solvable”.

2.3.1 Conic optimization

A Conic Program (KP) is a CP with linear objective function and constraint set
in conic form:

minimize 𝑐⊤𝑥 (2.13a)

subject to 𝐴𝑥 + 𝑏 ∈ 𝒦, (2.13b)

where 𝑐 ∈ R𝑛, 𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚, and 𝒦 ⊆ R𝑚 is a closed convex cone. Special
classes of KPs are:

∙ Linear Program (LP) when 𝒦 is the nonnegative orthant.

∙ Second-Order Cone Program (SOCP) when 𝒦 is the Cartesian product of
second-order cones.

∙ SemiDefinite Program (SDP) when 𝒦 is (isomorphic to) the semidefinite
cone.

These classes of problems have increasing modelling power: every LP is an SOCP,
and every SOCP is an SDP. SDPs are efficiently solvable, and cover the vast majority
of the practical uses of convex optimization.

Another important class of CPs are Quadratic Programs (QP), these are CPs
in the form (2.12) with quadratic objective function 𝑓 and polyhedral constraint set
𝒞. Every QP can be formulated as an SOCP. However, in many cases, active-set

22

algorithms specialized to this class of problems can be more effective than using an
SOCP solver.

2.3.2 Conic duality

The KP (2.13) is associated to the following dual program

maximize − 𝑏⊤𝜆 (2.14)

subject to 𝐴⊤𝜆 = 𝑐, (2.15)

𝜆 ∈ 𝒦*, (2.16)

where the variable is 𝜆 ∈ R𝑚. Note that the dual program is also a KP.
The optimal value of the primal problem (2.13) is greater than or equal to the

optimal value of the dual problem (2.14). In fact,

𝑐⊤𝑥− (−𝑏⊤𝜆) = 𝑥⊤𝑐 + 𝑏⊤𝜆 = 𝑥⊤𝐴⊤𝜆 + 𝑏⊤𝜆 = (𝐴𝑥 + 𝑏)⊤𝜆 ≥ 0,

where the last inequality uses the duality of 𝒦 and 𝒦*. This property is called weak
duality.

Strong duality holds when the primal problem (2.13) and the dual problem (2.14)
have exactly the same optimal value. For this to be true we need to make further
assumptions on the problem data. For example, a sufficient condition for strong du-
ality to hold are the so-called Slater conditions. These require both the primal and
the dual problem to be strictly feasible. For the primal this means that there exists
𝑥 such that 𝐴𝑥 + 𝑏 is in the interior of 𝒦. For the dual we require the existence of
𝜆 in the interior of 𝒦* such that 𝐴⊤𝜆 = 𝑐.

The following result is well known, and will be useful in a few occasions. We give
a proof of it based on duality in Section 2.4.3 below.

Lemma 2.3. Let 𝒫 := {𝑥 ∈ R𝑛 : 𝐴𝑥 + 𝑏 ≥ 0} be a polyhedron. For any valid
inequality (𝑐, 𝑑) ∈ 𝒫∘ there exists a vector 𝜆 ∈ R𝑚

≥0 such that 𝑐 = 𝐴⊤𝜆 and 𝑑 ≥ 𝑏⊤𝜆.

2.3.3 Disciplined convex programming

In order to solve a CP it is not sufficient to write it symbolically on a computer and
send it to a solver. In fact, solvers for convex optimization can typically handle only
a limited family of conic constraints, and it is our job to transform generic convex
functions and sets in these canonical forms. Disciplined Convex Programming
(DCP) [85] is an effective way to automatize these transformations. It is a modular

23

and algorithmic framework for assembling convex optimization problems. The idea is
that the user must follow a restricted set of rules and methods to assemble a CP; then
the DCP software automatically certifies the convexity of the problem and commu-
nicates with the solver. Popular software packages for DCP are cvx [84], cvxpy [50],
and Convex.jl [186].

More precisely, the DCP framework has two main components [85, Section 5]:

∙ A library of atoms. This is a collection of functions and sets whose properties
are known and explicitly declared.

∙ A convexity ruleset. This governs how the atoms, the variables, the parameters,
and the numeric values in the optimization problem can be combined to produce
convex results.

A disciplined CP is an optimization problem built in accordance with the convexity
ruleset using elements from the atom library.

In this thesis, we will make large use of the homogenization operations defined
above. Given a generic convex set 𝒞 or convex function 𝑓 , computing the homoge-
nization (𝒞 or 𝑓) can be very tedious and error prone. Using DCP this process is
fully automatic: any DCP-compliant set or function is automatically described in
conic form (2.1), then computing the homogenization can be easily done using (2.4).

2.4 Supporting proofs

We collect in this final section the proofs that are not necessary for the main body of
the chapter.

2.4.1 Duality of homogenization and polar

In Section 2.1.2 we have stated that for a set 𝒮 ⊆ R𝑛 the cones 𝒮∘ and cl(conv(𝒮))

are dual to each other. We give here a basic proof of this statement.
Since the cones 𝒮∘ and cl(conv(𝒮)) are closed and convex, it suffices to show that

the first is the dual of the second. In turn, this is equivalent to show that

𝒮∘ = 𝒮*,

where the closure and the convex hull are omitted since they do not affect the dual
cone. We show mutual inclusion of the two sets above.

Let (𝑎, 𝑏) ∈ 𝒮∘. By definition, we have 𝑎⊤𝑥 + 𝑏 ≥ 0 for all 𝑥 ∈ 𝒮. We multiply
this inequality by 𝑦 > 0 and have that 𝑎⊤(𝑦𝑥) + 𝑏𝑦 ≥ 0 for all 𝑦 > 0 and 𝑥 ∈ 𝒮. We

24

define 𝑥′ := 𝑦𝑥 and conclude that 𝑎⊤𝑥′ + 𝑏𝑦 ≥ 0 for all 𝑦 > 0 and 𝑥′ ∈ 𝑦𝒮, i.e., for
all (𝑥′, 𝑦) ∈ 𝒮. This shows that (𝑎, 𝑏) ∈ 𝒮* and, therefore, 𝒮∘ ⊆ 𝒮*.

Assume that (𝑎, 𝑏) ∈ 𝒮*. We have 𝑎⊤𝑥 + 𝑏𝑦 ≥ 0 for all (𝑥, 𝑦) ∈ 𝒮, i.e., for all
𝑦 > 0 and 𝑥 ∈ 𝑦𝒮. Defining 𝑥′ := 𝑥/𝑦, we have 𝑎⊤𝑥′ + 𝑏 ≥ 0 for all 𝑥′ ∈ 𝒮. This
shows that (𝑎, 𝑏) ∈ 𝒮∘ and 𝒮* ⊆ 𝒮∘.

2.4.2 Homogenization of a function

In Section 2.2 we have given two definitions of the homogenization of a function
𝑓 . The first is 𝑓 = ipo

(︁
ẽpi(𝑓)

)︁
. The second is 𝑓(𝑥, 𝑦) = 𝑦𝑓(𝑥/𝑦) if 𝑦 > 0 and

𝑓(𝑥, 𝑦) = ∞ otherwise. Let us show that these definitions are in fact equivalent.

For any 𝑦 > 0, we have

𝑦epi(𝑓) = {𝑦(𝑥, 𝑦′) : 𝑓(𝑥) ≤ 𝑦′}
= {(𝑦𝑥, 𝑦𝑦′) : 𝑦𝑓(𝑥) ≤ 𝑦𝑦′}
= {(𝑥′, 𝑦′′) : 𝑦𝑓(𝑥′/𝑦) ≤ 𝑦′′}.

Using this equality, we have

ẽpi(𝑓) = {(𝑥, 𝑦′, 𝑦) : 𝑦 > 0, (𝑦′,𝑥) ∈ 𝑦epi(𝑓)} = {(𝑥, 𝑦′, 𝑦) : 𝑦 > 0, 𝑦𝑓(𝑥/𝑦) ≤ 𝑦′}.

We can then conclude that the two definitions are equivalent:

ipo
(︁

ẽpi(𝑓)
)︁

(𝑥, 𝑦) = inf{𝑦′ : 𝑦 > 0, 𝑦𝑓(𝑥/𝑦) ≤ 𝑦′} =

⎧⎨⎩𝑦𝑓(𝑥/𝑦) if 𝑦 > 0

∞ otherwise
.

2.4.3 Implied valid inequalities

We give a short proof of Lemma 2.3 based on LP duality (although this fact could
be verified using more basic tools). We want to check whether the following LP is
feasible for any valid inequality (𝑐, 𝑑) ∈ 𝒫∘:

maximize 0

subject to 𝐴⊤𝜆 = 𝑐,

𝑏⊤𝜆 ≤ 𝑑.

25

The dual of this problem is the LP

minimize 𝑐⊤𝑥 + 𝑑𝑦

subject to 𝐴𝑥 + 𝑏𝑦 ≥ 0,

𝑦 ≥ 0.

The dual LP is always feasible, since 𝑥 = 0 and 𝑦 = 0 is a feasible solution. Thus, by
strong duality, the primal LP is feasible if and only if the dual LP has finite optimum.
The constraints in the dual LP are equivalently rewritten equivalent as (𝑥, 𝑦) ∈ cl(𝒫).
By Lemma 2.2, the sets 𝒫∘ and 𝒫* are equal. Therefore, our assumption (𝑐, 𝑑) ∈ 𝒫∘

is equivalent to 𝑐⊤𝑥 + 𝑑𝑦 ≥ 0 for all (𝑥, 𝑦) ∈ cl(𝒫). We conclude that the optimal
value of the dual LP cannot be negative, and the dual LP has finite optimum 𝑥 = 0

and 𝑦 = 0.

26

Chapter 3

Mixed-integer optimization

Mixed-integer optimization is the computational backbone of the techniques intro-
duced in this thesis. Generally speaking, a Mixed-Integer Program (MIP) can be
very hard to solve and the runtimes of a mixed-integer solver can grow very quickly
(exponentially) with the problem size. However,this is the worst-case scenario, and a
lot can be done to construct highly effective MIPs that can be solved quickly for most
of (if not all) the instances that we encounter in practice. The goal of this chapter
is twofold. First, we introduce the essential background on mixed-integer optimiza-
tion: what an MIP is, how MIPs are classified, and what algorithms can be used to
solve these problems. Secondly, we introduce the notions and the tools necessary to
distinguish between efficient and inefficient MIPs.

Two great sources for all the details about mixed-integer optimization are the
classical book [140] and the more recent book [42].

3.1 Mixed-integer programs

An MIP is an optimization problem with continuous variables 𝑥 ∈ R𝑛 and discrete
(integer) variables 𝑦 ∈ Z𝑚. Given an objective function 𝑓 : R𝑛+𝑚 → R and a
constraint set 𝒮 ⊆ R𝑛+𝑚, we can state a generic MIP as

minimize 𝑓(𝑥,𝑦) (3.1a)

subject to (𝑥,𝑦) ∈ 𝒮, (3.1b)

𝑦 ∈ Z𝑚. (3.1c)

27

(We explicitly state the constraint 𝑦 ∈ Z𝑚 since, if not specified otherwise, variables
of optimization problems will always be assumed to be real valued.) We call the set

𝒯 := 𝒮 ∩ R𝑛 × Z𝑚

feasible set of the MIP (3.1) and its elements (𝑥,𝑦) ∈ 𝒯 feasible solutions.
The MIP is feasible if a feasible solution exists and infeasible otherwise. A feasible
solution (𝑥opt,𝑦opt) is optimal if 𝑓(𝑥opt,𝑦opt) ≤ 𝑓(𝑥,𝑦) for all (𝑥,𝑦) ∈ 𝒯 . If an
optimal solution exists, we denote with 𝑓opt := 𝑓(𝑥opt,𝑦opt) the MIP optimal value.

If we discard constrain (3.1c) from our MIP, we obtain the following optimization
problem:

minimize 𝑓(𝑥,𝑦) (3.2a)

subject to (𝑥,𝑦) ∈ 𝒮. (3.2b)

This problem is called the relaxation of the MIP. We denote an optimal solution
of the relaxation as (𝑥relax,𝑦relax), and we let 𝑓relax := 𝑓(𝑥relax,𝑦relax) be its optimal
value. Observe that

𝑓relax ≤ 𝑓opt,

since by discarding a constraint from an optimization (minimization) problem the
optimal value can only decrease. As discussed in Section 3.2 below, the tightness
of this inequality plays a central role in the efficiency of an MIP. Loosely speaking,
an MIP is efficiently solvable if its relaxation can be solved quickly and the gap
𝑓opt − 𝑓relax ≥ 0 is small.

MIPs are classified according to the properties of the function 𝑓 and the set 𝒮,
which can significantly affect our ability of solving an MIP efficiently. Below we define
the classes of MIPs that are most relevant for this thesis.

3.1.1 Mixed-Boolean programs

A Mixed-Boolean Program (MBP) is an MIP where the discrete variables can
only take binary value: 𝑦 ∈ {0, 1}𝑚. Equivalently, a MBP is a problem of the form
of (3.1) where

𝒮 ⊂ R𝑛 × [0, 1]𝑚.

All the MIPs that we will encounter in this thesis are, in fact, MBPs. However,
the term MBP is unusual and, although technically our problems will be MBPs, we
will still call them as MIPs.

28

3.1.2 Mixed-integer convex programs

If the objective function 𝑓 and the constraint set 𝒮 are convex, we call problem (3.1)
a Mixed-Integer Convex Program (MICP). MICPs are a fundamental class of
MIPs since their relaxations are convex optimization problems, which (in most of the
cases) can be solved very quickly. To emphasize the convexity assumption, we call the
relaxation of an MICP convex relaxation. Using the Branch-and-Bound (BB)
algorithm described in Section 3.3.2 below, most MICPs can be reliably solved to
global optimality, although the algorithm might take a long time.

In contrast to the class of MICPs, we will occasionally call Mixed-Integer Non-
Convex Program (MINCP) an MIP where the objective function 𝑓 and/or the
constraint set 𝒮 are nonconvex. Most MINCPs are intractable; the main exceptions
are very small MINCPs where the feasible set 𝒯 can be finely discretized and searched
exhaustively.

3.1.3 Mixed-integer conic programs

If the objective function 𝑓 is linear and the constraint set 𝒮 is a closed convex set in
conic form, then problem (3.1) is called Mixed-Integer Conic Program (MIKP).
The subclasses of this family of problems are classified as in Section 2.3. We have a

∙ Mixed-Integer Linear Program (MILP) when the set 𝒮 is a polyhedron,

∙ Mixed-Integer Second-Order Cone Program (MISOCP) when 𝒮 is convex
quadratic,

∙ Mixed-Integer SemiDefinite Program (MISDP) when 𝒮 is a spectrahedron.

The relaxations of these problems are named in the natural way. For example, we
call linear relaxation the relaxation of an MILP.

We could say that MILPs play a more important role in mixed-integer optimiza-
tion than LPs play in convex optimization. The first reason for this is geometric.
Polyhedra are the simplest shape that can enclose finite sets of points. Therefore, as
we will also see in the next chapter, they are a natural candidate to model the dis-
crete side of an MIP. The second reason is algorithmic. As discussed in Section 3.3.2
below, the simplex algorithm for linear optimization can be integrated in the BB pro-
cedure more efficiently than the interior-point algorithm used for more general conic
programs.

A Mixed-Integer Quadratic Program (MIQP) is an MIP of the form (3.1)
with 𝑓 quadratic and 𝒮 polyhedral. These problems are representable as MISOCPs

29

but, similar to MILPs, they can be solved more efficiently using specialized BB meth-
ods that leverage the polyhedral constraint set. Having said this, nowadays also MIS-
OCPs and MISDPs can be solved quite effectively even with freely available solvers
(see, e.g., Pajarito [39]).

3.1.4 Integer programs

An Integer Program (IP) is an MIP with only integer variables, i.e., 𝑛 = 0. IPs can
be classified the same ways as MIPs. For example, an Integer Linear Program
(ILP) is an IP with linear objective and polyhedral constraint set. We will see in
the next chapter that all the graph problems of interest for this thesis are naturally
formulated as ILPs.

3.2 What makes a good MIP?

An MIP can be solved using a variety of methods. Some of them are general purpose
algorithms, like the BB method in Section 3.3.2. Others are tailored to a specific
subclass of MIPs, and leverage particular properties of the objective function 𝑓 and
the constraint set 𝒮. However, what almost all the MIP solution algorithms have in
common, is that they rely on the relaxation (3.2) to obtain important information
about the original MIP. For the efficient solution of an MIP is then fundamental that
the relaxation has two characteristics:

∙ it can be solved solved quickly,

∙ it approximates the original MIP tightly.

The first requirement is typically met if the relaxation is a conic program such
as an LP, an SOCP, or even an SDP. In addition, this program must have a small
number of variables and constraints.

One way to quantify the second requirement is to look at the relaxation gap.
For problems with positive optimal value 𝑓opt, we define the relaxation gap as

𝑓opt − 𝑓relax
𝑓opt

.

The relaxation gap is nonnegative and, assuming that the relaxation has nonnegative
optimal value 𝑓relax, it is at most one. A small relaxation gap means that the relaxation
is a good approximation of the MIP (a perfect approximation if the relaxation gap is
zero). A relaxation gap close to one means that solving the relaxation conveys almost

30

no information about the optimal solution of the MIP. Of course, the relaxation gap
is not a direct way to estimate the efficiency of an MIP, since in order to compute it
we must have solved the MIP already. What the relaxation gap gives us is a useful
metric to compare two alternative MIPs that model the same underlying problem
(two, so called, MIP formulations of the same problem).

Consider the MIP (3.1), and assume that its objective function 𝑓 is linear. (This
can be assumed without loss of generality: if 𝑓 is nonlinear, we can introduce a slack
variable 𝑠, add the constraint 𝑠 ≥ 𝑓(𝑥,𝑦), and minimize 𝑠 instead.) A second MIP
with the same objective function 𝑓 and different constraint set 𝒮 ′ ⊂ R𝑛+𝑚 models
the same problem as the MIP (3.1) if

𝒮 ′ ∩ R𝑛 × Z𝑚 = 𝒯 .

We then observe that the relaxation gap of the second MIP is lower than or equal to
the one of the first if

𝒮 ′ ⊆ 𝒮.

In this case, we say that the second MIP formulation is stronger than the first. We
also note that if the MIP (3.1) satisfies

𝒮 = conv(𝒯) (3.3)

then minimizing a linear function over 𝒯 or 𝒮 is equivalent (i.e., gives the same optimal
value). Therefore, if (3.3) holds, then the relaxation gap is guaranteed to be zero, and
this formulation is the strongest possible (a so called perfect formulation). Note,
however, that a perfect formulation is not necessarily the most efficient, since the set
𝒮 might be defined by many constraints and the relaxation might be computationally
very expensive.

Stronger formulations can also be constructed by using auxiliary variables, i.e.,
the second MIP in the comparison above can have a higher-dimensional constraint
set 𝒮 ′. In this case, we say that the second formulation is stronger than the first if
the projection of 𝒮 ′ onto the space of the original variables 𝑥 and 𝑦 is contained in 𝒮.
In fact, sometimes the convex hull of the feasible set 𝒯 can have very complex shape,
but it can be efficiently described as the projection of a simple higher-dimensional
convex set. A perfect formulation that uses auxiliary variables is called an extended
formulation [41]. (This term also implicitly implies that the formulation has a
number of constraints and variables that is polynomial in the size of the original
problem.)

31

3.3 Solution methods

We conclude this chapter by describing in more details how an MIP can be solved. We
discuss two solution methods that will be used many times in this thesis: rounding
and BB. The former is a simple heuristic approach. The latter is a more sophisticated
algorithm, which is guaranteed to always identify an optimal solution.

3.3.1 Rounding

Rounding entails the following simple steps:

1. We compute (𝑥relax,𝑦relax) by solving the MIP relaxation.

2. If an entry of the vector 𝑦relax ∈ R𝑚 is fractional, we approximate it with an
integer value (i.e., we “round” it). This gives us a vector 𝑦round ∈ Z𝑚.

3. We return (𝑥relax,𝑦round) as an estimate of the optimal solution of the MIP with
cost 𝑓round := 𝑓(𝑥relax,𝑦round).

Potentially, we can also add an extra step where the relaxation is solved a second time
with the additional constraint 𝑦 = 𝑦round. In this case we return the optimal solution
(𝑥round,𝑦round) of this second problem, which has value 𝑓round := 𝑓(𝑥round,𝑦round).

Rounding is not guaranteed to identify the optimal solution of the MIP. In fact,
it is not even guaranteed to find a feasible solution. On the other hand, if it finds a
feasible solution, then it automatically provides us with the following simple bound
on its distance from the optimum:

𝛿opt :=
𝑓round − 𝑓opt

𝑓opt
≤ 𝑓round − 𝑓relax

𝑓relax
=: 𝛿relax, (3.4)

where 𝛿opt is the true optimality gap, 𝛿relax is the upper bound on the optimality gap
automatically obtained from the rounding, and where we assumed that the optimal
value 𝑓relax of the relaxation is nonnegative.

General purpose rounding strategies (e.g., round the entries of 𝑦relax to the nearest
integer) are typically ineffective. Rounding works especially well when:

∙ a feasible solution of the MIP can be found easily,

∙ the problem has some structure that can be leveraged.

For example, as we will see in Section 9.5, if the integer variables parameterize a path
through a graph, then many fast graph-search algorithms are natural candidates for

32

the rounding stage. Note also, that the rounding needs not to be a deterministic
process. One common approach is to apply a randomized rounding multiple times
and select the rounded solution with the lowest cost.

3.3.2 Branch and bound

BB is a general-purpose optimization algorithm that systematically shrinks its search
space around the optimal solution of a problem. The BB search space is composed
by multiple sets of simple shape. At each iteration, we select one of these sets and
minimize our objective function over it. If this subproblem has optimal value larger
than a known upper bound on the optimal value of the original problem, then the
selected set cannot contain an optimal solution and is discarded from the BB search
space. Otherwise, the set is split into two smaller sets that better approximate the
feasible set of the original problem, and the process is repeated.

Let us describe the application of a very basic BB algorithm to the MIP (3.1).
For simplicity of presentation, let us assume that either the MIP (3.1) is infeasible
or an optimal solution exists. More complicated versions of BB can handle corner
cases such as unbounded problems (i.e., feasible problems with no optimal solutions).
During the iterations of the BB method, we update three objects:

∙ An estimate (𝑥0,𝑦0) of the optimal solution of the MIP. The initial value of this
estimate is irrelevant.

∙ An upper bound 𝑓0 on the optimal value 𝑓opt of the MIP. After a feasible
estimate (𝑥0,𝑦0) is found, this upper bound will be set to 𝑓0 := 𝑓(𝑥0,𝑦0).
Before that, we simply let 𝑓0 := ∞.

∙ A collection ℒ of subsets of R𝑛+𝑚. These are portions of the search space where
we could potentially find a solution with objective smaller than 𝑓0. Initially, we
simply let ℒ := {𝒮}.

At each iteration 𝑖 = 1, 2, . . ., we apply the following steps:

1. If the collection ℒ is empty, we have nowhere to look for a new solution. There-
fore we return the solution estimate (𝑥0,𝑦0) and the corresponding objective
value 𝑓0.

2. We take one set out of ℒ, call it 𝒮𝑖, and we solve the subproblem

minimize 𝑓(𝑥,𝑦) (3.5a)

subject to (𝑥,𝑦) ∈ 𝒮𝑖. (3.5b)

33

If this subproblem is infeasible, we move to the next iteration. Otherwise, we
denote the optimal solution and value of this problem as (𝑥𝑖,𝑦𝑖) and 𝑓𝑖.

3. If 𝑓𝑖 ≥ 𝑓0, the set 𝒮𝑖 cannot contain an optimal solution of the MIP, and we
move to the next iteration. If 𝑓𝑖 < 𝑓0, we analyze at the entries of the vector
𝑦𝑖.

4. If al the entries of 𝑦𝑖 are all integer, we update our solution estimate and cost
upper bound: 𝑥0 := 𝑥𝑖, 𝑦0 := 𝑦𝑖, and 𝑓0 := 𝑓𝑖. Otherwise, we select one entry
of 𝑦𝑖 that is fractional (call it entry 𝑗 ∈ {1, . . . ,𝑚}) and we insert two sets in
the collection ℒ:

𝒮0
𝑖 := {(𝑥,𝑦) ∈ 𝒮𝑖 : 𝑦𝑗 ≤ ⌊𝑦𝑖,𝑗⌋}, 𝒮1

𝑖 := {(𝑥,𝑦) ∈ 𝒮𝑖 : 𝑦𝑗 ≥ ⌈𝑦𝑖,𝑗⌉},

where ⌊𝑎⌋ := max{𝑏 ∈ Z : 𝑏 ≤ 𝑎} and ⌈𝑎⌉ := min{𝑏 ∈ Z : 𝑏 ≥ 𝑎}. Note that the
union of 𝒮0

𝑖 and 𝒮1
𝑖 is smaller than 𝒮𝑖, and that this subdivision eliminates the

point (𝑥𝑖,𝑦𝑖) from the BB search space.

When the BB algorithm terminates, if the returned value 𝑓0 is infinity then the MIP
is infeasible. Otherwise, we have 𝑓0 = 𝑓opt, 𝑥0 = 𝑥opt, and 𝑦0 = 𝑦opt.

The finite termination of the BB method is easily shown when the vector 𝑦 can
only take a finite number of values (because of the constraint set 𝒮). In these cases,
the BB process leads to an exhaustive enumeration in the worst case. When 𝑦 can
take infinite values, the convergence analysis is more involved [140, Section II.4.2].

The one described above is a very basic BB. For example, a simple modification
allows us to keep track of a lower bound on the optimal value 𝑓opt. This lower bound
can be compared to the upper bound 𝑓0 to terminate the algorithm early, when a
prescribed tolerance is met. The BB method involves also many heuristics. For
example, a variety of strategies can be employed for selecting a set 𝒮𝑖 in step 1, or for
deciding the splitting index 𝑗 in step 4. BB can also be augmented with cutting-plane
methods to form a class of algorithms called branch-and-cut. We point the reader
to [140, Section II.4.2] and [42, Section 9.2] for all these details.

The efficiency of BB critically hinges on the quality of the relaxation. A relaxation
that is easy to solve (e.g., a conic program) leads to fast BB iterations. While a strong
MIP formulation gives tight lower bounds 𝑓𝑖 and allows us to quickly discard large
portions of the search space. In addition, a strong formulation is also likely to yield
integer solutions in step 4. Another important factor for the efficiency of BB is the
ability of reusing the solution of a subproblem to speed up the next subproblems.
MILPs are especially efficient in this sense: with the simplex method, the (dual)

34

optimal solution of the subproblem (3.5) can be efficiently used as an initial guess for
the two subproblems with constraint sets 𝒮0

𝑖 and 𝒮1
𝑖 .

35

36

Chapter 4

Graphs

In this chapter we introduce some standard graph definitions and notation. We then
illustrate a few classical problems that can be solved over a graph that will serve
as running examples for this thesis. A great introductory reference for these topics
is [146]. A more advanced and very detailed treatment of the subject can be found
in [167] and [108].

4.1 Graphs

A graph 𝐺 is an ordered pair (𝒱 , ℰ) of finite sets. The elements 𝑣 ∈ 𝒱 of the first
set are called vertices. The elements 𝑒 ∈ ℰ of the second set are called edges and are
pairs of distinct vertices. If the edges are ordered pairs, denoted as 𝑒 = (𝑣, 𝑤) for
some 𝑣, 𝑤 ∈ 𝒱 , then the graph is called directed. If the edges are unordered pairs,
denoted as 𝑒 = {𝑣, 𝑤}, then the graph is undirected. In this thesis, when stating
facts that hold both for directed and undirected graphs, we will use the neutral
notation 𝑒 = [𝑣, 𝑤] to represent edges that are either ordered or unordered pairs.

We call weighted graph a graph whose vertices and edges are labelled with
scalars that represent costs (or weights). These costs are denoted as 𝑐𝑣 ∈ R for all
𝑣 ∈ 𝒱 and 𝑐𝑒 ∈ R for all 𝑒 ∈ ℰ .

For an undirected graph 𝐺 = (𝒱 , ℰ), we let ℐ𝑣 be the set of edges that are incident
with vertex 𝑣 ∈ 𝒱 :

ℐ𝑣 := {𝑒 ∈ ℰ : 𝑣 ∈ 𝑒}.

We use a similar notation for the edges that connect a given subset 𝒲 ⊆ 𝒱 of the
vertices to its complement 𝒱∖𝒲 :

ℐ𝒲 := {{𝑣, 𝑤} ∈ ℰ : 𝑣 ∈ 𝒲 , 𝑤 /∈ 𝒲}.

37

For a directed graph, we distinguish between edges that are outgoing, incoming, and
incident with vertex 𝑣, or with the vertex subset 𝒲 :

ℐout
𝑣 := {(𝑣, 𝑤) ∈ ℰ}, ℐout

𝒲 := {(𝑣, 𝑤) ∈ ℰ : 𝑣 ∈ 𝒲 , 𝑤 /∈ 𝒲},
ℐ in
𝑣 := {(𝑤, 𝑣) ∈ ℰ}, ℐ in

𝒲 := {(𝑤, 𝑣) ∈ ℰ : 𝑣 ∈ 𝒲 , 𝑤 /∈ 𝒲},
ℐ𝑣 := ℐ in

𝑣 ∪ ℐout
𝑣 , ℐ𝒲 := ℐ in

𝒲 ∪ ℐout
𝒲 .

4.2 Subgraphs

We say that a graph 𝐻 = (𝒲 ,ℱ) is a subgraph of 𝐺 = (𝒱 , ℰ) if

𝒲 ⊆ 𝒱 , ℱ ⊆ ℰ .

(Note that the condition ℱ ⊆ 𝒲2 is implicit in this definition.) We will use the
notation 𝐻 ⊆ 𝐺 to indicate that 𝐻 is a subgraph of 𝐺.

A subgraph 𝐻 can be represented as an element of the set {0, 1}𝒱∪ℰ of vectors with
binary entries indexed by the elements of 𝒱 ∪ ℰ . This vector is called the incidence
vector of 𝐻, is denoted as 𝑦𝐻 , and has entries

𝑦𝐻𝑣 :=

⎧⎨⎩1 if 𝑣 ∈ 𝒲
0 if 𝑣 /∈ 𝒲

, 𝑦𝐻𝑒 :=

⎧⎨⎩1 if 𝑒 ∈ ℱ
0 if 𝑒 /∈ ℱ

,

for all 𝑣 ∈ 𝒱 and 𝑒 ∈ ℰ .

Remark 4.1. Sometimes it can be helpful to think of the set {0, 1}𝒱∪ℰ as {0, 1}|𝒱|+|ℰ|.
The only difference is that the vectors in the first set are indexed by vertices and edges,
while the vectors in the second set are indexed by the integers 1, 2, . . . , |𝒱| + |ℰ|.

Given a subset 𝒲 ⊂ 𝒱 of the vertices of a graph 𝐺 = (𝒱 , ℰ), we define the
subgraph induced by 𝒲 as

𝐺𝒲 := (𝒲 , ℰ𝒲), ℰ𝒲 := {[𝑣, 𝑤] ∈ ℰ : 𝑣, 𝑤 ∈ 𝒲}.

In words, this graph has vertices 𝒲 and includes all the edges in 𝐺 that have both
ends in 𝒲 .

38

4.3 Special classes of graphs

This section introduces a few special classes of graphs that will be frequently men-
tioned in this thesis.

A path is a graph whose vertices can be ordered in such a way that each edge
connects one vertex to the next. Formally, it is a graph 𝐺 = (𝒱 , ℰ), either directed
or undirected, with

𝒱 = {𝑣0, 𝑣1, . . . , 𝑣𝑙}, ℰ = {[𝑣0, 𝑣1], [𝑣1, 𝑣2], . . . , [𝑣𝑙−1, 𝑣𝑙]},

where 𝑣𝑖 ̸= 𝑣𝑗 for all 𝑖, 𝑗 ∈ {0, . . . , 𝑙}. The scalar 𝑙 ≥ 0 is equal to the number of edges
in the path and is called the path length (for 𝑙 = 0 we have 𝒱 = {𝑣0} and ℰ = ∅).
The vertex 𝑣0 is called the source of the path and the vertex 𝑣𝑙 is called the target.
We will often denote these two vertices with the letters 𝑠 and 𝑡.

A path in a graph 𝐺 = (𝒱 , ℰ) is a subgraph of 𝐺 that is also a path. We use the
term 𝑠-𝑡 path in 𝐺 when we want to specify the source 𝑠 and the target 𝑡 of the path.
If 𝐺 contains at least one 𝑠-𝑡 path, we say that the vertices 𝑠 and 𝑡 are connected.
We call a graph connected if all pairs of vertices in it are connected. A path in 𝐺 is
said to be Hamiltonian if it visits all the vertices in the graph, i.e., if 𝑙 = |𝒱| − 1.

A cycle is similar to a path, but its first and last vertices coincide. Formally, it
is a graph 𝐺 = (𝒱 , ℰ) with

𝒱 = {𝑣1, 𝑣2, . . . , 𝑣𝑙}, ℰ = {[𝑣1, 𝑣2], . . . , [𝑣𝑙−1, 𝑣𝑙], [𝑣𝑙, 𝑣1]},

where 𝑣𝑖 ̸= 𝑣𝑗 for all 𝑖, 𝑗 ∈ {1, . . . , 𝑙}. The length 𝑙 of a cycle is again equal to the
number of edges in the cycle, and is assumed to be greater than or equal to two. A
cycle in a graph 𝐺 is a subgraph of 𝐺 that is also a cycle. A graph is acyclic if it
does not contain cycles. A tour (or Hamiltonian cycle) in 𝐺 is a cycle that visits
every vertex, i.e., has length 𝑙 = |𝒱|.

An undirected graph 𝐺 = (𝒱 , ℰ) is called a tree if it is both connected and acyclic.
It is called a matching if every pair of edges 𝑒, 𝑓 ∈ ℰ are disjoint, i.e., 𝑒 ∩ 𝑓 = ∅.
A tree (respectively, a matching) in a graph 𝐺 is a subgraph of 𝐺 that is also a tree
(respectively, a matching). If this subgraph covers all the vertices 𝒱 of 𝐺, we call it
a spanning tree (respectively, a perfect matching).

An undirected graph 𝐺 = (𝒱 , ℰ) is bipartite if its vertices 𝒱 can be partitioned
into two disjoint sets 𝒱1 and 𝒱2 such that every edge has the form 𝑒 = {𝑣, 𝑤} ∈ ℰ
for some 𝑣 ∈ 𝒱1 and 𝑤 ∈ 𝒱2. In this graph, we call an assignment of 𝒱1 a subgraph
𝐻 = (𝒲 ,ℱ) ⊆ 𝐺 such that each vertex in 𝒱1 is covered by exactly one edge in ℱ .

39

4.4 Graph optimization problems

Many problems in combinatorial optimization and graph theory can be stated as
follows: given a weighted graph 𝐺 and a set ℋ of admissible subgraphs of 𝐺, find a
subgraph 𝐻 ∈ ℋ of minimum cost. In formulas,

minimize
∑︁
𝑣∈𝒲

𝑐𝑣 +
∑︁
𝑒∈ℱ

𝑐𝑒 (4.1a)

subject to 𝐻 = (𝒲 ,ℱ) ∈ ℋ, (4.1b)

where the variable is the subgraph 𝐻. The objective function is the cost of 𝐻, defined
as the sum of the costs of its vertices and edges. In this thesis we use the generic
term graph optimization problem for a problem of the form (4.1).

A simple (and often effective) way of solving a graph optimization problem is to
formulate it as an Integer Linear Program (ILP), and then use a Branch and Bound
(BB) method like the one described in Section 3.3.2. To formulate (4.1) as an ILP,
we first parameterize the subgraph 𝐻 through its incidence vector 𝑦𝐻 ∈ {0, 1}𝒱∪ℰ .
Secondly, we describe the set ℋ of admissible subgraphs through a polytope 𝒴 such
that

𝒴 ∩ {0, 1}𝒱∪ℰ = {𝑦𝐻 : 𝐻 ∈ ℋ}.

In words, the vectors with integer coordinates in the polytope 𝒴 are the incidence
vectors of the admissible subgraphs. (Without loss of generality, in the future sec-
tions and chapters we will assume that 𝒴 ⊆ [0, 1]𝒱∪ℰ .) Problem (4.1) can be then
reformulated as the ILP

minimize
∑︁
𝑣∈𝒱

𝑐𝑣𝑦𝑣 +
∑︁
𝑒∈ℰ

𝑐𝑒𝑦𝑒 (4.2a)

subject to 𝑦 ∈ 𝒴 ∩ {0, 1}𝒱∪ℰ , (4.2b)

where the only variable is 𝑦, with entries 𝑦𝑣 for all 𝑣 ∈ 𝒱 and 𝑦𝑒 for all 𝑒 ∈ ℰ . This
ILP has optimal value equal to the optimal value of problem (4.1), and an optimal
solution 𝑦 is the incidence vector of an optimal subgraph 𝐻 of problem (4.1).

Note that, for each instance of problem (4.1), there are multiple (infinitely many)
polytopes 𝒴 that we can use to describe the set ℋ. Ideally, as discussed in Section 3.2,
we would like to find a good compromise between a polytope with few facets and a
polytope such that the inclusion

conv(𝒯) ⊆ 𝒴 (4.3)

40

is as tight as possible, where 𝒯 := 𝒴 ∩ {0, 1}𝒱∪ℰ is the feasible set of the ILP (4.2).
In fact, if the inclusion (4.3) holds with equality we have a perfect formulation, and
the ILP can be efficiently solved as a Linear Program (LP).

We conclude this chapter with a list of famous graph problems and the corre-
sponding ILP formulations.

4.4.1 Shortest path

Let 𝐺 = (𝒱 , ℰ) be a weighted graph. Given a source vertex 𝑠 ∈ 𝒱 and target vertex
𝑡 ∈ 𝒱 , in the Shortest-Path Problem (SPP) we seek an 𝑠-𝑡 path of minimum cost in
𝐺. We observe that the SPP is a special case of the graph optimization problem (4.1),
where the set ℋ of admissible subgraphs contains all the 𝑠-𝑡 paths in 𝐺.

For a directed graph 𝐺, the SPP can be formulated as an ILP of the form (4.2)
by defining the polytope 𝒴 ⊆ [0, 1]𝒱∪ℰ through the following linear constraints:

𝑦𝑣 =
∑︁
𝑒∈ℐin

𝑣

𝑦𝑒 + 𝛿𝑠𝑣 =
∑︁

𝑒∈ℐout
𝑣

𝑦𝑒 + 𝛿𝑡𝑣 ≤ 1, ∀𝑣 ∈ 𝒱 , (4.4a)

∑︁
𝑒∈ℰ𝒰

𝑦𝑒 ≤ |𝒰| − 1, ∀𝒰 ⊂ 𝒱 : |𝒰| ≥ 2, (4.4b)

𝑦𝑒 ≥ 0, ∀𝑒 ∈ ℰ . (4.4c)

For two vertices 𝑣, 𝑤 ∈ 𝒱 , the scalar 𝛿𝑣𝑤 is equal to one if 𝑣 = 𝑤 and is zero otherwise.
To interpret the first constraint, it helps to think of the SPP as the problem of shipping
one unit of water from the source 𝑠 to the target 𝑡. The binary variable 𝑦𝑒 represents
the flow of water carried by the edge 𝑒, while 𝑦𝑣 is the total flow that goes through
vertex 𝑣. Constraint (4.4a) enforces then the flow conservation: one unit of flow is
injected in the source and ejected from the target, while the flow at every other vertex
is at most one and conserved (flow in equals flow out). Satisfying the flow conservation
does not ensure that the subgraph 𝐻 parameterized by 𝑦 is a path, since 𝐻 might
include isolated cycles. The role of the second constraint is to eliminate such cycles: if
𝒰 is the set of vertices traversed by a cycle, then the left-hand side of (4.4b) is equal
to |𝒰| and this constraint is violated. Note that these constraints are exponential
in number: typically, they are not included in the optimization problem from the
beginning, but are added iteratively only if the obtained solution violates them.

The cycle-elimination constraints (4.4b) have been originally proposed by Dantzig,
Fulkerson, and Johnson [45]. Despite the exponentially many constraints, the ILP
formulation (4.4) is not perfect, i.e., its linear relaxation needs not be exact [178,
Proposition 4]. Many alternative cycle-elimination constraints can be found in the

41

literature, each leading to a different ILP formulation of the SPP [178, Section 2]. A
stronger, but still not perfect and even larger, formulation of the SPP is obtained by
replacing the constraints in (4.4b) with the following constraints [178, Propositions 2]:∑︁

𝑒∈ℰ𝒰

𝑦𝑒 ≤
∑︁

𝑢∈𝒰∖{𝑣}

𝑦𝑢, ∀𝑣 ∈ 𝒰 , 𝒰 ⊂ 𝒱 : |𝒰| ≥ 2. (4.5)

This alternative exponential-size formulation can be verified to be as strong as the
polynomial-size formulation proposed in [95] (see [178, Theorem 5]).

The picture changes dramatically if we assume that the costs 𝑐𝑣 for 𝑣 ∈ 𝒱 and 𝑐𝑒
for 𝑒 ∈ ℰ are nonnegative. Under this assumption, the objective function (4.2a) can
only “push” the variables 𝑦 in the direction of the nonpositive orthant. Therefore,
instead of condition (4.3), the tightness of the linear relaxation is quantified by the
inclusion

conv(𝒯) + R𝒱∪ℰ
≥0 ⊆ 𝒴 + R𝒱∪ℰ

≥0 . (4.6)

In words, we neglect any difference that the polytopes conv(𝒯) and 𝒴 might have
in the direction of the nonnegative orthant. If the costs are nonnegative, the cycle-
elimination constraint (4.4b) can be safely removed. The resulting polytope 𝒴 has a
number of facets (number of constraints) that is only linear in the size of the graph 𝐺.
Furthermore, for this polytope the inclusion (4.6) holds with equality (see, e.g., [167,
Section 13.1]). Therefore, the linear relaxation of the ILP formulation of the directed
SPP with nonnegative costs is always exact.

For an undirected graph 𝐺, the SPP could be formulated as an ILP, e.g., by
replacing the flow-conservation constraint (4.4a) with

𝑦𝑣 =
1

2

(︃∑︁
𝑒∈ℐ𝑣

𝑦𝑒 + 𝛿𝑠𝑣 + 𝛿𝑡𝑣

)︃
≤ 1, ∀𝑣 ∈ 𝒱 .

However, this substitution significantly deteriorates the tightness of the linear relax-
ation. In practice, we then prefer to reduce an undirected SPP to a directed SPP by
replacing each unordered edge {𝑣, 𝑤} ∈ ℰ with two ordered edges (𝑣, 𝑤) and (𝑤, 𝑣),
and rely on the ILP formulation (4.4) of the directed problem.

If negative weights are allowed, then the SPP (directed or undirected) is well
known to be NP-hard. If all the weights are nonnegative, then the SPP can be solved
in polynomial time, e.g., through an LP.

42

4.4.2 Travelling salesperson

In the Travelling-Salesperson Problem (TSP) we seek a tour of minimum cost in a
given weighted graph 𝐺. This problem is also a special case of the graph optimization
problem (4.1), where ℋ is the set of all the tours in 𝐺. A variety of interesting
applications of the TSP can be found in [133].

For a directed graph 𝐺, the TSP is formulated as an ILP of the form (4.2) by
letting the polytope 𝒴 be such that

𝑦𝑣 =
∑︁
𝑒∈ℐin

𝑣

𝑦𝑒 =
∑︁

𝑒∈ℐout
𝑣

𝑦𝑒 = 1, ∀𝑣 ∈ 𝒱 , (4.7a)

∑︁
𝑒∈ℰ𝒰

𝑦𝑒 ≤ |𝒰| − 1, ∀𝒰 ⊂ 𝒱 : |𝒰| ≥ 2, (4.7b)

𝑦𝑒 ≥ 0, 𝑒 ∈ ℰ . (4.7c)

The first constraint ensures that each vertex is visited by the tour exactly once. The
second constraint is identical to (4.4b) and prevents cycles in the optimal solution.

