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Warm Start of Mixed-Integer Programs
for Model Predictive Control of Hybrid Systems

Tobia Marcucci and Russ Tedrake

Abstract—In hybrid Model Predictive Control (MPC), a
Mixed-Integer Quadratic Program (MIQP) is solved at each
sampling time to compute the optimal control action. Although
these optimizations are generally very demanding, in MPC we
expect consecutive problem instances to be nearly identical. This
paper addresses the question of how computations performed at
one time step can be reused to accelerate (warm start) the solution
of subsequent MIQPs.

Reoptimization is not a rare practice in integer programming:
for small variations of certain problem data, the branch-and-
bound algorithm allows an efficient reuse of its search tree and
the dual bounds of its leaf nodes. In this paper we extend
these ideas to the receding-horizon settings of MPC. The warm-
start algorithm we propose copes naturally with arbitrary model
errors, has a negligible computational cost, and frequently
enables an a-priori pruning of most of the search space. Theo-
retical considerations and experimental evidence show that the
proposed method tends to reduce the combinatorial complexity
of the hybrid MPC problem to that of a one-step look-ahead
optimization, greatly easing the online computation burden.

Index Terms—Model Predictive Control, Hybrid Systems,
Mixed-Integer Programming, Branch and Bound, Warm Start.

I. INTRODUCTION

MODEL Predictive Control (MPC) is a numerical tech-
nique that enables the design of optimal feedback

controllers for a wide variety of dynamical systems [1], [2].
The main idea behind it is straightforward: if we are able to
solve trajectory optimization problems quickly enough, we can
replan the future motion of the system at each sampling time
and achieve a reactive behavior. While for smooth dynamics
the online computations of MPC are generally limited to
a simple convex program (even in the nonlinear case [3]),
the discrete behavior of hybrid systems is most naturally
modeled with integer variables, requiring the real-time solution
of mixed-integer programs. This can be prohibitive even for
systems with “slow dynamics” and of “moderate size.”

The focus of this paper is hybrid linear systems, i.e., systems
whose nonlinearity is exclusively due to discrete logics. For
these, in the common case of a quadratic cost, the MPC
problem falls in the class of Mixed-Integer Quadratic Programs
(MIQPs). MIQPs are NP-hard problems and, as such, no
polynomial-time algorithm is known for their solution. The
most robust and effective strategy for tackling this class of
optimizations is Branch and Bound (B&B) [4], [5]. Despite its
worst-case performance, this algorithm is very appealing: for
a feasible optimization, B&B converges to a global optimum;
otherwise, it provides a certificate of infeasibility.
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B