If the graph 𝐺 is undirected, we simply replace constraint (4.7a) with

𝑦𝑣 =
1

2

∑︁
𝑒∈ℐ𝑣

𝑦𝑒 = 1, ∀𝑣 ∈ 𝒱 . (4.8)

Note that in case of an undirected graph the cycle-elimination constraint (4.7b) is
redundant for |𝒰| = 2.

These ILP formulations of the directed and undirected TSP have exponential size
and are not perfect (a simple example of this can be found in [108, Section 21.4]).
Similarly to the SPP, there are many well-known formulation of the TSP that have
polynomial size, but the one given above is typically more effective in practice (pro-
vided that the cycle-elimination constraints are added iteratively).

The TSP is one of the most famous NP-complete problems [104], both in the
directed and undirected case and regardless the sign of the cost weights.

4.4.3 Minimum spanning tree

Given an undirected weighted graph 𝐺, the Minimum-Spanning-Tree Problem
(MSTP) asks for a spanning tree of minimum cost. This problem is a special case
of (4.1), where the set ℋ contains all the spanning trees.

By defining the polytope 𝒴 through the following linear constraints, we obtain an

43

ILP formulation of the MSTP:

𝑦𝑣 = 1, ∀𝑣 ∈ 𝒱 , (4.9a)∑︁
𝑒∈ℰ

𝑦𝑒 = |𝒱| − 1, (4.9b)∑︁
𝑒∈ℰ𝒰

𝑦𝑒 ≤ |𝒰| − 1, ∀𝒰 ⊂ 𝒱 : |𝒰| ≥ 3, (4.9c)

𝑦𝑒 ≥ 0, ∀𝑒 ∈ ℰ . (4.9d)

The first constraint requires the tree to span every vertex. The second says that the
number of edges in the tree must be one less than the number of vertices. The third
ensures that the tree does not have cycles.

The constraints in (4.9) are exponential in number, but in [58] it has been shown
that they yield a perfect formulation. An alternative exponential-size formulation of
the MSTP has the following constraints in place of (4.9c):∑︁

𝑒∈ℐ𝒰

𝑦𝑒 ≥ 1, ∀𝒰 ⊂ 𝒱 : |𝒰| ≥ 1. (4.10)

These ensure that the tree is connected. It can be verified that this formulation is
weaker than the one in (4.9) [16, Theorem 10.1]. However, for some specific problems,
this family of constraints can be more effective.

An extended formulation of this polytope has been presented in [132, Section 3.1],
i.e., a description of 𝒴 as the projection of a higher-dimensional polytope that is
defined by a number of variables and linear constraints that is only polynomial in the
size of the graph. This also implies that the MSTP can be solved in polynomial time.

4.4.4 Facility location

In the Facility-Location Problem (FLP) the weighted graph 𝐺 is undirected and
bipartite, with vertices 𝒱 = 𝒱1∪𝒱2. The vertices 𝒱1 are called clients and the vertices
𝒱2 are called facilities. The goal is to find a minimum-cost assignment of each client
to a facility. By including in the set ℋ all the assignments of 𝒱1, we see that also the
FLP is a subclass of problem (4.1).

The FLP is formulated as an ILP (4.2) by letting the polytope 𝒴 enforce the

44

constraints

𝑦𝑣 =
∑︁
𝑒∈ℐ𝑣

𝑦𝑒 = 1, ∀𝑣 ∈ 𝒱1, (4.11a)

𝑦𝑣 ≥ 𝑦𝑒 ≥ 0, ∀𝑣 ∈ 𝒱2, 𝑒 ∈ ℐ𝑣, (4.11b)

𝑦𝑣 ≤ 1, ∀𝑣 ∈ 𝒱2. (4.11c)

The first constraint ensures that each client is assigned to exactly one facility. The
second constraint says that a facility needs to be open in order to cover a client. Note
that the binary variables 𝑦𝑣 for 𝑣 ∈ 𝒱2 decide whether the facility 𝑣 is open or not.
The ILP formulation defined by (4.11) is compact, but its convex relaxation can be
loose.

The FLP is well-known to be NP-hard (see, e.g., [108, Proposition 22.1]). The
Minimum-Set-Cover Problem (MSCP) is another widely studied problem that is
easily seen to be equivalent to the FLP.

4.4.5 Minimum perfect matching

In the Minimum-Perfect-Matching Problem (MPMP) we seek a perfect match-
ing in an undirected weighted graph 𝐺. Letting ℋ be the set of all perfect matchings
in 𝐺, shows that the MPMP is a special case of problem (4.1).

The MPMP is formulated as an ILP of the form (4.2) by defining the polytope 𝒴
through the constraints

𝑦𝑣 =
∑︁
𝑒∈ℐ𝑣

𝑦𝑒 = 1, ∀𝑣 ∈ 𝒱 , (4.12a)

𝑦𝑒 ≥ 0, 𝑒 ∈ ℰ . (4.12b)

The first constraint ensures that every vertex is matched.
The ILP formulation defined by (4.12) has a loose convex relaxation. In fact, for a

complete graph with three vertices the MPMP is infeasible, but the solution 𝑦𝑒 = 1/2

for all 𝑒 ∈ ℰ and 𝑦𝑣 = 1 for all 𝑣 ∈ 𝒱 is feasible for the constraints above. By adding
the following set of (exponentially many) constraints, the convex relaxation of the
ILP becomes perfect [57, Section 2]:∑︁

𝑒∈ℐ𝒰

𝑦𝑒 ≥ 1, ∀𝒰 ⊂ 𝒱 : |𝒰| ≥ 3, |𝒰| is odd. (4.13)

The MPMP is solvable in polynomial time using Edmonds’ matching algorithm [57].

45

On the other hand, contrary to the MSTP, it does not admit an extended formula-
tion [163].

46

Part II

Framework and methodology

47

48

Chapter 5

Graphs of convex sets

In this chapter we introduce the class of problems and the framework at the core
of this thesis. We start by formally defining what a Graph of Convex Sets (GCS)
is. Then we show how the graph optimization problems described in Section 4.4
are naturally extended to GCSs. Finally, we introduce a general methodology to
formulate a GCS problem as an efficient Mixed-Integer Convex Program (MICP).

The results in this chapter generalize the techniques presented in [131] for finding
shortest paths in GCSs.

5.1 What is a graph of convex sets?

A GCS is a graph 𝐺 = (𝒱 , ℰ) where each vertex 𝑣 ∈ 𝒱 is paired with a convex
program, and each edge 𝑒 = [𝑣, 𝑤] ∈ ℰ corresponds to convex costs and constraints
that couple the programs of vertices 𝑣 and 𝑤. As the notation [𝑣, 𝑤] suggests, the
graph 𝐺 can be directed or undirected. The convex program of vertex 𝑣 has variables
𝑥𝑣 ∈ R𝑛𝑣 , constraint set 𝒳𝑣 ⊂ R𝑛𝑣 , and objective function 𝑓𝑣 : R𝑛𝑣 → R. While
the constraint set and cost function paired with edge 𝑒 = [𝑢, 𝑣] are 𝒳𝑒 ⊆ R𝑛𝑣+𝑛𝑤 and
𝑓𝑒 : R𝑛𝑣+𝑛𝑤 → R, respectively. We assume that the sets 𝒳𝑣 and 𝒳𝑒 are nonempty,
closed, and convex. The sets 𝒳𝑣 are also assumed to be bounded. The functions 𝑓𝑣
and 𝑓𝑒 are convex.

Remark 5.1. We can extend the definition of a GCS to include additional variables
𝑥𝑒 ∈ R𝑛𝑒 that are paired with every edge 𝑒 ∈ ℰ . In this case, the constraint set
and the cost function of the edge 𝑒 would be 𝒳 ′

𝑒 ⊆ R𝑛𝑣+𝑛𝑤+𝑛𝑒 and 𝑓 ′
𝑒 : R𝑛𝑣+𝑛𝑤+𝑛𝑒 →

R, respectively. These extra variables can make the modelling easier but, from a
mathematical point of view, this case is easily reduced to the one above. In fact, we

49

can define the set 𝒳𝑒 by projecting 𝒳 ′
𝑒 onto the space of the variables 𝑥𝑣 and 𝑥𝑤, i.e.,

𝒳𝑒 := {(𝑥𝑣,𝑥𝑤) : (𝑥𝑣,𝑥𝑤,𝑥𝑒) ∈ 𝒳 ′
𝑒 for some 𝑥𝑒 ∈ R𝑛𝑒}.

Then we can define the edge cost function by partial minimization over the extra
variable 𝑥𝑒:

𝑓𝑒(𝑥𝑣,𝑥𝑤) := inf{𝑓 ′
𝑒(𝑥𝑣,𝑥𝑤,𝑥𝑒) : (𝑥𝑣,𝑥𝑤,𝑥𝑒) ∈ 𝒳 ′

𝑒}.

It is not hard to see that the set 𝒳𝑒 and the function 𝑓𝑒 verify all the convexity, closure,
and boundedness assumptions required by our framework (see, e.g., [25, Section 3.2.5]
for the convexity part). Therefore we can replace 𝒳 ′

𝑒 and 𝑓 ′
𝑒 with 𝒳𝑒 and 𝑓𝑒, and

eliminate the extra variables 𝑥𝑒 from the GCS.

5.2 GCS problems

We consider a generalization of the graph optimization problem (4.1) where the graph
𝐺 is substituted with a GCS. This substitution leads naturally to the following opti-
mization problem:

minimize
∑︁
𝑣∈𝒲

𝑓𝑣(𝑥𝑣) +
∑︁

𝑒=[𝑣,𝑤]∈ℱ

𝑓𝑒(𝑥𝑣,𝑥𝑤) (5.1a)

subject to 𝐻 = (𝒲 ,ℱ) ∈ ℋ, (5.1b)

𝑥𝑣 ∈ 𝒳𝑣, ∀𝑣 ∈ 𝒲 , (5.1c)

(𝑥𝑣,𝑥𝑤) ∈ 𝒳𝑒, ∀𝑒 = [𝑣, 𝑤] ∈ ℱ . (5.1d)

Here the variables are the discrete subgraph 𝐻 ⊆ 𝐺 and the continuous vectors 𝑥𝑣

for all 𝑣 ∈ 𝒱 . The objective function is equal to the cost of the subgraph 𝐻, defined
as the sum of the cost functions paired with the vertices and the edges in 𝐻. The
first constraint is identical to (4.1b), and states that the subgraph 𝐻 can only be
selected within a given class ℋ of admissible subgraphs of 𝐺. The second and third
constraints enforce the convex constraints paired with the vertices and edges selected
by 𝐻.

The GCS problem (5.1) has a combinatorial component (choosing the subgraph
𝐻) and a convex component (optimizing the variables 𝑥𝑣). We observe that if the
subgraph𝐻 is fixed, then the GCS problem reduces to a convex optimization problem.
Conversely, when we fix the value of the continuous variables 𝑥𝑣, we get back a graph
optimization problem of the form (4.1); over a graph with vertices {𝑣 ∈ 𝒱 : 𝑥𝑣 ∈ 𝒳𝑣},

50

edges {𝑒 = [𝑣, 𝑤] ∈ ℰ : (𝑥𝑣,𝑥𝑤) ∈ 𝒳𝑒}, vertex weights 𝑐𝑣 := 𝑓𝑣(𝑥𝑣), and edge
weights 𝑐𝑒 := 𝑓𝑒(𝑥𝑣,𝑥𝑤). This observation can be used to devise a variety of heuristic
methods to solve the GCS problem (5.1). For example, given an initial guess for the
variables 𝑥𝑣, we could try to find a locally optimal solution by alternating a graph
optimization problem and a convex program. The effectiveness of these heuristics,
however, is very instance dependent. The goal of the next section is to derive a
general methodology that allows us to formulate any GCS problem as a strong and
compact MICP. This MICP can then be reliably solved to global optimality using,
for example, the branch-band-bound algorithm from Section 3.3.2.

5.3 Mixed-integer formulation

We take two steps to formulate the GCS problem (5.1) as an MICP. In the first step,
we formulate the GCS problem as a simple MINCP. Because of its nonconvex costs
and constraints, this problem will not be efficiently solvable yet. In the second step,
we use a convexification process tailored to the structure of our problem, which yields
an MICP that is equivalent to, but much easier to solve than, the MINCP.

5.3.1 Nonconvex formulation

We formulate the MINCP by building on the ILP formulation (4.2) of the purely
discrete problem that underlies our GCS problem. We parameterize the subgraph
𝐻 through its incidence vector 𝑦𝐻 ∈ {0, 1}𝒱∪ℰ . While the set ℋ is represented
by a polytope 𝒴 ⊆ [0, 1]𝒱∪ℰ that constrains the incidence vectors of the admissible
subgraphs. Given this parameterization, the GCS problem (5.1) is formulated as the
following optimization problem:

minimize
∑︁
𝑣∈𝒱

𝑦𝑣𝑓𝑣(𝑥𝑣) +
∑︁

𝑒=[𝑣,𝑤]∈ℰ

𝑦𝑒𝑓𝑒(𝑥𝑣,𝑥𝑤) (5.2a)

subject to 𝑦 ∈ 𝒴 ∩ {0, 1}𝒱∪ℰ , (5.2b)

𝑦𝑣𝑥𝑣 ∈ 𝑦𝑣𝒳𝑣, ∀𝑣 ∈ 𝒱 , (5.2c)

𝑦𝑒(𝑥𝑣,𝑥𝑤) ∈ 𝑦𝑒𝒳𝑒, ∀𝑒 = [𝑣, 𝑤] ∈ ℰ . (5.2d)

The first constraint ensures that the vector 𝑦 is the incidence vector of a subgraph
𝐻 ∈ ℋ. The other constraints use the binary variables in 𝑦 to select the appropriate
constraints from the vertices and edges of the GCS. For example, the second constraint
simplifies to 𝑥𝑣 ∈ 𝒳𝑣 if 𝑦𝑣 = 1, and gives the redundant constraint 0 ∈ 0𝒳𝑣 = {0}

51

when 𝑦𝑣 = 0. The objective function operates similarly, and selects only the cost
functions of the vertices and edges that belong to our subgraph.

Problem (5.2) is an MINCP, since the objective function and the last two con-
straints are not convex. Our next goal is to manipulate this problem and isolate its
nonconvexity into a single collection of bilinear equality constraints.

For each vertex 𝑣 ∈ 𝒱 , we introduce the auxiliary variable 𝑧𝑣 := 𝑦𝑣𝑥𝑣. Using
these new variables, the nonnegativity of 𝑦𝑣, and the formula (2.2), the nonconvex
constraint (5.2c) is rewritten as a convex constraint in (𝑧𝑣, 𝑦𝑣):

𝑦𝑣 ≥ 0, 𝑦𝑣𝑥𝑣 ∈ 𝑦𝑣𝒳𝑣 ⇐⇒ (𝑧𝑣, 𝑦𝑣) ∈ 𝒳𝑣, (5.3)

where 𝒳𝑣 denotes the (closure of the) homogenization of 𝒳𝑣.1 Similarly, the nonconvex
vertex costs in (5.2a) can be rewritten as the convex costs 𝑓𝑣(𝑧𝑣, 𝑦𝑣). In fact, for
𝑦𝑣 > 0, we have

𝑦𝑣𝑓𝑣(𝑥𝑣) = 𝑦𝑣𝑓𝑣(𝑦𝑣𝑥𝑣/𝑦𝑣) = 𝑦𝑣𝑓𝑣(𝑧𝑣/𝑦𝑣) = 𝑓𝑣(𝑧𝑣, 𝑦𝑣).

While, for 𝑦𝑣 = 0, constraint (5.3) gives us 𝑧𝑣 = 0 and we have

𝑦𝑣𝑓𝑣(𝑥𝑣) = 0𝑓𝑣(𝑥𝑣) = 0 = 𝑓𝑣(0, 0),

where the last equality follows from (2.11).

The operation just done for the vertices of the GCS can be repeated for the edges.
For each edge 𝑒 ∈ ℐ𝑣 incident with vertex 𝑣, we define an auxiliary variable 𝑧𝑒

𝑣 := 𝑦𝑒𝑥𝑣.
Then we substitute constraint (5.2d) with the convex constraint (𝑧𝑒

𝑣, 𝑧
𝑒
𝑤, 𝑦𝑒) ∈ 𝒳𝑒, and

the edge costs in (5.2a) with the convex costs 𝑓𝑒(𝑧𝑒
𝑣, 𝑧

𝑒
𝑤, 𝑦𝑒).2

Overall, we have transformed the MINCP (5.2) into the equivalent optimization

1Everywhere in this and the following chapters we will omit writing the closure in front of the
homogenization explicitly. When using the symbol tilde, we will always mean the closure of the
homogenization, both for sets and for functions.

2We are slightly abusing notation here. To be precise, we should write ((𝑧𝑒
𝑣, 𝑧

𝑒
𝑤), 𝑦𝑒) ∈ 𝒳𝑒 and

𝑓𝑒((𝑧
𝑒
𝑣, 𝑧

𝑒
𝑤), 𝑦𝑒).

52

problem

minimize
∑︁
𝑣∈𝒱

𝑓𝑣(𝑧𝑣, 𝑦𝑣) +
∑︁
𝑒∈ℰ

𝑓𝑒(𝑧
𝑒
𝑣, 𝑧

𝑒
𝑤, 𝑦𝑒) (5.4a)

subject to 𝑦 ∈ 𝒴 ∩ {0, 1}𝒱∪ℰ , (5.4b)

(𝑧𝑣, 𝑦𝑣) ∈ 𝒳𝑣, ∀𝑣 ∈ 𝒱 , (5.4c)

(𝑧𝑒
𝑣, 𝑧

𝑒
𝑤, 𝑦𝑒) ∈ 𝒳𝑒, ∀𝑒 = [𝑣, 𝑤] ∈ ℰ , (5.4d)

𝑧𝑣 = 𝑦𝑣𝑥𝑣, 𝑧
𝑒
𝑣 = 𝑦𝑒𝑥𝑣, ∀𝑣 ∈ 𝒱 , 𝑒 ∈ ℐ𝑣. (5.4e)

This is also an MINCP, but has the advantage that its only nonconvexity (except for
the integrality constraints) are the bilinear constraints (5.4e). Our next step is to
design a convex relaxation tailored to these bilinear constraints.

Remark 5.2. Recall that, for the convex sets 𝒳𝑣 and 𝒳𝑒 and the convex costs 𝑓𝑣
and 𝑓𝑒 that are typically encountered in convex optimization, the (closure of the)
homogenization can be computed very easily using the formula (2.5).

5.3.2 Convex formulation

There are many ways to reformulate the MINCP (5.4) as an MICP. Here we show
a simple and effective approach that carefully balances the MICP size and strength.
First we add as many valid convex constraints as we can to the MINCP (we say that a
constraint is valid for an optimization problem if it does not affect the problem optimal
value). Then we obtain our MICP simply by dropping the bilinear constraints (5.4e).
The goal of the additional convex constraints is twofold:

∙ First, they need to exactly replicate the effects of the bilinear constraints (5.4e)
when the entries of 𝑦 take binary value. This ensures that our MICP is a correct
formulation of the original GCS problem (5.1).

∙ Secondly, they need to envelop the bilinear constraints (5.4e) as tightly as pos-
sible, so that the convex relaxation of our MICP gives tight lower bounds.

The following lemma gives us an algorithmic way of generating a family of valid
convex constraints for the MINCP (5.4).

Lemma 5.1. For some vertex 𝑣 ∈ 𝒱, assume that the linear inequality

𝑎𝑦𝑣 +
∑︁
𝑒∈ℐ𝑣

𝑎𝑒𝑦𝑒 + 𝑏 ≥ 0 (5.5)

53

is valid for the polytope 𝒴. Then the convex constraint(︃
𝑎𝑧𝑣 +

∑︁
𝑒∈ℐ𝑣

𝑎𝑒𝑧
𝑒
𝑣 + 𝑏𝑥𝑣, 𝑎𝑦𝑣 +

∑︁
𝑒∈ℐ𝑣

𝑎𝑒𝑦𝑒 + 𝑏

)︃
∈ 𝒳𝑣 (5.6)

is valid for problem (5.4).

Proof. Constraint (5.6) requires two conditions to hold. One is (5.5), which is as-
sumed. For the second, we multiply both sides of the constraint 𝑥𝑣 ∈ 𝒳𝑣 (which is
easily seen to be valid for the MINCP (5.4)) by the left-hand side of (5.5). Then we
use the bilinear constraints (5.4e) to linearize all the variable products.

Let us illustrate the usage of Lemma 5.1 through some simple examples. Recall
that the polytope 𝒴 is assumed to be contained in the unit hypercube [0, 1]𝒱∪ℰ .
Therefore, for any given vertex 𝑣, the inequalities 0 ≤ 𝑦𝑣 ≤ 1 and 0 ≤ 𝑦𝑒 ≤ 1 for all
𝑒 ∈ ℐ𝑣 are certainly valid for 𝒴 . We can then apply Lemma 5.1 to these inequalities
to derive the following valid convex constraints:

𝑦𝑣 ≥ 0 ⇒ (𝑧𝑣, 𝑦𝑣) ∈ 𝒳𝑣, ∀𝑣 ∈ 𝒱 , (5.7a)

1 − 𝑦𝑣 ≥ 0 ⇒ (𝑥𝑣 − 𝑧𝑣, 1 − 𝑦𝑣) ∈ 𝒳𝑣, ∀𝑣 ∈ 𝒱 , (5.7b)

𝑦𝑒 ≥ 0 ⇒ (𝑧𝑒
𝑣, 𝑦𝑒) ∈ 𝒳𝑣, ∀𝑣 ∈ 𝒱 , 𝑒 ∈ ℐ𝑣, (5.7c)

1 − 𝑦𝑒 ≥ 0 ⇒ (𝑥𝑣 − 𝑧𝑒
𝑣, 1 − 𝑦𝑒) ∈ 𝒳𝑣, ∀𝑣 ∈ 𝒱 , 𝑒 ∈ ℐ𝑣. (5.7d)

We note that the first condition above is equal to (5.4c), while the remaining three
conditions are not part of (but implied by) the constraints of our MINCP.

Remark 5.3. Lemma 5.1 is easily specialized to linear equality constraints of the
form

𝑎𝑦𝑣 +
∑︁
𝑒∈ℐ𝑣

𝑎𝑒𝑦𝑒 + 𝑏 = 0.

In this case, the implied valid constraint is also a linear equality:

𝑎𝑧𝑣 +
∑︁
𝑒∈ℐ𝑣

𝑎𝑒𝑧
𝑒
𝑣 + 𝑏𝑥𝑣 = 0.

In Chapter 6 we will analyze specific classes of GCS problems, and we will ap-
ply Lemma 5.1 to derive additional convex constraints tailored to those problems.
However, as shown in the next theorem, the constraints in (5.7) are already sufficient
to achieve our first goal above, i.e., give us a correct MICP formulation of the GCS
problem.

54

Theorem 5.1. The MICP

minimize
∑︁
𝑣∈𝒱

𝑓𝑣(𝑧𝑣, 𝑦𝑣) +
∑︁
𝑒∈ℰ

𝑓𝑒(𝑧
𝑒
𝑣, 𝑧

𝑒
𝑤, 𝑦𝑒) (5.8a)

subject to 𝑦 ∈ 𝒴 ∩ {0, 1}𝒱∪ℰ , (5.8b)

(𝑧𝑣, 𝑦𝑣) ∈ 𝒳𝑣, (𝑥𝑣 − 𝑧𝑣, 1 − 𝑦𝑣) ∈ 𝒳𝑣, ∀𝑣 ∈ 𝒱 , (5.8c)

(𝑧𝑒
𝑣, 𝑦𝑒) ∈ 𝒳𝑣, (𝑥𝑣 − 𝑧𝑒

𝑣, 1 − 𝑦𝑒) ∈ 𝒳𝑣, ∀𝑣 ∈ 𝒱 , 𝑒 ∈ ℐ𝑣, (5.8d)

(𝑧𝑒
𝑣, 𝑧

𝑒
𝑤, 𝑦𝑒) ∈ 𝒳𝑒, ∀𝑒 = [𝑣, 𝑤] ∈ ℰ . (5.8e)

is a correct formulation of the GCS problem (5.1).

Proof. Since the MICP (5.8) is a relaxation of the MINCP (5.4), it suffices to show
that the feasible points of the MICP satisfy the bilinear equalities 𝑧𝑣 = 𝑦𝑣𝑥𝑣 and
𝑧𝑒
𝑣 = 𝑦𝑒𝑥𝑣 for all 𝑣 ∈ 𝒱 and 𝑒 ∈ ℐ𝑣. If 𝑦𝑣 = 0 (𝑦𝑣 = 1) the bilinear equalities give us

𝑧𝑣 = 0 (𝑧𝑣 = 𝑥𝑣), and this is also ensured by the first (second) constraint in (5.8c).
If 𝑦𝑒 = 0 (𝑦𝑒 = 1) the bilinear equalities give us 𝑧𝑒

𝑣 = 0 (𝑧𝑒
𝑣 = 𝑥𝑣), and this is also

ensured by the first (second) constraint in (5.8d).

In its current form, the MICP (5.8) can have a very loose convex relaxation. What
will tighten the relaxation is the application of Lemma 5.1 to the problem specific
constraints (as shown Chapter 6). The MICP (5.8) has small size: in its design
we did not introduce additional variables with respect to the original MINCP (5.4).
Furthermore, the usage of Lemma 5.1 gives us a number of additional constraints
that is at most equal to the number of inequalities defining the polytope 𝒴 .

5.4 Discussion

The core idea behind Lemma 5.1 (i.e., deriving a valid constraint by multiplying a
valid convex constraint by a valid linear inequality) is very general. We will extend
and analyze in depth this procedure in Chapter 8. What is peculiar about Lemma 5.1
is the assumption that the linear inequality (5.5) involves only the binary variables
related to a single vertex 𝑣. The reason for this is that, if we were to multiply the
vector 𝑥𝑣 by a generic linear expression∑︁

𝑤∈𝒱

𝑎𝑤𝑦𝑤 +
∑︁
𝑒∈ℰ

𝑎𝑒𝑦𝑒 + 𝑏,

we would get products of variables that cannot be linearized using the variables in the
MINCP (5.4). Therefore we would have to introduce additional variables (potentially

55

all possible products 𝑦𝑤𝑥𝑣 for 𝑣, 𝑤 ∈ 𝒱 and 𝑦𝑒𝑥𝑣 for 𝑣 ∈ 𝒱 and 𝑒 ∈ ℰ), but this would
make our optimization problems much larger and slower to solve.

In Section 4.4 we have seen that efficient ILP formulations of some graph optimiza-
tion problems require the use of auxiliary variables (so-called extended formulations).
In these formulations, the polytope 𝒴 is described as the projection onto the space of
the variables 𝑦 of a higher-dimensional polytope. Starting from such a formulation,
we face a decision similar to the one just discussed: either we exclude the constraints
involving the auxiliary variables from the convexification process, or we include them
at the price of introducing extra variables that represent the products of the auxil-
iary variables and the vertex positions 𝑥𝑣. The first route yields smaller but weaker
formulations, the second gives us larger but stronger formulations.

We observe that if each set 𝒳𝑣 contains only one point �̄�𝑣 ∈ R𝑛𝑣 , then our MICP
reduces to the ILP formulation (4.2) of the graph optimization problem underlying
the GCS problem. In fact, under this assumption, the constraints (5.8c) and (5.8d)
imply 𝑧𝑣 = 𝑦𝑣�̄�𝑣 and 𝑧𝑒

𝑣 = 𝑦𝑒�̄�𝑣 for all 𝑣 ∈ 𝒱 and 𝑒 ∈ ℐ𝑣. Substituting these values in
the objective function, we obtain

𝑓𝑣(𝑦𝑣�̄�𝑣, 𝑦𝑣) = 𝑦𝑣𝑓𝑣(�̄�𝑣, 1) = 𝑦𝑣𝑓𝑣(�̄�𝑣) = 𝑦𝑣𝑐𝑣

where 𝑐𝑣 := 𝑓𝑣(�̄�𝑣) ∈ R is the fixed cost of vertex 𝑣 ∈ 𝒱 . Similarly, for each edge
𝑒 ∈ ℰ , we have

𝑓𝑒(𝑦𝑒�̄�𝑣, 𝑦𝑒�̄�𝑤, 𝑦𝑒) = 𝑦𝑒𝑓𝑒(�̄�𝑣, �̄�𝑤, 1) = 𝑦𝑒𝑓𝑒(�̄�𝑣, �̄�𝑤) = 𝑦𝑒𝑐𝑒

where 𝑐𝑒 := 𝑓𝑒(�̄�𝑣, �̄�𝑤) ∈ R is the fixed cost of edge 𝑒. Informally, this shows that
the strength of the initial ILP formulation has a fundamental effect on the strength
of our MICP. It also suggests that sets 𝒳𝑣 of large volume can lead to loose convex
relaxations.

For the convex sets 𝒳𝑣 and 𝒳𝑒 that typically appear in practice, the MICP (5.8)
can be solved to global optimality with standard solvers. However, problem (5.8) can
be tackled numerically even when the sets in our GCS are not defined by explicit
constraints (e.g., convex inequalities). For example, each sets 𝒳𝑣 and 𝒳𝑒 may be very
complex and accessible only through an oracle that, given a point, either certifies that
the point is in the set or returns a separating hyperplane. In fact, such an oracle is
easily adapted to checking membership to the homogenizations of 𝒳𝑣 and 𝒳𝑒, and
this black-box access to the problem constraints is sufficient for efficient optimization
algorithms like the ellipsoid method [86].

56

Chapter 6

Examples of GCS problems

In the previous chapter we have introduced a general methodology to formulate a
Graph of Convex Sets (GCS) problem as a Mixed-Integer Convex Program (MICP).
Lemma 5.1 takes valid linear constraints for a graph optimization problem and au-
tomatically translates them into valid convex constraints for the corresponding GCS
problem. In Theorem 5.1 we have applied this lemma to formulate a general-purpose
MICP (5.8), that allows us to solve numerically any GCS problem. However, given
a specific class of GCS problems, Lemma 5.1 can be used to derive additional valid
constraints and increase the efficiency of our MICPs. This is shown in this chapter for
a variety of practically relevant GCS problems. In addition, in this chapter we also
illustrate multiple examples that demonstrate the wide applicability of the techniques
developed in this thesis.

6.1 Shortest path

We have briefly described the classical Shortest-Path Problem (SPP) in Section 4.4.1.
Here we study its extension in GCS. We anticipate that the SPP in GCS is NP-hard
even for very simple cost functions and constraint sets (see Section 9.2).

The linear constraints (4.4) describe the polytope 𝒴 that allows us to formulate
the directed SPP as an Integer Linear Program (ILP). Here we apply Lemma 5.1 to
the inequalities defining this polytope to specialize the general-purpose MICP (5.8) to
the directed SPP in GCS. This MICP was proposed in [131]. The convex constraints
implied by the bound 𝑦𝑣 ≤ 1 and 𝑦𝑒 ≥ 0 are already included in the MICP (5.8) (see
the second constraint in (5.8c) and the first constraint in (5.8d), respectively). The
equalities in the flow conservation (4.4a) are amenable to Lemma 5.1 as described in

57

Remark 5.3. This yields the valid linear equalities

𝑧𝑣 =
∑︁
𝑒∈ℐin

𝑣

𝑧𝑒
𝑣 + 𝛿𝑠𝑣𝑥𝑣 =

∑︁
𝑒∈ℐout

𝑣

𝑧𝑒
𝑣 + 𝛿𝑡𝑣𝑥𝑣, ∀𝑣 ∈ 𝒱 . (6.1)

Lemma 5.1 can be applied to the cycle-elimination constraints in (4.4b) only
when the subset 𝒰 contains two vertices, i.e., the graph 𝐺 has pairs of opposite
edges 𝑒 = (𝑣, 𝑤) and 𝑓 = (𝑤, 𝑣). (This is the case, for example, if we formulate an
undirected SPP as a directed SPP as discussed at the end of Section 4.4.1.) The
resulting convex constraints are

(𝑥𝑣 − 𝑧𝑒
𝑣 − 𝑧𝑓

𝑣 , 1 − 𝑦𝑒 − 𝑦𝑓) ∈ 𝒳𝑣, ∀𝑒 = (𝑣, 𝑤) ∈ ℰ : 𝑓 = (𝑤, 𝑣) ∈ ℰ . (6.2)

We can also apply Lemma 5.1 to the alternative cycle-elimination constraints (4.5)
with |𝒰| = 2. We obtain

(𝑧𝑣 − 𝑧𝑒
𝑣 − 𝑧𝑓

𝑣 , 𝑦𝑣 − 𝑦𝑒 − 𝑦𝑓) ∈ 𝒳𝑣, (𝑧𝑤 − 𝑧𝑒
𝑣 − 𝑧𝑓

𝑣 , 𝑦𝑤 − 𝑦𝑒 − 𝑦𝑓) ∈ 𝒳𝑤,

∀𝑒 = (𝑣, 𝑤) ∈ ℰ : 𝑓 = (𝑤, 𝑣) ∈ ℰ . (6.3)

The constraint in (6.2) is implied by the two constraints in (6.3): we simply sum to
the latter the conditions (𝑥𝑣−𝑧𝑣, 1−𝑦𝑣) ∈ 𝒳𝑣 and (𝑥𝑤−𝑧𝑤, 1−𝑦𝑤) ∈ 𝒳𝑤 from (5.8c).
This shows that the MICP featuring the constraints (6.3) is as strong or stronger than
the one featuring (6.2).

Our overall MICP formulation of the SPP in GCS is obtained by adding to prob-
lem (5.8) the constraint (6.1) and one between constraint (6.2) and (6.3) (the second
is typically more effective).

In Section 4.4.1 we have discussed how, if we assume the vertex and edge costs to be
nonnegative, the cycle-elimination constraints are redundant for the ILP formulation
of the ordinary SPP. For the SPP in GCS things are a little more complicated. If
we assume that the functions 𝑓𝑣 and 𝑓𝑒 for 𝑣 ∈ 𝒱 and 𝑒 ∈ ℰ take nonnegative
values, then the cycle-elimination constraints are unnecessary for the correctness of
our mixed-integer formulation (as well as the corresponding constraints derived using
Lemma 5.1). In fact, if they are unnecessary for the original ILP, then they are
also unnecessary for the corresponding MINCP (5.2), which in turn is equivalent to
the MICP (5.8) by Theorem 5.1. On the other hand, even under the nonnegativity
assumption, these constraints can help making the convex relaxation of our MICP
tighter.

58

6.1.1 Example: helicopter flight

We have an helicopter that is powered by solar energy and has to fly across an
archipelago. The battery level over time is described by the function 𝑏 : R → [0, 1].
The helicopter flies at constant speed 𝜎 = 100 and, when flying, its battery level
decreases at rate 𝛼 = 5. It can stop at any time on any of the islands to recharge
the battery. During the recharging breaks, the battery level increases at rate 𝛽 = 1.
The helicopter starts from the island indexed by 𝑖 = 1 with full battery. This island
is taken to be a circle with center 𝑐1 = (0, 0) and zero radius 𝑟1 = 0. The final island
has index 𝑖 = 2 and is a circle with center 𝑐2 = (100, 100) and radius 𝑟2 = 0. The
other islands are indexed by 𝑖 = 3, . . . , 𝑁 , with 𝑁 := 25, and they are full dimensional
circles

𝒞𝑖 := {𝑞 ∈ R2 : ‖𝑞 − 𝑐𝑖‖2 ≤ 𝑟𝑖}.

Their centers 𝑐𝑖 ∈ R2 are drawn uniformly at random from the interval [𝑐1, 𝑐2] and
the radii 𝑟𝑖 are drawn uniformly at random from the interval [0, 10]. (Whenever we
sample an island that intersects with one of the previous islands we reject it.) The
goal is to complete the fight in minimum time. Time passes both when the helicopter
is flying and when it is recharging the batteries.

The top panel in Figure 6-1 shows the optimal trajectory of the helicopter; the
bottom panel shows the battery level 𝑏 as a function of time. The optimal flight
requires eight recharging breaks and takes a total time of 8.45.

We formulate the problem just described as an SPP in GCS. We construct a graph
𝐺 = (𝒱 , ℰ) with one vertex per island, i.e., |𝒱| = 𝑁 . The source is the first island,
𝑠 := 1, and the target is the second island, 𝑡 := 2. We draw an edges between any
pair of islands that are close enough for the helicopter to fly between them, assuming
full battery at the beginning of the flight. In formulas, we have (𝑖, 𝑗) ∈ ℰ if

‖𝑐𝑗 − 𝑐𝑖‖2 < 𝑟𝑖 + 𝑟𝑗 + 𝜎/𝛼, (6.4)

for all 𝑖, 𝑗 = 1, . . . , 𝑁 such that 𝑖 ̸= 𝑗.
Each vertex 𝑖 = 1, . . . , 𝑁 has two continuous variables:

∙ 𝑞𝑖 ∈ 𝒞𝑖: recharge point in case the helicopter decides to stop on the 𝑖th island,

∙ 𝑏𝑖 ∈ [0, 1]2: battery level before and after recharging on the island.

These variables are stacked to form the vector 𝑥𝑖 := (𝑞𝑖, 𝑏𝑖) ∈ R4. The recharging
time spent on the 𝑖th island is ℎ(𝑏𝑖) := (𝑏𝑖,2 − 𝑏𝑖,1)/𝛽. The convex set 𝒳𝑖 ⊂ R4 paired
with vertex 𝑖 is equal to 𝒞𝑖× [0, 1]2 with the additional constraint that ℎ(𝑏𝑖) ≥ 0. The

59

0 1 2 3 4 5 6 7 8
Time

0.0

0.2

0.4

0.6

0.8

1.0

Ba
tte

ry
 le

ve
l b

Figure 6-1: Example of an SPP in GCS. A helicopter powered by solar energy flies
through an archipelago in minimum time. Top: optimal trajectory of the helicopter.
Bottom: optimal battery level as a function of time.

60

set 𝒳1 also ensures that the battery is fully charged at the beginning of the flight,
i.e., 𝑏1,2 = 1. The cost of vertex 𝑖 is the linear function 𝑓𝑖(𝑥𝑖) := ℎ(𝑏𝑖). (Note that
the variables 𝑏1,1 and 𝑏2,2 are actually irrelevant, and have the only role of simplifying
the notation.)

Each edge 𝑒 = (𝑖, 𝑗) has a cost equal to the flight time 𝑓𝑒(𝑥𝑖,𝑥𝑗) := ‖𝑞𝑗 − 𝑞𝑖‖2/𝜎,
and is paired with the convex set

𝒳𝑒 := {(𝑥𝑖,𝑥𝑗) : 𝑏𝑗,1 ≤ 𝑏𝑖,2 − 𝛼‖𝑞𝑗 − 𝑞𝑖‖2/𝜎}.

The latter constraint states that the battery level before charging on island 𝑗 cannot be
greater than the battery level after charging on island 𝑖, minus the battery consumed
to fly between the islands. (Note that the slack in this inequality will always be zero
at optimality, and enforcing the equality directly would not be convex.)

The convex relaxation of the SPP in GCS, without enforcing any cycle elimination
constraint, has optimal value equal to 8.33 time units. Therefore the relaxation gap
(cost of the MICP minus cost of the relaxation, normalized by the cost of the MICP)
is only 1.4%. Essentially, the problem is solved through a single convex program; a
Second-Order Cone Program (SOCP) in this case.

6.2 Travelling salesperson

We have introduced the Travelling-Salesperson Problem (TSP) in Section 4.4.2, here
we consider its extension in GCS. The TSP in GCS is a generalization of the ordinary
TSP, therefore it is NP-hard. Our goal is to formulate this problem as a practical
MICP. As for the SPP, we start from the base MICP (5.8), and we derive specialized
constraints for this problem using Lemma 5.1 and the ILP formulation of the TSP
from Section 4.4.2.

We start by considering the directed TSP. We apply Lemma 5.1 to all the linear
constraints in (4.7). The base MICP (5.8) already contains the convex constraints
implied by the bounds 𝑦𝑣 ≤ 1 and 𝑦𝑒 ≥ 0. The equality constraints (4.7a) is amenable
to Lemma 5.1 as described in Remark (5.3), and it gives us the following valid linear
equalities for the TSP in GCS:

𝑧𝑣 =
∑︁
𝑒∈ℐin

𝑣

𝑧𝑒
𝑣 =

∑︁
𝑒∈ℐout

𝑣

𝑧𝑒
𝑣 = 𝑥𝑣, ∀𝑣 ∈ 𝒱 . (6.5)

As seen for the SPP, the cycle-elimination constraint (4.7b) is amenable to Lemma 5.1
provided that the set 𝒰 has only two elements. In particular, the constraints (6.2)

61

and (6.3) are also valid for the TSP in GCS.
For the undirected TSP we proceed similarly. The only difference is the linear

constraint (6.5), which is now substituted with

𝑧𝑣 =
1

2

∑︁
𝑒∈ℐ𝑣

𝑧𝑒
𝑣 = 𝑥𝑣, ∀𝑣 ∈ 𝒱 .

The latter constraint is obtained from the equality (4.8) as in Remark (5.3).

6.2.1 Example: optimal car pooling

There is a party in Manhattan and the host is going to pick up 𝑁 := 12 guests with
a van. The location of the party is 𝜃0 := (45, 7), where the first coordinate is the
street and the second is the avenue. The guests have initial coordinates 𝜃𝑖 ∈ Z2 for
𝑖 = 1, . . . , 𝑁 , and they are willing to move with a car to shorten the ride of the host.
The goal is to find the optimal pick-up location of each guest so that the total gas
consumption is minimized. The van of the host consumes two units of gas per unit of
distance (distances are measured using the ℒ1 norm). The cars of the guests consume
half of that. Figure 6-2 depicts the optimal solution of this problem for a particular
choice of the initial positions of the guests.

The problem can be formulated as a TSP in GCS as follows. We construct an
undirected graph 𝐺 = (𝒱 , ℰ) with |𝒱| = 13 vertices; one represents the party, the
remaining are the guests. The party vertex is labelled as zero and has continuous
variable 𝑥0. The set 𝒳0 enforces the equality 𝑥0 = 𝜃0. The cost function 𝑓0 is zero.
The guest vertices are 𝑖 = 1, . . . , 𝑁 , and have variables 𝑥𝑖 ∈ R2. The sets 𝒳𝑖 enforce
the conservative bounds 𝑥𝑖 ∈ [𝜃min,𝜃max], where 𝜃min and 𝜃max are the elementwise
minimum and maximum of {𝜃1, . . . ,𝜃𝑁}. The cost function 𝑓𝑖 is equal to the distance
travelled by the guest, i.e., ‖𝑥𝑖 − 𝜃𝑖‖1. The graph is fully connected, and the cost of
each edge 𝑒 = {𝑣, 𝑤} is 𝑓𝑒(𝑥𝑣,𝑥𝑤) := 2‖𝑥𝑣 − 𝑥𝑤‖1, where the coefficient takes into
account the higher gas consumption of the host van.

Note that with the formulation just described the pick-up locations 𝑥𝑖 of the
guests are allowed to be fractional. However, it can be verified that the optimal value
of these variables is always integer valued. This is because of the ℒ1 metric used in
the cost functions, and the integral values of the initial positions 𝜃𝑖.

The optimal value of the problem is 39, and the one of the convex relaxation
(including the exponentially many cycle-elimination constraints) is 24.1. For this
problem the relaxation is not as tight as for the helicopter-flight example, since the
ILP formulation of the TSP is much weaker than the one of the SPP (which is exact

62

40 41 42 43 44 45 46 47 48 49 50 51 52 53
3

4

5

6

7

8

9

10

11

12

1

2

3

4

5

6

7

8

9

10

11

12

party
guest initial
guest optimal
guest motion
host motion

Figure 6-2: Optimal car pooling as a TSP in GCS. A host picks up 𝑁 := 12 guests
for a party. The goal is to minimize the total fuel consumption, and the guests are
willing to move towards the host in order to reduce the total cost of the trip.

for nonnegative weights).

6.3 Minimum spanning tree

We extend the Minimum-Spanning-Tree Problem (MSTP) introduced in Section 4.4.3
to the GCS setting, and we formulate it as an MICP. The MSTP in GCS is a gener-
alization of the MSTP with neighborhoods, therefore it inherits the NP-hardness of
the latter problem [193, Theorem 1].

As for the previous problems we start from the base formulation (5.8). By applying
Remark (5.3) on the equality constraint (4.9a) we find the additional linear equality

𝑧𝑣 = 𝑥𝑣, ∀𝑣 ∈ 𝒱 .

Constraint (4.10) for |𝒰| = 1 is amenable to Lemma 5.1 and gives:(︃∑︁
𝑒∈ℐ𝑣

𝑧𝑒
𝑣 − 𝑥𝑣,

∑︁
𝑒∈ℐ𝑣

𝑦𝑒 − 1

)︃
∈ 𝒳𝑣, ∀𝑣 ∈ 𝒱 .

63

Figure 6-3: Design of a power network using the MSTP in GCS. Cities are convex
sets and are connected to the other cities through electricity cables (blue). The goal
is to minimize the total length of the electricity grid.

All the other constraints that are not variables bounds (constraints (4.9b) and (4.9c))
involve more than one vertex, and are not suitable for Lemma 5.1.

6.3.1 Example: power network design

We consider an MSTP in GCS where𝑁 := 15 cities need to be connected by electricity
cables, and we need to decide where each city should be latched to the grid. The cities
are disposed on a uniform gird with integer coordinates. A city is represented as a
two-dimensional set: a circle or a square with equal probability. The diameter of the
circles and the sides of the squares are chosen uniformly at random from the interval
[0, 0.6]. The goal is to minimize the total length of the electricity grid. Figure 6-3
shows the optimal solution of this problem.

The problem just described is formulated as an MSTP in GCS very easily. The
vertices are the cities, and the edges connect the cities as shown in Figure 6-3. The
continuous variables are the latching locations within each city. Vertices have zero
cost and edges have cost equal to the Euclidean distance of the points that they
connect. Edges are not associated with any constraint.

The optimal cost of the MICP is 10.00, and the one of the convex relaxation
(including all the cycle-elimination constraints) is 9.00. As for the SPP, the convex
relaxation is very accurate for this problem. Recall that both the SPP and the MSTP

64

can be solved in polynomial time. Additionally, the base ILP formulations of these
problems, which our MICP builds on, have exact convex relaxation.

6.4 Facility location

The Facility-Location Problem (FLP) was described in Section 4.4.4. Since the FLP
is NP-hard, so is the FLP in GCS. The application of Remark (5.3) and Lemma 5.1
to the constraints (4.11a) and (4.11b) gives

𝑧𝑣 =
∑︁
𝑒∈ℐ𝑣

𝑧𝑒
𝑣 = 𝑥𝑣, ∀𝑣 ∈ 𝒱1,

(𝑧𝑣 − 𝑧𝑒
𝑣, 𝑦𝑣 − 𝑦𝑒) ∈ 𝒳𝑣, ∀𝑣 ∈ 𝒱2, 𝑒 ∈ ℐ𝑣.

Added to the base MICP (5.8), these constraints yield our MICP formulation of the
FLP in GCS.

6.4.1 Example: sphere cover for robot collision checking

Collision checks are a very common problem in robotics. Consider, for example, a
robot arm with multiple revolute joints. Given a configuration of the arm (i.e., given
the angle of every joint), we want to be sure that every pair of robot links is not in
collision. Exact collision checks can be computationally expensive, since the robot
links might have complex shape. A common workaround is then to construct an outer
approximation of each link using simpler shapes (typically spheres). We formulate
this outer-approximation problem as an FLP in GCS.

Consider the simple two-dimensional robot link illustrated in Figure 6-4. As it
is often the case, the link of our robot is described by a triangular mesh: 𝒯𝑖 ⊂ R2

for 𝑖 = 1, . . . , 𝑁 . The number of triangles in the figure is 𝑁 = 17. Given that the
problem is in two dimensions, we seek a collection of circles 𝒞𝑗 ⊂ R2 for 𝑗 = 1, . . . ,𝑀 .
Each triangle 𝒯𝑖 must be entirely contained in at least one circle 𝒞𝑗. Among all the
possible solutions, we seek the one that minimizes the sum of the areas of the circles.
We optimize both the shape of the circles and their number. The optimal solution is
reported in Figure 6-4, and uses only 𝑀 = 5 circles to cover all the triangles in the
mesh.

We formulate the problem above as an FLP in GCS. Each triangle 𝒯1, . . . , 𝒯𝑁 is
a client that needs to be covered by a facility. Each facility represents a potential
circle used to cover the triangles. Conservatively, we take the number of facilities to
be equal to the number 𝑁 of clients, since we might need one circle for each triangle

65

Figure 6-4: Minimum-volume cover of a robot link using circles.

in the worst case. The solution of the FLP in GCS will then automatically select the
optimal number of facilities (i.e., circles) to employ. The continuous variable 𝑥𝑖 ∈ R6

paired with a client has fixed value, and stacks the three two-dimensional vertices of
the triangle 𝒯𝑖. Each facility is paired with the vector 𝑥𝑗 ∈ R3, that stacks the center
𝑐𝑗 ∈ R2 and the radius 𝑟𝑗 ∈ R≥0 of the circle 𝒞𝑗. The positions of the centers and the
radii are bounded by computing the smallest axis-aligned bounding box that contains
all the triangles. The costs of the clients are zero, while the cost of the 𝑗th facility is
equal to 𝜋𝑟2𝑗 (the area of the corresponding circle). For every edge connecting a client
𝑖 to a facility 𝑗, we enforce the convex constraint that all the vertices of the triangle
𝒯𝑖 must lie in the circle 𝒞𝑗. This ensures that 𝒯𝑖 ⊆ 𝒞𝑗. The costs of all the edges are
set to zero.

In this case, the MICP and the convex relaxation have optimal value 62.1 and
19.6, respectively. This relatively large gap is due to the convex relaxation of the ILP
formulation (4.11) of the ordinary FLP, which can be quite loose to start with.

6.5 Minimum perfect matching

The Minimum-Perfect-Matching Problem (MPMP) was described in Section 4.4.5.
The MPMP in GCS can be formulated as an MICP by proceeding as for the previous
problems. In particular, the application of Remark 5.3 to constraint (4.12a) gives us

𝑧𝑣 =
∑︁
𝑒∈ℐ𝑣

𝑧𝑒
𝑣 = 𝑥𝑣, ∀𝑣 ∈ 𝒱 .

The constraints in (4.13) cannot be leveraged by Lemma 5.1.

66

Mixed-integer optimization is not a practical way of solving the MPMP in GCS.
In fact, the MPMP in GCS is easily reduced to an ordinary MPMP, with scalar costs
on the vertices and edges, and solved using, e.g., Edmonds’ matching algorithm. For
each vertex 𝑣 ∈ 𝒱 in our graph we define 𝑐𝑣 := 0. For every edge 𝑒 = (𝑣, 𝑤) ∈ ℰ , we
let 𝑐𝑒 be the optimal value of the following convex program:

minimize 𝑓𝑣(𝑥𝑣) + 𝑓𝑤(𝑥𝑤) + 𝑓𝑒(𝑥𝑣,𝑥𝑤)

subject to 𝑥𝑣 ∈ 𝒳𝑣,

𝑥𝑤 ∈ 𝒳𝑤,

(𝑥𝑣,𝑥𝑤) ∈ 𝒳𝑒.

(If this program is infeasible we remove the edge 𝑒 from the graph.) These scalar
vertex and edge costs give us a weighted graph whose minimum perfect matching
is the same (and has the same cost) as the minimum perfect matching in the GCS.
This because for any fixed perfect matching, the continuous variables 𝑥𝑣 and 𝑥𝑤 are
completely decoupled if 𝑒 = (𝑣, 𝑤) is not in the matching, and are optimal if they
solve the convex program above. Solving the convex programs above takes a time
that is only linear in the number |ℰ| of edges. Therefore, contrarily to all the GCS
problems seen above, the MPMP in GCS is efficiently solvable.

Given that solving an MPMP in GCS does not require the techniques developed
in this thesis, we skip the illustrative example for this problem.

6.6 Inspection problem

Our technique for solving GCS problems is fully algorithmic. Given the GCS and
the ILP formulation of the discrete problem, our MICP is assembled and solved
automatically. Approaching a new GCS problem is then very easy: our modelling
effort is limited to the definition of the GCS and the design of the ILP. We demonstrate
this point through the following example.

Consider the inspection problem shown in Figure 6-5. We have a floor plant
composed of 𝑁 := 19 rooms. Solid black lines represent walls and dotted linear are
open doors. We seek a shortest closed trajectory that visits all the 𝑀 := 7 rooms in
red. Green rooms need not to be visited by the trajectory. Formulating this problem
directly as an MICP would be very tedious and error prone: with GCS this problem
is easily formulated and solved.

The inspection problem in Figure 6-5 is reminiscent of a TSP in GCS, where each
room is a vertex in a graph. However, the optimal inspection trajectory must not visit

67

Figure 6-5: Inspection problem. We seek a continuous closed trajectory (dashed blue)
that visits all the red rooms in the floor plant. Solid black lines represent walls and
dotted lines are doorways. Green rooms need not to be visited by the trajectory.

all the rooms in the floor plan, and might also go through the same room multiple
times. Therefore, the GCS problem we formulate is slightly more involved than a
TSP.

We construct our GCS as follows. We imagine a fictitious building where the floor
plan in Figure 6-5 is repeated on 𝑀 floors. We start from the ground floor in the first
red room (picked arbitrarily). Every time that we reach a new red room we move
one floor up. Our building has a total of 𝑀𝑁 rooms, each of which is a vertex in our
GCS. Each vertex is paired with two points in the corresponding room: the first is the
entry point and the second is the exit point. The cost of each vertex is the distance
between the two points (i.e., the distance travelled inside the room). For each floor,
we draw an edge between any pair of communicating rooms. When we travel along
such an edge, the exit point of the last room must be equal to the entry point of the
next room. We also add edges that connect consecutive floors: any red room (that
is not the first) is connected to the corresponding room upstairs. The first room at
the top floor is then connected to the first room at the ground floor. Along all these
edges, we enforce the same continuity constraints as before.

The ILP is formulated through the following steps. Every vertex must verify the
flow conservation: if we enter in a room we must also leave the room. The constraint
that each room must be visited at least once is enforced as follows: the sum over
all floors of the binary variables that connect that room to its copy upstairs must

68

be greater than or equal to one. The binary variable of the edge connecting the top
floor to the ground floor must also be at least one. This last constraint closes (i.e.,
connects the start and the end of) our trajectory.

The GCS and the ILP just constructed are processed algorithmically to solve the
inspection problem and compute the trajectory in in Figure 6-5.

69

70

Chapter 7

Software implementation

In this chapter we describe the software package gcspy that we have developed for
solving problems in Graphs of Convex Sets (GCS). This package is written in Python
and based on cvxpy [50]. It is freely available at

https://github.com/TobiaMarcucci/gcspy.

It is not a fully mature code base yet, but its structure is very simple and well
illustrates the easiness with which the techniques introduced in this thesis can be
implemented on a computer. Optimizing the implementation of gcspy will be object
of future works. We also highlight that a mature implementation of our techniques is
available within the open-source software Drake [183]. This second implementation is
currently specialized to the Shortest-Path Problem (SPP) in GCS, and its extension
to any GCS problem is under development.

7.1 Interface

We start by describing the syntax of gcspy. We take the example of the helicopter
flight described in Section 6.1.1, and we show how to solve this SPP in GCS with our
package one step at the time.

We start by importing the packages gcspy and cvxpy.

import gcspy as gp # our package
import cvxpy as cp # convex-optimization package

We define the numerical parameters of our problem following the notation from
Section 6.1.1.

71

https://github.com/TobiaMarcucci/gcspy

alpha = 5 # battery discharge rate
beta = 1 # battery charge rate
sigma = 100 # moving speed

Next we specify the center and the radius of each island. Except for the first two
islands (the source and the target), these are originally generated at random. Here,
for simplicity, we directly define their values rounded to the second digit.

C = ((0, 0), (100, 100), (78, 9), (37, 57), (89, 69),
(42, 72), (30, 15), (19, 35), (54, 42), (20, 88),
(67, 42), (14, 20), (97, 31), (88, 89), (53, 69),
(88, 51), (75, 99), (28, 79), (45, 91), (29, 13),
(68, 21), (49, 5), (15, 59), (59, 90), (14, 81)) # centers

r = (0.0, 0.0, 8.8, 2.6, 3.7,
0.1, 0.9, 4.0, 6.9, 0.3,
5.6, 8.0, 6.9, 0.9, 3.2,
0.2, 7.5, 1.0, 2.9, 0.2,
2.7, 5.7, 7.0, 1.4, 4.0) # radii

Next we instantiate our GCS.

gcs = gp.GraphOfConvexSets()

We add the vertices to the GCS. Each vertex has a continuous variable 𝑞𝑖 ∈ 𝒞𝑖
that represents where the helicopter should stop for a recharging break on the island.
The second variable 𝑏𝑖 ∈ [0, 1]2 is the battery level before and after the recharging
break. The recharging time (𝑏𝑖,2− 𝑏𝑖,1)/𝛽 is nonnegative and equal to the cost of each
vertex. Finally, we also ensure that the battery is fully charged at the beginning of
the flight.

72

N = len(C) # number of islands
for i in range(N):

v = gcs.add_vertex(i) # ith vertex
q = v.add_variable(2) # recharging point
b = v.add_variable(2) # battery levels
v.add_constraint(cp.norm2(q - C[i]) <= r[i]) # point in island
v.add_constraint(b >= 0)
v.add_constraint(b <= 1)
h = (b[1] - b[0]) / beta # recharging time
v.add_constraint(h >= 0)
v.add_cost(h) # penalize recharging time
if i == 0: # source island

v.add_constraint(b[1] == 1) # initial battery is full

We now specify the edges of our graph (currently, gcspy supports only directed
graphs). As in (6.4), we connect every pair of distinct vertices such that the minimum
distance between the corresponding islands can be covered by the helicopter. To
facilitate this check, we define the following helper function.

autonomy = sigma / alpha # maximum flying range
def reach(i, j): # checks if island j is reachable from island i

dist = (C[j][0] - C[i][0]) ** 2
dist += (C[j][1] - C[i][1]) ** 2
dist **= .5 # distance between island centers
return autonomy >= dist - r[i] - r[j]

Using the function above, we iterate over all pairs of vertices and decide whether
to connect them with an edge or not. The cost of traversing an edge (𝑖, 𝑗) is equal
to the duration of the corresponding flight segment, i.e., ‖𝑞𝑗 − 𝑞𝑖‖2/𝜎. We also add
a constraint that relates the battery levels on the islands 𝑖 and 𝑗.

73

for i in range(N):
vi = gcs.get_vertex_by_name(i) # retrieve ith vertex
qi, bi = vi.variables # retrieve vertex variables
for j in range(N):

if i != j and reach(i, j): # island j is reachable from i
vj = gcs.get_vertex_by_name(j) # retrieve jth vertex
qj, bj = vj.variables # retrieve vertex variables
e = gcs.add_edge(vi, vj) # edge from i to j
te = cp.norm2(qi - qj) / sigma # flight time
be = alpha * te # battery consumption
e.add_constraint(bj[0] <= bi[1] - be)
e.add_cost(te) # penalize flight time

Now we can solve the SPP in GCS and print, e.g., the optimal value of the problem.

s = gcs.get_vertex_by_name(0) # source vertex
t = gcs.get_vertex_by_name(1) # target vertex
sol = gcs.solve_shortest_path(s, t) # assembles MICP and solves it
print(sol.value) # optimal value of the SPP in GCS

The optimal value of the binary variables 𝑦𝑣 and 𝑦𝑒 paired with the vertices 𝑣 ∈ 𝒱
and edges 𝑒 ∈ ℰ can be printed as follows.

for v in gcs.vertices:
print(v.y.value) # vertex binary

for e in gcs.edges:
print(e.y.value) # edge binary

The optimal value of the variables 𝑥𝑣 paired with the vertices 𝑣 ∈ 𝒱 are retrieved
similarly. (Note that every vertex is paired with a list of decision variables in gcspy.
The variable 𝑥𝑣 can be thought of as the concatenation of this list.)

for v in gcs.vertices:
for xv in v.variables:

print(xv.value) # vertex continuous variable

74

7.1.1 Solving new GCS problems

In the code snippets above, we called the method solve_shortest_path of the class
GraphOfConvexSets to compute the shortest path between the source and the target.
This method formulates the MICP described in Section 6.1, solves it, and gives us back
the solution in the form of the object sol. Methods that can be called to solve other
GCS problems include solve_traveling_salesperson, solve_spanning_tree, and
solve_facility_location. On the other hand, the techniques introduced in this
thesis are fully algorithmic and apply to any graph optimization problem, provided
that we are given an Integer-Linear Programming (ILP) formulation of it, i.e., the
polytope 𝒴 .

In the following code snippet we pretend that the method solve_shortest_path
was not implemented in gcspy, and show how we can still solve the SPP in GCS by
providing a description of the polytope 𝒴 .

Y = [] # list of linear inequalities of ILP
for v, yv in zip(gcs.vertices, gcs.vertex_binaries):

edges_in = gcs.incoming_indices(v) # edges incoming v
edges_out = gcs.outgoing_indices(v) # edges outgoing v
flow_in = gcs.edge_binaries[edges_in] # flows incoming v
flow_out = gcs.edge_binaries[edges_out] # flows outgoing v
delta_sv = 1 if v == s else 0
delta_tv = 1 if v == t else 0
Y.append(yv == sum(flow_in) + delta_sv) # flow conservation
Y.append(yv == sum(flow_out) + delta_tv) # flow conservation

sol = gcs.solve_from_ilp(Y)

In these lines of code we describe the polytope 𝒴 from (4.4) by listing the linear
constraints that define its facets (i.e., the constraints of the ILP formulation of the
SPP). For the SPP, these constraints are the flow conservation (which is computed
within the for loop for each vertex) and the bounds 𝑦𝑣 ∈ [0, 1] and 𝑦𝑒 ∈ [0, 1] (which
are omitted since they hold for any problem and they are automatically added by
gcspy). Then we call the method solve_from_ilp which parses these constraints,
automatically formulates our MICP using Lemma 5.1, solves it, and returns the so-
lution object.

75

7.2 Behind the scenes

The software implementation described above is made very simple by the DCP frame-
work introduced in [85], and briefly described in Section 2.3.3. DCP allows us to spec-
ify the convex sets and functions in a GCS using the high-level syntax of a software
like cvxpy. Then it computes conic representations of these sets and functions. Once
all the pieces of our problem are in conic form, it is very easy for us to apply all the
necessary homogenization transformations and assemble our MICP. Let us describe
this process in more detail.

Every vertex 𝑣 ∈ 𝒱 in a GCS is paired with a convex program, specified by a
convex set 𝒳𝑣 ⊂ R𝑛𝑣 and a convex function 𝑓𝑣 : R𝑛𝑣 → R. This program is coded
using the DCP ruleset, and is translated in conic form automatically (potentially
through the addition of auxiliary variables and constraints). Therefore, without loss
of generality, we can assume that the vertex cost is linear,

𝑓𝑣(𝑥𝑣) := 𝑐⊤𝑣 𝑥𝑣

for some 𝑐𝑣 ∈ R𝑛𝑣 , and the vertex set is in conic form,

𝒳𝑣 := {𝑥𝑣 : 𝐴𝑣𝑥𝑣 + 𝑏𝑣 ∈ 𝒦𝑣}

for some matrix 𝐴𝑣 ∈ R𝑚𝑣×𝑛𝑣 , vector 𝑏𝑣 ∈ R𝑚𝑣 , and convex cone 𝒦𝑣 ⊂ R𝑚𝑣 .

The same holds for the edges. Each edge 𝑒 = [𝑣, 𝑤] ∈ ℰ is paired with a convex
program, specified by the set 𝒳𝑒 ⊆ R𝑛𝑣+𝑛𝑤 and the function 𝑓𝑒 : R𝑛𝑣+𝑛𝑤 → R. Again,
these convex sets and functions are transformed into conic form. Therefore, we can
assume that

𝑓𝑒(𝑥𝑣,𝑥𝑤) := 𝑐⊤𝑒 (𝑥𝑣,𝑥𝑤)

for some 𝑐𝑒 ∈ R𝑛𝑣+𝑛𝑤 , as well as

𝒳𝑒 := {(𝑥𝑣,𝑥𝑤) : 𝐴𝑒(𝑥𝑣,𝑥𝑤) + 𝑏𝑒 ∈ 𝒦𝑒}

for some matrix 𝐴𝑒 ∈ R𝑚𝑒×(𝑛𝑣+𝑛𝑤), vector 𝑏𝑒 ∈ R𝑚𝑒 , and convex cone 𝒦𝑒 ⊂ R𝑚𝑒 .

With all the costs and constraints expressed in conic form, our MICP (5.8) is
formulated as follows. We define the binary variables 𝑦𝑣 ∈ {0, 1} and 𝑦𝑒 ∈ {0, 1} for
each vertex 𝑣 ∈ 𝒱 and edge 𝑒 ∈ ℰ . We introduce the auxiliary variables 𝑧𝑣 ∈ R𝑛𝑣

and 𝑧𝑒
𝑣 ∈ R𝑛𝑣 for each vertex 𝑣 ∈ 𝒱 and edge 𝑒 ∈ ℐ𝑣. Since all the cost functions are

linear, the objective function of our MICP is simply a linear function of the auxiliary

76

variables: ∑︁
𝑣∈𝒱

𝑓𝑣(𝑧𝑣, 𝑦𝑣) +
∑︁
𝑒∈ℰ

𝑓𝑒(𝑧
𝑒
𝑣, 𝑧

𝑒
𝑤, 𝑦𝑒) =

∑︁
𝑣∈𝒱

𝑐⊤𝑣 𝑧𝑣 +
∑︁
𝑒∈ℰ

𝑐⊤𝑒 (𝑧𝑒
𝑣, 𝑧

𝑒
𝑤).

(Recall that the homogenization of a linear function is equal to the function itself.)
The constraint set 𝒴 is either constructed within the specific method called by the

user (e.g., solve_shortest_path) or is provided by the user as shown in Section 7.1.1.
Therefore the constraint 𝑦 ∈ 𝒴 from (5.8b) is easily assembled.

Given the conic representation of the sets 𝒳𝑣, their homogenizations take the form

𝒳𝑣 = {(𝑥, 𝑦) : 𝑦 ≥ 0, 𝐴𝑣𝑥 + 𝑏𝑣𝑦 ∈ 𝒦𝑣}.

The constraints (𝑧𝑣, 𝑦𝑣) ∈ 𝒳𝑣 and (𝑥𝑣−𝑧𝑣, 1−𝑦𝑣) ∈ 𝒳𝑣 from (5.8c) are then enforced
simply as

𝐴𝑣𝑧𝑣 + 𝑏𝑣𝑦𝑣 ∈ 𝒦𝑣, 𝐴𝑣(𝑥𝑣 − 𝑧𝑣) + 𝑏𝑣(1 − 𝑦𝑣) ∈ 𝒦𝑣.

(Note that the bounds 0 ≤ 𝑦𝑣 ≤ 1 are already enforced by the constraint 𝑦 ∈ 𝒴 .)
The constraints from (5.8d) and (5.8e) are implemented similarly:

𝐴𝑣𝑧
𝑒
𝑣 + 𝑏𝑣𝑦𝑒 ∈ 𝒦𝑣, ∀𝑣 ∈ 𝒱 , 𝑒 ∈ ℐ𝑣,

𝐴𝑣(𝑥𝑣 − 𝑧𝑒
𝑣) + 𝑏𝑣(1 − 𝑦𝑒) ∈ 𝒦𝑣, ∀𝑣 ∈ 𝒱 , 𝑒 ∈ ℐ𝑣,

𝐴𝑒(𝑧
𝑒
𝑣, 𝑧

𝑒
𝑤) + 𝑏𝑒𝑦𝑒 ∈ 𝒦𝑒, ∀𝑒 = [𝑣, 𝑤] ∈ ℰ .

Finally, in Chapter 6 we have seen how Lemma 5.1 can be used to generate
constraints that are specialized to a given graph problem. These are also enforced
as above. Thanks to the conic representation of the GCS convex programs, any
constraint of the form(︃

𝑎𝑣𝑧𝑣 +
∑︁
𝑒∈ℐ𝑣

𝑎𝑒𝑧
𝑒
𝑣 + 𝑏𝑥𝑣, 𝑎𝑣𝑦𝑣 +

∑︁
𝑒∈ℐ𝑣

𝑎𝑒𝑦𝑒 + 𝑏

)︃
∈ 𝒳𝑣

becomes

𝐴𝑣

(︃
𝑎𝑣𝑧𝑣 +

∑︁
𝑒∈ℐ𝑣

𝑎𝑒𝑧
𝑒
𝑣 + 𝑏𝑥𝑣

)︃
+ 𝑏𝑣

(︃
𝑎𝑣𝑦𝑣 +

∑︁
𝑒∈ℐ𝑣

𝑎𝑒𝑦𝑒 + 𝑏

)︃
∈ 𝒦𝑣.

7.2.1 Edge variables

The package gcspy allows the explicit use of auxiliary variables 𝑥𝑒 ∈ R𝑛𝑒 for each edge
𝑒 ∈ ℰ , as discussed in Remark 5.1. These can be very useful to define certain classes

77

of convex costs and constraints. Therefore, the edge cost function really handled by
gcspy is

𝑓𝑒(𝑥𝑣,𝑥𝑤,𝑥𝑒) := 𝑐⊤𝑒 (𝑥𝑣,𝑥𝑤,𝑥𝑒)

with 𝑐𝑒 ∈ R𝑛𝑣+𝑛𝑤+𝑛𝑒 . While the constraint set is

𝒳𝑒 := {(𝑥𝑣,𝑥𝑤,𝑥𝑒) : 𝐴𝑒(𝑥𝑣,𝑥𝑤,𝑥𝑒) + 𝑏𝑒 ∈ 𝒦𝑒}

with 𝐴𝑒 ∈ R𝑚𝑒×(𝑛𝑣+𝑛𝑤+𝑛𝑒). All the steps above are essentially unchanged after the
introduction of a variable 𝑧𝑒 that represents the product of 𝑦𝑒 and 𝑥𝑒.

78

Chapter 8

Analysis of the convex relaxation

In this chapter we describe and analyze at a more abstract level the method introduced
in Chapter 5 to formulate a Graph of Convex Sets (GCS) problem as a Mixed-Integer
Convex Program (MICP). We show that Lemma 5.1 can be used to design convex
relaxations of a large class of bilinear constraints, and we connect this result to existing
relaxation techniques for nonconvex optimization. Finally, we give a simple geometric
proof of the validity of our MICP (already shown in Theorem 5.1). Most of the
material in this chapter is taken from [131, Section 7].

8.1 Set-based relaxation of bilinear constraints

Our first step in this analysis is to show that Lemma 5.1 is, in fact, a general-purpose
relaxation technique for nonconvex sets of the form

𝒮 := {(𝑥,𝑦,𝑍) : 𝑥 ∈ 𝒳 , 𝑦 ∈ 𝒴 , 𝑍 = 𝑥𝑦⊤}, (8.1)

where 𝒳 ⊆ R𝑛 and 𝒴 ⊆ R𝑚 are closed convex sets. In particular, here 𝒳 and 𝒴
represent generic constraint sets on the continuous and binary variables in the Mixed-
Integer NonConvex Program (MINCP) (5.4), respectively. See Section 8.5 below for
more details.

A natural approach to construct a convex relaxation of the set 𝒮 is to multiply
all the valid inequalities 𝑎⊤𝑥 + 𝑏 ≥ 0 for the set 𝒳 by all the valid inequalities
𝑐⊤𝑦 + 𝑑 ≥ 0 for the set 𝒴 , and then use the bilinear equality 𝑍 = 𝑥𝑦⊤ to linearize
these products. This gives us an infinite family of valid linear inequalities for 𝒮, which

79

form the convex set

𝒞 := {(𝑥,𝑦,𝑍) : 𝑎⊤𝑍𝑐 + 𝑑𝑎⊤𝑥 + 𝑏𝑐⊤𝑦 + 𝑏𝑑 ≥ 0

for all (𝑎, 𝑏) ∈ 𝒳 ∘ and (𝑐, 𝑑) ∈ 𝒴∘}, (8.2)

where 𝒳 ∘ and 𝒴∘ are the polar sets defined in Section 2.1.2. By construction, the set
𝒞 is a convex relaxation of the nonconvex set 𝒮:

𝒮 ⊆ 𝒞.

Note also that the conditions 𝑥 ∈ 𝒳 and 𝑦 ∈ 𝒴 are implied by the linear inequalities
in (8.2). In fact, for the valid inequality (𝑐, 𝑑) = (0, 1) ∈ 𝒴∘, the conditions in (8.2)
reduce to 𝑎⊤𝑥 + 𝑏 ≥ 0 for all (𝑎, 𝑏) ∈ 𝒳 ∘, which is equivalent to 𝑥 ∈ 𝒳 , as we have
seen in (2.8). The condition 𝑦 ∈ 𝒴 is recovered similarly by considering the valid
inequality (𝑎, 𝑏) = (0, 1) ∈ 𝒳 ∘.

The relaxation (8.2) is not implementable on a computer yet, since it involves an
infinite number of constraints. However, if one of the two sets is a polytope then the
convex set 𝒞 can be efficiently described by a finite number of convex constraints.

Theorem 8.1. Let the set

𝒴 := {𝑦 : 𝑐⊤𝑗 𝑦 + 𝑑𝑗 ≥ 0 for all 𝑗 ∈ 𝒥 }

be a polyhedron. We have

𝒞 = {(𝑥,𝑦,𝑍) : 𝑥 ∈ 𝒳 , (𝑍𝑐𝑗 + 𝑑𝑗𝑥, 𝑐⊤𝑗 𝑦 + 𝑑𝑗) ∈ 𝒳 for all 𝑗 ∈ 𝒥 }. (8.3)

Proof. We start from the definition in (8.2). First we add the redundant constraint
𝑥 ∈ 𝒳 . Then we notice that listing all the valid inequalities (𝑐, 𝑑) ∈ 𝒴∘ is equivalent
to listing only the valid inequalities (𝑐𝑗, 𝑑𝑗) for 𝑗 ∈ 𝒥 . In fact, by Lemma 2.3, for any
vector (𝑐, 𝑑) ∈ 𝒴∘ there exist nonnegative coefficients 𝛼𝑗 such that 𝑐 =

∑︀
𝑗∈𝒥 𝛼𝑗𝑐𝑗

and 𝑑 ≥∑︀𝑗∈𝒥 𝛼𝑗𝑑𝑗. Using these coefficients, we have

0 ≤
∑︁
𝑗∈𝒥

𝛼𝑗(𝑎
⊤𝑍𝑐𝑗 + 𝑑𝑗𝑎

⊤𝑥 + 𝑏𝑐⊤𝑗 𝑦 + 𝑏𝑑𝑗)

= 𝑎⊤𝑍𝑐 + 𝑏𝑐⊤𝑦 +
∑︁
𝑗∈𝒥

𝛼𝑗𝑑𝑗(𝑎
⊤𝑥 + 𝑏)

≤ 𝑎⊤𝑍𝑐 + 𝑏𝑐⊤𝑦 + 𝑑𝑎⊤𝑥 + 𝑏𝑑,

80

where the last inequality uses the nonnegativity of 𝑎⊤𝑥 + 𝑏, which is ensured by
(𝑎, 𝑏) ∈ 𝒳 ∘ and 𝑥 ∈ 𝒳 . Finally, for each 𝑗 ∈ 𝒥 , we rewrite the infinite family of
linear inequalities

0 ≤ 𝑎⊤𝑍𝑐𝑗 + 𝑑𝑗𝑎
⊤𝑥 + 𝑏𝑐⊤𝑗 𝑦 + 𝑏𝑑𝑗 = 𝑎⊤(𝑍𝑐𝑗 + 𝑑𝑗𝑥) + 𝑏(𝑐⊤𝑗 𝑦 + 𝑑𝑗),

for all (𝑎, 𝑏) ∈ 𝒳 ∘, as a single convex constraint (𝑍𝑐𝑗 + 𝑑𝑗𝑥, 𝑐
⊤
𝑗 𝑦 + 𝑑𝑗) ∈ 𝒳 . This

step uses again the equality (2.8).

We then have two descriptions of the relaxation 𝒞: the symmetric one (8.2) that
clearly exposes the logic behind our technique, and the asymmetric one (8.3) that is
computationally efficient, provided that one of the two sets is polyhedral and has a
small number of facets. Note that the asymmetric relaxation generalizes Lemma 5.1,
with 𝑐⊤𝑗 𝑦 + 𝑑𝑗 ≥ 0 taking the place of the linear inequality (5.5).

The asymmetric relaxation (8.3) can be efficiently described and implemented on a
computer when the set 𝒳 is described in conic form. In this case, the homogenization
𝒳 can be computed explicitly using the formula (2.4). However, the relaxation (8.3)
is also usable when an explicit description of the set 𝒳 is not available. For example,
the set 𝒳 may be very complex and accessible only through an oracle that, given
a point 𝑥, either certifies that 𝑥 ∈ 𝒳 or returns a separating hyperplane. In fact,
if 𝒳 is bounded, such an oracle is easily adapted to checking membership to the
homogenization 𝒳 , and this black-box access to the problem constraints is sufficient
for efficient convex-optimization algorithms like the ellipsoid method [86, Chapters 3
and 4]. Since the asymmetric relaxation (8.3) works directly with its abstract set
representation of 𝒳 , we call it set based.

8.2 Tightness of the relaxation

Ideally, we would like our convex relaxation 𝒞 to be as tight as possible and coincide
with the convex hull of the nonconvex set 𝒮. A simple case in which this is true is
when the set 𝒴 is an interval on the real line (see Proposition 8.2 below). However,
the next proposition shows that the equality 𝒞 = conv(𝒮) does not hold in general.

Proposition 8.1. There exists sets 𝒳 and 𝒴 such that the convex relaxation 𝒞
from (8.3) is strictly larger than the convex hull of the set 𝒮 from (8.1).

Proof. Consider 𝒳 := 𝒴 := [−1, 1]2. With this choice, the constraints defining the

81

set 𝒞 in (8.3) read

𝑥 ∈ [−1, 1]2,

(𝑧𝑖 + 𝑥, 𝑦𝑖 + 1) ∈ 𝒳 , 𝑖 = 1, 2,

(𝑥− 𝑧𝑖, 1 − 𝑦𝑖) ∈ 𝒳 , 𝑖 = 1, 2,

where 𝑧𝑖 is the 𝑖th column of 𝑍 and 𝑦𝑖 is the 𝑖th entry of 𝑦. These constraints are
satisfied if we let

𝑥 = 𝑦 = 0, 𝑍 =

[︃
1 1

1 −1

]︃
.

However, this point (𝑥,𝑦,𝑍) does not belong to the convex hull of 𝒮. If it was, the
matrix 𝑍 should have been a convex combination of rank-one matrices in the set
[−1, 1]2×2, but 𝑍 is an extreme point of this set and has rank equal to two.

It is important to highlight that it was fully expected that our relaxation 𝒞 is not
always equal to the convex hull of 𝒮. In fact, the bilinear program

minimize 𝑝⊤𝑥 + 𝑞⊤𝑦 + 𝑥⊤𝑅𝑦 (8.4a)

subject to 𝑥 ∈ 𝒳 , 𝑦 ∈ 𝒴 (8.4b)

is equivalent to minimizing a linear function over the nonconvex set 𝒮, and this
problem is NP-hard (see, e.g., [158, Section 1]). Therefore, the equality 𝒞 = conv(𝒮)

would give us a compact LP formulation of this problem, and allow us to solve an
NP-hard problem in polynomial time.

The next lemma shows that the convex relaxation 𝒞 is perfectly tight to the
nonconvex set 𝒮 at all the extreme points of the polyhedron 𝒴 . We will use this
lemma later in the chapter to give a simpler proof of the correctness of our MICP 5.8.

Lemma 8.1. Let 𝒴 be a polytope and 𝑦 one of its extreme points. A point (𝑥,𝑦,𝑍)

belongs to the set 𝒮 in (8.1) if and only if it belongs to the set 𝒞 in (8.3).

Proof. One direction follows from 𝒮 ⊆ 𝒞. For the other direction we show that if
(𝑥,𝑦,𝑍) ∈ 𝒞 then 𝑍 = 𝑥𝑦⊤. Since 𝑦 is an extreme point of 𝒴 , there are 𝑚 linearly
independent inequalities that are active at 𝑦. Let 𝐶 ∈ R𝑚×𝑚 and 𝑑 ∈ R𝑚 collect the
coefficients (𝑐𝑖, 𝑑𝑖) of these inequalities, so that 𝐶𝑦+𝑑 = 0. For the same inequalities,
the constraints in (8.3) give us 𝑍𝑐𝑖 + 𝑑𝑖𝑥 = 0 or, equivalently, 𝑍𝐶⊤ + 𝑥𝑑⊤ = 0. We
then have 𝑍𝐶⊤ = 𝑥𝑦⊤𝐶⊤ and, since 𝐶 is invertible, 𝑍 = 𝑥𝑦⊤.

82

8.3 Explicit description of the convex hull

The next lemma shows that if the polyhedron 𝒴 is bounded (i.e., is a polytope) and
described through its extreme points, then the convex hull of 𝒮 can be easily described
in a convex fashion.

Lemma 8.2. Assume that 𝒴 is a polytope with extreme points {𝑦𝑘}𝑘∈𝒦. We have

conv(𝒮) =

{︃∑︁
𝑘∈𝒦

(𝑥𝑘, 𝜆𝑘𝑦𝑘,𝑥𝑘𝑦
⊤
𝑘) :

∑︁
𝑘∈𝒦

𝜆𝑘 = 1, (𝑥𝑘, 𝜆𝑘) ∈ 𝒳 for all 𝑘 ∈ 𝒦
}︃
. (8.5)

Proof. For any 𝑘 ∈ 𝒦, the set 𝒞𝑘 := {(𝑥,𝑦𝑘,𝑥𝑦
⊤
𝑘) : 𝑥 ∈ 𝒳} is convex and contained

in 𝒮. Its homogenization is equal to 𝒞𝑘 = {(𝑥, 𝜆𝑦𝑘,𝑥𝑦
⊤
𝑘 , 𝜆) : (𝑥, 𝜆) ∈ 𝒳}. We use

Lemma 2.1 to compute the convex hull of the union of the sets 𝒞𝑘 and, after a few
manipulations, we obtain the set on the right-hand side of (8.5). Since this set is the
convex hull of subsets of 𝒮, it is contained in the convex hull of 𝒮. On the other hand
this set is convex, therefore to prove that it is equal to the convex hull of 𝒮 we are
left to show that 𝒮 is contained in it.

Let (𝑥,𝑦,𝑍) be a point in 𝒮. We have 𝑦 =
∑︀

𝑘∈𝒦 𝜆𝑘𝑦𝑘 for some coefficients
𝜆𝑘 ≥ 0 such that

∑︀
𝑘∈𝒦 𝜆𝑘 = 1. We define 𝑥𝑘 := 𝜆𝑘𝑥 for all 𝑘 ∈ 𝒦. This gives us∑︁

𝑘∈𝒦

𝑥𝑘 = 𝑥,∑︁
𝑘∈𝒦

𝑥𝑘𝑦
⊤
𝑘 = 𝑥

∑︁
𝑘∈𝒦

𝜆𝑘𝑦
⊤
𝑘 = 𝑥𝑦⊤ = 𝑍,

(𝑥𝑘, 𝜆𝑘) ∈ 𝒳 , ∀𝑘 ∈ 𝒦.

We conclude that (𝑥,𝑦,𝑍) belongs to the set on the right-hand side of (8.5), and
that 𝒮 is contained in this set.

This proposition gives us a lifted (i.e., higher-dimensional) description of the con-
vex hull of 𝒮 that is convex and also set based (according to our informal definition
above). While our relaxation 𝒞 has size proportional to the number |𝒥 | of facets
of 𝒴 , this description of the convex hull has size proportional to the number |𝒦| of
extreme points of 𝒴 . For most of the polytopes 𝒴 that we encounter in practice,
the number of facets |𝒥 | is significantly smaller than the number of extreme points
|𝒦|, and our relaxation is more effective overall. However, for polytopes 𝒴 with low
number of extreme points, also the explicit description of the convex hull of 𝒮 can be
computationally efficient.

83

The next proposition shows that in the simple case where the polytope 𝒴 is a
one-dimensional interval, then our relaxation 𝒞 is actually equal to the convex hull of
𝒮.

Proposition 8.2. Let 𝒴 be an interval of the form [𝑎, 𝑏] ⊂ R, with 𝑏 > 𝑎. Then the
set 𝒞 from (8.3) is equal to the convex hull of the set 𝒮 in (8.5).

Proof. With 𝒴 := [𝑎, 𝑏] the constraint defining 𝒞 read

𝒞 = {(𝑥, 𝑦,𝑧) : 𝑥 ∈ 𝒳 , (𝑧 − 𝑎𝑥, 𝑦 − 𝑎) ∈ 𝒳 , (𝑏𝑥− 𝑧, 𝑏− 𝑦) ∈ 𝒳}.

While the constraints that define the convex hull of 𝒮 are

conv(𝒮) = {(𝑥0 + 𝑥1, 𝜆0𝑎+ 𝜆1𝑏,𝑥0𝑎+ 𝑥1𝑏) :

𝜆0 + 𝜆1 = 1, (𝑥0, 𝜆0) ∈ 𝒳 , (𝑥1, 𝜆1) ∈ 𝒳}.

The mutual inclusion of these two sets can be verified by using the change of variables

(𝑥, 𝑦,𝑧) = (𝑥0 + 𝑥1, 𝜆0𝑎+ 𝜆1𝑏,𝑥0𝑎+ 𝑥1𝑏),

(𝑥0,𝑥1, 𝜆0, 𝜆1) =
1

𝑏− 𝑎
(𝑏𝑥− 𝑧, 𝑧 − 𝑎𝑥, 𝑏− 𝑦, 𝑦 − 𝑎).

8.4 Related relaxation techniques

The basic idea of generating new valid constraints by multiplying existing ones is
classical, and has many incarnations: from the simple McCormick envelope [134] to
semidefinite hierarchies for polynomial optimization [148, 149, 110], passing through
the Reformulation-Linearization Technique (RLT) [169]. Among this family of tech-
niques, the Lovász-Schrijver hierarchy [120] is the closest to ours, since it is set based
and includes constraints of the form (8.3) (see Theorem 1.6 and Conditions (iii)
through (iii”) in [120]). However, this hierarchy focuses on binary optimization and
symmetric quadratic maps, and its naive application to the bilinear set 𝒮 would
produce multiple redundant variables and constraints. Our approach leverages the
bilinear structure of the set 𝒮 to construct a relaxation 𝒞 that is smaller and as tight as
the first level of the Lovász-Schrijver hierarchy, without semidefinite constraints. Our
practical experience is that higher levels of the hierarchy and semidefinite constraints
lead to MICPs that, although stronger, are significantly slower to solve.

84

Consider the case in which both the sets 𝒳 and 𝒴 are polyhedral: 𝒳 := {𝑥 :

𝑎⊤
𝑖 𝑥 + 𝑏𝑖 ≥ 0 for all 𝑖 ∈ ℐ} and 𝒴 := {𝑦 : 𝑐⊤𝑗 𝑦 + 𝑑𝑗 ≥ 0 for all 𝑗 ∈ 𝒥 }. After a few

manipulations, our relaxation simplifies to

𝒞 = {(𝑥,𝑦,𝑍) : 𝑥 ∈ 𝒳 , 𝑦 ∈ 𝒴 ,
𝑎⊤
𝑖 𝑍𝑐𝑗 + 𝑑𝑗𝑎

⊤
𝑖 𝑥 + 𝑏𝑖𝑐

⊤
𝑗 𝑦 + 𝑏𝑖𝑑𝑗 ≥ 0 for all 𝑖 ∈ ℐ and 𝑗 ∈ 𝒥 }.

Therefore, in this simple case, our approach simply amounts to multiplying the in-
equalities that define the polyhedra 𝒳 and 𝒴 . This specific relaxation was originally
proposed in [170], as a variant of the RLT. The fact that our relaxation is not the
convex hull of 𝒮 is therefore well known. In the even simpler case where 𝒳 and 𝒴 are
intervals on the real line, our relaxation simplifies to the McCormick envelope [134].
Proposition 8.2 generalizes the result that the McCormick envelop is the convex hull
of the nonconvex set 𝒮 when 𝒳 and 𝒴 are one-dimensional intervals.

Consider the bilinear program (8.4) with polytopic sets 𝒳 and 𝒴 , and the addi-
tional constraint 𝑦 ∈ {0, 1}𝑚. Assuming 𝒴 ⊆ [0, 1]𝑚, the first-level RLT is known to
yield a valid MILP formulation of this program [1, Theorem 1]. Lemma 8.1 extends
this result to generic closed convex sets 𝒳 . In fact, 𝒴 ⊆ [0, 1]𝑚 ensures that any
vector 𝑦 ∈ 𝒴 ∩ {0, 1}𝑚 is an extreme point of 𝒴 , and the relaxation 𝒞 is exact in
correspondence of these points.

The recent work [196] shows how perspective functions can be used to allow the
multiplication of nonlinear convex constraints in the RLT algorithm. However, the
relaxation in that work is not set based, and requires an explicit analysis of all the
possible products of basic cone inequalities.

8.5 Back to graphs of convex sets

As already noticed, Theorem 8.1 generalizes Lemma 5.1, which is the backbone of our
MICP formulations of the GCS problems. Specifically, the following is an equivalent
way of deriving our MICPs. For each vertex 𝑣 ∈ 𝒱 in our GCS, we stack in a vector
𝑦𝑣 ∈ {0, 1}{𝑣}∪ℐ𝑣 the binary variables 𝑦𝑣 and 𝑦𝑒 for 𝑒 ∈ ℐ𝑣. We define a polytope
𝒴𝑣 ⊂ [0, 1]{𝑣}∪ℐ𝑣 by collecting all the linear inequalities (5.5) that only affect the
entries of 𝑦𝑣. Then we define a nonconvex set

𝒮𝑣 := {(𝑥,𝑦,𝑍) : 𝑥 ∈ 𝒳𝑣, 𝑦 ∈ 𝒴𝑣, 𝑍 = 𝑥𝑦⊤}.

85

for each vertex 𝑣 ∈ 𝒱 . Letting 𝑍𝑣 be the matrix that stacks the auxiliary variables
𝑧𝑣 and 𝑧𝑒

𝑣 for 𝑒 ∈ ℐ𝑣, we can replace all the bilinear constraints in the MINCP (5.4)
with constraints of the form (𝑥𝑣,𝑦𝑣,𝑍𝑣) ∈ 𝒮𝑣. Finally, we apply Theorem 8.1 to get
a convex relaxation 𝒞𝑣 of each set 𝒮𝑣, and we get an MICP by replacing 𝒮𝑣 with 𝒞𝑣.

Theorem 5.1 established the validity of the MICP obtained using Lemma 5.1.
Using the results in this section, the proof of this theorem much simpler. Con-
straint (5.8b) forces the vectors 𝑦𝑣 to have binary entries and, consequently, to be
extreme points of the corresponding polytopes 𝒴𝑣. The MICP (5.8) is valid since by
Lemma 8.1 the sets 𝒞𝑣 and 𝒮𝑣 are equal at the extreme points of 𝒴𝑣.

Finally, observe that we applied Theorem 8.1 to each vertex independently. An
alternative (more straightforward) way of reformulating the MINCP (5.4) as an MICP
is to stack all the continuous and binary variables into two large vectors 𝑥 ∈ R

∑︀
𝑣∈𝒱 𝑛𝑣

and 𝑦 ∈ {0, 1}𝒱∪ℰ , respectively. Then the MINCP (5.4) can be restated as a large
program of the form

minimize 𝑓(𝑥,𝑦,𝑍)

subject to 𝑦 ∈ {0, 1}𝒱∪ℰ ,
(𝑥,𝑦,𝑍) ∈ 𝒮,

where the nonconvex set 𝒮 is defined as in (8.1). By applying Theorem 8.1 to the
whole set 𝒮, we now obtain a second MICP formulation of the GCS problem. While
correct, in our experience, this MICP is too large and slow to solve for most of the
problems we encounter in practice. Conversely, our method operates on each vertex
independently, and leads to slightly weaker but significantly smaller MICPs that are
solved much more quickly.

86

Part III

Shortest-path problem and its
applications

87

88

Chapter 9

Shortest-path problem

In the last part of this thesis we focus on the directed Shortest-Path Problem (SPP)
in Graphs of Convex Sets (GCS). This problem is particularly important since it gen-
eralizes many fundamental problems in optimal control, multi-stage decision making,
and robotics. In addition, the structure of this problem is particularly well suited to
the optimization techniques that we introduced in this thesis.

In this chapter we dive deep in the analysis of the SPP in GCS and its numer-
ical solution. Applications in optimal control and robotics will be discussed in the
following chapters. Most of the material presented in this chapter is taken from [131].

9.1 Problem statement

The ordinary directed SPP and its extension in GCS have been discussed in Sec-
tions 4.4.1 and 6.1, respectively. We start this chapter by briefly recapping the state-
ments of these problems and some important definitions.

In the directed SPP, we are given a directed graph 𝐺 = (𝒱 , ℰ) with vertex costs
𝑐𝑣 ∈ R for 𝑣 ∈ 𝒱 and edge costs 𝑐𝑒 ∈ R for 𝑒 ∈ ℰ . We seek a path in 𝐺 of minimum
cost from a specified source vertex 𝑠 ∈ 𝒱 to a specified target vertex 𝑡 ∈ 𝒱 . Recall
that a path in 𝐺 is a subgraph (𝒲 ,ℱ) ⊆ 𝐺 with

𝒲 = {𝑠 = 𝑣0, 𝑣1, . . . , 𝑣𝑙−1, 𝑣𝑙 = 𝑡}, ℰ = {(𝑣0, 𝑣1), (𝑣1, 𝑣2), . . . , (𝑣𝑙−1, 𝑣𝑙)},

and 𝑣𝑖 ̸= 𝑣𝑗 for all 𝑖, 𝑗 = 1, . . . , 𝑙. Let 𝒫𝑠,𝑡 be the set of all 𝑠-𝑡 paths in our graph 𝐺.

89

We formulate the ordinary SPP as the optimization problem

minimize
∑︁
𝑣∈𝒲

𝑐𝑣 +
∑︁
𝑒∈ℱ

𝑐𝑒 (9.1a)

subject to (𝒲 ,ℱ) ∈ 𝒫𝑠,𝑡. (9.1b)

In the SPP in GCS each vertex 𝑣 ∈ 𝒱 is paired with a continuous variable 𝑥𝑣 ∈
R𝑛𝑣 . The scalar costs in (9.1a) are replaced by the convex functions 𝑓𝑣 : R𝑛𝑣 → R for
all 𝑣 ∈ 𝒱 and 𝑓𝑒 : R𝑛𝑣+𝑛𝑤 → R for all 𝑒 = (𝑣, 𝑤) ∈ ℰ . The selection of a path decides
both the cost functions that we need to minimize and the constraints 𝒳𝑣 ⊆ R𝑛𝑣 for
𝑣 ∈ 𝒱 and 𝒳𝑒 ⊆ R𝑛𝑣+𝑛𝑤 for 𝑒 = (𝑣, 𝑤) ∈ ℰ that we need to satisfy. This leads to the
optimization problem

minimize
∑︁
𝑣∈𝒲

𝑓𝑣(𝑥𝑣) +
∑︁

𝑒=(𝑣,𝑤)∈ℱ

𝑓𝑒(𝑥𝑣,𝑥𝑤) (9.2a)

subject to (𝒲 ,ℱ) ∈ 𝒫𝑠,𝑡, (9.2b)

𝑥𝑣 ∈ 𝒳𝑣, ∀𝑣 ∈ 𝒲 , (9.2c)

(𝑥𝑣,𝑥𝑤) ∈ 𝒳𝑒, ∀𝑒 = (𝑣, 𝑤) ∈ ℱ . (9.2d)

9.2 Complexity analysis

The ordinary SPP (9.1) is NP-hard if we do not make specific assumptions on
the structure of the graph or the signs of the vertex and edge costs. In fact, the
Hamiltonian-Path Problem (HPP), which asks whether a graph 𝐺 contains an
𝑠-𝑡 Hamiltonian path, is well known to be NP-complete for a cyclic graph [104], and
reduces to the SPP if we let 𝑐𝑣 = −1 for all 𝑣 ∈ 𝒱 and 𝑐𝑒 = 0 for all 𝑒 ∈ ℰ . In order
for the SPP to be efficiently solvable, we need to rule out the presence of cycles with
negative cost (see, e.g., [167, Chapter 8]). There are two obvious, but practically very
relevant, scenarios in which negative-cost cycles are certainly absent:

∙ The graph 𝐺 is acyclic. In this case a shortest path can be found in a time that
grows linearly with |𝒱| + |ℰ| (see, e.g., [43, Section 22.2]).

∙ All the costs 𝑐𝑣 for 𝑣 ∈ 𝒱 and 𝑐𝑒 for 𝑒 ∈ ℰ are nonnegative. In this case we
can use the variant of Dijkstra’s method [52] proposed in [69] to find a shortest
path in a time proportional to |𝒱| log(|𝒱|) + |ℰ|. Alternatively, we can solve the
problem as an LP (see the discussion at the end of Section 4.4.1).

The SPP in GCS is obviously NP-hard when no special assumptions are made on

90

the graph structure or the signs of the cost functions 𝑓𝑣 and 𝑓𝑒, since it generalizes the
ordinary SPP. Given the observations above, two practically relevant special cases of
the SPP in GCS to consider, with the hope that they are efficiently solvable, are:

∙ The SPP in GCS with acyclic graph 𝐺.

∙ The SPP in GCS with nonnegative costs, i.e., 𝑓𝑣 : R𝑛𝑣 → R≥0 for all 𝑣 ∈ 𝒱 and
𝑓𝑒 : R𝑛𝑣+𝑛𝑤 → R≥0 for all 𝑒 = (𝑣, 𝑤) ∈ ℰ .

The next theorem shows that, in contrast to the ordinary SPP, the SPP in GCS is
still NP-hard under these assumptions.

Theorem 9.1. Assume that the graph 𝐺 is acyclic. Assume that the vertex costs 𝑓𝑣
and the edge costs 𝑓𝑒 are nonnegative for all 𝑣 ∈ 𝒱 and 𝑒 ∈ ℰ. The SPP in GCS (9.2)
is NP-hard.

The proof of this theorem is a reduction of the 3SAT problem (Boolean-satisfiability
problem with clauses of three literals), which is another well-known NP-complete
problem [104]. Let us quickly recall the statement of this problem (without introduc-
ing the jargon typically used for satisfiability problems). For each 𝑖 = 1, . . . ,𝑚 and
𝑗 = 1, 2, 3, we are given a convex set

𝒞𝑖,𝑗 := {𝑥 ∈ [0, 1]𝑛 : 𝑥𝑘𝑖,𝑗 = 𝑎𝑖,𝑗},

where 𝑎𝑖,𝑗 ∈ {0, 1} and 𝑘𝑖,𝑗 ∈ {1, . . . , 𝑛}. In words, each set 𝒞𝑖,𝑗 allows the vector 𝑥

to have entries between zero and one, and forces the entry of 𝑥 indexed by 𝑘𝑖,𝑗 to be
equal to 𝑎𝑖,𝑗 (i.e., either zero or one). The 3SAT problem asks whether the set

𝑚⋂︁
𝑖=1

(𝒞𝑖,1 ∪ 𝒞𝑖,2 ∪ 𝒞𝑖,3)

is empty or not.

Remark 9.1. More commonly, the 3SAT problem asks for a vector 𝑥 with only
binary entries, i.e., the sets 𝒞𝑖,𝑗 should be defined as {𝑥 ∈ {0, 1}𝑛 : 𝑥𝑘𝑖,𝑗 = 𝑎𝑖,𝑗}. This
problem is easily seen to be equivalent to the one above: any feasible solution 𝑥 of
this second problem is feasible for the problem above, and by rounding the fractional
entries of any feasible solution 𝑥 of the problem above we obtain a feasible solution
for this second problem.

Proof of Theorem 9.1. We reduce the 3SAT problem to the SPP in GCS. Given the
sets 𝒞𝑖,𝑗, we construct the layered GCS illustrated in Figure 9-1. The leftmost and

91

[0, 1]𝑛

𝒞1,1

𝒞1,2

𝒞1,3

𝒞2,1

𝒞2,2

𝒞2,3

. . .

. . .

. . .

𝒞𝑚,1

𝒞𝑚,2

𝒞𝑚,3

[0, 1]𝑛

Figure 9-1: Reduction of the 3SAT problem to the SPP in GCS.

rightmost vertices are the source 𝑠 and the target 𝑡, respectively. We pair these
vertices with the convex sets 𝒳𝑠 := 𝒳𝑡 := [0, 1]𝑛. Between the source and the target,
we have 𝑚 layers with three vertices each. The 𝑗th vertex in the 𝑖th layer, denoted
as 𝑣, is paired with the convex set 𝒳𝑣 := 𝒞𝑖,𝑗. The directed edges connect the source
to all the vertices in the first layer, and all the vertices in the last layer to the
target. The layers in between are fully connected. We define the edge constraints as
𝒳𝑒 := {(𝑥𝑣,𝑥𝑤) : 𝑥𝑣 = 𝑥𝑤} for all 𝑒 = (𝑣, 𝑤) ∈ ℰ . All the vertex and edge costs are
equal to zero.

The edge constraints force all the continuous variables 𝑥𝑣 along the selected path
(i.e., for all 𝑣 ∈ 𝒲) to be equal. We call this common value 𝑥. Thanks to the layered
structure of our graph, the vector 𝑥 lies in at least one of the sets 𝒞𝑖,1, 𝒞𝑖,2, or 𝒞𝑖,3
for all 𝑖 = 1, . . . ,𝑚. Therefore the SPP in GCS we have constructed is feasible if and
only if the 3SAT problem is.

The proof of Theorem 9.1 shows that even deciding the feasibility of an SPP
in GCS is NP-hard. A simple modification of the same proof shows that solving a
feasible SPP in GCS is equally hard. Specifically, if we let 𝒳𝑒 := R𝑛 and 𝑓𝑒(𝑥𝑣,𝑥𝑤) :=

‖𝑥𝑣 −𝑥𝑤‖ for all 𝑒 = (𝑣, 𝑤) ∈ ℰ , then the SPP in GCS is feasible (we can let 𝑥𝑣 be a
any point in 𝒳𝑣 for all 𝑣 ∈ 𝒱 and take any path through the graph). In addition, the
SPP in GCS has optimal value equal to zero if and only if the initial 3SAT problem
is feasible.

9.2.1 Alternative proofs of NP-hardness

The proof of Theorem 9.1 makes minimal assumptions on the structure of the GCS,
but requires the sets 𝒳𝑣 to be high dimensional. We include here two alternative
proofs of NP-hardness of the SPP in GCS that use low-dimensional sets 𝒳𝑣. The first

92

uses intervals on the real line, the second disjoint rectangles in two dimensions. On
the other hand, these alternative proofs rely on the graph 𝐺 having cycles (and the
edge costs 𝑓𝑒 growing superlinearly).

Theorem 9.2. Assume that 𝒳𝑣 ⊂ R for all 𝑣 ∈ 𝒱. The SPP in GCS (9.2) is
NP-hard.

Proof. We reduce the HPP, which is NP-complete [104], to the SPP in GCS. We
construct an SPP in GCS that shares the same graph 𝐺 as the given HPP. We let
the source 𝒳𝑠 := {0} and target 𝒳𝑡 := {1} sets be singletons on the real line, and
we define 𝒳𝑣 := [0, 1] for all 𝑣 ̸= 𝑠, 𝑡. The length of each edge 𝑒 = (𝑣, 𝑤) is the
Euclidean distance squared, 𝑓𝑒(𝑥𝑣,𝑥𝑤) := ‖𝑥𝑤 − 𝑥𝑣‖22. Given these choices, the
optimal positioning of the vertices for a fixed path with vertices 𝑠 = 𝑣0, 𝑣1, . . . , 𝑣𝑙 = 𝑡

is 𝑥𝑣𝑘 = 𝑘/𝑙 for 𝑘 = 0, . . . , 𝑙. The cost of this solution is 𝑙(1/𝑙)2 = 1/𝑙. We conclude
that an optimal path is one for which 𝑙 is maximized, and is Hamiltonian if and only
if 𝐺 contains a Hamiltonian path.

Theorem 9.3. Assume that the sets 𝒳𝑣 for 𝑣 ∈ 𝒱 are disjoint rectangles in two
dimensions. The SPP in GCS (9.2) is NP-hard.

Proof. We repeat the proof of Theorem 9.2, but we embed the sets 𝒳𝑣 defined above
in a two-dimensional space. Specifically, we define very small scalars 𝜀𝑣 for all 𝑣 ∈ 𝒱 .
We assume that 𝜀𝑣 ̸= 𝜀𝑤 for all 𝑣, 𝑤 ∈ 𝒱 such that 𝑣 ̸= 𝑤. Then we let 𝒳𝑠 := {(0, 𝜀𝑠)},
𝒳𝑡 := {(1, 𝜀𝑡)}, and 𝒳𝑣 := [0, 1]×{𝜀𝑣} for all 𝑣 ̸= 𝑠, 𝑡. This modification ensures that
the sets 𝒳𝑣 are disjoint, but does not affect the optimal path, which is still Hamiltonian
if and only if 𝐺 has a Hamiltonian path.

9.3 Mixed-integer convex formulation

In Section 6.1 we have shown how the SPP in GCS is formulated as a Mixed-Integer
Convex Program (MICP). Here we consider special classes of SPPs in GCS, and we
show how the MICP from Section 6.1 can be made computationally lighter.

9.3.1 Nonnegative costs

We start by assuming that the vertex costs 𝑓𝑣 and the edge costs 𝑓𝑒 are nonnegative
functions. Under this assumption any cycle in the GCS has nonnegative cost and,
therefore, the cycle-elimination constraints are not necessary for the validity of our
MICP (although in some cases they can lead to a tighter convex relaxation). Specifi-
cally, the validity of our MICP is intact if we remove the constraint (4.4b), as well as

93

the corresponding constraints obtained by using Lemma 5.1, namely (6.2) and (6.3).
Collecting all the other constraints, our MICP reads

minimize
∑︁
𝑣∈𝒱

𝑓𝑣(𝑧𝑣, 𝑦𝑣) +
∑︁

𝑒=(𝑣,𝑤)∈ℰ

𝑓𝑒(𝑧
𝑒
𝑣, 𝑧

𝑒
𝑤, 𝑦𝑒) (9.3a)

subject to 𝑦𝑒 ∈ {0, 1}, ∀𝑒 ∈ ℰ , (9.3b)

𝑦𝑣 ∈ {0, 1}, ∀𝑣 ∈ 𝒱 , (9.3c)

(𝑧𝑣, 𝑦𝑣) =
∑︁
𝑒∈ℐin

𝑣

(𝑧𝑒
𝑣, 𝑦𝑒) + 𝛿𝑠𝑣(𝑥𝑣, 1), ∀𝑣 ∈ 𝒱 , (9.3d)

(𝑧𝑣, 𝑦𝑣) =
∑︁

𝑒∈ℐout
𝑣

(𝑧𝑒
𝑣, 𝑦𝑒) + 𝛿𝑡𝑣(𝑥𝑣, 1), ∀𝑣 ∈ 𝒱 , (9.3e)

(𝑧𝑣, 𝑦𝑣) ∈ 𝒳𝑣, (𝑥𝑣 − 𝑧𝑣, 1 − 𝑦𝑣) ∈ 𝒳𝑣, ∀𝑣 ∈ 𝒱 , (9.3f)

(𝑧𝑒
𝑣, 𝑦𝑒) ∈ 𝒳𝑣, (𝑥𝑣 − 𝑧𝑒

𝑣, 1 − 𝑦𝑒) ∈ 𝒳𝑣, ∀𝑣 ∈ 𝒱 , 𝑒 ∈ ℐ𝑣, (9.3g)

(𝑧𝑒
𝑣, 𝑧

𝑒
𝑤, 𝑦𝑒) ∈ 𝒳𝑒, ∀𝑒 = (𝑣, 𝑤) ∈ ℰ . (9.3h)

The convex relaxation of this problem is obtained simply by dropping the con-
straints (9.3b) and (9.3c).

It can be verified that multiple components (variables and constraints) of prob-
lem (9.3) are redundant, in the sense that they can be removed from the problem
without affecting the validity of the MICP and the optimal value of its convex relax-
ation. This reduced-size MICP reads as follows:

minimize
∑︁
𝑣∈𝒱

𝑓𝑣(𝑧𝑣, 𝑦𝑣) +
∑︁

𝑒=(𝑣,𝑤)∈ℰ

𝑓𝑒(𝑧
𝑒
𝑣, 𝑧

𝑒
𝑤, 𝑦𝑒) (9.4a)

subject to 𝑦𝑒 ∈ {0, 1}, ∀𝑒 ∈ ℰ , (9.4b)

𝑦𝑣 ∈ {0, 1}, ∀𝑣 ∈ 𝒱 , (9.4c)

𝑦𝑣 =
∑︁
𝑒∈ℐin

𝑣

𝑦𝑒 + 𝛿𝑠𝑣 =
∑︁

𝑒∈ℐout
𝑣

𝑦𝑒 + 𝛿𝑡𝑣 ≤ 1, ∀𝑣 ∈ 𝒱 , (9.4d)

𝑧𝑣 =
∑︁
𝑒∈ℐin

𝑣

𝑧𝑒
𝑣 + 𝛿𝑠𝑣𝑧𝑣 =

∑︁
𝑒∈ℐout

𝑣

𝑧𝑒
𝑣 + 𝛿𝑡𝑣𝑧𝑣, ∀𝑣 ∈ 𝒱 , (9.4e)

(𝑧𝑒
𝑣, 𝑦𝑒) ∈ 𝒳𝑣, ∀𝑣 ∈ 𝒱 , 𝑒 ∈ ℐ𝑣, (9.4f)

(𝑧𝑒
𝑣, 𝑧

𝑒
𝑤, 𝑦𝑒) ∈ 𝒳𝑒, ∀𝑒 = (𝑣, 𝑤) ∈ ℰ . (9.4g)

Specifically, we have removed:

∙ the variables 𝑥𝑣 for all 𝑣 ∈ 𝒱 ,

∙ the constraint (𝑧𝑣, 𝑦𝑣) ∈ 𝒳𝑣 from (9.3f) for all 𝑣 ∈ 𝒱 ,

94

∙ the constraint 𝑥𝑣 − 𝑧𝑣 ∈ (1 − 𝑦𝑣)𝒳𝑣 from (9.3f) for all 𝑣 ∈ 𝒱 ,

∙ the constraint 𝑦𝑒 ≤ 1 from (9.3g) for all 𝑒 ∈ ℰ ,

∙ the constraint 𝑥𝑣 − 𝑧𝑒
𝑣 ∈ (1 − 𝑦𝑒)𝒳𝑣 from (9.3g) for all 𝑣 ∈ 𝒱 and 𝑒 ∈ ℐ𝑣.

Again the convex relaxation of this problem is obtained by dropping the constraints (9.4b)
and (9.4c).

Given a feasible solution for the convex relaxation of one of the two MICPs above
it is always possible to reconstruct a feasible solution with equal cost for the other
MICP. From the larger MICP to the reduced MICP it suffices to discard the variables
𝑥𝑣 for all 𝑣 ∈ 𝒱 . For the other direction, we can let 𝑥𝑣 be any point that satisfies the
constraint in the third bullet above. It is easily verified that this value of 𝑥𝑣 satisfies
all the other constraints that we have removed.

9.3.2 No costs on the vertices

The MICP (9.4) can be simplified further if the vertex costs 𝑓𝑣 are zero for all 𝑣 ∈ 𝒱 ,
and the edge costs 𝑓𝑒 are still assumed to be nonnegative. In this case, we obtain the
small MICP

minimize
∑︁

𝑒=(𝑣,𝑤)∈ℰ

𝑓𝑒(𝑧
𝑒
𝑣, 𝑧

𝑒
𝑤, 𝑦𝑒) (9.5a)

subject to 𝑦𝑒 ∈ {0, 1}, ∀𝑒 ∈ ℰ , (9.5b)∑︁
𝑒∈ℐin

𝑣

𝑦𝑒 + 𝛿𝑠𝑣 =
∑︁

𝑒∈ℐout
𝑣

𝑦𝑒 + 𝛿𝑡𝑣 ≤ 1, ∀𝑣 ∈ 𝒱 , (9.5c)

∑︁
𝑒∈ℐin

𝑣

𝑧𝑒
𝑣 =

∑︁
𝑒∈ℐout

𝑣

𝑧𝑒
𝑣, ∀𝑣 ∈ 𝒱∖{𝑠, 𝑡}, (9.5d)

(𝑧𝑒
𝑣, 𝑦𝑒) ∈ 𝒳𝑣, ∀𝑣 ∈ 𝒱 , 𝑒 ∈ ℐ𝑣, (9.5e)

(𝑧𝑒
𝑣, 𝑧

𝑒
𝑤, 𝑦𝑒) ∈ 𝒳𝑒, ∀𝑒 = (𝑣, 𝑤) ∈ ℰ . (9.5f)

Here we have removed:

∙ the variables 𝑦𝑣 and 𝑧𝑣 for all 𝑣 ∈ 𝒱 ,

∙ the constraint (9.4e) for 𝑣 = 𝑠 and 𝑣 = 𝑡.

Given a feasible solution for the convex relaxation (9.5) or (9.4) we can always recover
a feasible solution with equal cost for the other convex relaxation.

95

Remark 9.2. An SPP in GCS with nonzero vertex costs can always be reduced to
an SPP in GCS with zero vertex costs. We can do this by distributing the cost 𝑓𝑣 of
vertex 𝑣 on the edges that are incident with 𝑣. For all the vertices 𝑣 that are not the
target, we add the term 𝑓𝑣(𝑥𝑣) to the costs 𝑓𝑒(𝑥𝑣,𝑥𝑤) of all the edges 𝑒 = (𝑣, 𝑤) that
are outgoing 𝑣. For the target 𝑡, we add the same term to the costs of the edges that
are incoming 𝑡. We also note that the MICP that we obtain after distributing the
vertex costs on the edges is stronger than the original one (i.e., has a tighter convex
relaxation). To see this, consider for example a vertex 𝑣 that is not the target. The
cost term 𝑓𝑣(𝑧𝑣, 𝑦𝑣) in the original MICP is replaced with

∑︁
𝑒∈ℐout

𝑣

𝑓𝑣(𝑧
𝑒
𝑣, 𝑦𝑒) ≥ 𝑓𝑣

⎛⎝ ∑︁
𝑒∈ℐout

𝑣

𝑧𝑒
𝑣,
∑︁

𝑒∈ℐout
𝑣

𝑦𝑒

⎞⎠ = 𝑓𝑣(𝑧𝑣, 𝑦𝑣),

where the inequality is due to the convexity of 𝑓𝑣 as in (2.10). An analogous inequality
is easily verified for the target vertex. On the other hand, the MICP with vertex costs
distributed on the edges is computationally more expensive, since it has more addends
in the objective function. Which MICP solves faster depends on the specific problem
instance.

9.3.3 Acyclic graphs

If the graph 𝐺 is acyclic then the constraint 𝑦𝑣 ≤ 1 is not necessary. This so-called
degree constraint can be eliminated from (9.4d) and also from the right-hand side
of (9.5c).

9.4 Dual problem

We now analyze the dual of the convex relaxation of our MICP, and we draw addi-
tional parallels between this problem and the Linear Programming (LP) formulation
of the SPP discussed in Section 4.4.1. The goal of this section is to get a better
understanding of the various components of our problem. With this goal in mind, we
make our problem as simple as possible: we assume that the vertex costs 𝑓𝑣 are zero
and the graph 𝐺 is acyclic. Therefore our primal problem is (9.5), without the degree
constraint in (9.5c).

96

9.4.1 Dual of the SPP

In Section 4.4.1 we have shown that the SPP with nonnegative weights ca be formu-
lated as the LP:

minimize
∑︁
𝑒∈ℰ

𝑐𝑒𝑦𝑒 (9.6a)

subject to
∑︁
𝑒∈ℐin

𝑣

𝑦𝑒 + 𝛿𝑠𝑣 =
∑︁

𝑒∈ℐout
𝑣

𝑦𝑒 + 𝛿𝑡𝑣, ∀𝑣 ∈ 𝒱 , (9.6b)

𝑦𝑒 ≥ 0, ∀𝑒 ∈ ℰ , (9.6c)

where we have set the vertex costs to zero, as by our assumption, and we have removed
the variables 𝑦𝑣. Note also that we have removed the degree constraints 𝑦𝑣 ≤ 1, which
is easily seen to be redundant for this problem.

The dual of the LP above can be derived as in Section 2.3.2 and reads

maximize 𝑝𝑠 − 𝑝𝑡 (9.7a)

subject to 𝑝𝑣 − 𝑝𝑤 ≤ 𝑐𝑒, ∀𝑒 = (𝑣, 𝑤) ∈ ℰ . (9.7b)

Here 𝑝𝑣 ∈ R is the multiplier of the flow conservation in (9.6b) for all 𝑣 ∈ 𝒱 . These
multipliers are interpretable as potentials: the objective maximizes the potential jump
between source and target, and the constraints ensure that the potential jump along
each edge does not exceed the edge cost.

For the LPs (9.6) and (9.7), complementary slackness reads (𝑐𝑒 − 𝑝𝑣 + 𝑝𝑤)𝑦𝑒 = 0

for all edges 𝑒 = (𝑣, 𝑤). Therefore, at optimality, each edge 𝑒 ∈ ℱ along the shortest
path must have a potential jump equal to its edge cost.

9.4.2 Dual of the SPP in GCS

The convex relaxation of the MICP (9.5) is a conic program, and its dual is also
derived as shown in Section 2.3.2. Neglecting the degree constraint, the dual problem
reads

maximize 𝑝𝑠 − 𝑝𝑡 (9.8a)

subject to 𝑟⊤
𝑣 𝑥𝑣 + 𝑝𝑣 − 𝑟⊤

𝑤𝑥𝑤 − 𝑝𝑤 ≤ 𝑓𝑒(𝑥𝑣,𝑥𝑤),

∀(𝑥𝑣,𝑥𝑤) ∈ (𝒳𝑣 ×𝒳𝑤) ∩ 𝒳𝑒, 𝑒 = (𝑣, 𝑤) ∈ ℰ , (9.8b)

𝑟𝑠 = 𝑟𝑡 = 0. (9.8c)

97

The dual variables are 𝑝𝑣 ∈ R and 𝑟𝑣 ∈ R𝑛𝑣 for all 𝑣 ∈ 𝒱 . The first are paired with
the flow conservation as above. The second correspond to (9.5c). The additional
variables 𝑟𝑠 and 𝑟𝑡 have only the role of simplifying the presentation.

Similarly to the LP (9.7), the dual (9.8) can be interpreted in terms of potentials.
For each vertex 𝑣 ∈ 𝒱 , the linear function 𝑟⊤

𝑣 𝑥𝑣 +𝑝𝑣 defines the potential of the point
𝑥𝑣 ∈ 𝒳𝑣. Because of (9.8c), these functions are constant over the source and target
sets, and the objective (9.8a) maximizes the potential jump between 𝑠 and 𝑡, as in the
ordinary SPP. Like (9.7b), constraint (9.8b) asks the potential jump along an edge to
be smaller than the edge cost. By setting all the potential functions to zero, we see
that the dual problem is always feasible and has nonnegative optimal value.

For the primal-dual pair (9.4) and (9.8), complementary slackness requires

𝑟⊤
𝑣 𝑧

𝑒
𝑣 + 𝑝𝑣𝑦𝑒 − 𝑟⊤

𝑤𝑧
𝑒
𝑤 − 𝑝𝑤𝑦𝑒 = 𝑓𝑒(𝑧

𝑒
𝑣, 𝑧

𝑒
𝑤, 𝑦𝑒)

for all edges 𝑒 = (𝑣, 𝑤). As for the ordinary SPP, this is trivially satisfied if 𝑦𝑒 = 0.
While, for 𝑦𝑒 > 0, we get 𝑟⊤

𝑣 𝑧
𝑒
𝑣 + 𝑝𝑣 − 𝑟⊤

𝑤𝑧
𝑒
𝑤 − 𝑝𝑤 = 𝑓𝑒(𝑧

𝑒
𝑣, 𝑧

𝑒
𝑤), with 𝑧𝑒

𝑣 := 𝑧𝑒
𝑣/𝑦𝑒 and

𝑧𝑒
𝑤 := 𝑧𝑒

𝑤/𝑦𝑒. In words, at optimality, the potential jump along edge 𝑒 is tight to the
edge cost 𝑓𝑒 at the point (𝑧𝑒

𝑣, 𝑧
𝑒
𝑤).

9.5 Heuristic solution via rounding

In many practical cases, we do not necessarily seek an optimal solution of the SPP in
GCS but, instead, we are interested in finding a feasible solution of low cost quickly.
In these cases, a simple and effective way of tackling the SPP in GCS is to solve its
convex relaxation and then try to obtain a feasible solution using a rounding strategy.
As discussed in Section 3.3.1, rounding is not always guaranteed to work, but can
be very effective for some problems with special structure. In addition, rounding
automatically provides us with the bound (3.4) on the optimality gap of the solution
that it finds.

The rounding strategy that we propose is based on the observation that, if we fix
a path (𝒲 ,ℱ) ∈ 𝒫𝑠,𝑡 through the graph 𝐺, then the SPP in GCS (9.2) reduces to
the following convex program (which we will call convex restriction [51]):

minimize
∑︁
𝑣∈𝒲

𝑓𝑣(𝑥𝑣) +
∑︁

𝑒=(𝑣,𝑤)∈ℱ

𝑓𝑒(𝑥𝑣,𝑥𝑤) (9.9a)

subject to 𝑥𝑣 ∈ 𝒳𝑣, ∀𝑣 ∈ 𝒲 , (9.9b)

(𝑥𝑣,𝑥𝑤) ∈ 𝒳𝑒, ∀𝑒 = (𝑣, 𝑤) ∈ ℱ , (9.9c)

98

where the only variables are 𝑥𝑣 for 𝑣 ∈ 𝒲 . This program is small in size and has the
structure of an optimal-control problem, with sparse (banded) cost and constraints.
Thanks to this, it can be solved in a time that increases only linearly with the length
𝑙 of the path [189].

Our rounding strategy is a randomized method that generates a collection of
candidate paths, for each path solves the corresponding convex restriction (9.9), and
then simply takes the solution with lowest optimal value. To generate a collection of
candidate paths we observe that the value of each variable 𝑦𝑒 is naturally interpreted
as the probability of the edge 𝑒 being along the shortest path. When we solve the
convex relaxation, these probabilities can be fractional, and induce a probability
distribution over the set of all possible paths through the graph 𝐺. To sample from
this distribution we use a simple randomized depth-first search. Starting from the
source vertex 𝑣 = 𝑠, at each iteration, this search crosses an edge 𝑒 ∈ ℐout

𝑣 with
probability 𝑦𝑒/𝑦𝑣. If a dead end occurs (i.e., if all the outgoing edges with nonzero
probability lead to a vertex that we have already visited) we backtrack to the latest
vertex in the path that admits a way out. The algorithm terminates when the target 𝑡
is reached and a path is identified. We repeat this algorithm until we identify a given
number of distinct paths (say five or ten) or we reach a given maximum number of
random trials (say one hundred).

Our rounding strategy is particularly effective when the convex restriction (9.9)
is guaranteed to be feasible, no matter the path that we select to cross the graph.
In this case, it is easily verified that our convex relaxation of the SPP in GCS is
feasible if and only there is an 𝑠-𝑡 path in the graph 𝐺, and the randomized rounding
is guaranteed to identify a solution of the SPP in GCS. This will be the case for some
of the motion-planning problems that we will study in Chapter 11.

Remark 9.3. Making our rounding strategy deterministic by selecting at each iter-
ation the edge 𝑒 with largest probability 𝑦𝑒 is, in general, a bad idea. To see this,
imagine that we have solved the convex relaxation, we have extracted the path with
largest probability mass, and this path is in fact optimal for the SPP in GCS. Then
we can construct a new graph where we add multiple copies of the vertices and edges
of the optimal path. If we solve our convex relaxation with this new graph, it can be
verified that the probability mass will be divided evenly between the multiple copies
of the optimal path. Therefore, if we add a sufficient number of copies, a greedy deter-
ministic search will eventually select a path that is not optimal. Conversely, repeating
the same experiment with our randomized strategy, the probability of sampling an
optimal path is independent of the presence of multiple optimal paths.

99

9.6 Numerical experiments

This section collects multiple numerical experiments. We start in Section 9.6.1 with
a simple two-dimensional problem. Section 9.6.2 presents a statistical analysis of the
performance of our MICP on large-scale instances of the SPP in GCS. The same large-
scale instances are used in Section 9.6.3 to analyze the effectiveness of our rounding
algorithm. Finally, in Section 9.6.4, we use a carefully designed problem to show how
symmetries in the GCS can loosen the relaxation of our MICP.

All the experiments in this section use the commercial solver MOSEK 10.0 with
default options on a laptop computer with processor 2.4 GHz 8-Core Intel Core i9
and memory 64 GB 2667 MHz DDR4.

9.6.1 Two-dimensional example

We consider the two-dimensional problem in Figure 9-2. We have a graph 𝐺 with
|𝒱| = 9 vertices, |ℰ| = 22 edges, and multiple cycles. The source 𝒳𝑠 := {𝜃𝑠 ∈ R2}
and target 𝒳𝑡 := {𝜃𝑡 ∈ R2} sets are single points, while the remaining regions are full
dimensional. The geometry of the sets 𝒳𝑣 and the edge set ℰ can be deduced from
Figure 9-2. We do not enforce any edge constraint 𝒳𝑒. All the vertex costs 𝑓𝑣 are
zero. For the edge costs we consider the Euclidean distance

𝑓𝑒(𝑥𝑣,𝑥𝑤) := ‖𝑥𝑤 − 𝑥𝑣‖2, ∀𝑒 = (𝑣, 𝑤) ∈ ℰ , (9.10)

and the Euclidean distance squared

𝑓𝑒(𝑥𝑣,𝑥𝑤) := ‖𝑥𝑤 − 𝑥𝑣‖22, ∀𝑒 = (𝑣, 𝑤) ∈ ℰ . (9.11)

The shortest paths corresponding to the two edge costs are shown in Figure 9-2 in
orange and blue. As expected, the first trajectory is almost straight while the lengths
of the segments in the second are better balanced.

In Figure 9-3 we analyze the optimal values of the SPP in GCS and our convex
relaxation for different values of a parameter 𝜎 > 0 that controls the volume of the
sets 𝒳𝑣. The value 𝜎 = 1 corresponds to the GCS in Figure 9-2. While for 𝜎 ̸= 1 each
set 𝒳𝑣 is shrunk or enlarged via a uniform scaling, with scale factor 𝜎, relative to a
fixed Chebyshev center of the set (center of the inscribed circle of maximum area).

When the edge cost is the Euclidean distance, the top panel in Figure 9-3 shows
that our relaxation is exact for all values of 𝜎. This was expected for 𝜎 close to zero,
since our relaxation is exact when the sets are singletons. Similarly, the problem
is trivial for very large 𝜎, when the regions are so big that, no matter the discrete

100

0 1 2 3 4 5 6 7 8 9
4

3

2

1

0

1

2

3

s t

Euclidean distance
Euclidean distance squared

Figure 9-2: Two-dimensional SPP in GCS with the optimal solution depicted for two
edge costs, the Euclidean distance and the Euclidean distance squared.

9.0
9.2
9.4
9.6
9.8

10.0

Co
st

Euclidean distance
MICP
Relaxation

10 2 10 1 100 101 102

Set size

10
15
20
25
30
35
40

Co
st

Euclidean distance squared
MICP
Relaxation

Figure 9-3: Optimal values of the SPP in GCS and its convex relaxation as functions
of the edge cost and the size of the sets 𝜎.

101

path we take, we can always reach the target via a straight line. However, that
our relaxation is exact for all the intermediate values of 𝜎 is not an obvious result.
With the Euclidean distance squared, our relaxation is still guaranteed to be tight
as 𝜎 goes to zero. This is confirmed by the bottom panel of Figure 9-3. When 𝜎 is
very large, our problem is equivalent to the HPP (see proof of Theorem 9.2), which
is NP-complete. The optimal value of the problem is ‖𝜃𝑡 − 𝜃𝑠‖22/𝑙 = 11.6, where
𝑙 = 7 is the number of edges in the longest 𝑠-𝑡 path in the graph in Figure 9-2. A
close inspection of the bottom of Figure 9-3 reveals that, for large 𝜎, our relaxation
yields the lower bound ‖𝜃𝑡 − 𝜃𝑠‖22/(|𝒱| − 1) = 10.1, which corresponds to the simple
inequality 𝑙 ≤ |𝒱|−1. Using a duality argument, it can be verified that our relaxation
always recovers this bound.

9.6.2 Large-scale random instances

We present a statistical analysis of the performance of our formulation. We generate
a variety of random large-scale SPPs in GCS, and we analyze the relaxation tightness
and the solution times of our MICP as functions of various problem parameters.

We stress that generating random graphs representative of the “typical” SPP in
GCS we might encounter in practice is a difficult operation. Inevitably, the instances
we describe below are not completely representative, and our algorithm might perform
worse or better on other classes of random graphs. Our goal here is to show that our
MICP is not limited to small-scale problems.

We construct an SPP in GCS as follows. We set 𝒳𝑠 := {0} and 𝒳𝑡 := {1}. The
rest of the sets 𝒳𝑣 are axis-aligned hyper cubes with volume Λ and center drawn
uniformly at random in [0, 1]𝑛. Given a number |ℰ| of edges, we construct the edge
set in two steps. First we generate multiple 𝑠-𝑡 paths such that every vertex 𝑣 ̸= 𝑠, 𝑡

is traversed exactly by one path. These are determined via a random partition of
the set 𝒱 − {𝑠, 𝑡}: the number of sets in the partition (number of paths) is drawn
uniformly from the interval [1, |𝒱| − 2], and also the number of vertices in each set
(length of each path) is a uniform random variable. Then we extend the edge set by
drawing edges uniformly at random from the set {(𝑣, 𝑤) ∈ 𝒱2 : 𝑤 ̸= 𝑠, 𝑣 ̸= 𝑡, 𝑣 ̸= 𝑤}
until a desired cardinality |ℰ| is reached. We do not enforce any edge constraint
𝒳𝑒, and all the vertex costs 𝑓𝑣 are zero. As edge costs 𝑓𝑒 we consider the Euclidean
distance (9.10) and the Euclidean distance squared (9.11), which both make our MICP
a mixed-integer Second-Order-Cone Program(SOCP).

For each edge cost, we first solve 100 random instances with the following nominal
parameters: volume Λ = 0.01, 𝑛 = 4 dimensions, |𝒱| = 50 vertices, and |ℰ| = 100

edges. Then we solve four other batches of 100 problems where, in each batch, a

102

s

t

Figure 9-4: Projection onto two dimensions of a random instance of the SPP in GCS
from Section 9.6.2. The problem parameters have nominal value.

different subset of these parameters is increased by a factor of 5. Specifically, these
additional batches test our formulation in case of large sets 𝒳𝑣 (Λ from 0.01 to 0.05),
high dimensions (𝑛 from 4 to 20), dense graphs (|ℰ| from 100 to 500), and large graphs
(|𝒱| and |ℰ| from 50 and 100 to 250 and 500). To give an idea of what these problems
look like, the projection onto two dimensions of a GCS generated using the nominal
parameters is shown in Figure 9-4.

Figure 9-5 shows the relaxation gap (cost gap between the MICP and its re-
laxation, normalized by the MICP cost) versus the MICP solution time for all the
instances described above. As observed in the previous example, the Euclidean edge
cost (9.10) results in easier programs: our relaxation is tight in almost all the in-
stances and the solution times are relatively low. The squared edge cost (9.11) leads
to more challenging problems, even though the maximum relaxation gap and runtime
are only 2.1% and 0.66s in the nominal case. When the volume of the cubes 𝒳𝑣 is
increased to Λ = 0.05 these values increase to 9.1% and 1.12s, and the performance of
our MICP is minimally affected. Note that this is not in contrast with the previous
example, where we analyzed the regime of extremely large sets 𝒳𝑣. Note also that the
volume of the sets does not affect the MICP size. The growth of the space dimension
to 𝑛 = 20 increases the size of our programs, and also loosens the relaxation. The
largest relaxation gap is 28.9%, and our MICP takes 72s to be solved in the worst
case. Similarly, when the number |ℰ| of edges is increased to 500 the maximum re-
laxation gap and runtime become 32.9% and 174s. This is due to the combination of
the quadratic edge cost and the large number of cycles that we have in a graph with
high density of edges |ℰ|/|𝒱|. To show this, in the last batch of problems we keep
|ℰ| = 500 and we increase the number of vertices to |𝒱| = 250. This increases the
MICP size further but makes the graph sparser, reducing the maximum relaxation

103

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Relaxation gap (%)

10 1

100

101

102
M

IC
P

so
lu

tio
n

tim
e

(s
)

Euclidean distance

Nominal
Large sets
High dimensions
Dense graph
Large graph

0 5 10 15 20 25 30
Relaxation gap (%)

Euclidean distance squared

Nominal
Large sets
High dimensions
Dense graph
Large graph

Figure 9-5: Relaxation gap versus MICP solution time for the 500 random instances
described in Section 9.6.2. Two edge costs are analyzed: the Euclidean distance (9.10)
and the Euclidean distance squared (9.11). For each edge cost, 100 nominal instances
are generated with the nominal problem parameters, and four other batches of 100
instances each are obtained by increasing a different subset of the parameters. Our
relaxation is almost always exact with the Euclidean cost. While, with the Euclidean
cost squared, it is more sensitive to the dimension 𝑛 of the space and the density of
the graph 𝐺. (Note the different horizontal scales of the two plots.)

gap and runtime to 5.3% and 5.4s.

9.6.3 Evaluation of the rounding algorithm

We continue the previous example with an analysis of the performance of the rounding
algorithm described in Section 9.5. Given that with the Euclidean edge cost our
relaxation is almost always exact (see left panel in Figure 9-5), here we only consider
the squared edge cost (9.11). For each batch of problem instances described in the
previous subsection, we report in Figure 9-6 the histogram of:

∙ The optimality gap 𝛿opt := (𝑓round − 𝑓opt)/𝑓opt, obtained by comparing the cost
of the rounded solution to the optimal value of the MICP.

∙ The certified optimality gap 𝛿relax := (𝑓round − 𝑓relax)/𝑓relax which upper bounds
optimality gap 𝛿opt and is obtained for free from our rounding algorithm.

The colors used in Figure 9-6 match the ones in Figure 9-5. For what concerns
the numerical parameters in our rounding algorithm, we set to five the number of
distinct paths and to one hundred the maximum number of random trials. Note
also that, since these instances of the SPP in GCS do not have edge constraints, our

104

rounding strategy is guaranteed to always identify a feasible solution (see discussion
in Section 9.5).

As shown in Figure 9-6, the optimality gaps 𝛿opt are almost always zero, i.e., our
rounding strategy recovers an optimal solution most of the times. The main exception
comes from the instances with dense graphs (red histograms). As noted above, these
are the instances where our convex relaxation is not very tight; but even in this
case the rounding yields an optimality gap smaller than 20% most of the times, and
always smaller than 55%. A similar analysis can be done for the certified optimality
gap 𝛿relax, which tightly upper bounds the actual optimality gap 𝛿opt for most of the
problems.

Importantly, the rounded solutions in this analysis are computed in a fraction of
the time that is needed to solve the corresponding MICPs. For the instances with
large graphs 𝐺, the rounding algorithms takes between 0.8s and 4.6s (without any
parallelization of the random trials). For all the other instances, it takes between
0.01s and 0.3s. Note that this is dramatically faster than the tens or hundreds of
seconds necessary to solve some of the MICPs (see right panel in Figure 9-5).

9.6.4 Symmetric problems

We conclude by showing how symmetries in the GCS can deteriorate the convex
relaxation of our MICP and, in principle, make it arbitrarily loose. We illustrate this
through the following carefully designed problem.

We consider the SPP in GCS depicted in Figure 9-7. We have an acyclic graph
with |𝒱| = 5 vertices and |ℰ| = 5 edges. All the sets 𝒳𝑣 are singletons {𝜃𝑣}, except
for 𝒳3 which is a full-dimensional rectangle. As an edge cost, we use the Euclidean
distance (9.10). Solving this problem, we obtain the optimal path 𝑝 = (𝑠, 1, 3, 𝑡)

with cost 7.4 (the symmetric solution 𝑝 = (𝑠, 2, 3, 𝑡) would also be optimal). The
corresponding vertex positions are connected by an orange line in Figure 9-7.

Figure 9-8 illustrates the solution of the relaxation of the MICP (5.8). For each
edge 𝑒 = (𝑣, 𝑤), we connect the optimal points 𝑧𝑒

𝑣 := 𝑧𝑒
𝑣/𝑦𝑒 and 𝑧𝑒

𝑤 := 𝑧𝑒
𝑤/𝑦𝑒 with an

orange line, labeled in blue with the corresponding flow 𝑦𝑒. Note that, for 𝑦𝑒 > 0,
we have 𝑓𝑒(𝑧𝑒

𝑣, 𝑧
𝑒
𝑤, 𝑦𝑒) = 𝑓𝑒(𝑧

𝑒
𝑣, 𝑧

𝑒
𝑤)𝑦𝑒, and the vectors 𝑧𝑒

𝑣 and 𝑧𝑒
𝑤 are the actual points

where the cost of the edge 𝑒 is evaluated. Note also that, we have 𝑧𝑒
𝑣 ∈ 𝒳𝑣 and

𝑧𝑒
𝑤 ∈ 𝒳𝑤. The relaxation splits the unit of flow injected in the source into two: half

unit is shipped to the target via the top path, the other half via the bottom path.
The optimal value of this convex program is 7.0.

The looseness of the relaxation can be explained as follows. If we denote with 𝜌

the flow traversing edge (1, 3), the flow conservation gives 𝑦(2,3) = 1−𝜌, while the flow

105

0.0 0.2 0.4 0.6 0.8 1.0
0

25
50
75

100
In

st
an

ce
s (

%
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0 0.2 0.4 0.6 0.8 1.0
0

25
50
75

100

In
st

an
ce

s (
%

)

0 2 4 6 8 10

0 5 10 15 20
0

20
40
60
80

In
st

an
ce

s (
%

)

0 10 20 30 40 50

0 10 20 30 40 50
0

10

20

30

In
st

an
ce

s (
%

)

0 20 40 60 80 100

0.0 0.2 0.4 0.6 0.8 1.0
Optimality gap opt (%)

0
25
50
75

100

In
st

an
ce

s (
%

)

0 1 2 3 4 5 6
Certified optimality gap relax (%)

Figure 9-6: Histograms of the optimality gap and the certified optimality gap for the
500 instances of the SPP in GCS described in Section 9.6.2. From top to bottom,
SPP in GCS with: nominal parameters, large sets 𝒳𝑣, high-dimensional sets 𝒳𝑣, dense
graph 𝐺, and large graph 𝐺. Note the different scales both on the horizontal and the
vertical axis.

106

0 1 2 3 4 5

2

1

0

1

2

s

1

2

3 t

Figure 9-7: Instance of the SPP in GCS that shows how symmetries in the GCS can
deteriorate the convex relaxation of our MICP. The optimal optimal vertex positions
are connected by orange lines.

0 1 2 3 4 5

2

1

0

1

2

zs
(s, 1) = zs

(s, 2)

z1
(s, 1) = z1

(1, 3)

z2
(s, 2) = z2

(2, 3)

z3
(1, 3)

z3
(2, 3)

z3
(3, t) zt

(3, t)

1/2

1/2

1/2

1/2

1

Figure 9-8: Optimal solution of the relaxation. The cost contribution of edge 𝑒 is
obtained by multiplying the flow 𝑦𝑒 by the distance between 𝑧𝑒

𝑣 and 𝑧𝑒
𝑤. Since only the

mean of 𝑧3
(1,3) and 𝑧3

(2,3) is required to match 𝑧3
(3,𝑡), the cost is minimized by moving

these two points closer to 𝑧1
(1,3) and 𝑧2

(2,3), respectively. For each edge 𝑒 = (𝑣, 𝑤), the
orange line connects the surrogates 𝑧𝑒

𝑣 and 𝑧𝑒
𝑤 of the vertex positions 𝑥𝑣 and 𝑥𝑤, and

is labeled with the flow 𝑦𝑒.

107

through the edge (3, 𝑡) is always one. Since the variables 𝑧1
(1,3), 𝑧

2
(2,3), and 𝑧𝑡

(3,𝑡) are
forced to match 𝜃1, 𝜃2, and 𝜃𝑡, respectively, the cost terms in (9.5a) corresponding
to the edges (1, 3), (2, 3), and (3, 𝑡) read

𝜌‖𝑧3
(1,3) − 𝜃1‖2 + (1 − 𝜌)‖𝑧3

(2,3) − 𝜃2‖2 + ‖𝜃𝑡 − 𝑧3
(3,𝑡)‖2. (9.12)

The only constraint that links these variables is (9.5d) for 𝑣 = 3, which gives 𝜌𝑧3
(1,3) +

(1 − 𝜌)𝑧3
(2,3) = 𝑧3

(3,𝑡). When 𝜌 = 1/2, this constraint asks the mean of 𝑧3
(1,3) and 𝑧3

(2,3)

to match 𝑧3
(3,𝑡), as opposed to forcing either one of the first two points to match the

third, as it would be for 𝜌 ∈ {0, 1}. Therefore, while keeping their mean equal to
𝑧3
(3,𝑡), the points 𝑧3

(1,3) and 𝑧3
(2,3) can move vertically, and get closer to 𝜃1 and 𝜃2. This

reduces the first two terms in (9.12), and keeps the third term unchanged.
Although this example leads to a relaxation gap of only 5%, a simple variation of

it shows that our relaxation can be arbitrarily loose. In particular, if we let 𝑓(𝑠,1) :=

𝑓(𝑠,2) := 0 and we shift the centers of the sets 𝒳3 and 𝒳𝑡 to the origin, then the cost of
the MICP and its relaxation are reduced to 2 and 0, and the relaxation gap becomes
100%. Nevertheless, we emphasize that this is a contrived problem, and the instances
we encounter in practice lead to these phenomena very rarely.

108

Chapter 10

Applications in optimal control

The goal of this chapter is showing how multiple classes of optimal-control problems
can be reduced to a Shortest-Path Problem (SPP) in Graphs of Convex Sets (GCS).
The techniques presented in this thesis can then be applied to automatically formulate
these control problems as highly efficient Mixed-Integer Convex Programs (MICP).
We will see that the mixed-integer formulations introduced in this chapter either
generalize or significantly improve upon the ones that have been previously proposed
in the literature.

The material in this chapter extends the one introduced in [131, Section 8]. It
also generalizes many of the results presented in [129].

10.1 Minimum-time control of discrete-time linear
systems

Consider the discrete-time linear dynamical system

𝑠𝑘+1 = 𝐴𝑠𝑘 + 𝐵𝑎𝑘, (10.1)

where 𝑠𝑘 ∈ R𝑞 and 𝑎𝑘 ∈ R𝑟 are the system state and control action at time step
𝑘 ∈ Z≥0. Given the initial conditions 𝑠0 = 𝑠, we look for a sequence of controls
that drives the system state to a target compact convex set 𝒯 ⊂ R𝑞 in the minimum
number 𝐾 ∈ Z≥0 of time steps. At each discrete time 𝑘, the state and control pair
(𝑠𝑘,𝑎𝑘) is constrained in a compact convex set 𝒟 ⊂ R𝑞+𝑟. The optimization problem

109

can be summarized as follows:

minimize 𝐾 (10.2a)

subject to 𝑠0 = 𝑠, (10.2b)

(𝑠𝑘,𝑎𝑘) ∈ 𝒟, ∀𝑘 = 0, . . . , 𝐾 − 1, (10.2c)

𝑠𝑘+1 = 𝐴𝑠𝑘 + 𝐵𝑎𝑘, ∀𝑘 = 0, . . . , 𝐾 − 1, (10.2d)

𝑠𝐾 ∈ 𝒯 . (10.2e)

Remark 10.1. Of course, a simple method to solve problem (10.2) is to do bisection
over the number time steps 𝐾, and solve a Linear Program (LP) with no objective
function at every iteration.1 On the other hand, bisection becomes quickly imprac-
tical as we consider more complex problems. For example, the technique presented
in this section can be immediately combined with the ones in the next section to
solve minimum-time problems for hybrid dynamical systems. For these problems our
method yields a single and strong MICP, while the bisection approach would need to
solve an MICP at every iteration.

To formulate problem (10.2) as an SPP in GCS we proceed as in Figure 10-1. The
vertices in our graph are ordered in a sequence: 𝒱 := {0, 1, . . . , �̄� − 1, 𝑡} where �̄� is
a given upper bound on the optimal time horizon 𝐾. The source 𝑠 = 0 is the first
vertex and the target 𝑡 is the last. Each vertex 𝑣 = 0, . . . , �̄� − 1 has two outgoing
edges: (𝑣, 𝑣 + 1) that connects it to the next vertex in the sequence, and (𝑣, 𝑡) that
goes to the target. For each of these vertices, the continuous variable 𝑥𝑣 := (𝑠𝑣,𝑎𝑣)

represents the state and control pair at time 𝑘 = 𝑣 (provided that we have not reached
the target set yet). The variables 𝑥𝑡 := 𝑠𝑡 paired with the target vertex represent the
system state at the final time 𝐾. These variables are constrained by the following
sets:

𝒳𝑠 := {(𝑠,𝑎) ∈ 𝒟 : 𝑠 = 𝑠},
𝒳𝑣 := 𝒟, ∀𝑣 = 1, . . . , �̄� − 1,

𝒳𝑡 := 𝒯 .

Along every edge 𝑒 = (𝑣, 𝑤) ∈ ℰ we require that the state and control at vertex
𝑣 is coupled to the state at vertex 𝑤 through the linear dynamics (10.1). This is
achieved by pairing each edge 𝑒 = (𝑣, 𝑤) with the convex set 𝒳𝑒 := {(𝑥𝑣,𝑥𝑤) : 𝑠𝑤 =

1Formally, this approach assumes that the set 𝒯 is invariant, i.e., for all 𝑠 ∈ 𝒯 there exists 𝑎 ∈ R𝑟

such that (𝑠,𝑎) ∈ 𝒟 and 𝐴𝑠 + 𝐵𝑎 ∈ 𝒯 . A simple example of an invariant set is 𝒯 := {0 ∈ R𝑞},
provided that 𝒟 contains the origin.

110

𝑠 = 0 1 2 . . . �̄� − 2 �̄� − 1

𝑡

Figure 10-1: Formulation of the minimum-time control problem for discrete-time
linear systems as an SPP in GCS.

𝐴𝑠𝑣 + 𝐵𝑎𝑣}.
To minimize the number of edges in the optimal path (i.e., the time steps to

reach the target set), we assign unit cost to every edge: 𝑓𝑒(𝑥𝑣,𝑥𝑤) := 1 for all
𝑒 = (𝑣, 𝑤) ∈ ℰ . The costs 𝑓𝑣 of all the vertices are set to zero.

The solution of the SPP in GCS just constructed gives us a path in the graph in
Figure 10-1. The optimal time horizon 𝐾 is the length of this path. The optimal
state and control sequence is given by the variables 𝑠𝑣 and 𝑎𝑣 paired with the vertices
𝑣 along this path.

The graph in Figure 10-1 has no cycles and vertex costs. Therefore the correspond-
ing MICP can be formulated as described in Section 9.3. Just for analysis purposes,
let us report explicitly the MICP that results from the application our techniques
(but note that in practice a user of our method would only have to assemble the GCS
in Figure 10-1, and the MICP below would be constructed automatically). After
multiple simplifications, our MICP reduces to the following optimization problem:

minimize 1 +
�̄�−2∑︁
𝑘=0

𝑦𝑘 (10.3a)

subject to 𝑦𝑘, 𝑦
′
𝑘 ∈ {0, 1}, ∀𝑘 = 0, . . . , �̄� − 1, (10.3b)

𝑦0 + 𝑦′0 = 1, (10.3c)

𝑦𝑘+1 + 𝑦′𝑘+1 = 𝑦𝑘, ∀𝑘 = 0, . . . , �̄� − 2, (10.3d)

𝑦�̄�−1 = 0, (10.3e)

𝜎0 = 𝑦0𝑠, (10.3f)

𝜎′
0 = 𝑦′0𝑠, (10.3g)

(𝜎𝑘,𝛼𝑘, 𝑦𝑘) ∈ �̃�, ∀𝑘 = 0, . . . , �̄� − 1, (10.3h)

(𝜎′
𝑘,𝛼

′
𝑘, 𝑦

′
𝑘) ∈ �̃�, ∀𝑘 = 0, . . . , �̄� − 1, (10.3i)

𝐴𝜎𝑘 + 𝐵𝛼𝑘 = 𝜎𝑘+1 + 𝜎′
𝑘+1, ∀𝑘 = 0, . . . , �̄� − 2, (10.3j)

𝐴𝜎′
𝑘 + 𝐵𝛼′

𝑘 ∈ 𝒯 , ∀𝑘 = 0, . . . , �̄� − 1. (10.3k)

111

The binary variable 𝑦𝑘 takes a value of zero if at time step 𝑘 + 1 we reach the target
set, and takes a value of one otherwise. The variable 𝑦′𝑘 has the opposite role, it is
one if we reach the target set and zero otherwise. The variables 𝜎𝑘 and 𝛼𝑘 represent
the state and the control of the system at time 𝑘 if 𝑦𝑘 = 1, and are zero otherwise.
Similarly, 𝜎′

𝑘 and 𝛼′
𝑘 represent the state and the control of the system at time 𝑘 if

𝑦′𝑘 = 1, and are zero otherwise. Therefore the actual system state and control action
can be reconstructed as

(𝑠𝑘,𝑎𝑘) := (𝜎𝑘,𝛼𝑘) + (𝜎′
𝑘,𝛼

′
𝑘),

for each time step 𝑘 = 0, . . . , �̄� − 1. The objective function minimizes the number
of time steps that we spend before reaching the target set plus one. The second
constraint states that at the first time step we either reach the target set or not. The
third constraint that, if at time 𝑘 we have not reached the target set, then we can
try again at time 𝑘 + 1. The fourth constraint says that at time �̄� − 1 we must
reach the target set if we have not done so already. The fifth to eighth conditions
enforce the necessary constraints on the states and controls, depending on whether we
have reached the target or not. The last two constraints enforce the linear dynamics,
according to the values of the binary variables.

The costs and constraints in problem (10.3) are interpretable relatively easily.
However, formulating this MICP directly would be a difficult task even for an expert
in mixed-integer optimization. The advantage of our approach is that the MICP (10.3)
is derived automatically: a user has only to specify the simple GCS in Figure 10-1,
and our techniques from Chapter 9 take care of all the optimization details.

10.1.1 Comparison with existing formulations

Mixed-integer formulations for minimum-time control have been studied for more
than thirty years (see, e.g., [33, 164, 161]). In the simple case in which the target set
𝒯 contains only the origin (and also the set 𝒟 contains the origin), the formulations

112

previously presented in the literature are variants of the following program:2

minimize 1 +
�̄�−2∑︁
𝑘=0

𝑦𝑘 (10.4a)

subject to 𝑦𝑘 ∈ {0, 1}, ∀𝑘 = 0, . . . , �̄� − 2, (10.4b)

𝑠0 = 𝑠, (10.4c)

(𝑠0,𝑎0) ∈ 𝒟, (10.4d)

(𝑠𝑘,𝑎𝑘, 𝑦𝑘−1) ∈ �̃�, ∀𝑘 = 1, . . . , �̄� − 2, (10.4e)

𝑠𝑘+1 = 𝐴𝑠𝑘 + 𝐵𝑎𝑘, ∀𝑘 = 0, . . . , �̄� − 1, (10.4f)

𝑠�̄� = 0. (10.4g)

Here the role of the binaries 𝑦𝑘 is the same as above (𝑦𝑘 = 0 if at time 𝑘+ 1 we reach
the origin, and 𝑦𝑘 = 1 otherwise), while the vectors 𝑠𝑘 and 𝑎𝑘 represent the actual
system state and control at discrete time 𝑘.

Our formulation in (10.3) is easily verified to be stronger than the one in (10.4):
the constraints in problem (10.3) imply the ones in (10.4), but not vice-versa.3 This
means that the convex relaxation of our SPP in GCS is guaranteed to be a tighter
approximation of the original nonconvex problem than the convex relaxation of (10.4).

10.1.2 Numerical example: double integrator

To illustrate the relations between our formulation (10.3) and the one in (10.4), we
consider the simple minimum-time problem depicted in Figure 10-2. We have a
double-integrator system with

𝐴 :=

[︃
1 ℎ

0 1

]︃
, 𝐵 :=

[︃
0

ℎ

]︃
,

where ℎ := 0.01 is the time discretization step. The constraint set 𝒟 enforces a limit
of one on the absolute value of each state and the control action: 𝒟 := [−1, 1]3. The
maximum number of time steps �̄� is set to 250.

The top panel in Figure 10-2 illustrates the optimal state-space trajectories for a

2Actually, to the best of our knowledge, previous formulations of this problem relied on the big-M
procedure and did not use the homogenization as in (10.4e). Therefore, the MICP (10.4) is already
a more advanced (and more efficient version) of the formulations that have previously appeared in
the literature.

3Take any feasible solution of the convex relaxation of (10.3). Define (𝑠𝑘,𝑎𝑘) := (𝜎𝑘,𝛼𝑘) +
(𝜎′

𝑘,𝛼
′
𝑘) for 𝑘 = 0, . . . , �̄� − 1 and 𝑠�̄� = 0. Then all the constraints of the convex relaxation

of (10.4) can be verified to hold.

113

variety of initial conditions 𝑠. The first component of the state is labelled as “position”
and the second as “velocity.” Close to each initial state we report the optimal value
of the corresponding problem (i.e., the minimum number of time steps to reach the
origin).

The central panel in Figure 10-2 reports the optimal solution of the convex relax-
ation of the MICP (10.4). As it can be seen, the trajectories generated by this convex
relaxation do not approximate the optimal trajectories well. Also the optimal values
of this relaxation are loose lower bounds on the optimal values of the MICP: the
minimum and maximum relaxation gap are 28.9% and 57.7%. The bottom panel in
Figure 10-2 illustrates the same results for the convex relaxation of our MICP (10.3).
In this case the trajectories look more alike the optimal ones, and the lower bounds
are tighter (minimum relaxation gap is 6.8% and maximum is 39.8%).

While our MICP is provably stronger, it has more variables and constraints than
the simple MICP (10.4). Therefore its solution times are not necessarily lower. In the
problems above the two formulations are roughly equivalent in terms of actual solution
times of the overall MICP. However, we emphasize again that the main advantage
of our approach is that it transfers without modifications to more complex control
problems, while the MICP (10.4) is handcrafted for this specific class of problems.

10.2 Regulation of discrete-time piecewise-affine sys-
tems

PieceWise-Affine (PWA) systems are a very flexible framework for modeling a great
variety of phenomena. Originally they were introduced as a generalization of linear
systems and an approximation of more general classes of nonlinear systems [173]; later
they became very popular as a more intuitive equivalent of several other families
of hybrid systems [92], such as Mixed Logical Dynamical (MLD) systems. Their
structure makes them very suitable for different types of analysis (e.g., stability [99],
observability and controllability [10]) as well as optimal control [159, 12]. PWA
systems have seen many applications [30], to mention a few: automotive control [22],
power electronics [77], temporal logic control [194], and they also have recently spread
in robot locomotion [124, 90] and manipulation [91]. Nowadays, together with MLD,
they are the most popular modeling framework for hybrid systems in Model Predictive
Control (MPC) [30, 23]. PWA dynamics are also efficiently fitted to data [63, 144, 119]
and compressed into low-complexity models [78, 119].

In this section we show how optimal-control problems for PWA systems can be

114

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Position

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

Ve
lo

cit
y

238 209 173 122

122 173 209 238

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Position

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

Ve
lo

cit
y

169.2 130.0 90.8 51.6

51.6 90.8 130.0 169.2

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Position

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

Ve
lo

cit
y

221.8 169.4 120.5 73.5

73.5 120.5 169.4 221.8

Figure 10-2: Minimum-time control of the discrete-time double integrator. Top: op-
timal solution the control problem. Center: optimal solution of the convex relaxation
of the baseline MICP (10.4). Bottom: optimal solution of the convex relaxation of
our MICP (10.3). In all the panels the initial states are labelled with the optimal cost
of the corresponding optimization problem. The relaxation of our formulation yields
a significantly tighter approximation of the optimal solution.

115

formulated as SPPs in GCS, and then automatically transcribed as efficient MICPs.
Efficient mixed-integer formulations for these problems have been previously studied
in [137, 129]. The approach that we present in this thesis generalizes the results in
both these papers. We also mention that tight convex relaxations of a similar family
of problems have been analyzed in [150, 7] (specifically, semidefinite relaxations for
linear systems with discrete control inputs).

A strong mixed-integer formulation is just the first step to an efficient solution
of these control problems: several customized algorithms have been presented in the
literature for the solution of MICPs arising in hybrid MPC [11, 6, 70, 179, 71]. Also
other approaches, not based on mixed-integer optimization, have been proposed for
the optimal control of PWA systems, for example explicit MPC [21] or nonlinear-
programming techniques [93]. The applicability of the first, however, is limited to
small problems, while the second requires continuity properties that not all the PWA
systems of interest might enjoy, and does not provide convergence and optimality
guarantees.

10.2.1 Problem statement

Given a finite collection {𝒟1, . . . ,𝒟𝐼} of compact convex subsets of the state and
control space, a PWA system has dynamics

𝑠𝑘+1 = 𝐴𝑖𝑘𝑠𝑘 + 𝐵𝑖𝑘𝑎𝑘 + 𝑐𝑖𝑘 , (𝑠𝑘,𝑎𝑘) ∈ 𝒟𝑖𝑘 .

The index 𝑖𝑘 ∈ {1, . . . , 𝐼} represents the system discrete mode at time 𝑘, which is
itself a decision variable. We consider the problem of driving a PWA system from a
given initial state 𝑠0 = 𝑠 to a target set 𝒯 , in a fixed number 𝐾 of time steps.4 The
objective is to minimize the sum of a stage costs 𝛾(𝑠𝑘,𝑎𝑘) for 𝑘 = 0, . . . , 𝐾 − 1, and
a terminal cost 𝜙(𝑠𝐾). The functions 𝛾 : R𝑞+𝑟 → R and 𝜙 : R𝑞 → R are convex. The

4The variant of this problem where 𝐾 is a decision variable can be easily tackled by combining
the techniques presented in this section with the ones from the previous section.

116

overall optimization can be stated as

minimize
𝐾−1∑︁
𝑘=0

𝛾(𝑠𝑘,𝑎𝑘) + 𝜙(𝑠𝐾) (10.5a)

subject to 𝑠0 = 𝑠, (10.5b)

(𝑠𝑘,𝑎𝑘) ∈ 𝒟𝑖𝑘 , ∀𝑘 = 0, . . . , 𝐾 − 1, (10.5c)

𝑠𝑘+1 = 𝐴𝑖𝑘𝑠𝑘 + 𝐵𝑖𝑘𝑎𝑘 + 𝑐𝑖𝑘 , ∀𝑘 = 0, . . . , 𝐾 − 1, (10.5d)

𝑖𝑘 ∈ ℐ, ∀𝑘 = 0, . . . , 𝐾 − 1, (10.5e)

𝑠𝐾 ∈ 𝒯 , (10.5f)

where we defined ℐ := {1, . . . , 𝐼}. Here both the states and controls (𝑠𝑘,𝑎𝑘) and the
system mode 𝑖𝑘 are decision variables.

Problem (10.5) can be formulated as an SPP in GCS in multiple ways. In the
next subsections we describe two pairs of formulations, that yield a different compro-
mise between strength and size. These will be tested numerically in Sections 10.2.5
and 10.2.6.

10.2.2 Small but weak formulations

The first formulation of problem (10.5) as an SPP in GCS that we analyze is illustrated
in Figure 10-3. The MICP resulting from this construction will be lightweight, but
its convex relaxation will not be very tight.

The source 𝑠 = 0 is the leftmost vertex and the target 𝑡 = 𝐾 is the rightmost.
In between, we have 𝐾 layers of vertices labelled by two numbers: the first number
is the time step 𝑘, the second is the system mode 𝑖. These layers are interleaved by
auxiliary vertices that are labelled only with the time step 𝑘. The source is connected
via an edge to each vertex in the first layer. Then each vertex in the first layer is
connected to the first auxiliary vertex. This pattern is repeated until the final layer,
whose vertices are connected to the target.

The continuous variables 𝑥𝑣 paired with the vertices 𝑣 = 0, 1, . . . , 𝐾− 1 represent
the system state 𝑠𝑘 and control 𝑎𝑘 at time 𝑘 = 𝑣. The variable 𝑥𝑡 paired with the
target vertex 𝑡 represents the final state of the system 𝑠𝐾 . The variables 𝑥𝑣 paired
with the remaining vertices (i.e., the vertices with labels of the form (𝑘, 𝑖)) represent
the state and control pair (𝑠𝑘,𝑎𝑘) if at time 𝑘 we are in mode 𝑖 (i.e., if 𝑖𝑘 = 𝑖). The

117

𝑠 = 0

0, 1

0, 2

...

0, 𝐼

1

1, 1

1, 2

...

1, 𝐼

2 . . . 𝐾 − 1

𝐾 − 1, 1

𝐾 − 1, 2

...

𝐾 − 1, 𝐼

𝑡 = 𝐾

Figure 10-3: First formulation of the regulation problem for discrete-time PWA sys-
tems as an SPP in GCS. Constructing the GCS in this way leads to MICPs that are
small but also weak.

variables just defined are constrained by the following convex sets:

𝒳𝑠 := {(𝑠,𝑎) ∈ 𝒟 : 𝑠 = 𝑠},
𝒳𝑣 := 𝒟, ∀𝑣 = 1, . . . , 𝐾 − 1,

𝒳𝑣 := 𝒟𝑖, ∀𝑣 = (𝑘, 𝑖) ∈ {0, . . . , 𝐾 − 1} × ℐ,
𝒳𝑡 := 𝒯 ,

where 𝒟 ⊂ R𝑞+𝑟 is a compact convex set that is large enough to contain all the sets
𝒟𝑖 for 𝑖 ∈ ℐ. (The choice of this set will actually be irrelevant for the final MICP.)

Along every edge 𝑒 = (𝑣, 𝑤) that connects a vertex 𝑣 = 𝑘 to a vertex 𝑤 = (𝑘, 𝑖)

we enforce the continuity of the state and the control through the edge constraint

𝒳𝑒 := {(𝑥𝑣,𝑥𝑤) : (𝑠𝑣,𝑎𝑣) = (𝑠𝑤,𝑎𝑤)}.

For every edge of the 𝑒 = (𝑣, 𝑤) that connects a vertex 𝑣 = (𝑘, 𝑖) to a vertex 𝑤 = 𝑘+1

we enforce the system dynamics via the edge constraint

𝒳𝑒 := {(𝑥𝑣,𝑥𝑤) : 𝑠𝑤 = 𝐴𝑖𝑠𝑣 + 𝐵𝑖𝑎𝑣 + 𝑐𝑖}.

The cost of each vertex 𝑣 = 0, . . . , 𝐾 − 1 is equal to 𝑓𝑣(𝑥𝑣) := 𝛾(𝑠𝑣,𝑎𝑣). The cost
of the target vertex 𝑡 = 𝐾 is 𝑓𝑡(𝑥𝑡) := 𝜙(𝑠𝑡). All the other vertices (i.e., the ones

118

labelled by (𝑘, 𝑖)) have zero cost. Also all the edges in the GCS have zero cost.

From the solution of this SPP in GCS we recover the optimal state and control
sequences by looking at the optimal values of the variables 𝑥𝑣 paired with the vertices
𝑣 = 0, . . . , 𝐾.

The graph in Figure 10-3 is acyclic, and the corresponding MICP is formulated
as in Section 9.3. Only for analysis purposes, we report here the MICP that results
from the application of our techniques. After multiple simplifications, we obtain

minimize
𝐾−1∑︁
𝑘=0

𝛾(𝑠𝑘,𝑎𝑘) + 𝜙(𝑠𝐾) (10.6a)

subject to 𝑦𝑘,𝑖 ∈ {0, 1}, ∀𝑘 = 0, . . . , 𝐾 − 1, 𝑖 ∈ ℐ,
(10.6b)

𝑠0 = 𝑠, (10.6c)

(𝑠𝑘,𝑎𝑘, 𝑠𝑘+1, 1) =
∑︁
𝑖∈ℐ

(𝜎𝑘,𝑖,𝛼𝑘,𝑖,𝜎
+
𝑘,𝑖, 𝑦𝑘,𝑖), ∀𝑘 = 0, . . . , 𝐾 − 1, (10.6d)

𝜎+
𝑘,𝑖 = 𝐴𝑖𝜎𝑘,𝑖 + 𝐵𝑖𝛼𝑘,𝑖 + 𝑐𝑖𝑦𝑘,𝑖, ∀𝑘 = 0, . . . , 𝐾 − 1, 𝑖 ∈ ℐ,

(10.6e)

(𝑠𝑘,𝑖,𝑎𝑘,𝑖, 𝑦𝑘,𝑖) ∈ �̃�𝑖, ∀𝑘 = 0, . . . , 𝐾 − 1, 𝑖 ∈ ℐ,
(10.6f)

𝑠𝐾 ∈ 𝒯 . (10.6g)

Here the binary variables 𝑦𝑘,𝑖 are one if the system is in mode 𝑖 at time 𝑘. The variables
𝑠𝑘 and 𝑎𝑘 are the system state and control at time 𝑘. The variables (𝜎𝑘,𝑖,𝛼𝑘,𝑖,𝜎

+
𝑘,𝑖) are

auxiliary variables that are equal to (𝑠𝑘,𝑎𝑘, 𝑠𝑘+1) if 𝑦𝑘,𝑖 = 1, and are zero otherwise.
This formulation is computationally light, but its convex relaxation can be quite loose.
This MICP is identical to the one proposed in [129, Section 3.2], which, however, was
hand-crafted and not generated algorithmically.

The convex relaxation of the MICP (10.6) can be easily tightened. Instead of
enforcing the costs on the vertices 𝑣 = 0, . . . , 𝐾, we can enforce them on the edges that
connect the vertices (𝑘, 𝑖) and 𝑘+ 1 for all 𝑘 = 0, 1, . . . , 𝐾− 1 and 𝑖 ∈ ℐ. Specifically,
for every edge 𝑒 = (𝑣, 𝑤) that connects vertex 𝑣 = (𝑘, 𝑖) to vertex 𝑤 = 𝑘 + 1, with
𝑘 = 0, . . . , 𝐾 − 2 and 𝑖 ∈ ℐ, we define

𝑓𝑒(𝑥𝑣,𝑥𝑤) := 𝛾(𝑠𝑣,𝑎𝑣).

For the edges 𝑒 = (𝑣, 𝑡) that connect vertex 𝑣 = (𝐾 − 1, 𝑖) to the target 𝑡 = 𝐾, with

119

𝑖 ∈ ℐ, we let
𝑓𝑒(𝑥𝑣,𝑥𝑡) := 𝛾(𝑠𝑣,𝑎𝑣) + 𝜙(𝑠𝑡).

While for all the vertices 𝑣 ∈ 𝒱 we let 𝑓𝑣(𝑥𝑣) = 0.
This modification to the GCS has the effect of replacing the objective func-

tion (10.6a) with

∑︁
𝑖∈ℐ

(︃
𝐾−1∑︁
𝑘=0

𝛾(𝜎𝑘,𝑖,𝛼𝑘,𝑖, 𝑦𝑘,𝑖) + 𝜙(𝜎+
𝐾−1,𝑖, 𝑦𝐾−1,𝑖)

)︃
. (10.7)

For any feasible solution of the MICP (10.6), this alternative objective function is
easily seen to yield the same value as the previous objective (10.6a).5 On the other
hand, when the binary variables 𝑦𝑘,𝑖 are allowed to be fractional, the new objective
can be greater than the original one, and therefore yields a tighter relaxation. To
see this, note that, for any fixed time step 𝑘, the feasible solutions of the convex
relaxation of (10.6) satisfy∑︁

𝑖∈ℐ

𝛾(𝜎𝑘,𝑖,𝛼𝑘,𝑖, 𝑦𝑘,𝑖) =
∑︁
𝑖∈ℐ>0

𝑦𝑘,𝑖𝛾(𝜎𝑘,𝑖/𝑦𝑘,𝑖,𝛼𝑘,𝑖/𝑦𝑘,𝑖)

≥ 𝛾

(︃∑︁
𝑖∈ℐ>0

𝑦𝑘,𝑖(𝜎𝑘,𝑖/𝑦𝑘,𝑖,𝛼𝑘,𝑖/𝑦𝑘,𝑖)

)︃

= 𝛾

(︃∑︁
𝑖∈ℐ>0

(𝜎𝑘,𝑖,𝛼𝑘,𝑖)

)︃

= 𝛾

(︃∑︁
𝑖∈ℐ

(𝜎𝑘,𝑖,𝛼𝑘,𝑖)

)︃
= 𝛾(𝑠𝑘,𝑎𝑘),

where we defined ℐ>0 := {𝑖 ∈ ℐ : 𝑦𝑘,𝑖 > 0}, and where the inequality follows from the
convexity of 𝛾 as in (2.10). Analogous steps show that the same inequality holds also
for the terminal cost: ∑︁

𝑖∈ℐ

𝜙(𝜎+
𝐾−1,𝑖, 𝑦𝐾−1,𝑖) ≥ 𝜙(𝑠𝐾).

5If at time 𝑘 we decide to be in mode 𝑗 ∈ ℐ, then we have 𝑦𝑘,𝑗 = 1 and 𝑦𝑘,𝑖 = 0 for all 𝑖 ̸= 𝑗.
This gives us (𝜎𝑘,𝑗 ,𝛼𝑘,𝑗) = (𝑠𝑘,𝑎𝑘) and (𝜎𝑘,𝑖,𝛼𝑘,𝑖) = (0,0) for al 𝑖 ̸= 𝑗. In turn, this implies∑︁

𝑖∈ℐ
𝛾(𝑠𝑘,𝑖,𝑎𝑘,𝑖, 𝑦𝑘,𝑖) = 𝛾(𝑠𝑘,𝑎𝑘, 1) +

∑︁
𝑖∈ℐ∖{𝑗}

𝛾(0,0, 0) = 𝛾(𝑠𝑘,𝑎𝑘),

which shows the exactness of the alternative formulation of the stage cost in (10.7). The exactness
of the alternative formulation of the terminal cost is shown in a similar way.

120

𝑠

0, 1

0, 2

...

0, 𝐼

1, 1

1, 2

...

1, 𝐼

. . .

. . .

. . .

. . .

𝐾 − 1, 1

𝐾 − 1, 2

...

𝐾 − 1, 𝐼

𝑡

Figure 10-4: Strong and large formulation of the regulation problem for discrete-time
PWA systems as an SPP in GCS.

The formulation with the modified objective (10.7) is essentially the same as the
one proposed in [137].6 Although it is provably stronger, it can often lead to a
harder class of optimization problems. For example, if the stage and terminal costs
are quadratic (and all the constraints polyhedral), then the formulation in (10.6)
is a Mixed-Integer Quadratic Program (MIQP), while the one with the modified
objective is a Mixed-Integer Second-Order-Cone Program (MISOCP). This can be
a disadvantage since the solvers for MIQPs are typically significantly more effective
than the ones for MISOCPs. The two formulations above have been benchmarked
in [129]; we will expand on this benchmark in Section 10.2.6 below.

10.2.3 Strong but large formulations

We now illustrate a second class of mixed-integer formulations of problem (10.5).
These will be larger than the previous ones (i.e., more variables and constraints) but
they will also be stronger (i.e., they will have tighter convex relaxation).

We construct the GCS illustrated in Figure 10-4. The source 𝑠 is the leftmost
vertex and the target 𝑡 is the rightmost. In between, we have 𝐾 layers with 𝐼 vertices
each. The source is connected via an edge to each vertex in the first layer, and all the
vertices in the last layer are connected to the target. Each pair of consecutive layers
is fully connected.

As in the previous formulations, the continuous variable 𝑥𝑣 paired with the vertex

6More precisely, in that work only the stage cost is reformulated as in (10.7), while the terminal
cost is still enforced as in (10.6a).

121

𝑣 = (𝑘, 𝑖), for 𝑘 = 0, . . . , 𝐾 − 1 and 𝑖 ∈ ℐ, represents the state and control pair
(𝑠𝑘,𝑎𝑘) if at time 𝑘 we are in mode 𝑖. The vertices are paired with the following sets:

𝒳𝑠 := {𝑠},
𝒳𝑣 := 𝒟𝑖, ∀𝑣 = (𝑘, 𝑖) ∈ {0, . . . , 𝐾 − 1} × ℐ,
𝒳𝑡 := 𝒯 .

All the edges 𝑒 = (𝑠, 𝑣) outgoing the source are paired with the convex set

𝒳𝑒 := {(𝑥𝑠,𝑥𝑣) : 𝑠𝑠 = 𝑠𝑣}.

These constraints enforce the initial conditions. The edges 𝑒 = (𝑣, 𝑤) connecting
vertex 𝑣 = (𝑘, 𝑖) to either 𝑤 = (𝑘 + 1, 𝑗) or 𝑤 = 𝑡 are paired with the convex sets

𝒳𝑒 := {(𝑥𝑣,𝑥𝑤) : 𝑠𝑤 = 𝐴𝑖𝑠𝑣 + 𝐵𝑖𝑎𝑣 + 𝑐𝑖},

which enforce the system dynamics.

Similarly to the previous formulation, we have now the choice of enforcing the
stage and terminal costs either on the vertices or on the edges. Also in this case
enforcing them on the edges leads to a stronger formulation. In addition, this time
this choice has not impact on the problem class. Therefore below we only consider
one scenario, where the stage and terminal costs are distributed on the edges of the
GCS. We set the cost of all the vertices to zero. For all the edges 𝑒 = (𝑣, 𝑤) that
connect a vertex 𝑣 = (𝑘, 𝑖) to a vertex 𝑤 = (𝑘 + 1, 𝑗), we let

𝑓𝑒(𝑥𝑣,𝑥𝑤) := 𝛾(𝑠𝑣,𝑎𝑣).

The cost of all the edges that connect a vertex 𝑣 = (𝐾 − 1, 𝑖) to the target 𝑡 is

𝑓𝑒(𝑥𝑣,𝑥𝑡) := 𝛾(𝑠𝑣,𝑎𝑣) + 𝜙(𝑠𝑡).

The graph in Figure 10-4 is acyclic and has zero vertex costs. The corresponding
MICP is formulated as in Section 9.3. For analysis purposes, the MICP that we

122

obtain in this case reads as follows. The objective function is

𝐾−2∑︁
𝑘=0

∑︁
𝑖∈ℐ

∑︁
𝑗∈ℐ

𝛾(𝜎𝑘,𝑖,𝑗,𝛼𝑘,𝑖,𝑗, 𝑦𝑘,𝑖,𝑗) +
∑︁
𝑖∈ℐ

𝛾(𝜎𝐾−1,𝑖,𝛼𝐾−1,𝑖, 𝑦𝐾−1,𝑖)

+
∑︁
𝑖∈ℐ

𝜙(𝐴𝑖𝜎𝐾−1,𝑖 + 𝐵𝑖𝛼𝐾−1,𝑖 + 𝑐𝑖𝑦𝐾−1,𝑖, 𝑦𝐾−1,𝑖). (10.8)

The constraints are

𝑦𝑘,𝑖 ∈ {0, 1}, ∀𝑘 = 0, . . . , 𝐾 − 1, 𝑖 ∈ ℐ,
𝑦𝑘,𝑖,𝑗 ∈ {0, 1}, ∀𝑘 = 0, . . . , 𝐾 − 2, 𝑖, 𝑗 ∈ ℐ,∑︁
𝑖∈ℐ

𝑦0,𝑖 = 1

𝜎0,𝑖 = 𝑦0,𝑖𝑠, ∀𝑖 ∈ ℐ,∑︁
𝑗∈ℐ

(𝜎𝑘,𝑖,𝑗,𝛼𝑘,𝑖,𝑗, 𝑦𝑘,𝑖,𝑗) = (𝜎𝑘,𝑖,𝛼𝑘,𝑖, 𝑦𝑘,𝑖), ∀𝑘 = 0, . . . , 𝐾 − 2, 𝑖 ∈ ℐ,∑︁
𝑖∈ℐ

(𝜎+
𝑘,𝑖,𝑗,𝛼

+
𝑘,𝑖,𝑗, 𝑦𝑘,𝑖,𝑗) = (𝜎𝑘+1,𝑗,𝛼𝑘+1,𝑗, 𝑦𝑘+1,𝑗), ∀𝑘 = 0, . . . , 𝐾 − 2, 𝑗 ∈ ℐ,

(𝜎𝑘,𝑖,𝑗,𝛼𝑘,𝑖,𝑗, 𝑦𝑘,𝑖,𝑗) ∈ �̃�𝑖, ∀𝑘 = 0, . . . , 𝐾 − 2, 𝑖, 𝑗 ∈ ℐ,
(𝜎+

𝑘,𝑖,𝑗,𝛼
+
𝑘,𝑖,𝑗, 𝑦𝑘,𝑖,𝑗) ∈ �̃�𝑗, ∀𝑘 = 0, . . . , 𝐾 − 2, 𝑖, 𝑗 ∈ ℐ,

𝜎+
𝑘,𝑖,𝑗 = 𝐴𝑖𝜎𝑘,𝑖,𝑗 + 𝐵𝑖𝛼𝑘,𝑖,𝑗 + 𝑐𝑖𝑦𝑘,𝑖,𝑗, ∀𝑘 = 0, . . . , 𝐾 − 2, 𝑖, 𝑗 ∈ ℐ,

(𝐴𝑖𝜎𝐾−1,𝑖 + 𝐵𝑖𝛼𝐾−1,𝑖 + 𝑐𝑖𝑦𝐾−1,𝑖, 𝑦𝐾−1,𝑖) ∈ 𝒯 , ∀𝑖 ∈ ℐ.

Here the binary variable 𝑦𝑘,𝑖 is one if the system is in mode 𝑖 at time 𝑘. While 𝑦𝑘,𝑖,𝑗
is one if a time 𝑘 we transition from mode 𝑖 to mode 𝑗. The vectors labelled with
the same indices represent the system state and control if the corresponding binary
variable is one.

10.2.4 Big-M formulation

The first mixed-integer formulation for optimal control of discrete-time PWA systems
appeared in [12, Section 3.1]. That formulation was based on the so-called “big-M”
method (and was intended primarily as a proof of concept rather than an efficient
formulation). We report it here for completeness, since it is still frequently used and
we will include it in the upcoming numerical experiments.

The big-M formulation assumes that the sets 𝒟𝑖 are polytopes:

𝒟𝑖 := {(𝑠,𝑎) : 𝐹𝑖𝑠 + 𝐺𝑖𝑎 ≤ ℎ𝑖}, ∀𝑖 ∈ ℐ.

123

For all 𝑖 ∈ ℐ, we define the big-M parameters

𝑙𝑖 := max{𝐹𝑖𝑠 + 𝐺𝑖𝑎− ℎ𝑖 : (𝑠,𝑎) ∈ 𝒟𝑗, 𝑗 ∈ ℐ},
𝑑𝑖 := min{𝐴𝑖𝑠 + 𝐵𝑖𝑎 + 𝑐𝑖 : (𝑠,𝑎) ∈ 𝒟𝑗, 𝑗 ∈ ℐ},
𝑒𝑖 := max{𝐴𝑖𝑠 + 𝐵𝑖𝑎 + 𝑐𝑖 : (𝑠,𝑎) ∈ 𝒟𝑗, 𝑗 ∈ ℐ},

where the minimum and the maximum are elementwise. These can be computed by
solving a collection of linear programs. The constraints of the big-M MICP are

𝑦𝑘,𝑖 ∈ {0, 1}, ∀𝑘 = 0, . . . , 𝐾 − 1, 𝑖 ∈ ℐ, (10.9a)

𝑠0 = 𝑠, (10.9b)

𝐹𝑖𝑠𝑘 + 𝐺𝑖𝑎𝑘 ≤ ℎ𝑖 + 𝑙𝑖(1 − 𝑦𝑘,𝑖), ∀𝑘 = 0, . . . , 𝐾 − 1, 𝑖 ∈ ℐ, (10.9c)∑︁
𝑖∈ℐ

𝑦𝑘,𝑖 = 1, ∀𝑘 = 0, . . . , 𝐾 − 1, (10.9d)

𝑠𝑘+1 =
∑︁
𝑖∈ℐ

𝜎+
𝑘,𝑖, ∀𝑘 = 0, . . . , 𝐾 − 1, (10.9e)

𝜎+
𝑘,𝑖 ≤ 𝐴𝑖𝑠𝑘 + 𝐵𝑖𝑎𝑘 + 𝑐𝑖 − 𝑑𝑖(1 − 𝑦𝑘,𝑖), ∀𝑘 = 0, . . . , 𝐾 − 1, 𝑖 ∈ ℐ, (10.9f)

𝜎+
𝑘,𝑖 ≥ 𝐴𝑖𝑠𝑘 + 𝐵𝑖𝑎𝑘 + 𝑐𝑖 − 𝑒𝑖(1 − 𝑦𝑘,𝑖), ∀𝑘 = 0, . . . , 𝐾 − 1, 𝑖 ∈ ℐ, (10.9g)

𝜎+
𝑘,𝑖 ≤ 𝑒𝑖𝑦𝑘,𝑖, ∀𝑘 = 0, . . . , 𝐾 − 1, 𝑖 ∈ ℐ, (10.9h)

𝜎+
𝑘,𝑖 ≥ 𝑑𝑖𝑦𝑘,𝑖, ∀𝑘 = 0, . . . , 𝐾 − 1, 𝑖 ∈ ℐ, (10.9i)

𝑠𝐾 ∈ 𝒯 . (10.9j)

The objective function is equal to (10.5a).
This formulation can be formally shown to have weaker convex relaxation than

the ones above. On the other hand, it has small number of variables and constraints,
therefore in some cases its runtime can be competitive with ours. Below we compare
all the formulations discussed in this chapter on two challenging numerical examples.

10.2.5 Numerical example: footstep planning

We consider the problem shown in Figure 10-5, where we optimize the sequence of
footsteps necessary for a walking robot to traverse a set of stepping stones. The
dynamics of the robot is approximated as a double integrator with position 𝑞 ∈ R2,
velocity 𝑣 ∈ R2, and force 𝑎 ∈ R2. The equations governing the motion of the robot
are then 𝑞𝑘+1 = 𝑞𝑘 + 𝑣𝑘 and 𝑣𝑘+1 = 𝑣𝑘 + 𝜂𝑎𝑘, where 𝜂 is a scalar parameter that
regulates the system controllability. The system state at time 𝑘 is 𝑠𝑘 := (𝑞𝑘,𝑣𝑘).
The initial position is 𝑞 := (−3.5, 0.5) (green plus in Figure 10-5), the initial velocity

124

6 4 2 0 2 4 6
s1, a1

0

1

2

3

4

5

6

7

s 2
,a

2

1

2 3

4

5

6

7

Figure 10-5: Footstep-planning problem. A simplified robot has to navigate from the
start (green plus) to the goal (green cross). At each time step, the robot configuration
needs to lie in one of the stepping stones. The light-blue and red stepping stones have
high and low controllability, respectively. The optimal trajectory is depicted with
white circles and the optimal controls as blue arrows.

is 𝑣 := 0. The initial state is then 𝑠 := (−3.5, 0.5, 0, 0). At each time step 𝑘 =

1, . . . , 𝐾 − 1, the position 𝑞𝑘 must belong to one of the seven stepping stones in
Figure 10-5, while the velocity and the controls are limited by the constraints ‖𝑣𝑘‖∞ ≤
1 and ‖𝑎𝑘‖∞ ≤ 1. The goal is to reach the point 𝑞𝐾 := (3.5, 6.5) (green cross
in Figure 10-5) with zero velocity 𝑣𝐾 in 𝐾 := 40 time steps. Therefore we let
𝒯 := {(3.5, 6.5, 0, 0)}. The stage cost is 𝛾(𝑠𝑘,𝑎𝑘) := ‖𝑣𝑘‖22/5 + ‖𝑎𝑘‖22, and the
terminal cost is zero.

We let the parameter 𝜂 vary between the seven stepping stones. The five stones
in the range −5 ≤ 𝑞1 ≤ 5 (light blue in Figure 10-5) have 𝜂 = 1. While in the other
two stones (red in Figure 10-5) we make the system more expensive to control by
setting 𝜂 = 0.1. These can be thought as slippery stones where it is undesirable to
place the foot of the robot. Since the parameter 𝜂 varies with the state, the system
dynamics is PWA and the control problem falls into the class considered above. The
top panel in Figure 10-5 shows the optimal trajectory 𝑞0, . . . , 𝑞𝐾 as white circles, and
the corresponding optimal controls 𝑎0, . . . ,𝑎𝐾−1 as blue arrows.

We compare the performance of the four mixed-integer formulations discussed in
this chapter. In order of increasing strength:

∙ The big-M formulation (10.9), which first appeared in [12, Section 3.1].

∙ The formulation (10.6), proposed in [129], and recoverable as a special case of

125

Big-M (10.9) Form. (10.6) Form. (10.7) Form. (10.8)
Problem class MIQP MIQP MISOCP MISOCP
Relaxation cost 0 0.44 0.48 5.49
MICP cost 7.19 7.19 7.19 7.19
Relaxation gap 100% 94% 93% 24%
Binary var. 280 280 280 2191
Continuous var. 1364 3044 3324 26774
Linear constr. 8048 4928 4928 57631
Conic constr. 0 0 280 1918

Table 10.1: Problem class, cost statistics, and program size for the footstep-planning
problem using the various mixed-integer formulations described in this chapter.

the techniques introduced in this thesis.

∙ The formulation (10.7), proposed in [137], which is also a special case of the
techniques introduced in this thesis.

∙ The formulation (10.8), which is a new formulation obtained algorithmically
through the application of our techniques.

The computer used in this (as well as the next) comparison is a laptop with processor
2.4 GHz 8-Core Intel Core i9 and memory 64 GB 2667 MHz DDR4.

We start in Table 10.1 where, for each formulation, we report: the class of mixed-
integer program, the cost of the relaxation compared to the cost of the MICP, and
the size of the optimization problems. (Recall that the relaxation gap is defined as
the difference between the optimal value of the MICP and the one of its relaxation,
normalized by the MICP optimal value.) The simple big-M formulation (10.9) has
the weakest relaxation, which gives a vacuous lower bound of zero on the MICP cost
(100% relaxation gap). The two relaxations from Section 10.2.2 have similar cost,
both very loose (94% and 93% relaxation gap). The formulation (10.8) is much larger
than the others (one order of magnitude more variables and constraints) but yields a
significantly lower relaxation gap, only 24%.

Table 10.2 shows how the size and the strength of the various formulations are
reflected on the solver time. We consider the solver Gurobi 10.0 with default options.
The fastest formulation is the strongest and largest one (10.8), and takes 13.5s. The
big-M formulation (10.9) is surprisingly fast, given its weakness and takes 19.1s. The
formulations (10.6) and (10.7) have very similar size and strength, but the second
takes a dramatically larger time to solve. This is mostly due to the fact that the
second problem is an MISOCP, while the first is an MIQP.

126

Big-M (10.9) Form. (10.6) Form. (10.7) Form. (10.8)
Relaxation time (s) 0.039 0.036 0.080 1.49
MICP time (s) 19.1 26.5 547 13.5

Table 10.2: Runtime statistics for the solution of the footstep-planning problem using
Gurobi 10.0.

Big-M (10.9) Form. (10.6) Form. (10.7) Form. (10.8)
Relaxation time (s) 0.048 0.075 0.21 2.58
MICP time (s) 3600 (TL) 3600 (TL) 3600 (TL) 15.7
Cost upper bound ∞ 7.25 7.53 7.19
Cost lower bound 0.00 1.44 2.37 7.19
Gap at TL 100% 80.2% 68.5% 0%

Table 10.3: Runtime and cost statistics for the solution of the footstep-planning
problem using MOSEK 10.0. The acronym TL stands for time limit (set to one hour).
Cost upper bound is the cost of the best feasible solution found during BB. Cost
lower bound is the lower bound on the optimal value provided by the BB algorithm.
Gap at TL is the percentage difference of the these two costs.

Mixed-integer solvers use many heuristics, and it is hard to draw conclusions only
by comparing the performance of one solver. For completeness, in Table 10.3 we
report the runtimes of the solver MOSEK 10.0 (with default options). In this case
the comparison is much more in favor of the strongest formulation (10.8). This
yields a runtime of only 15.7s, while none of the other formulations can solve the
problem within a time limit of one hour. For the formulations that could not solve
the problem, Table 10.3 shows the cost of the best feasible solution (“cost upper
bound”) and the lower bound provided by the Branch and Bound (BB) solver after
one hour of computations. The big-M formulation (10.9) does not yield a feasible
solution within one our of BB, and the lower bound on the optimal value is still zero
at the termination. The other two formulations perform slightly better, but still have
a gap of 80.2% and 68.5% at the time limit. Although using the solver Gurobi the
four formulations performed comparably, we observe that with MOSEK the strength of
the formulation has a much crucial impact on the solve times.

We continue this comparison with a pictorial illustration of the tightness of the
convex relaxations of the various formulations. In the top panel of Figure 10-6 we
show the optimal sequence of stepping stones for the footstep-planning problem. For
each time step 𝑘 = 0, . . . , 𝐾 − 1 we depict in blue the optimal value of 𝑖𝑘 (i.e., the
stepping stone in which the system configuration 𝑞𝑘 lies). The stones are numbered
as they are labelled in Figure 10-5. The second to last panels show the values of
the binary variables 𝑦𝑘,𝑖 for 𝑘 = 0, . . . , 𝐾 − 1 and 𝑖 ∈ ℐ, obtained by solving the

127

convex relaxations of the various MICPs. In the figure, the fractional value of 𝑦𝑘,𝑖 is
represented by the opacity of the point corresponding to time step 𝑘 and stepping
stone 𝑖. The point is fully blue if 𝑦𝑘,𝑖 = 1 and is white if 𝑦𝑘,𝑖 = 0. The formulations in
Figure 10-6 are ordered as follows: the second panel is the big-M formulation (10.9),
the third is the formulation (10.6), the fourth is the formulation (10.7), and the last is
the formulation (10.8). For the last formulation we also illustrate the optimal values
of the variables 𝑦𝑘,𝑖,𝑗, represented by the opacity of the lines connecting the points in
the grid.

As it can be seen the largest formulation (10.8) is the one that approximates most
closely the optimal value of the binary variables 𝑦𝑘,𝑖. It guesses correctly the optimal
sequence of stepping stones, but it is not sure about the exact times at which it should
transition from one stepping stone to the next. The other relaxations contain almost
no information about the optimal solution.

Remark 10.2. In this and the following comparison we do not report the performance
of the rounding strategy from Section 9.5 since rounding is quite ineffective for the
problems analyzed in this chapter. Specifically, for optimal-control problems like
the one considered here, only a tiny fraction of the paths through the GCS yields
a feasible convex restriction 9.9. Therefore our rounding strategy is often unable to
find a feasible solution of the SPP in GCS.

10.2.6 Numerical example: ball and paddle

As a second benchmark we consider the problem illustrated in Figure 10-7, of flipping
a ball through the use of a paddle. The control input 𝑎 ∈ R2 is the translational
acceleration of the paddle (which cannot rotate). The state 𝑠 ∈ R10 of the system is
composed by: 𝑠1 and 𝑠2 position of the ball, 𝑠3 angle of the ball, 𝑠4 and 𝑠5 position of
the paddle, and their time derivatives. The task is to rotate the ball from the initial
state 𝑠3 = 𝜋, 𝑠𝑘 = 0 for 𝑘 ̸= 3 to the origin. The motion of the ball is governed by
the gravity and the contact forces that arise from the interactions with the paddle
and the ceiling. The dynamics is discretized using the semi-implicit Euler method,

128

0 5 10 15 20 25 30 35 40
Time step

1
2
3
4
5
6
7

St
ep

pi
ng

 st
on

e

0 5 10 15 20 25 30 35 40
Time step

1
2
3
4
5
6
7

St
ep

pi
ng

 st
on

e

0 5 10 15 20 25 30 35 40
Time step

1
2
3
4
5
6
7

St
ep

pi
ng

 st
on

e

0 5 10 15 20 25 30 35 40
Time step

1
2
3
4
5
6
7

St
ep

pi
ng

 st
on

e

0 5 10 15 20 25 30 35 40
Time step

1
2
3
4
5
6
7

St
ep

pi
ng

 st
on

e

Figure 10-6: Top: optimal sequence of stepping stones for the footstep-planning
problem. Other panels: optimal value of the relaxed binary variables for the big-M
formulation (10.9), formulation (10.6), formulation (10.7), and formulation (10.8).

129

r
<latexit sha1_base64="D+vIjYIYiuYBqfGNJBmXYbUZJb0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/dIYz2</latexit><latexit sha1_base64="D+vIjYIYiuYBqfGNJBmXYbUZJb0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/dIYz2</latexit><latexit sha1_base64="D+vIjYIYiuYBqfGNJBmXYbUZJb0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/dIYz2</latexit><latexit sha1_base64="D+vIjYIYiuYBqfGNJBmXYbUZJb0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/dIYz2</latexit>d

<latexit sha1_base64="VFuwgu+V5p0BTRBgWq/UWrlORlI=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM1m0q7dbMLuRiihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLUsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZIphi2WiER1A6pRcIktw43AbqqQxoHATjC+m/mdJ1SaJ/LBTFL0YzqUPOKMGis1w0Gl6tbcOcgq8QpShQKNQeWrHyYsi1EaJqjWPc9NjZ9TZTgTOC33M40pZWM6xJ6lksao/Xx+6JScWyUkUaJsSUPm6u+JnMZaT+LAdsbUjPSyNxP/83qZiW78nMs0MyjZYlGUCWISMvuahFwhM2JiCWWK21sJG1FFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfH6Yzo</latexit><latexit sha1_base64="VFuwgu+V5p0BTRBgWq/UWrlORlI=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM1m0q7dbMLuRiihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLUsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZIphi2WiER1A6pRcIktw43AbqqQxoHATjC+m/mdJ1SaJ/LBTFL0YzqUPOKMGis1w0Gl6tbcOcgq8QpShQKNQeWrHyYsi1EaJqjWPc9NjZ9TZTgTOC33M40pZWM6xJ6lksao/Xx+6JScWyUkUaJsSUPm6u+JnMZaT+LAdsbUjPSyNxP/83qZiW78nMs0MyjZYlGUCWISMvuahFwhM2JiCWWK21sJG1FFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfH6Yzo</latexit><latexit sha1_base64="VFuwgu+V5p0BTRBgWq/UWrlORlI=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM1m0q7dbMLuRiihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLUsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZIphi2WiER1A6pRcIktw43AbqqQxoHATjC+m/mdJ1SaJ/LBTFL0YzqUPOKMGis1w0Gl6tbcOcgq8QpShQKNQeWrHyYsi1EaJqjWPc9NjZ9TZTgTOC33M40pZWM6xJ6lksao/Xx+6JScWyUkUaJsSUPm6u+JnMZaT+LAdsbUjPSyNxP/83qZiW78nMs0MyjZYlGUCWISMvuahFwhM2JiCWWK21sJG1FFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfH6Yzo</latexit><latexit sha1_base64="VFuwgu+V5p0BTRBgWq/UWrlORlI=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM1m0q7dbMLuRiihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLUsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZIphi2WiER1A6pRcIktw43AbqqQxoHATjC+m/mdJ1SaJ/LBTFL0YzqUPOKMGis1w0Gl6tbcOcgq8QpShQKNQeWrHyYsi1EaJqjWPc9NjZ9TZTgTOC33M40pZWM6xJ6lksao/Xx+6JScWyUkUaJsSUPm6u+JnMZaT+LAdsbUjPSyNxP/83qZiW78nMs0MyjZYlGUCWISMvuahFwhM2JiCWWK21sJG1FFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfH6Yzo</latexit>

r
<latexit sha1_base64="D+vIjYIYiuYBqfGNJBmXYbUZJb0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/dIYz2</latexit><latexit sha1_base64="D+vIjYIYiuYBqfGNJBmXYbUZJb0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/dIYz2</latexit><latexit sha1_base64="D+vIjYIYiuYBqfGNJBmXYbUZJb0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/dIYz2</latexit><latexit sha1_base64="D+vIjYIYiuYBqfGNJBmXYbUZJb0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/dIYz2</latexit>

l
<latexit sha1_base64="RXFmeCFAFLWm6A2HPHJ7FvtnIgg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/UCYzw</latexit><latexit sha1_base64="RXFmeCFAFLWm6A2HPHJ7FvtnIgg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/UCYzw</latexit><latexit sha1_base64="RXFmeCFAFLWm6A2HPHJ7FvtnIgg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/UCYzw</latexit><latexit sha1_base64="RXFmeCFAFLWm6A2HPHJ7FvtnIgg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/UCYzw</latexit>

µ
<latexit sha1_base64="UFOX4zita877+Ikq+M6IENXmVh0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzQOSJcxOZpMhM7PLTK8QQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZIZxhsskYlpR9RyKTRvoEDJ26nhVEWSt6LR7cxvPXFjRaIfcZzyUNGBFrFgFJ300FVZr1zxq/4cZJUEOalAjnqv/NXtJyxTXCOT1NpO4KcYTqhBwSSflrqZ5SllIzrgHUc1VdyGk/mpU3LmlD6JE+NKI5mrvycmVFk7VpHrVBSHdtmbif95nQzj63AidJoh12yxKM4kwYTM/iZ9YThDOXaEMiPcrYQNqaEMXTolF0Kw/PIqaV5UA78a3F9Wajd5HEU4gVM4hwCuoAZ3UIcGMBjAM7zCmye9F+/d+1i0Frx85hj+wPv8AV1ejdY=</latexit><latexit sha1_base64="UFOX4zita877+Ikq+M6IENXmVh0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzQOSJcxOZpMhM7PLTK8QQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZIZxhsskYlpR9RyKTRvoEDJ26nhVEWSt6LR7cxvPXFjRaIfcZzyUNGBFrFgFJ300FVZr1zxq/4cZJUEOalAjnqv/NXtJyxTXCOT1NpO4KcYTqhBwSSflrqZ5SllIzrgHUc1VdyGk/mpU3LmlD6JE+NKI5mrvycmVFk7VpHrVBSHdtmbif95nQzj63AidJoh12yxKM4kwYTM/iZ9YThDOXaEMiPcrYQNqaEMXTolF0Kw/PIqaV5UA78a3F9Wajd5HEU4gVM4hwCuoAZ3UIcGMBjAM7zCmye9F+/d+1i0Frx85hj+wPv8AV1ejdY=</latexit><latexit sha1_base64="UFOX4zita877+Ikq+M6IENXmVh0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzQOSJcxOZpMhM7PLTK8QQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZIZxhsskYlpR9RyKTRvoEDJ26nhVEWSt6LR7cxvPXFjRaIfcZzyUNGBFrFgFJ300FVZr1zxq/4cZJUEOalAjnqv/NXtJyxTXCOT1NpO4KcYTqhBwSSflrqZ5SllIzrgHUc1VdyGk/mpU3LmlD6JE+NKI5mrvycmVFk7VpHrVBSHdtmbif95nQzj63AidJoh12yxKM4kwYTM/iZ9YThDOXaEMiPcrYQNqaEMXTolF0Kw/PIqaV5UA78a3F9Wajd5HEU4gVM4hwCuoAZ3UIcGMBjAM7zCmye9F+/d+1i0Frx85hj+wPv8AV1ejdY=</latexit><latexit sha1_base64="UFOX4zita877+Ikq+M6IENXmVh0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzQOSJcxOZpMhM7PLTK8QQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZIZxhsskYlpR9RyKTRvoEDJ26nhVEWSt6LR7cxvPXFjRaIfcZzyUNGBFrFgFJ300FVZr1zxq/4cZJUEOalAjnqv/NXtJyxTXCOT1NpO4KcYTqhBwSSflrqZ5SllIzrgHUc1VdyGk/mpU3LmlD6JE+NKI5mrvycmVFk7VpHrVBSHdtmbif95nQzj63AidJoh12yxKM4kwYTM/iZ9YThDOXaEMiPcrYQNqaEMXTolF0Kw/PIqaV5UA78a3F9Wajd5HEU4gVM4hwCuoAZ3UIcGMBjAM7zCmye9F+/d+1i0Frx85hj+wPv8AV1ejdY=</latexit>

g
<latexit sha1_base64="4YFJZ/uTDTR7dp3O4QVDDYY2i2I=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x0+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWBym/udJ1Sax/LRTBP0IzqSPOSMGis9jCqDas2tu3OQVeIVpAYFmoPqV38YszRCaZigWvc8NzF+RpXhTOCs0k81JpRN6Ah7lkoaofaz+aUzcmaVIQljZUsaMld/T2Q00noaBbYzomasl71c/M/rpSa89jMuk9SgZItFYSqIiUn+NhlyhcyIqSWUKW5vJWxMFWXGhpOH4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMQniGV3hzJs6L8+58LFpLTjFzDH/gfP4AAPeM/w==</latexit><latexit sha1_base64="4YFJZ/uTDTR7dp3O4QVDDYY2i2I=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x0+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWBym/udJ1Sax/LRTBP0IzqSPOSMGis9jCqDas2tu3OQVeIVpAYFmoPqV38YszRCaZigWvc8NzF+RpXhTOCs0k81JpRN6Ah7lkoaofaz+aUzcmaVIQljZUsaMld/T2Q00noaBbYzomasl71c/M/rpSa89jMuk9SgZItFYSqIiUn+NhlyhcyIqSWUKW5vJWxMFWXGhpOH4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMQniGV3hzJs6L8+58LFpLTjFzDH/gfP4AAPeM/w==</latexit><latexit sha1_base64="4YFJZ/uTDTR7dp3O4QVDDYY2i2I=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x0+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWBym/udJ1Sax/LRTBP0IzqSPOSMGis9jCqDas2tu3OQVeIVpAYFmoPqV38YszRCaZigWvc8NzF+RpXhTOCs0k81JpRN6Ah7lkoaofaz+aUzcmaVIQljZUsaMld/T2Q00noaBbYzomasl71c/M/rpSa89jMuk9SgZItFYSqIiUn+NhlyhcyIqSWUKW5vJWxMFWXGhpOH4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMQniGV3hzJs6L8+58LFpLTjFzDH/gfP4AAPeM/w==</latexit><latexit sha1_base64="4YFJZ/uTDTR7dp3O4QVDDYY2i2I=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x0+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWBym/udJ1Sax/LRTBP0IzqSPOSMGis9jCqDas2tu3OQVeIVpAYFmoPqV38YszRCaZigWvc8NzF+RpXhTOCs0k81JpRN6Ah7lkoaofaz+aUzcmaVIQljZUsaMld/T2Q00noaBbYzomasl71c/M/rpSa89jMuk9SgZItFYSqIiUn+NhlyhcyIqSWUKW5vJWxMFWXGhpOH4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMQniGV3hzJs6L8+58LFpLTjFzDH/gfP4AAPeM/w==</latexit>

m, j
<latexit sha1_base64="CEJCO1IxWxLKwb/2nrAYWnYMn8M=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcKuCHoMevEY0TwgWcLsZDYZM49lZlYISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSjgz1ve/vcLK6tr6RnGztLW9s7tX3j9oGpVqQhtEcaXbETaUM0kblllO24mmWESctqLRzdRvPVFtmJIPdpzQUOCBZDEj2DrpXpw99soVv+rPgJZJkJMK5Kj3yl/dviKpoNISjo3pBH5iwwxrywink1I3NTTBZIQHtOOoxIKaMJudOkEnTumjWGlX0qKZ+nsiw8KYsYhcp8B2aBa9qfif10ltfBVmTCappZLMF8UpR1ah6d+ozzQllo8dwUQzdysiQ6wxsS6dkgshWHx5mTTPq4FfDe4uKrXrPI4iHMExnEIAl1CDW6hDAwgM4Ble4c3j3ov37n3MWwtePnMIf+B9/gAD042b</latexit><latexit sha1_base64="CEJCO1IxWxLKwb/2nrAYWnYMn8M=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcKuCHoMevEY0TwgWcLsZDYZM49lZlYISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSjgz1ve/vcLK6tr6RnGztLW9s7tX3j9oGpVqQhtEcaXbETaUM0kblllO24mmWESctqLRzdRvPVFtmJIPdpzQUOCBZDEj2DrpXpw99soVv+rPgJZJkJMK5Kj3yl/dviKpoNISjo3pBH5iwwxrywink1I3NTTBZIQHtOOoxIKaMJudOkEnTumjWGlX0qKZ+nsiw8KYsYhcp8B2aBa9qfif10ltfBVmTCappZLMF8UpR1ah6d+ozzQllo8dwUQzdysiQ6wxsS6dkgshWHx5mTTPq4FfDe4uKrXrPI4iHMExnEIAl1CDW6hDAwgM4Ble4c3j3ov37n3MWwtePnMIf+B9/gAD042b</latexit><latexit sha1_base64="CEJCO1IxWxLKwb/2nrAYWnYMn8M=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcKuCHoMevEY0TwgWcLsZDYZM49lZlYISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSjgz1ve/vcLK6tr6RnGztLW9s7tX3j9oGpVqQhtEcaXbETaUM0kblllO24mmWESctqLRzdRvPVFtmJIPdpzQUOCBZDEj2DrpXpw99soVv+rPgJZJkJMK5Kj3yl/dviKpoNISjo3pBH5iwwxrywink1I3NTTBZIQHtOOoxIKaMJudOkEnTumjWGlX0qKZ+nsiw8KYsYhcp8B2aBa9qfif10ltfBVmTCappZLMF8UpR1ah6d+ozzQllo8dwUQzdysiQ6wxsS6dkgshWHx5mTTPq4FfDe4uKrXrPI4iHMExnEIAl1CDW6hDAwgM4Ble4c3j3ov37n3MWwtePnMIf+B9/gAD042b</latexit><latexit sha1_base64="CEJCO1IxWxLKwb/2nrAYWnYMn8M=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcKuCHoMevEY0TwgWcLsZDYZM49lZlYISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSjgz1ve/vcLK6tr6RnGztLW9s7tX3j9oGpVqQhtEcaXbETaUM0kblllO24mmWESctqLRzdRvPVFtmJIPdpzQUOCBZDEj2DrpXpw99soVv+rPgJZJkJMK5Kj3yl/dviKpoNISjo3pBH5iwwxrywink1I3NTTBZIQHtOOoxIKaMJudOkEnTumjWGlX0qKZ+nsiw8KYsYhcp8B2aBa9qfif10ltfBVmTCappZLMF8UpR1ah6d+ozzQllo8dwUQzdysiQ6wxsS6dkgshWHx5mTTPq4FfDe4uKrXrPI4iHMExnEIAl1CDW6hDAwgM4Ble4c3j3ov37n3MWwtePnMIf+B9/gAD042b</latexit>

µ
<latexit sha1_base64="UFOX4zita877+Ikq+M6IENXmVh0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzQOSJcxOZpMhM7PLTK8QQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZIZxhsskYlpR9RyKTRvoEDJ26nhVEWSt6LR7cxvPXFjRaIfcZzyUNGBFrFgFJ300FVZr1zxq/4cZJUEOalAjnqv/NXtJyxTXCOT1NpO4KcYTqhBwSSflrqZ5SllIzrgHUc1VdyGk/mpU3LmlD6JE+NKI5mrvycmVFk7VpHrVBSHdtmbif95nQzj63AidJoh12yxKM4kwYTM/iZ9YThDOXaEMiPcrYQNqaEMXTolF0Kw/PIqaV5UA78a3F9Wajd5HEU4gVM4hwCuoAZ3UIcGMBjAM7zCmye9F+/d+1i0Frx85hj+wPv8AV1ejdY=</latexit><latexit sha1_base64="UFOX4zita877+Ikq+M6IENXmVh0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzQOSJcxOZpMhM7PLTK8QQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZIZxhsskYlpR9RyKTRvoEDJ26nhVEWSt6LR7cxvPXFjRaIfcZzyUNGBFrFgFJ300FVZr1zxq/4cZJUEOalAjnqv/NXtJyxTXCOT1NpO4KcYTqhBwSSflrqZ5SllIzrgHUc1VdyGk/mpU3LmlD6JE+NKI5mrvycmVFk7VpHrVBSHdtmbif95nQzj63AidJoh12yxKM4kwYTM/iZ9YThDOXaEMiPcrYQNqaEMXTolF0Kw/PIqaV5UA78a3F9Wajd5HEU4gVM4hwCuoAZ3UIcGMBjAM7zCmye9F+/d+1i0Frx85hj+wPv8AV1ejdY=</latexit><latexit sha1_base64="UFOX4zita877+Ikq+M6IENXmVh0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzQOSJcxOZpMhM7PLTK8QQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZIZxhsskYlpR9RyKTRvoEDJ26nhVEWSt6LR7cxvPXFjRaIfcZzyUNGBFrFgFJ300FVZr1zxq/4cZJUEOalAjnqv/NXtJyxTXCOT1NpO4KcYTqhBwSSflrqZ5SllIzrgHUc1VdyGk/mpU3LmlD6JE+NKI5mrvycmVFk7VpHrVBSHdtmbif95nQzj63AidJoh12yxKM4kwYTM/iZ9YThDOXaEMiPcrYQNqaEMXTolF0Kw/PIqaV5UA78a3F9Wajd5HEU4gVM4hwCuoAZ3UIcGMBjAM7zCmye9F+/d+1i0Frx85hj+wPv8AV1ejdY=</latexit><latexit sha1_base64="UFOX4zita877+Ikq+M6IENXmVh0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzQOSJcxOZpMhM7PLTK8QQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZIZxhsskYlpR9RyKTRvoEDJ26nhVEWSt6LR7cxvPXFjRaIfcZzyUNGBFrFgFJ300FVZr1zxq/4cZJUEOalAjnqv/NXtJyxTXCOT1NpO4KcYTqhBwSSflrqZ5SllIzrgHUc1VdyGk/mpU3LmlD6JE+NKI5mrvycmVFk7VpHrVBSHdtmbif95nQzj63AidJoh12yxKM4kwYTM/iZ9YThDOXaEMiPcrYQNqaEMXTolF0Kw/PIqaV5UA78a3F9Wajd5HEU4gVM4hwCuoAZ3UIcGMBjAM7zCmye9F+/d+1i0Frx85hj+wPv8AV1ejdY=</latexit>

l
<latexit sha1_base64="RXFmeCFAFLWm6A2HPHJ7FvtnIgg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/UCYzw</latexit><latexit sha1_base64="RXFmeCFAFLWm6A2HPHJ7FvtnIgg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/UCYzw</latexit><latexit sha1_base64="RXFmeCFAFLWm6A2HPHJ7FvtnIgg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/UCYzw</latexit><latexit sha1_base64="RXFmeCFAFLWm6A2HPHJ7FvtnIgg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/UCYzw</latexit>

<latexit sha1_base64="rwKRgyFXBS7yri0OrzYNK+fxBfQ=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYnvcmQ2dllZlYISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ60L2LXrniVt0ZyDLxclKBHPVe+avbj1kaoTRMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsljVD72ezUCTmxSp+EsbIlDZmpvycyGmk9jgLbGVEz1IveVPzP66QmvPYzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2nZEPwFl9eJs2zqndZPb8/r9Ru8jiKcATHcAoeXEEN7qAODWAwgGd4hTdHOC/Ou/Mxby04+cwh/IHz+QMNEI2o</latexit>s5

<latexit sha1_base64="n6/W1KPfxCc6g5FHRqeg8V9bvKI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOle92v9csVt+rOQVaJl5MK5Gj2y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnXqt5FtX5XrzSu8ziKcAKncA4eXEIDbqEJLWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QMIhI2l</latexit>s2

<latexit sha1_base64="FCKzMTlL9ZxMG7d9GrbOVplhmMo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmFldW19o7hZ2tre2d0r7x+0TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuTaiFg94CThfkSHSoSCUbTSvemf98sVt+rOQf4SLycVyNHolz97g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUpOrDIgYaxtKSRz9edERiNjJlFgOyOKI7PszcT/vG6K4ZWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb/8l7TOqt5FtXZXq9Sv8ziKcATHcAoeXEIdbqEBTWAwhCd4gVdHOs/Om/O+aC04+cwh/ILz8Q0KCI2m</latexit>s3

<latexit sha1_base64="tmS9qh1fHLOKCF5YVbEDjZvnALQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPtev1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1bus1u5rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwAHAI2k</latexit>s1
<latexit sha1_base64="ALUI3mCQ37GeEiwHYbLkGnpwnmk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPu1frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqndZrd3XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gALjI2n</latexit>s4

Figure 10-7: Benchmark problem of rotating a two-dimensional ball by 180 degrees.
The ball is subject to the gravity force and can collide with both the paddle (bottom)
and the ceiling (top), the control input is the translational acceleration of the paddle.

resulting in

𝑠+𝜈 = 𝑠𝜈 + ℎ𝑠+𝜈+5, ∀𝜈 = 1, . . . , 5, (10.10a)

𝑠+6 = 𝑠6 + ℎ(𝜆pt − 𝜆ct)/𝑚, (10.10b)

𝑠+7 = 𝑠7 + ℎ(𝜆pn − 𝜆cn −𝑚𝑔)/𝑚, (10.10c)

𝑠+8 = 𝑠8 + ℎ𝑟(𝜆pt + 𝜆ct)/𝑗, (10.10d)

𝑠+9 = 𝑠9 + ℎ𝑎1, (10.10e)

𝑠+10 = 𝑠10 + ℎ𝑎2. (10.10f)

Here the plus superscript denotes the state value at the next time step. The parame-
ters 𝑟 = 0.1, 𝑚 = 1, 𝑗 = 2

5
𝑚𝑟2 are the radius, the mass, and the moment of inertia of

the ball, 𝑔 = 10 is the gravity acceleration, ℎ = 0.05 is the discretization step, 𝑑 = 0.4

and 𝑙 = 0.6 are geometric parameters (see Figure 10-7). The letter 𝜆 represents a
contact force, with the subscripts p and c denoting the paddle and the ceiling, and t

and n denoting the tangential and the normal components.

Contact phenomena are modeled with the inelastic time-stepping scheme from [175],
where the complementarity conditions are solved ahead of time to express the contact
forces as explicit PWA functions of the state and the inputs. Friction coefficients are
set to 𝜇 = 0.2. Overall we get a PWA system with 𝐼 = 7 modes: no contact, ball in
contact with the paddle (rolling, sliding left or right), and ball in contact with the
ceiling (rolling, sliding left or right). Together with the state limits defined by the

130

Figure 10-8: Snapshots of the optimal solution of the ball-and-paddle problem. The
paddle moves the ball, which makes and breaks contact with the ceiling twice in order
to rotated by 180 degrees.

contact constraints, we enforce the constraints

− 𝑠 ≤ 𝑠 ≤ 𝑠, 𝑠 := (0.3, 0.2, 1.2𝜋, 0.3, 0.15, 2, 2, 10, 2, 2),

− �̄� ≤ 𝑎 ≤ �̄�, �̄� := (30, 30).

In addition, since the paddle and the ceiling have limited width, in case at the next
time step the ball is going to hit, e.g., the paddle, we require |𝑠+1 − 𝑠+4 | ≤ 𝑙/2. The
terminal set 𝒯 forces the system to be in the origin after 𝐾 = 20 time steps. We set
a quadratic stage cost 𝛾(𝑠𝑘,𝑎𝑘) := 𝑠⊤𝑘 𝑄𝑠𝑘 + 𝑎⊤

𝑘 𝑅𝑎𝑘 with

𝑄 := diag(1, 1, 0.01, 1, 1, 1, 1, 0.01, 1, 1),

𝑅 := diag(0.01, 0.001),

where the function diag stacks its argument in a diagonal matrix. The terminal cost
𝛾 is zero. Figure 10-8 shows a sequence of snapshots of the optimal solution of the
problem.

Despite the simplicity of the dynamical system, this control problem is quite
challenging. Analyzing the dynamics (10.10) it can be noticed that the presence of the

131

Big-M (10.9) Form. (10.6) Form. (10.7) Form. (10.8)
Problem class MIQP MIQP MISOCP MISOCP
Relaxation cost 0.099 2.72 4.79 9.94
MICP cost 37.2 37.2 37.2 37.2
Relaxation gap 99.7% 92.7% 87.1% 73.3%
Binary var. 140 140 140 1071
Continuous var. 1650 3330 3470 25212
Linear constr. 9880 5920 5920 66891
Conic constr. 0 0 140 938

Table 10.4: Problem class, cost statistics, and program size for the ball-and-paddle
problem.

ceiling is essential to accomplish the rotation task. Indeed, as long as 𝜆ct is zero, the
horizontal and the angular dynamics of the ball cannot be controlled independently,
even assuming to have direct control on 𝜆pt (see (10.10b) and (10.10d)). Therefore,
we cannot both rotate the ball and place it back at the center of the paddle. This
lack of controllability makes it very complex to detect an initial feasible trajectory,
and prevents many branches from being cut in the early stages of the BB algorithm.
In this sense, we expect that the convex relaxation plays here a fundamental role in
guiding the growth of the BB tree.

As in the previous comparison, we start by analyzing the relaxation gaps and the
size of the multiple formulations. The strongest formulation (10.8) yields the smallest,
but quite large, relaxation gap: 73.3%. The other relaxations are significantly smaller
but even weaker. The big-M relaxation (10.6) provides also in this case a vacuous
lower bound of almost zero.

In Table 10.5 we report the solution statistics for the solver Gurobi 10.0. In this
case the formulation (10.6) is significantly more effective than all the others. It is the
only one that allows us to solve the problem within a time limit of one hour. After the
time limit, the big-M formulation has still a gap of 98.3% and the formulation (10.7)
has 62.7%. The strongest formulation (10.8) leads to algorithmic issues with Gurobi.7

In Table 10.6 we report the statistics MOSEK 10.0. In this case the BB does
not converge with any of the formulation. After the time limit of one hour, the
formulation that gives us the best feasible solution is (10.8), which led to a failure
with Gurobi. This solution is not far from the global minimum (the suboptimality

7For this instance, Gurobi is not able to solve the root-node problem, and does not make any
progress in the BB phase. This problem persists even if we select different methods to solve the
root-node problem (e.g., primal simplex, dual simplex, or barrier). Strangely, however, Gurobi is
able to solve the convex relaxation of the MICP in a couple of seconds, when asked to do so outside
the BB algorithm.

132

Big-M (10.9) Form. (10.6) Form. (10.7) Form. (10.8)
Relaxation time (s) 0.070 0.064 0.099 2.40
MICP time (s) 3600 (TL) 1351 3600 (TL) Fail
Cost upper bound 43.5 37.2 38.6 Fail
Cost lower bound 0.76 37.2 14.4 Fail
Gap at TL 98.3% 0% 62.7% Fail

Table 10.5: Runtime and cost statistics for the ball-and-paddle problem using
Gurobi 10.0.

Big-M (10.9) Form. (10.6) Form. (10.7) Form. (10.8)
Relaxation time (s) 0.093 0.118 0.532 2.84
MICP time (s) 3600 (TL) 3600 (TL) 3600 (TL) 3600 (TL)
Cost upper bound ∞ 45.2 49.1 41.2
Cost lower bound 0.93 8.11 11.1 12.6
Gap at TL 100% 82.1% 77.4% 69.4%

Table 10.6: Runtime and cost statistics for the ball-and-paddle problem using
MOSEK 10.0.

is approximately 10%) but MOSEK can only guarantee that the suboptimality gap is
not larger than 69.4%. The big-M formulation does not identify a feasible solution
within the time limit, and the other formulations perform comparable to (10.8).

Also in this experiments we then observe that the performance of the various for-
mulations is very dependent on the choice of the solver. As for the footstep-planning
problem, MOSEK performs best with a large but strong formulation. Conversely, with
Guorbi the formulation strength does not seem to play and equally important role.

We conclude this comparison by illustrating in Figure 10-9 the optimal mode
sequences for the MICPs and the relaxations. Also in this case, and as expected,
the strongest formulation (10.8) provides us with the most accurate guess on the
optimal value of the binary variables 𝑦𝑘,𝑖. However, it does not come as close as in
the stepping-stone problem above.

133

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Time step

Slide left on paddle
Roll on paddle

Slide right on paddle
No contact

Slide left on ceiling
Roll on ceiling

Slide right on ceiling

Sy
st

em
 m

od
e

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Time step

Slide left on paddle
Roll on paddle

Slide right on paddle
No contact

Slide left on ceiling
Roll on ceiling

Slide right on ceiling

Sy
st

em
 m

od
e

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Time step

Slide left on paddle
Roll on paddle

Slide right on paddle
No contact

Slide left on ceiling
Roll on ceiling

Slide right on ceiling

Sy
st

em
 m

od
e

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Time step

Slide left on paddle
Roll on paddle

Slide right on paddle
No contact

Slide left on ceiling
Roll on ceiling

Slide right on ceiling

Sy
st

em
 m

od
e

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Time step

Slide left on paddle
Roll on paddle

Slide right on paddle
No contact

Slide left on ceiling
Roll on ceiling

Slide right on ceiling

Sy
st

em
 m

od
e

Figure 10-9: Top: optimal contact sequence for the ball-and-paddle problem. Other
panels: optimal value of the relaxed binary variables for the big-M formulation (10.9),
formulation (10.6), formulation (10.7), and formulation (10.8).

134

Chapter 11

Applications in motion planning

We apply the methods introduced in this thesis to solve motion-planning problems
for autonomous robots that move thorough complex environments. Specifically, we
consider the problem of designing a trajectory through a collection of safe convex sets,
i.e., convex regions of the robot environment that do not intersect with obstacles.
This problem is modelled as a Shortest-Path Problem (SPP) in Graphs of Convex
Sets (GCS), and solved using the optimization techniques introduced in the previous
chapters. We will focus on motion-planning problems where a basic preprocessing
of the convex sets (e.g., finding their pairwise intersections) can be done offline. At
runtime we quickly generate a trajectory that meets desired boundary conditions.

The material in this chapter is based on [128], and part of the presentation fol-
lows [127]. In Section 11.1 we will state the motion-planning problem in full generality.
This problem will not lend itself to a direct transcription as an SPP in GCS, but will
contain all the components that we might want our motion-planning method to han-
dle. In the subsequent sections we will discuss multiple ways in which this problem
can be simplified to make it efficiently solvable as an SPP in GCS.

11.1 Problem statement

We consider the design of a smooth trajectory in R𝑑. A trajectory is represented as
the function 𝑞 : [0, 𝑇] → R𝑑, where 𝑇 is the time taken to traverse the trajectory.
We considers trajectories with 𝐾 continuous derivatives, and denote with 𝑞(𝑘) the
𝑘th derivative of 𝑞 for 𝑘 = 0, . . . , 𝐾. The zeroth derivative is the trajectory itself,
𝑞(0) := 𝑞.

135

We seek a trajectory that meets given boundary conditions

𝑞(𝑘)(0) = 𝑞𝑘
0 , ∀𝑘 = 0, . . . , 𝐾,

𝑞(𝑘)(𝑇) = 𝑞𝑘
𝑇 , ∀𝑘 = 0, . . . , 𝐾,

where 𝑞𝑘
0 , 𝑞

𝑘
𝑇 ∈ R𝑑 are the initial and final values of the 𝑘th derivative. At each time

we require that the trajectory stay in a given set 𝒮 ⊂ R𝑑 of safe points:

𝑞(𝜏) ∈ 𝒮, ∀𝜏 ∈ [0, 𝑇].

We assume that the safe set 𝒮 is the union of a finite family of compact convex sets,

𝒮 :=
⋃︁
𝑖∈ℐ

𝒞𝑖.

(Note that in the literature we can find a variety of practical methods to decompose
complex spaces into convex sets, possibly approximately [118, 8, 80, 46, 192]. There
also exist decomposition algorithms tailored to the configuration spaces of kinematic
trees and articulated robots [3, 188, 44, 152].)

For 𝑘 = 1, . . . , 𝐾, the 𝑘th derivative of our trajectory is constrained in a closed
convex set 𝒞𝑘 at all times:

𝑞(𝑘)(𝜏) ∈ 𝒞𝑘, ∀𝜏 ∈ [0, 𝑇].

We allow the final time 𝑇 to be optimized, and we set the following bounds on its
value:

𝑇min ≤ 𝑇 ≤ 𝑇max

where 𝑇max ≥ 𝑇min ≥ 0.

Our objective function features two components: a cost on the trajectory duration
and a penalty on the magnitude of the trajectory derivatives. In formulas,

𝜓(𝑞, 𝑇) := 𝜙0(𝑇) +
𝐾∑︁
𝑘=1

∫︁ 𝑇

0

𝜙𝑘(𝑞(𝑘)(𝜏))𝑑𝜏, (11.1)

where the cost functions 𝜙𝑘, 𝑘 = 0, . . . , 𝐾, are convex.

136

Overall, our motion-planning problem is stated as

minimize 𝜓(𝑞, 𝑇) (11.2a)

subject to 𝑞(𝑘)(0) = 𝑞𝑘
0 , ∀𝑘 = 0, . . . , 𝐾, (11.2b)

𝑞(𝑘)(𝑇) = 𝑞𝑘
𝑇 , ∀𝑘 = 0, . . . , 𝐾, (11.2c)

𝑞(𝜏) ∈ 𝒮, ∀𝜏 ∈ [0, 𝑇], (11.2d)

𝑞(𝑘)(𝜏) ∈ 𝒞𝑘, ∀𝜏 ∈ [0, 𝑇], 𝑘 = 1, . . . , 𝐾, (11.2e)

𝑇min ≤ 𝑇 ≤ 𝑇max. (11.2f)

The optimization variables are the function 𝑞 and the final time 𝑇 . The former is in-
finite dimensional, but we will restrict candidate trajectories to curves parameterized
by a finite set of points (e.g., composite Bézier curves).

Below we describe how the motion planning problem (11.2) can be tackled using
the techniques introduced in this thesis. As anticipated, we will not be able to reduce
problem (11.2) to an SPP in GCS exactly, since the simultaneous optimization of the
trajectory shape and timing leads to nonconvex constraints that do not immediately
fit in out framework. In the next section, we consider a simplified problem that
is easily reformulated as an SPP in GCS exactly. This will illustrate the basic idea
behind our approach and will set the basis for the techniques in the upcoming sections,
which will attempt to solve problem (11.2) in its completeness.

11.2 Minimum-length trajectories

We start by considering a simplified version of problem (11.2), where we seek a tra-
jectory 𝑞 of minimum Euclidean length:

ℓ(𝑞) :=

∫︁ 𝑇

0

‖𝑞(1)(𝜏)‖2𝑑𝜏.

Note that this objective is a special case of (11.1), where 𝜙1 is the ℒ2 norm and 𝜙𝑘

is zero for all 𝑘 ̸= 1.

In the constraints of problem (11.2), we let the final time be free, i.e., 𝑇min := 0 and
𝑇max := ∞. We drop all the derivative constraints, i.e., 𝒞𝑘 := R𝑑 for all 𝑘 = 1, . . . , 𝐾.
We also set all the boundary values of the trajectory derivatives to zero, so that the
corresponding constraints become redundant.

137

Overall, our motion-planning problem is reduced to:

minimize ℓ(𝑞) (11.3a)

subject to 𝑞(0) = 𝑞0
0, (11.3b)

𝑞(𝑇) = 𝑞0
𝑇 , (11.3c)

𝑞(𝜏) ∈ 𝒮, ∀𝜏 ∈ [0, 𝑇]. (11.3d)

We observe that the optimal solution of this problem is always a polygonal (piecewise
linear) trajectory.

Problem (11.3) can be reformulated as an SPP in GCS exactly. To do so, we need
to define a graph 𝐺 = (𝒱 , ℰ), and assign convex constraint sets 𝒳𝑣 and 𝒳𝑒 and convex
cost functions 𝑓𝑣 and 𝑓𝑒 to each vertex 𝑣 and edge 𝑒. Below we describe each of these
problem components; a visual illustration is given in Figure 11-1. At a high level,
the plan is to construct a graph 𝐺 whose paths represent different sequences of safe
regions 𝒞𝑖 that the robot can cross to reach the goal. Each safe region is then paired
with a trajectory segment 𝑞𝑖, and the GCS framework is used to couple the selection
of a path with adequate costs and continuity constraints on the joint shape of the
segments 𝑞𝑖.

11.2.1 The graph

We let the graph 𝐺 = (𝒱 , ℰ) be the intersection graph of the convex regions 𝒞𝑖 that
compose the free space 𝒮. This is illustrated in the top-left, top-right, and center-left
panels of Figure 11-1. Each safe region 𝒞𝑖 is paired with a vertex 𝑖 ∈ 𝒱 and connected
by an edge (𝑖, 𝑗) to all the regions 𝒞𝑗 with 𝑗 ∈ ℐ that intersect with it. The initial
configuration 𝑞0

0 is represented by the source vertex 𝑠, and is connected by an edge
(𝑠, 𝑖) to each region 𝒞𝑖 that contains it. Similarly, the final configuration 𝑞0

𝑇 is paired
with the target vertex 𝑡 and connected to each region that contains it via an edge
(𝑖, 𝑡). Overall, our graph has vertices 𝒱 := ℐ ∪ {𝑠, 𝑡} and edges

ℰ := {(𝑖, 𝑗) ∈ ℐ2 : 𝒞𝑖 ∩ 𝒞𝑗 ̸= ∅, 𝑖 ̸= 𝑗} ∪ {(𝑠, 𝑖) : 𝑞0
0 ∈ 𝒞𝑖, 𝑖 ∈ ℐ}

∪ {(𝑖, 𝑡) : 𝑞0
𝑇 ∈ 𝒞𝑖, 𝑖 ∈ ℐ}.

Note that an 𝑠-𝑡 path in this graph identifies a sequence of safe regions that connect
the start and goal configurations.

138

q0
0

q0
T

C1 C2

C3

C4

C5

s 1 2

3

4

5

t

q1 q2

q3

q4

q5

s 1 2 4

5

t

q1

q2

q4

q5

Figure 11-1: Optimization of a minimum-length trajectory as an SPP in GCS. Top
left: environment with two obstacles in red, and with initial and final configurations.
Top right: decomposition of the safe set into convex regions. Center left: intersection
graph of the decomposition, with the vertices 𝑠 and 𝑡 representing the initial and final
configurations. Center right: a trajectory segment is assigned to each convex region.
Bottom: traversing a path in the intersection graph activates adequate costs and
continuity constraints on the joint shape of the corresponding trajectory segments.

139

11.2.2 The convex constraint sets

As observed, the optimal solution of problem (11.3) is a polygonal trajectory, and
there is no loss in assuming that our robot moves in a straight line 𝑞𝑖 when traversing
a region 𝒞𝑖. We then pair each vertex 𝑖 ∈ ℐ with the convex constraint set 𝒳𝑖 := 𝒞𝑖×𝒞𝑖.
This set contains the point 𝑥𝑖 := (𝑞𝑖,0, 𝑞𝑖,1). The variables 𝑞𝑖,0 ∈ R𝑑 and 𝑞𝑖,1 ∈ R𝑑

represent the initial and final points of the line segment 𝑞𝑖, respectively. (See center-
right panel in Figure 11-1). Because of the convexity of 𝒞𝑖, if both 𝑞𝑖,0 and 𝑞𝑖,1 lie in
𝒞𝑖 then so does the whole segment 𝑞𝑖, and our trajectory is collision free.

For all the edges 𝑒 = (𝑖, 𝑗) ∈ ℰ ∩ ℐ2, we let the constraint set 𝒳𝑒 enforce the
continuity of our trajectory through the equality 𝑞𝑖,1 = 𝑞𝑗,0. This equality forces the
final point of 𝑞𝑖 to coincide with the initial point of 𝑞𝑗, and is activated only when
the optimal path in the GCS traverses the edge 𝑒.

The source 𝑠 and the target 𝑡 are auxiliary vertices that enforce the boundary
conditions. They are paired with the singletons 𝒳𝑠 := {𝑞0

0} and 𝒳𝑡 = {𝑞0
𝑇}. For

all the edges 𝑒 = (𝑠, 𝑖) outgoing the source, the set 𝒳𝑒 enforces the initial conditions
𝑞𝑖,0 = 𝑞0

0. This ensures that our trajectory starts at 𝑞0
0 as desired. Similarly, for the

edges 𝑒 = (𝑖, 𝑡) incoming the target, we define 𝒳𝑒 so that the terminal conditions
𝑞𝑖,1 = 𝑞0

𝑇 is satisfied.

11.2.3 The convex cost functions

We let the cost of each vertex 𝑖 ∈ ℐ be the Euclidean length of the line segment 𝑞𝑖,
i.e., 𝑓𝑖(𝑥𝑖) := ‖𝑞𝑖,1 − 𝑞𝑖,0‖2. Therefore, every time that we move in a straight line
through a safe set 𝒞𝑖 we pay a price equal to the distance travelled. The source 𝑠 and
the target 𝑡 have zero cost, as well as all the edges 𝑒 ∈ ℰ .

11.2.4 Solution methods

The reformulation of the planning problem (11.3) as an SPP in GCS is exact, up
to the potential conservatism of the convex decomposition of the environment. The
optimal path in the GCS determines the safe regions 𝒞𝑖 that our robot must traverse.
The overall trajectory 𝑞 is obtained by sequencing the line segments 𝑞𝑖 associated
with these regions, as shown in the bottom row of Figure 11-1.

Using the techniques introduced in this thesis, the SPP in GCS is automatically
formulated as a strong Mixed-Integer Convex Program (MICP). This problem can be
solved to global optimality using the Branch and Bound (BB) algorithm described
in Section 3.3.2, or approximately using the rounding strategy from Section 9.5. It
is interesting to observe that the rounding approach results in a complete motion

140

planner. In fact, any 𝑠-𝑡 path in the intersection graph identifies a sequence of safe
regions 𝒞𝑖0 , . . . , 𝒞𝑖𝑙 that connect the initial point 𝑞0

0 to the final point 𝑞0
𝑇 . Once these

regions are fixed, the resulting convex restriction (9.9) reads

minimize
𝑙∑︁

𝑗=0

‖𝑝𝑗+1 − 𝑝𝑗‖2

subject to 𝑝0 = 𝑞0
0,

𝑝𝑙+1 = 𝑞0
𝑇 ,

𝑝𝑗 ∈ 𝒞𝑖𝑗−1
∩ 𝒞𝑖𝑗 , ∀𝑗 = 1, . . . , 𝑙,

where the variables 𝑝0, . . . ,𝑝𝑙+1 represent the “kinks” of the polygonal trajectory 𝑞.
Since this convex restriction is always feasible, the rounding method from Section 9.5
is guaranteed to find a solution.

11.3 Bézier curves

In the previous section we have restricted our attention to polygonal trajectories,
which are conveniently parameterized through a finite number of points. Bézier curves
give us a natural way of generalizing the approach taken above to the design of smooth
trajectories.

Bézier curves enjoy several properties that make them particularly well suited
for convex optimization, and have been widely used in motion planning and optimal
control over the last fifteen years (early works in this direction are, e.g., [65, 37, 111]).
In this section we provide some basic notions and results about this family of curves.

11.3.1 Definition

A Bézier curve is constructed using Bernstein polynomials. The Bernstein poly-
nomials of degree 𝑁 are defined over the interval [𝑎, 𝑏] ⊂ R, with 𝑏 > 𝑎, as

𝛽𝑛(𝜏) :=

(︂
𝑁

𝑛

)︂(︂
𝜏 − 𝑎

𝑏− 𝑎

)︂𝑛(︂
𝑏− 𝜏

𝑏− 𝑎

)︂𝑁−𝑛

, ∀𝑛 = 0, . . . , 𝑁.

For all 𝜏 ∈ [𝑎, 𝑏] the Bernstein polynomials are nonnegative and, by the binomial
theorem, they sum up to one. Therefore, the scalars 𝛽0(𝜏), . . . , 𝛽𝑁(𝜏) can be thought
of as the coefficients of a convex combination. Using these coefficients to combine a

141

γ0= γ(a)

γ1

γ2

γ3

γ4= γ(b)

γ(τ)

Figure 11-2: Bézier curve with control points 𝛾0, . . . ,𝛾𝑁 , with 𝑁 = 4. The curve
starts at 𝛾(𝑎) = 𝛾0, ends at 𝛾(𝑏) = 𝛾𝑁 , and is entirely contained in the shaded
control polytope (convex hull of the control points).

given set of control points 𝛾0, . . . ,𝛾𝑁 ∈ R𝑑, we obtain a Bézier curve:

𝛾(𝜏) :=
𝑁∑︁

𝑛=0

𝛽𝑛(𝜏)𝛾𝑛.

The Bézier curve 𝛾 : [𝑎, 𝑏] → R𝑑 is a (vector-valued) polynomial function of degree
𝑁 . An example of a Bézier curve is shown in Figure 11-2, for 𝑑 = 2 and 𝑁 = 4.

A composite Bézier curve is a sequence of Bézier curves that connect smoothly
up to some derivative. Below we list some important properties that we will use later
in this section.

11.3.2 Endpoints

A Bézier curve starts at its first control point and ends at its last control point:

𝛾(𝑎) = 𝛾0, 𝛾(𝑏) = 𝛾𝑁 .

With this property, a composite Bézier curve (our trajectory) can be made continuous
simply by equating the last control point of each curve piece with the first control
point of the next piece.

11.3.3 Control polytope

Since each point on a Bézier curve is a convex combination of the control points, the
entire curve is contained in the convex hull of the control points:

𝛾(𝜏) ∈ conv({𝛾0, . . . ,𝛾𝑁}), ∀𝜏 ∈ [𝑎, 𝑏].

142

This convex hull is called the control polytope of the Bézier curve 𝛾. From this
property it follows that if all control points lie in a convex set, then so does the whole
Bézier curve.

11.3.4 Derivatives

The derivative 𝛾(1) of a Bézier curve 𝛾 is also a Bézier curve. It has degree 𝑁 − 1

and its control points are given by the difference equation

𝛾(1)
𝑛 =

𝑁

𝑏− 𝑎
(𝛾𝑛+1 − 𝛾𝑛), ∀𝑛 = 0, . . . , 𝑁 − 1.

Iterating this, we see that the derivative 𝛾(𝑘) of any order 𝑘 is a Bézier curve of degree
𝑁 −𝑘. Moreover, the derivatives of a piecewise Bézier curve are also piecewise Bézier
curves, and their continuity can be enforced using the endpoint property above.

11.3.5 Squared ℒ2 norm

The square of the ℒ2 norm of a Bézier curve 𝛾 can be expressed as an explicit function
of the control points using the following expression [60, Section 3.3]:∫︁ 𝑏

𝑎

‖𝛾(𝜏)‖22𝑑𝜏 = (𝑏− 𝑎)𝑄(𝛾0, . . . ,𝛾𝑁), (11.4)

where 𝑄 is a convex quadratic function of the control points defined as

𝑄(𝛾0, . . . , 𝛾𝑁) :=
1

2𝑁 + 1

𝑁∑︁
𝑛=0

𝑁∑︁
𝑚=0

(︀
𝑁
𝑛

)︀(︀
𝑁
𝑚

)︀(︀
2𝑁
𝑛+𝑚

)︀ 𝛾𝑇
𝑛 𝛾𝑚.

This formula allows us also to compute the squared ℒ2 norm of a composite Bézier
curve and its derivatives.

11.3.6 Integral upper bound

Unlike the squared ℒ2 norm, the integral of a generic convex function of a Bézier curve
cannot be expressed in closed form. However, we can easily derive a computationally

143

cheap upper bound. Let 𝑓 : R𝑑 → R be a convex function. We have

∫︁ 𝑏

𝑎

𝑓(𝛾(𝜏))𝑑𝜏 =

∫︁ 𝑏

𝑎

𝑓

(︃
𝑁∑︁

𝑛=0

𝛽𝑛(𝜏)𝛾𝑛

)︃
𝑑𝜏

≤
∫︁ 𝑏

𝑎

𝑁∑︁
𝑛=0

𝛽𝑛(𝜏)𝑓(𝛾𝑛)𝑑𝜏

=
𝑁∑︁

𝑛=0

𝑓(𝛾𝑛)

∫︁ 𝑏

𝑎

𝛽𝑛(𝜏)𝑑𝜏

=
𝑁∑︁

𝑛=0

𝑓(𝛾𝑛)
𝑏− 𝑎

𝑁 + 1

=
𝑁∑︁

𝑛=0

𝑓(𝛾𝑛).

Here the inequality follows from the convexity of 𝑓 as in (2.10), and the second to
last equality uses the formula of the integral of a Bernstein polynomial.

11.4 Smooth trajectories

Bézier curves allow us to generalize the construction in Section 11.2, and give us a
way to tackle our original planning problem (11.2). The main caveat is that all the
desirable convexity properties of Bézier curves hold only if the time duration 𝑏 − 𝑎

of the curve is fixed. Let us then discuss how we can solve problem (11.2) under the
following (quite restrictive) assumption.

Assumption 11.1. For all 𝑖 ∈ ℐ the amount of time that our trajectory can spend
within the convex region 𝒞𝑖 is either zero or a fixed scalar 𝑇𝑖 > 0.

Under this hypothesis, the approach in Section 11.2 is easily generalized. We still
use the intersection graph 𝐺 as a skeleton for our GCS. Before we paired each vertex
𝑖 ∈ ℐ with just two points, now we pair it with the following continuous variables:

∙ A sequence of 𝑁𝑖 + 1 control points 𝑞𝑖,0, . . . , 𝑞𝑖,𝑁𝑖
. These define a Beźier curve

𝑞𝑖 with given time duration 𝑇𝑖.

∙ A scalar 𝜏𝑖 that represents the time at which our trajectory enters the region
𝒞𝑖.

The source 𝑠 is now coupled with the singleton

𝒳𝑠 := {(𝑞0
0, . . . , 𝑞

𝐾
0 , 0)}.

144

The first entries collect the initial conditions and the last entry is the initial time of
the trajectory. The target 𝑡 is paired with the set

𝒳𝑡 := {(𝑞0
𝑇 , . . . , 𝑞

𝐾
𝑇)} × [𝑇min, 𝑇max],

which enforces the final conditions and the bounds on the time duration of the tra-
jectory. The convex set 𝒳𝑖 for each 𝑖 ∈ ℐ enforces the following constraints:

∙ Each control point 𝑞𝑖,𝑛 must be contained in 𝒞𝑖. By the convex-hull property of
Beźier curves, this implies that the whole curve 𝑞𝑖 is contained in 𝒞𝑖.

∙ The control points of the derivatives 𝑞(𝑘)
𝑖 must lie in the convex sets 𝒞𝑘. Again by

the convex-hull property, this ensures that the constraints (11.2e) are satisfied.
Note also that the control points of 𝑞(𝑘)

𝑖 are linear functions of the ones of 𝑞𝑖.

∙ The initial time 𝜏𝑖 must be nonnegative and not larger than 𝑇max.

In addition to the initial position, now the convex sets 𝒳𝑒 with 𝑒 = (𝑠, 𝑖) take care
also of the following constraints:

∙ Initial conditions for the curve derivatives 𝑞(𝑘)
𝑖 , as prescribed by the constraint (11.2b).

∙ Initial value of the time counter 𝜏𝑖 = 0.

The edges (𝑖, 𝑡) ∈ ℰ incoming the target play a specular role: they enforce the terminal
conditions (11.2c) and constrain the final time 𝑇 = 𝜏𝑖 +𝑇𝑖 in the interval [𝑇min, 𝑇max].
All the other edges of the form (𝑖, 𝑗) ∈ ℰ ∩ ℐ2 enforce:

∙ The continuity of the curves 𝑞𝑖 and 𝑞𝑗 as well as their derivatives 𝑞(𝑘)
𝑖 and 𝑞

(𝑘)
𝑗 .

Again, this is done by equating the final control point the first curve with the
initial control point of the second curve.

∙ Accumulate the time spent along the trajectory: 𝜏𝑗 = 𝜏𝑖 + 𝑇𝑖.

Finally, convex costs on the vertices of the graph can be enforced either exactly (e.g.,
in the case of the squared ℒ2 norm) or approximately by using the upper bound
derived above. The cost 𝜙0(𝑇) on the trajectory duration is enforced through the
cost 𝑓𝑡 of the target vertex.

Under Assumption 11.1, this SPP in GCS models exactly our motion-planning
problem. Also, any feasible solution of this SPP in GCS yields a feasible solution
for the motion-planning problem (11.2). In this case the rounding strategy from

145

Section 9.5 might not yield a feasible solution, unless the upper bound 𝑇max on the
trajectory duration is sufficiently large to make any path through our graph feasible.1

11.4.1 Joint optimization of trajectory shape and timing

In practice, the trajectories generated with the method above can be quite suboptimal.
Since the time 𝑇𝑖 pre-allocated for each convex region 𝒞𝑖 can be far from the optimal
one. The approach that we take in the numerical experiments below is to pair with
each vertex 𝑖 ∈ ℐ two Bézier curves: 𝑞𝑖 : [0, 1] → R𝑑 and ℎ𝑖 : [0, 1] → R. The former
decides the shape of our trajectory within each convex set, the second dictates the
timing at which the curve 𝑞𝑖 is swept. Mathematically, the trajectory within the
convex set 𝒞𝑖 is reconstructed as the composite function 𝑞𝑖 ∘ ℎ−1

𝑖 .
With this parameterization we can still design smooth trajectories, by enforcing

the differentiability of the curves 𝑞𝑖 and ℎ𝑖 independently. However, this approach
makes it complicated to enforce costs and constraints on the trajectory derivatives.
Convex costs and constraints on the trajectory velocity are still convex when expressed
in terms of the curves 𝑞𝑖 and ℎ𝑖. However, convex costs and constraints on the second
and higher derivatives are not convex in 𝑞𝑖 and ℎ𝑖. A practical approach to prevent,
e.g., the acceleration from growing too large is to add a small penalty directly on the
magnitudes of 𝑞(2)

𝑖 and ℎ
(2)
𝑖 , and constrain ℎ

(1)
𝑖 to not approach zero too closely. A

similar strategy can be used to regularize the higher-order derivatives of our trajectory.

11.5 Numerical experiments

We demonstrate our motion-planning method (which we call GCS after the underlying
optimization framework) on a variety of robot platforms. First, to illustrate some key
advantages of GCS over existing planners, we consider a motion-planning problem in
an intricate maze. Then we consider a quadrotor flying through randomly-generated
buildings, and we show that in almost every problem instance GCS synthesizes a
globally optimal trajectory. For a robot arm with seven joints, we show that GCS can
outperform widely used sampling-based planners by finding higher-quality trajectories
in less time. Finally, we demonstrate the scalability of GCS on real hardware with a
bimanual manipulation problem in a fourteen-dimensional configuration space.

All experiments are run on a computer with a Threadripper 3990x processor and
256 GB of RAM. The solver used for the convex optimization problems is MOSEK 10.0.

1This also assumes that the boundary conditions, together with the derivative constraints, do
not make the problem infeasible.

146

The code necessary to reproduce the results below is available at

https://github.com/RobotLocomotion/gcs-science-robotics.

For an efficient implementation of the techniques discussed in this chapter see also
the class GcsTrajectoryOptimization provided by the software Drake [183].

11.5.1 Motion planning in a maze

Designing a smooth trajectory across a maze is a very challenging problem for most
motion planners. Consider the maze with 502 = 2,500 cells shown in Figure 11-3.
Through small perturbations of an initial trajectory, local optimization has almost
no chance of finding a way across this maze. Existing mixed-integer planners would
also fail, since they would parameterize a trajectory as a sequence of curves and
use a binary variable to assign each curve to each cell [47]. Given that a trajectory
might need to visit every cell, this would require 2, 5002 ≈ 107 binary variables: a
quantity well beyond the capabilities of any solver. Sampling-based methods could
easily discover a path through the maze in Figure 11-3, but they would struggle with
continuous differential costs and constraints. GCS, on the other hand, can efficiently
design smooth trajectories while explicitly leveraging the graph structure beneath
this problem.

To put the problem in Figure 11-3 in the form required by GCS, we let each
maze cell be a safe set 𝒞𝑖. We then have a total of |ℐ| = 2, 500 safe sets, each of
which is a unit square. The initial 𝑞0

0 and final 𝑞0
𝑇 points are the entry (bottom left)

and exit (top right) of the maze. We consider two problems: first we look for the
shortest continuous trajectory across the maze as in problem (11.3), then we minimize
the trajectory duration (𝜙0(𝑇) := 𝑇 and 𝜙𝑘 := 0 for all 𝑘 ≥ 1 in problem (11.2))
together with a small acceleration penalty as described in Section 11.4.1. In the
second problem, we also require that the trajectory be differentiable twice, and we
enforce the velocity limits 𝒞1 := [−1, 1]2 and the boundary conditions 𝑞1

0 := 𝑞1
𝑇 := 0.

The trajectories designed by GCS are illustrated in Figure 11-3, in dashed red for
the first problem and in solid blue for the second. In both cases, the convex relaxation
and the rounded solution have equal cost, thus GCS automatically certifies that these
trajectories are optimal (𝛿opt = 𝛿relax = 0). When the objective is to minimize the
trajectory length, our convex relaxation is a Second-Order Cone Program (SOCP)
and is solved in 0.98s. The minimum-time problem is a Linear Program (LP) but,
because of the high-degree trajectory parameterization, it is substantially larger than
the SOCP and takes 9.1s. We highlight that these are relaxations of mixed-integer

147

https://github.com/RobotLocomotion/gcs-science-robotics

Figure 11-3: Motion planning in a maze. The dashed-red and solid-blue trajectories
are generated by GCS and correspond, respectively, to a minimum-length objective
and to a minimum-time objective with velocity constraints and acceleration penal-
ties. For both problems, GCS identifies an optimal trajectory, and certifies global
optimality, via a single convex optimization problem.

148

programs with approximately 5,000 binary variables, as opposed to, e.g., the 107

binaries that the mixed-integer formulation from [47] would use.
This example highlights the transparency with which GCS blends discrete and

continuous optimization. Finding a discrete sequence of cells through a maze is a
simple graph search, and mild differential costs and constraints should not make
the problem dramatically harder, especially if we seek approximate solutions. While
existing algorithms fail in merging the discrete and continuous natures of motion
planning, GCS can efficiently design smooth trajectories while explicitly leveraging
the graph structure underlying our problems.

11.5.2 Quadrotor flying through buildings

We use GCS to plan the flight of a quadrotor through randomly generated buildings.
An example of such a task is illustrated in Figure 11-4: while moving from the starting
to the ending platform, the quadrotor needs to fly around trees, and through doors
and windows. For each building, the number of rooms, the shape of the walls, the
positioning of doors, windows, and trees are selected randomly. The starting point is
always outside the building and the target is always inside.

Although the configuration space of a quadrotor is six dimensional, the differential-
flatness property of this system allows us to plan trajectories directly in the three-
dimensional Cartesian space. In fact, given any trajectory for the center of mass that
is differentiable four times, a dynamically feasible trajectory for the quadrotor’s orien-
tation, together with the necessary control thrusts, can always be reconstructed [135].

Given that all the obstacles are polygonal, the decomposition of the free space into
convex sets 𝒞𝑖 is done exactly. The collision geometry of the quadrotor is taken to be
a sphere. The cost penalizes the trajectory duration and length, and includes a small
acceleration penalty. To leverage the differential flatness, we require our trajectories
to be differentiable four times, 𝐾 = 4. The velocity has boundary conditions 𝑞1

0 =

𝑞1
𝑇 = 0 and is constrained in the box 𝒞1 = [−10, 10]3.

We plan the motion of the quadrotor through 100 random buildings and we analyze
the optimality gaps 𝛿opt and 𝛿relax defined in (3.4) and obtained through the rounding
strategy discussed in Section 9.5. The value of 𝛿opt is computed, just for analysis
purposes, by solving the MICP to global optimality using BB. The gap 𝛿relax ≥
𝛿opt is automatically returned by GCS. The histograms of these values across the
experiments are reported in Figure 11-5. On 95% of the environments GCS designs
a trajectory with optimality gap 𝛿opt ≤ 1%, and, even in the worst case, we only
have 𝛿opt = 2.9%. On 68% (respectively 84%) of the problems GCS certifies that the
designed trajectory is within 𝛿relax = 4% (respectively 𝛿relax = 7%) of the optimum.

149

Figure 11-4: Quadrotor flying through a building. The trajectory generated by
GCS is depicted in blue in the top-left panel, and is designed through a single convex
optimization problem followed by a rounding step. The snapshots show the starting
and ending configurations, as well as the quadrotor flying close to the obstacles in the
environment.

150

0 5 10 15 20 25 30
Optimality gap opt (%)

0

20

40

60

80

100
Pr

ob
le

m
 in

st
an

ce
s (

%
)

0 5 10 15 20 25 30
Certified optimality gap relax (%)

Figure 11-5: GCS is used to plan the flight of a quadrotor through one hundred
randomly generated buildings. For these trajectories, the two histograms illustrate
the actual optimality gap 𝛿opt and the optimality gap 𝛿relax ≥ 𝛿opt automatically
certified by our method.

The largest optimality gap certified by GCS is 𝛿relax = 27.1%, and corresponds to
an environment where we have 𝛿opt = 2.3%. Therefore, even for this instance, the
moderately large value of 𝛿relax is mostly due to the convex relaxation being slightly
loose, rather than the trajectory being suboptimal. The relaxations of these problems
are SOCPs, and the average runtime of GCS is 2.65s (including rounding).

11.5.3 Comparison with sampling-based planners

Our algorithm is a multiple-query method, as the same data structure (the GCS)
can be used to plan motions between many initial and final conditions. Its natural
sampling-based competitor is then the Probabilistic-RoadMap (PRM) algorithm [105].
Here we compare GCS with PRM methods on a robot arm (KUKA LBR iiwa) with
𝑑 = 7 degrees of freedom. We choose a relatively low-dimensional configuration space
for this comparison since PRM can struggle in higher-dimensional spaces.

The robot environment is shown in Figure 11-6, and is composed of multiple
shelves and two bins. An exact decomposition of the free space is infeasible here,
therefore we adopt the approximate algorithm from [152]. Given a “seed configura-
tion” of the robot, this algorithm inflates a polytope of robot configurations that are
not in collision with the obstacles. Here these seeds are selected manually, although
the seeding can be made automatic [192]. We construct |ℐ| = 8 safe polytopes 𝒞𝑖
using this workflow: five are seeded to cover the configurations for which the gripper
is close to the shelves and the bins, three are seeded to fill the rest of the free space.
The construction of the safe regions is parallelized, and takes 50s.

In practice, the trajectories generated by PRM can be very suboptimal and are

151

Figure 11-6: GCS is benchmarked against PRM on five tasks. Two variants of PRM
are considered: the standard PRM, and the PRM followed by a shortcutting algo-
rithm. The gripper trajectories are shown in blue for GCS, yellow for PRM, and red
for PRM with shortcutting.

152

rarely sent to the robot directly. Even though asymptotically optimal versions of PRM
exist [102], in our experience, these variants are most effective in very low-dimensional
spaces (e.g., two or three dimensions). A common workaround is to post-process the
PRM trajectories with a simple shortcutting algorithm. This samples pairs of points
along a trajectory and connects them via straight segments: if a segment is collision
free then the trajectory is successfully shortened. This step can substantially shorten
the PRM trajectories but it requires many collision checks: for this reason we compare
GCS with both the regular PRM and the PRM with shortcutting. We use a high-
performance implementation of PRM based on [154], and soon to be included in the
open-source software Drake [183]. The PRM in this comparison has 10,000 nodes,
and its construction takes 0.54s. Note that this time is in line with (or even faster
than) state-of-the-art PRM implementations [155, 143, 96].

The tasks in this comparison are illustrated in Figure 11-6 and require the arm to
move between five configurations 𝜌1, . . . ,𝜌5 ∈ 𝒮, while avoiding the shelves and the
bins. The configurations 𝜌1, 𝜌2, and 𝜌3 correspond to the gripper being above the
shelves, in the first shelf, and in the second shelf. The waypoints 𝜌4 and 𝜌5 correspond
to the left and the right bin. For 𝜈 = 1, . . . , 4, task 𝜈 asks the robot to move from 𝜌𝜈

to 𝜌𝜈+1. Task 5 requires moving from 𝜌5 back to 𝜌1. The objective is to connect the
start and the goal configurations with a continuous trajectory of minimum length as
in problem (11.3). We adopt the rounding strategy discussed in Section 9.5 for the
solution of this problem.

Figure 11-6 illustrates the trajectories of the robot gripper for each planner and
each task. The blue curves correspond to GCS, the yellow to PRM, and the red to
PRM with shortcutting. The lengths of these trajectories, together with the offline
and online runtimes of each planner, are reported in Figure 11-7 with matching colors.
(Although the rounding phase of GCS is randomized, Figure 11-7 reports only one
value for the length of its trajectories since repeating the experiments many times GCS
always finds the same solutions.) In all the tasks, GCS designs shorter trajectories
and, online, it runs as fast or substantially faster than both the PRM competitors.

For these problems our convex relaxation is an SOCP, which is solved very fast
thanks to the low number |ℐ| = 8 of safe regions. Within the conservatism of the
space decomposition, all the trajectories designed by GCS are optimal (𝛿opt = 0).
The certified optimality gap 𝛿relax is 4.1% on average, and it achieves a maximum of
13.0% in the first task.

Although limited to five tasks, this comparison shows a general tendency. The
offline computations of GCS are more demanding than the ones of PRM. However,
this extra effort pays back in the online phase, where GCS can find better trajectories

153

0

1

2

3

4

5

6

7
Tr

aj
ec

to
ry

 le
ng

th
 (r

ad
)

3.
3

5.
7

3.
8

2.
1

4.
7

2.
4 2.

6
6.

4
3.

6

3.
5

5.
6

4.
5

1.
8

2.
9

2.
5

GCS PRM Shortcut PRM

1 2 3 4 5
Task

0

50

100

150

200

250

300

Ru
nt

im
e

(m
s)

31
24

6 25
7

9
66 72

39
96 10

4

58
12

0 12
9

39 28 36

Figure 11-7: Trajectory lengths and computation times for GCS and the PRM
competitors. GCS requires more expensive offline computations than highly optimized
PRM implementations, but online it designs shorter trajectories in a fraction of the
time.

154

Figure 11-8: Coordinated motion planning of two robot arms using GCS. Top row:
the arms grasp two mugs on the shelves and place them back in inverted positions.
Center row: two spray paints are swapped. Bottom row: one arm grasps a sugar box
and hands it to the other arm.

with stronger collision-avoidance guarantees in less time. This can be very valuable
in those applications where the environment is practically static, and improving the
online performance is worth investing more effort in the offline preprocessing.

11.5.4 Coordinated Planning of Two Robot Arms

In the previous comparison we have chosen a robot with 𝑑 = 7 joints because PRM
methods perform poorly in higher dimensions. To demonstrate the scalability of GCS,
here we plan the motion of a dual-arm manipulator with 𝑑 = 14 degrees of freedom,
shown in Figure 11-8. Besides avoiding collisions with the environment, now GCS
must also prevent self-collisions between the arms. (Note that single-query sampling-
based algorithms have been applied before for problems like this [151]. However, the
multiple-query problem considered here is significantly more challenging.)

We consider the three tasks shown in Figure 11-8. In the first task the robot
grasps two mugs from the shelves in front of it, and places them back in a position
that requires the arms to cross. In the second task it moves two spray paints and
reaches configurations that are very close to self collision. In the third task one arm
hands a small box to the other. Each task is solved as a single convex program:
when an arm grasps, places, or hands off an object its configuration is prespecified,

155

but the order in which the objects are manipulated is optimized. For example, in
the first task, GCS can decide which mug to grasp first, or whether to grasp them
simultaneously.

The free space is again decomposed using the algorithm from [152]. For the
first environment we construct |ℐ| = 35 polytopes, seeded to approximately cover
the workspace under the four possible collision geometries (mugs on shelves, mug in
left hand, mug in right hand, mugs in both hands). We proceed similarly for the
second and third tasks, which feature 12 and 14 safe polytopes. Since here we are
not comparing to PRM, we are not limited to polygonal curves and we plan twice-
differentiable trajectories with equal penalty on length and duration, and with a
small acceleration cost. The robot velocity limits are enforced through a box-shaped
constraint set 𝒞1.

As Figure 11-8 shows, GCS designs collision-free trajectories that efficiently ac-
complish each of the three tasks. The largest optimality gap 𝛿relax is in the second
task, and it is only 13.9%. After running a BB solver, we verify that the actual
optimality gap for each trajectory is not larger than 𝛿opt = 8.4%. Since the convex
relaxations of these problems are very large SOCPs, which push the limits of what
GCS is currently capable of, the runtimes for these tasks are 185s, 103s, and 21s.
However, we are confident that these times can decrease substantially in the near
future.

156

Chapter 12

Conclusions

In this thesis we have introduced Graph of Convex Sets (GCS): a new modelling and
computational framework for problems at the intersection of discrete and continuous
decision making. GCS problems blend graph search and convex optimization, and
generalize a broad variety of decision-making problems. They have great modelling
power and applications in multiple engineering disciplines.

For the solution of a GCS problem we have proposed a unified method that lever-
ages tools from polyhedral combinatorics and convex analysis. We start from the
formulation of a purely discrete graph optimization problem as an integer linear pro-
gram, and we automatically translate it into an efficient mixed-integer formulation
for the corresponding GCS problem.

Compared to existing frameworks for discrete-continuous decision making, GCS
has three main strengths. First, GCS is a simple framework that captures the essence
of discrete-continuous decision making. The graph and the combinatorial goal (e.g.,
finding a path through a graph) describe the high-level discrete skeleton of a problem,
while the convex costs and constraints model the low-level continuous details. Second,
thanks to the techniques we have developed, GCS problems can be solved using
efficient optimization methods. Third, GCS is a high-level tool for the users: although
it leverages advanced optimization techniques, it does not require to be familiar with
them.

GCS has numerous applications; in this thesis we focused on optimal control of
dynamical systems and robot motion planning. In optimal control, we have demon-
strated that GCS yields mixed-integer formulations that outperform the state of the
art, or recover it as a special case. In motion planning, our optimization methods
can design better trajectories in a fraction of the time of algorithms that have been
developed for decades and are widely used in academia and industry.

We are optimistic that GCS will find more and more applications in the future, and

157

will become a widely-used optimization tool in many engineering disciplines. Current
investigations show that GCS is a powerful language to work on a variety of problems
that go beyond the ones studied in this thesis. These include contact-rich robot ma-
nipulation [83], control with temporal-logic specifications [109], and motion-planning
problems with moving targets [153]. Extensions of the results presented in this thesis
to graphs composed of geodesically convex manifolds have been developed in [40].
Also a high-performance motion-planning method similar to GCS, but specialized to
safe sets that are axis-aligned boxes, has been presented in [127]. See the following
section from [181] for an up-to-date list of the robotics applications of GCS:

https://underactuated.mit.edu/optimization.html#gcs.

The optimization methods introduced in this thesis are now finding application
also in industry. For example, Dexai Robotics is using a variation of our techniques in
their production lines to compute optimal motions for food-preparation robots [72].

158

https://underactuated.mit.edu/optimization.html#gcs

Index

3SAT, 91

assignment, 39

Bézier curve, 141
composite, 142

Bernstein polynomial, 141
branch and bound, 5, 29

cone, 15
dual, 18
nonnegative orthant, 16
origin, 16
second-order, 16
semidefinite, 16

conic form, 16, 21
conic hull, 17
conic representation, 21
connected vertices, 39
control point, 142
control polytope, 143
convex combination, 16
convex hull, 16
convex restriction, 98
cycle, 39

Hamiltonian, 39

degree constraint, 96
disciplined convex programming, 23
duality

strong, 23

weak, 23

epigraph, 19
extended formulation, 31
extreme point, 16

feasible solution, 28
flow conservation, 41
formulation

perfect, 31
strength, 31

function
closed, 20
convex, 20
positively homogeneous, 20

graph, 37
acyclic, 39
bipartite, 39
connected, 39
directed, 37
undirected, 37
weighted, 37

graph of convex sets, 3
graph optimization problem, 40

Hamiltonian-path problem, 90
homogenization, 17, 20

incidence vector, 38
intersection graph, 138

159

Lorentz cone, 16

matching, 39
perfect, 39

optimal value, 21, 28

path, 39
Hamiltonian, 39
length, 39

perspective of a set, 17
polar, 18
polyhedron, 16
polytope, 16
problem

facility location, 9, 44, 45
minimum perfect matching, 45
minimum spanning tree, 4, 43
shortest path, 4, 41
travelling salesperson, 4, 43

program
convex, 21, 22
feasible, 21, 28
integer, 30

linear, 4, 30
linear, 22
mixed-Boolean, 28
mixed-integer, 7, 27

conic, 29
convex, 5, 29
linear, 29

nonconvex, 29
quadratic, 29
second-order cone, 29
semidefinite, 29

quadratic, 22
second-order cone, 22
semidefinite, 22

relaxation, 28
convex, 29
linear, 29
set based, 81

relaxation gap, 30

set
convex, 15
feasible, 21, 28

solution
feasible, 21
optimal, 21, 28

subgraph, 38
induced, 38

system
piecewise affine, 114

task and motion planning, 12
tour, 39
tree, 39

spanning, 39

valid inequality, 18

160

Bibliography

[1] Warren P Adams and Hanif D Sherali. Linearization strategies for a class of
zero-one mixed integer programming problems. Operations Research, 38(2):217–
226, 1990.

[2] Amazon Robotics. Amazon.com announces first quarter results, 2023. Available
at https://ir.aboutamazon.com/news-release/news-release-details/
2023/Amazon.com-Announces-First-Quarter-Results/default.aspx.

[3] Alexandre Amice, Hongkai Dai, Peter Werner, Annan Zhang, and Russ Tedrake.
Finding and optimizing certified, collision-free regions in configuration space for
robot manipulators. In Algorithmic Foundations of Robotics XV, pages 328–348.
Springer, 2022.

[4] Esther M Arkin and Refael Hassin. Approximation algorithms for the geometric
covering salesman problem. Discrete Applied Mathematics, 55(3):197–218, 1994.

[5] Federico Augugliaro, Angela P Schoellig, and Raffaello D’Andrea. Generation
of collision-free trajectories for a quadrocopter fleet: A sequential convex pro-
gramming approach. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1917–1922. IEEE, 2012.

[6] Daniel Axehill and Anders Hansson. A dual gradient projection quadratic pro-
gramming algorithm tailored for model predictive control. In Decision and
Control, 2008. CDC 2008. 47th IEEE Conference on, pages 3057–3064. IEEE,
2008.

[7] Daniel Axehill, Lieven Vandenberghe, and Anders Hansson. Convex relaxations
for mixed integer predictive control. Automatica, 46(9):1540–1545, 2010.

[8] Nora Ayanian and Vijay Kumar. Abstractions and controllers for groups of
robots in environments with obstacles. In International Conference on Robotics
and Automation. IEEE, 2010.

161

https://ir.aboutamazon.com/news-release/news-release-details/2023/Amazon.com-Announces-First-Quarter-Results/default.aspx
https://ir.aboutamazon.com/news-release/news-release-details/2023/Amazon.com-Announces-First-Quarter-Results/default.aspx

[9] Egon Balas. Disjunctive programming: Properties of the convex hull of feasible
points. Discrete Applied Mathematics, 89(1-3):3–44, 1998.

[10] Alberto Bemporad, Giancarlo Ferrari-Trecate, and Manfred Morari. Observabil-
ity and controllability of piecewise affine and hybrid systems. IEEE transactions
on automatic control, 45(10):1864–1876, 2000.

[11] Alberto Bemporad, Domenico Mignone, and Manfred Morari. An efficient
branch and bound algorithm for state estimation and control of hybrid systems.
In Proceedings of the European Control Conference, pages 557–562. Citeseer,
1999.

[12] Alberto Bemporad and Manfred Morari. Control of systems integrating logic,
dynamics, and constraints. Automatica, 35(3):407–427, 1999.

[13] Aharon Ben-Tal and Arkadi Nemirovski. Lectures on modern convex optimiza-
tion: analysis, algorithms, and engineering applications. SIAM, 2001.

[14] Dmitry Berenson, Pieter Abbeel, and Ken Goldberg. A robot path planning
framework that learns from experience. In 2012 IEEE International Conference
on Robotics and Automation, pages 3671–3678. IEEE, 2012.

[15] Dimitri Bertsekas. Convex optimization theory, volume 1. Athena Scientific,
2009.

[16] Dimitris Bertsimas and John N Tsitsiklis. Introduction to linear optimization,
volume 6. Athena scientific Belmont, MA, 1997.

[17] John T Betts. Survey of numerical methods for trajectory optimization. Journal
of guidance, control, and dynamics, 21(2):193–207, 1998.

[18] Lars Blackmore. Autonomous precision landing of space rockets. In Frontiers of
Engineering: Reports on Leading-Edge Engineering from the 2016 Symposium,
volume 46, pages 15–20. The Bridge Washington, DC, 2016.

[19] Víctor Blanco, Elena Fernández, and Justo Puerto. Minimum spanning trees
with neighborhoods: Mathematical programming formulations and solution
methods. European Journal of Operational Research, 262(3):863–878, 2017.

[20] Richard Bormann, Florian Jordan, Joshua Hampp, and Martin Hägele. Indoor
coverage path planning: Survey, implementation, analysis. In 2018 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pages 1718–1725.
IEEE, 2018.

162

[21] Francesco Borrelli, Mato Baotić, Alberto Bemporad, and Manfred Morari. Dy-
namic programming for constrained optimal control of discrete-time linear hy-
brid systems. Automatica, 41(10):1709–1721, 2005.

[22] Francesco Borrelli, Alberto Bemporad, Michael Fodor, and Davor Hrovat. An
MPC/hybrid system approach to traction control. Transactions on Control
Systems Technology, 14(3):541–552, 2006.

[23] Francesco Borrelli, Alberto Bemporad, and Manfred Morari. Predictive control
for linear and hybrid systems. Cambridge University Press, 2017.

[24] Boston Dynamics. Leaps, bounds, and backflips, 2021. Available at https:
//bostondynamics.com/blog/leaps-bounds-and-backflips/.

[25] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

[26] Michael S Branicky, Vivek S Borkar, and Sanjoy K Mitter. A unified framework
for hybrid control: Model and optimal control theory. IEEE transactions on
automatic control, 43(1):31–45, 1998.

[27] Jack Brimberg and George O Wesolowsky. Locating facilities by minimax rel-
ative to closest points of demand areas. Computers & Operations Research,
29(6):625–636, 2002.

[28] Rohan Budhiraja, Justin Carpentier, and Nicolas Mansard. Dynamics consen-
sus between centroidal and whole-body models for locomotion of legged robots.
In 2019 International Conference on Robotics and Automation (ICRA), pages
6727–6733. IEEE, 2019.

[29] Joel W Burdick, Amanda Bouman, and Elon Rimon. From multi-target sensory
coverage to complete sensory coverage: An optimization-based robotic sensory
coverage approach. In International Conference on Robotics and Automation,
pages 10994–11000. IEEE, 2021.

[30] Eduardo F Camacho, Daniel R Ramírez, Daniel Limón, D Muñoz De La Peña,
and Teodoro Alamo. Model predictive control techniques for hybrid systems.
Annual reviews in control, 34(1):21–31, 2010.

[31] John Canny. The complexity of robot motion planning. MIT press, 1988.

163

https://bostondynamics.com/blog/leaps-bounds-and-backflips/
https://bostondynamics.com/blog/leaps-bounds-and-backflips/

[32] John Canny and John Reif. New lower bound techniques for robot motion
planning problems. In 28th Annual Symposium on Foundations of Computer
Science, pages 49–60. IEEE, 1987.

[33] Federico D Carvallo, Arthur W Westerberg, and Manfred Morari. MILP for-
mulation for solving minimum time optimal control problems. International
Journal of Control, 51(4):943–947, 1990.

[34] Sebastián Ceria and João Soares. Convex programming for disjunctive convex
optimization. Mathematical Programming, 86(3):595–614, 1999.

[35] Runqi Chai, Antonios Tsourdos, Al Savvaris, Senchun Chai, and Yuanqing Xia.
Two-stage trajectory optimization for autonomous ground vehicles parking ma-
neuver. IEEE Transactions on Industrial Informatics, 15(7):3899–3909, 2018.

[36] Wei-pang Chin and Simeon Ntafos. Optimum watchman routes. In Proceedings
of the second annual symposium on Computational geometry, pages 24–33, 1986.

[37] Ji-wung Choi, Renwick Curry, and Gabriel Elkaim. Path planning based on
Bézier curve for autonomous ground vehicles. In Advances in Electrical and
Electronics Engineering-IAENG Special Edition of the World Congress on En-
gineering and Computer Science 2008, pages 158–166. IEEE, 2008.

[38] Howie Choset. Coverage for robotics–a survey of recent results. Annals of
mathematics and artificial intelligence, 31(1):113–126, 2001.

[39] Chris Coey, Miles Lubin, and Juan Pablo Vielma. Outer approximation with
conic certificates for mixed-integer convex problems. Mathematical Program-
ming Computation, 12(2):249–293, 2020.

[40] Thomas Cohn, Mark Petersen, Max Simchowitz, and Russ Tedrake. Non-
euclidean motion planning with graphs of geodesically-convex sets. arXiv
preprint arXiv:2305.06341, 2023.

[41] Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Extended formu-
lations in combinatorial optimization. 4OR, 8(1):1–48, 2010.

[42] Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Integer program-
ming. Springer, 2014.

[43] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.
Introduction to algorithms. MIT press, 4th edition, 2022.

164

[44] Hongkai Dai, Alexandre Amice, Peter Werner, Annan Zhang, and Russ Tedrake.
Certified polyhedral decompositions of collision-free configuration space. The
International Journal of Robotics Research, page 02783649231201437, 2023.

[45] George Dantzig, Ray Fulkerson, and Selmer Johnson. Solution of a large-scale
traveling-salesman problem. Journal of the operations research society of Amer-
ica, 2(4):393–410, 1954.

[46] Robin Deits and Russ Tedrake. Computing large convex regions of obstacle-
free space through semidefinite programming. In Algorithmic Foundations of
Robotics XI, pages 109–124. Springer, 2015.

[47] Robin Deits and Russ Tedrake. Efficient mixed-integer planning for UAVs in
cluttered environments. In International Conference on Robotics and Automa-
tion, pages 42–49. IEEE, 2015.

[48] Marc Demange, Tınaz Ekim, Bernard Ries, and Cerasela Tanasescu. On some
applications of the selective graph coloring problem. European Journal of Op-
erational Research, 240(2):307–314, 2015.

[49] Ashwin Deshpande. Exact geometry algorithms for robotic motion planning.
PhD thesis, Massachusetts Institute of Technology, 2019.

[50] Steven Diamond and Stephen Boyd. CVXPY: A python-embedded modeling
language for convex optimization. The Journal of Machine Learning Research,
17(1):2909–2913, 2016.

[51] Steven Diamond, Reza Takapoui, and Stephen Boyd. A general system for
heuristic minimization of convex functions over non-convex sets. Optimization
Methods and Software, 33(1):165–193, 2018.

[52] EW Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, 1959.

[53] Yann Disser, Matúš Mihalák, Sandro Montanari, and Peter Widmayer. Rectilin-
ear shortest path and rectilinear minimum spanning tree with neighborhoods.
In International Symposium on Combinatorial Optimization, pages 208–220.
Springer, 2014.

[54] Moshe Dror, Alon Efrat, Anna Lubiw, and Joseph SB Mitchell. Touring a
sequence of polygons. In 35th annual ACM symposium on Theory of computing,
pages 473–482, 2003.

165

[55] Moshe Dror and Mohamed Haouari. Generalized Steiner problems and other
variants. Journal of Combinatorial Optimization, 4(4):415–436, 2000.

[56] Moshe Dror, Mohamed Haouari, and J Chaouachi. Generalized spanning trees.
European Journal of Operational Research, 120(3):583–592, 2000.

[57] Jack Edmonds. Maximum matching and a polyhedron with 0,1-vertices. Journal
of research of the National Bureau of Standards B, 69(125-130):55–56, 1965.

[58] Jack Edmonds. Submodular functions, matroids, and certain polyhedra. Com-
binatorial structures and their applications, pages 69–87, 1970.

[59] Bachir El Khadir, Jean Bernard Lasserre, and Vikas Sindhwani. Piecewise-
linear motion planning amidst static, moving, or morphing obstacles. In 2021
IEEE International Conference on Robotics and Automation, pages 7802–7808.
IEEE, 2021.

[60] Rida Farouki and V Rajan. Algorithms for polynomials in Bernstein form.
Computer Aided Geometric Design, 5(1):1–26, 1988.

[61] Corinne Feremans, Martine Labbé, and Gilbert Laporte. Generalized network
design problems. European Journal of Operational Research, 148(1):1–13, 2003.

[62] Corinne Feremans, Martine Labbé, and Gilbert Laporte. The generalized min-
imum spanning tree problem: Polyhedral analysis and branch-and-cut algo-
rithm. Networks: An International Journal, 43(2):71–86, 2004.

[63] Giancarlo Ferrari-Trecate, Marco Muselli, Diego Liberati, and Manfred Morari.
A clustering technique for the identification of piecewise affine systems. Auto-
matica, 39(2):205–217, 2003.

[64] Matteo Fischetti, Juan José Salazar González, and Paolo Toth. The symmetric
generalized traveling salesman polytope. Networks, 26(2):113–123, 1995.

[65] Melvin Flores. Real-time trajectory generation for constrained nonlinear dy-
namical systems using non-uniform rational b-spline basis functions. California
Institute of Technology, 2008.

[66] Christodoulos A Floudas. Nonlinear and mixed-integer optimization: funda-
mentals and applications. Oxford University Press, 1995.

166

[67] Maria Fox and Derek Long. PDDL2.1: An extension to pddl for expressing
temporal planning domains. Journal of artificial intelligence research, 20:61–
124, 2003.

[68] Antonio Frangioni and Claudio Gentile. Perspective cuts for a class of convex
0–1 mixed integer programs. Mathematical Programming, 106(2):225–236, 2006.

[69] Michael L Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses
in improved network optimization algorithms. Journal of the ACM (JACM),
34(3):596–615, 1987.

[70] Damian Frick, Alexander Domahidi, and Manfred Morari. Embedded optimiza-
tion for mixed logical dynamical systems. Computers & Chemical Engineering,
72:21–33, 2015.

[71] Damian Frick, Angelos Georghiou, Juan L Jerez, Alexander Domahidi, and
Manfred Morari. Low-complexity method for hybrid mpc with local guarantees.
SIAM Journal on Control and Optimization, 57(4):2328–2361, 2019.

[72] Dexai Robotics (funded by ARM Institute). Time-optimal motion planning
using convex sets, 2024. Available at https://arminstitute.org/news/
motion-planning-convex-sets/.

[73] Enric Galceran and Marc Carreras. A survey on coverage path planning for
robotics. Robotics and Autonomous systems, 61(12):1258–1276, 2013.

[74] Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot. In-
formed RRT*: Optimal sampling-based path planning focused via direct sam-
pling of an admissible ellipsoidal heuristic. In 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 2997–3004. IEEE, 2014.

[75] Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon Kim, Tom
Silver, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Integrated task and
motion planning. Annual review of control, robotics, and autonomous systems,
4:265–293, 2021.

[76] Iacopo Gentilini, François Margot, and Kenji Shimada. The travelling salesman
problem with neighbourhoods: MINLP solution. Optimization Methods and
Software, 28(2):364–378, 2013.

[77] Tobias Geyer, Georgios Papafotiou, and Manfred Morari. Hybrid model pre-
dictive control of the step-down DC–DC converter. Transactions on Control
Systems Technology, 16(6):1112–1124, 2008.

167

https://arminstitute.org/news/motion-planning-convex-sets/
https://arminstitute.org/news/motion-planning-convex-sets/

[78] Tobias Geyer, Fabio D Torrisi, and Manfred Morari. Optimal complexity re-
duction of polyhedral piecewise affine systems. Automatica, 44(7):1728–1740,
2008.

[79] Gianpaolo Ghiani and Gennaro Improta. An efficient transformation of the
generalized vehicle routing problem. European Journal of Operational Research,
122(1):11–17, 2000.

[80] Mukulika Ghosh, Nancy M Amato, Yanyan Lu, and Jyh-Ming Lien. Fast ap-
proximate convex decomposition using relative concavity. Computer-Aided De-
sign, 45(2):494–504, 2013.

[81] Rafal Goebel, Ricardo G. Sanfelice, and Andrew R. Teel. Hybrid Dynamical
Systems. Princeton University Press, Princeton, 2012.

[82] Gustavo Goretkin, Alejandro Perez, Robert Platt, and George Konidaris. Opti-
mal sampling-based planning for linear-quadratic kinodynamic systems. In 2013
IEEE International Conference on Robotics and Automation, pages 2429–2436.
IEEE, 2013.

[83] Bernhard P Graesdal, Shao YC Chia, Tobia Marcucci, Savva Morozov, Alexan-
dre Amice, Pablo A Parrilo, and Russ Tedrake. Towards tight convex relaxations
for contact-rich manipulation. arXiv preprint arXiv:2402.10312, 2024.

[84] Michael Grant and Stephen Boyd. Cvx: Matlab software for disciplined convex
programming, version 2.1, 2014.

[85] Michael Grant, Stephen Boyd, and Yinyu Ye. Disciplined convex programming.
Global optimization: From theory to implementation, pages 155–210, 2006.

[86] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algo-
rithms and combinatorial optimization. Springer Science & Business Media,
2012.

[87] Oktay Günlük and Jeff Linderoth. Perspective reformulations of mixed integer
nonlinear programs with indicator variables. Mathematical programming, 124(1-
2):183–205, 2010.

[88] David Hallac, Christopher Wong, Steven Diamond, Abhijit Sharang, Stephen
Boyd, Jure Leskovec, et al. Snapvx: A network-based convex optimization
solver. Journal of Machine Learning Research, 18(4):1–5, 2017.

168

[89] Shaoning Han, Andrés Gómez, and Alper Atamtürk. 2 × 2-convexifications for
convex quadratic optimization with indicator variables. Mathematical Program-
ming, 202(1-2):95–134, 2023.

[90] Weiqiao Han and Russ Tedrake. Feedback design for multi-contact push recov-
ery via lmi approximation of the piecewise-affine quadratic regulator. In 2017
IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids),
pages 842–849. IEEE, 2017.

[91] Weiqiao Han and Russ Tedrake. Local trajectory stabilization for dexterous
manipulation via piecewise affine approximations. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pages 8884–8891. IEEE, 2020.

[92] Wilhemus PMH Heemels, Bart De Schutter, and Alberto Bemporad. Equiva-
lence of hybrid dynamical models. Automatica, 37(7):1085–1091, 2001.

[93] Andreas B Hempel, Paul J Goulart, and John Lygeros. Inverse parametric
optimization with an application to hybrid system control. IEEE Transactions
on automatic control, 60(4):1064–1069, 2015.

[94] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Convex analysis and
minimization algorithms I: Fundamentals, volume 305. Springer science & busi-
ness media, 2013.

[95] Mamane Souley Ibrahim, Nelson Maculan, and Michel Minoux. A strong flow-
based formulation for the shortest path problem in digraphs with negative cy-
cles. International Transactions in Operational Research, 16(3):361–369, 2009.

[96] Jeffrey Ichnowski and Ron Alterovitz. Scalable multicore motion planning using
lock-free concurrency. IEEE Transactions on Robotics, 30(5):1123–1136, 2014.

[97] Jordan Jalving, Sungho Shin, and Victor M Zavala. A graph-based model-
ing abstraction for optimization: Concepts and implementation in plasmo.jl.
Mathematical Programming Computation, 14(4):699–747, 2022.

[98] Lucas Janson, Edward Schmerling, Ashley Clark, and Marco Pavone. Fast
marching tree: A fast marching sampling-based method for optimal motion
planning in many dimensions. The International Journal of Robotics Research,
34(7):883–921, 2015.

[99] Mikael Johansson and Anders Rantzer. Computation of piecewise quadratic
Lyapunov functions for hybrid systems. In Control Conference (ECC), 1997
European, pages 2005–2010. IEEE, 1997.

169

[100] Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor, and
Stefan Schaal. STOMP: Stochastic trajectory optimization for motion planning.
In 2011 IEEE International Conference on Robotics and Automation, pages
4569–4574. IEEE, 2011.

[101] Sertac Karaman and Emilio Frazzoli. Optimal kinodynamic motion planning
using incremental sampling-based methods. In 49th IEEE conference on deci-
sion and control (CDC), pages 7681–7687. IEEE, 2010.

[102] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal
motion planning. The International Journal of Robotics Research, 30(7):846–
894, 2011.

[103] Sertac Karaman, Matthew R Walter, Alejandro Perez, Emilio Frazzoli, and
Seth Teller. Anytime motion planning using the rrt. In 2011 IEEE international
conference on robotics and automation, pages 1478–1483. IEEE, 2011.

[104] Richard M Karp. Reducibility among combinatorial problems. In Complexity
of computer computations, pages 85–103. Springer, 1972.

[105] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. Prob-
abilistic roadmaps for path planning in high-dimensional configuration spaces.
IEEE Transactions on Robotics and Automation, 12(4):566–580, 1996.

[106] Jeong-Jung Kim and Ju-Jang Lee. Trajectory optimization with particle swarm
optimization for manipulator motion planning. IEEE transactions on industrial
informatics, 11(3):620–631, 2015.

[107] Jongrae Kim and Joao P Hespanha. Discrete approximations to continuous
shortest-path: Application to minimum-risk path planning for groups of UAVs.
In International Conference on Decision and Control, volume 2, pages 1734–
1740. IEEE, 2003.

[108] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and
Algorithms, volume 21. Springer Berlin Heidelberg, 6th edition, 2018.

[109] Vince Kurtz and Hai Lin. Temporal logic motion planning with convex opti-
mization via graphs of convex sets. IEEE Transactions on Robotics, 2023.

[110] Jean B Lasserre. Global optimization with polynomials and the problem of
moments. SIAM Journal on Optimization, 11(3):796–817, 2001.

170

[111] Boris Lau, Christoph Sprunk, and Wolfram Burgard. Kinodynamic motion
planning for mobile robots using splines. In International Conference on Intel-
ligent Robots and Systems, pages 2427–2433. IEEE/RJS, 2009.

[112] Steven M LaValle. Rapidly-exploring random trees: A new tool for path plan-
ning. TR 98-11, Computer Science Department, Iowa State University, 1998.

[113] Der-Tsai Lee and Franco P Preparata. Euclidean shortest paths in the presence
of rectilinear barriers. Networks, 14(3):393–410, 1984.

[114] Fajie Li and Reinhard Klette. Euclidean shortest paths. Springer, 2011.

[115] Guangzhi Li and Rahul Simha. The partition coloring problem and its ap-
plication to wavelength routing and assignment. In Proceedings of the First
Workshop on Optical Networks, volume 1. Citeseer, 2000.

[116] Wen-Jui Li, H-S Jacob Tsao, and Osman Ulular. The shortest path with at
most/nodes in each of the series/parallel clusters. Networks, 26(4):263–271,
1995.

[117] Daniel Liberzon. Switching in systems and control, volume 190. Springer, 2003.

[118] Jyh-Ming Lien and Nancy Amato. Approximate convex decomposition of poly-
gons. In Proceedings of the twentieth annual symposium on Computational
geometry, pages 17–26, 2004.

[119] Ziang Liu, Genggeng Zhou, Jeff He, Tobia Marcucci, Fei-Fei Li, Jiajun Wu,
and Yunzhu Li. Model-based control with sparse neural dynamics. Advances in
Neural Information Processing Systems, 36, 2024.

[120] László Lovász and Alexander Schrijver. Cones of matrices and set-functions
and 0–1 optimization. SIAM Journal on Optimization, 1(2):166–190, 1991.

[121] Tomás Lozano-Pérez and Michael A Wesley. An algorithm for planning
collision-free paths among polyhedral obstacles. Communications of the ACM,
22(10):560–570, 1979.

[122] John Lygeros, Karl Henrik Johansson, Slobodan N Simic, Jun Zhang, and
S Shankar Sastry. Dynamical properties of hybrid automata. IEEE Trans-
actions on automatic control, 48(1):2–17, 2003.

171

[123] Anirudha Majumdar and Russ Tedrake. Funnel libraries for real-time robust
feedback motion planning. The International Journal of Robotics Research,
36(8):947–982, 2017.

[124] Tobia Marcucci, Robin Deits, Marco Gabiccini, Antonio Bicchi, and Russ
Tedrake. Approximate hybrid model predictive control for multi-contact push
recovery in complex environments. In International Conference on Humanoid
Robotics, pages 31–38. IEEE, 2017.

[125] Tobia Marcucci, Marco Gabiccini, and Alessio Artoni. A two-stage trajec-
tory optimization strategy for articulated bodies with unscheduled contact se-
quences. IEEE Robotics and Automation Letters, 2(1):104–111, 2016.

[126] Tobia Marcucci, Manolo Garabini, Gian Maria Gasparri, Alessio Artoni, Marco
Gabiccini, and Antonio Bicchi. Parametric trajectory libraries for online mo-
tion planning with application to soft robots. In Robotics Research: The 18th
International Symposium ISRR, pages 1001–1017. Springer, 2020.

[127] Tobia Marcucci, Parth Nobel, Russ Tedrake, and Stephen Boyd. Fast path plan-
ning through large collections of safe boxes. arXiv preprint arXiv:2305.01072,
2023.

[128] Tobia Marcucci, Mark Petersen, David von Wrangel, and Russ Tedrake. Mo-
tion planning around obstacles with convex optimization. Science Robotics,
8(84):eadf7843, 2023.

[129] Tobia Marcucci and Russ Tedrake. Mixed-integer formulations for optimal con-
trol of piecewise-affine systems. In Proceedings of the 22nd ACM International
Conference on Hybrid Systems: Computation and Control, pages 230–239, 2019.

[130] Tobia Marcucci and Russ Tedrake. Warm start of mixed-integer programs for
model predictive control of hybrid systems. Transactions on Automatic Control,
66(6):2433–2448, 2021.

[131] Tobia Marcucci, Jack Umenberger, Pablo Parrilo, and Russ Tedrake. Shortest
paths in graphs of convex sets. SIAM Journal on Optimization, 34(1):507–532,
2024.

[132] R Kipp Martin. Using separation algorithms to generate mixed integer model
reformulations. Operations Research Letters, 10(3):119–128, 1991.

172

[133] Rajesh Matai, Surya Prakash Singh, and Murari Lal Mittal. Traveling salesman
problem: an overview of applications, formulations, and solution approaches.
Traveling salesman problem, theory and applications, 1(1):1–25, 2010.

[134] Garth P McCormick. Computability of global solutions to factorable nonconvex
programs: Part i—convex underestimating problems. Mathematical program-
ming, 10(1):147–175, 1976.

[135] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory generation and
control for quadrotors. In International Conference on Robotics and Automa-
tion, pages 2520–2525. IEEE, 2011.

[136] Daniel Mellinger, Alex Kushleyev, and Vijay Kumar. Mixed-integer quadratic
program trajectory generation for heterogeneous quadrotor teams. In 2012
IEEE International Conference on Robotics and Automation, pages 477–483.
IEEE, 2012.

[137] Nicholas Moehle and Stephen Boyd. A perspective-based convex relaxation for
switched-affine optimal control. Systems & Control Letters, 86:34–40, 2015.

[138] Young-Soo Myung, Chang-Ho Lee, and Dong-Wan Tcha. On the generalized
minimum spanning tree problem. Networks, 26(4):231–241, 1995.

[139] Vihangkumar V Naik and Alberto Bemporad. Embedded mixed-integer
quadratic optimization using accelerated dual gradient projection. IFAC-
PapersOnLine, 50(1):10723–10728, 2017.

[140] George L Nemhauser and Laurence A Wolsey. Integer and combinatorial opti-
mization, volume 55. John Wiley & Sons, 1999.

[141] Charles E Noon and James C Bean. An efficient transformation of the general-
ized traveling salesman problem. INFOR: Information Systems and Operational
Research, 31(1):39–44, 1993.

[142] Simeon Ntafos. Watchman routes under limited visibility. Computational Ge-
ometry, 1(3):149–170, 1992.

[143] Michael Otte and Nikolaus Correll. C-FOREST: Parallel shortest path planning
with superlinear speedup. IEEE Transactions on Robotics, 29(3):798–806, 2013.

[144] Simone Paoletti, Aleksandar Lj Juloski, Giancarlo Ferrari-Trecate, and René
Vidal. Identification of hybrid systems a tutorial. European journal of control,
13(2-3):242–260, 2007.

173

[145] Christos H Papadimitriou. An algorithm for shortest-path motion in three
dimensions. Information processing letters, 20(5):259–263, 1985.

[146] Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization:
algorithms and complexity. Courier Corporation, 1998.

[147] Diego Pardo, Lukas Möller, Michael Neunert, Alexander W Winkler, and Jonas
Buchli. Evaluating direct transcription and nonlinear optimization methods for
robot motion planning. IEEE Robotics and Automation Letters, 1(2):946–953,
2016.

[148] Pablo A Parrilo. Structured semidefinite programs and semialgebraic geometry
methods in robustness and optimization. California Institute of Technology,
2000.

[149] Pablo A Parrilo. Semidefinite programming relaxations for semialgebraic prob-
lems. Mathematical programming, 96(2):293–320, 2003.

[150] Pablo A Parrilo and Sanjay Lall. Semidefinite programming relaxations and
algebraic optimization in control. European Journal of Control, 9(2-3):307–321,
2003.

[151] Alejandro Perez, Sertac Karaman, Alexander Shkolnik, Emilio Frazzoli, Seth
Teller, and Matthew R Walter. Asymptotically-optimal path planning for ma-
nipulation using incremental sampling-based algorithms. In 2011 IEEE/RSJ
international conference on intelligent robots and systems, pages 4307–4313.
IEEE, 2011.

[152] Mark Petersen and Russ Tedrake. Growing convex collision-free re-
gions in configuration space using nonlinear programming. arXiv preprint
arXiv:2303.14737, 2023.

[153] Allen George Philip, Zhongqiang Ren, Sivakumar Rathinam, and Howie Choset.
A mixed-integer conic program for the moving-target traveling salesman prob-
lem based on a graph of convex sets. arXiv preprint arXiv:2403.04917, 2024.

[154] Calder Phillips-Grafflin. Common robotics utilities.

[155] Erion Plaku, Kostas E Bekris, Brian Y Chen, Andrew M Ladd, and Lydia E
Kavraki. Sampling-based roadmap of trees for parallel motion planning. IEEE
Transactions on Robotics, 21(4):597–608, 2005.

174

[156] Petrica C Pop. Generalized network design problems: Modeling and optimiza-
tion, volume 1. Walter de Gruyter, 2012.

[157] Michael Posa, Cecilia Cantu, and Russ Tedrake. A direct method for trajectory
optimization of rigid bodies through contact. The International Journal of
Robotics Research, 33(1):69–81, 2014.

[158] Abraham P Punnen, Piyashat Sripratak, and Daniel Karapetyan. The bipar-
tite unconstrained 0–1 quadratic programming problem: Polynomially solvable
cases. Discrete Applied Mathematics, 193:1–10, 2015.

[159] Anders Rantzer and Mikael Johansson. Piecewise linear quadratic optimal con-
trol. In American Control Conference, 1997. Proceedings of the 1997, volume 3,
pages 1749–1753. IEEE, 1997.

[160] John H Reif. Complexity of the mover’s problem and generalizations. In 20th
Annual Symposium on Foundations of Computer Science, pages 421–427. IEEE
Computer Society, 1979.

[161] Arthur Richards and Jonathan P How. Aircraft trajectory planning with colli-
sion avoidance using mixed integer linear programming. In Proceedings of the
2002 American Control Conference (IEEE Cat. No. CH37301), volume 3, pages
1936–1941. IEEE, 2002.

[162] R Tyrrell Rockafellar. Convex analysis. Number 28. Princeton University Press,
1970.

[163] Thomas Rothvoss. The matching polytope has exponential extension complex-
ity. Journal of the ACM (JACM), 64(6):1–19, 2017.

[164] Heinz Peter Rothwangl. Numerical synthesis of the time optimal nonlinear state
controller via mixed integer programming. In Proceedings of the 2001 American
Control Conference.(Cat. No. 01CH37148), volume 4, pages 3201–3205. IEEE,
2001.

[165] Ricardo G Sanfelice. Hybrid feedback control. Princeton University Press, 2021.

[166] Tom Schouwenaars, Bart De Moor, Eric Feron, and Jonathan How. Mixed
integer programming for multi-vehicle path planning. In 2001 European Control
Conference, pages 2603–2608. IEEE, 2001.

[167] Alexander Schrijver et al. Combinatorial optimization: polyhedra and efficiency,
volume 24. Springer, 2003.

175

[168] John Schulman, Yan Duan, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry
Bradlow, Jia Pan, Sachin Patil, Ken Goldberg, and Pieter Abbeel. Motion
planning with sequential convex optimization and convex collision checking.
The International Journal of Robotics Research, 33(9):1251–1270, 2014.

[169] Hanif D Sherali and Warren P Adams. A hierarchy of relaxations between the
continuous and convex hull representations for zero-one programming problems.
SIAM Journal on Discrete Mathematics, 3(3):411–430, 1990.

[170] Hanif D Sherali and Amine Alameddine. A new reformulation-linearization
technique for bilinear programming problems. Journal of Global optimization,
2:379–410, 1992.

[171] Yasser Shoukry, Pierluigi Nuzzo, Alberto L Sangiovanni-Vincentelli, Sanjit A
Seshia, George J Pappas, and Paulo Tabuada. Smc: Satisfiability modulo con-
vex programming. Proceedings of the IEEE, 106(9):1655–1679, 2018.

[172] Skydio. Skydio 2+, 2022. Available at https://www.skydio.com/
skydio-2-plus-enterprise.

[173] Eduardo Sontag. Nonlinear regulation: The piecewise linear approach. IEEE
Transactions on automatic control, 26(2):346–358, 1981.

[174] Bartolomeo Stellato, Vihangkumar V Naik, Alberto Bemporad, Paul Goulart,
and Stephen Boyd. Embedded mixed-integer quadratic optimization using the
OSQP solver. In European Control Conference, pages 1536–1541. IEEE, 2018.

[175] David Stewart and Jeffrey C Trinkle. An implicit time-stepping scheme for
rigid body dynamics with Coulomb friction. In Robotics and Automation, 2000.
Proceedings. ICRA’00. IEEE International Conference on, volume 1, pages 162–
169. IEEE, 2000.

[176] Martin Stolle and Christopher G Atkeson. Policies based on trajectory libraries.
In Proceedings 2006 IEEE International Conference on Robotics and Automa-
tion, 2006. ICRA 2006., pages 3344–3349. IEEE, 2006.

[177] Robert A Stubbs and Sanjay Mehrotra. A branch-and-cut method for 0-1 mixed
convex programming. Mathematical Programming, 86(3):515–532, 1999.

[178] Leonardo Taccari. Integer programming formulations for the elementary short-
est path problem. European Journal of Operational Research, 252(1):122–130,
2016.

176

https://www.skydio.com/skydio-2-plus-enterprise
https://www.skydio.com/skydio-2-plus-enterprise

[179] Reza Takapoui, Nicholas Moehle, Stephen Boyd, and Alberto Bemporad. A
simple effective heuristic for embedded mixed-integer quadratic programming.
International Journal of Control, pages 1–11, 2017.

[180] Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis and stabilization of
complex behaviors through online trajectory optimization. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 4906–4913.
IEEE, 2012.

[181] Russ Tedrake. Underactuated Robotics. 2023.

[182] Russ Tedrake, Ian R Manchester, Mark Tobenkin, and John W Roberts. LQR-
trees: Feedback motion planning via sums-of-squares verification. The Interna-
tional Journal of Robotics Research, 29(8):1038–1052, 2010.

[183] Russ Tedrake and the Drake Development Team. Drake: Model-based design
and verification for robotics, 2019.

[184] Marc Toussaint. Logic-geometric programming: An optimization-based ap-
proach to combined task and motion planning. In IJCAI, pages 1930–1936,
2015.

[185] John N Tsitsiklis. Efficient algorithms for globally optimal trajectories. IEEE
Transactions on Automatic Control, 40(9):1528–1538, 1995.

[186] Madeleine Udell, Karanveer Mohan, David Zeng, Jenny Hong, Steven Diamond,
and Stephen Boyd. Convex optimization in Julia. In 2014 First Workshop for
High Performance Technical Computing in Dynamic Languages, pages 18–28.
IEEE, 2014.

[187] Arjan J Van Der Schaft and Hans Schumacher. An introduction to hybrid
dynamical systems, volume 251. springer, 2007.

[188] Mrinal Verghese, Nikhil Das, Yuheng Zhi, and Michael Yip. Configuration
space decomposition for scalable proxy collision checking in robot planning and
control. IEEE Robotics and Automation Letters, 7(2):3811–3818, 2022.

[189] Yang Wang and Stephen Boyd. Fast model predictive control using online
optimization. IEEE Transactions on control systems technology, 18(2):267–278,
2009.

177

[190] Dustin J Webb and Jur Van Den Berg. Kinodynamic RRT*: Asymptotically
optimal motion planning for robots with linear dynamics. In 2013 IEEE In-
ternational Conference on Robotics and Automation, pages 5054–5061. IEEE,
2013.

[191] Chin Wei-Pang and Simeon Ntafos. The zookeeper route problem. Information
Sciences, 63(3):245–259, 1992.

[192] Peter Werner, Alexandre Amice, Tobia Marcucci, Daniela Rus, and Russ
Tedrake. Approximating robot configuration spaces with few convex sets using
clique covers of visibility graphs. arXiv preprint arXiv:2310.02875, 2023.

[193] Yang Yang, Mingen Lin, Jinhui Xu, and Yulai Xie. Minimum spanning tree
with neighborhoods. In International Conference on Algorithmic Applications
in Management, pages 306–316. Springer, 2007.

[194] Boyan Yordanov, Jana Tumova, Ivana Cerna, Jiří Barnat, and Calin Belta.
Temporal logic control of discrete-time piecewise affine systems. IEEE Trans-
actions on Automatic Control, 57(6):1491–1504, 2012.

[195] Xiaojing Zhang, Alexander Liniger, and Francesco Borrelli. Optimization-
based collision avoidance. IEEE Transactions on Control Systems Technology,
29(3):972–983, 2020.

[196] Jianzhe Zhen, Danique de Moor, and Dick den Hertog. An extension of the
reformulation-linearization technique to nonlinear optimization. Available at
Optimization Online, 2021.

[197] Günter M Ziegler. Lectures on polytopes, volume 152. Springer Science &
Business Media, 2012.

[198] Matt Zucker, Nathan Ratliff, Anca D Dragan, Mihail Pivtoraiko, Matthew Klin-
gensmith, Christopher M Dellin, J Andrew Bagnell, and Siddhartha S Srinivasa.
Chomp: Covariant Hamiltonian optimization for motion planning. The Inter-
national journal of robotics research, 32(9-10):1164–1193, 2013.

178

	Introduction
	Motivation and goals
	Graphs of convex sets
	Related works
	Discrete-continuous optimization and decision-making
	Graph problems
	Robot motion planning

	Thesis structure

	I Background
	Convex analysis and optimization
	Sets
	Homogenization
	Dual and polar cones

	From sets to functions
	Convex optimization
	Conic optimization
	Conic duality
	Disciplined convex programming

	Supporting proofs
	Duality of homogenization and polar
	Homogenization of a function
	Implied valid inequalities

	Mixed-integer optimization
	Mixed-integer programs
	Mixed-Boolean programs
	Mixed-integer convex programs
	Mixed-integer conic programs
	Integer programs

	What makes a good MIP?
	Solution methods
	Rounding
	Branch and bound

	Graphs
	Graphs
	Subgraphs
	Special classes of graphs
	Graph optimization problems
	Shortest path
	Travelling salesperson
	Minimum spanning tree
	Facility location
	Minimum perfect matching

	II Framework and methodology
	Graphs of convex sets
	What is a graph of convex sets?
	GCS problems
	Mixed-integer formulation
	Nonconvex formulation
	Convex formulation

	Discussion

	Examples of GCS problems
	Shortest path
	Example: helicopter flight

	Travelling salesperson
	Example: optimal car pooling

	Minimum spanning tree
	Example: power network design

	Facility location
	Example: sphere cover for robot collision checking

	Minimum perfect matching
	Inspection problem

	Software implementation
	Interface
	Solving new GCS problems

	Behind the scenes
	Edge variables

	Analysis of the convex relaxation
	Set-based relaxation of bilinear constraints
	Tightness of the relaxation
	Explicit description of the convex hull
	Related relaxation techniques
	Back to graphs of convex sets

	III Shortest-path problem and its applications
	Shortest-path problem
	Problem statement
	Complexity analysis
	Alternative proofs of NP-hardness

	Mixed-integer convex formulation
	Nonnegative costs
	No costs on the vertices
	Acyclic graphs

	Dual problem
	Dual of the SPP
	Dual of the SPP in GCS

	Heuristic solution via rounding
	Numerical experiments
	Two-dimensional example
	Large-scale random instances
	Evaluation of the rounding algorithm
	Symmetric problems

	Applications in optimal control
	Minimum-time control of discrete-time linear systems
	Comparison with existing formulations
	Numerical example: double integrator

	Regulation of discrete-time piecewise-affine systems
	Problem statement
	Small but weak formulations
	Strong but large formulations
	Big-M formulation
	Numerical example: footstep planning
	Numerical example: ball and paddle

	Applications in motion planning
	Problem statement
	Minimum-length trajectories
	The graph
	The convex constraint sets
	The convex cost functions
	Solution methods

	Bézier curves
	Definition
	Endpoints
	Control polytope
	Derivatives
	Squared L2 norm
	Integral upper bound

	Smooth trajectories
	Joint optimization of trajectory shape and timing

	Numerical experiments
	Motion planning in a maze
	Quadrotor flying through buildings
	Comparison with sampling-based planners
	Coordinated Planning of Two Robot Arms

	Conclusions

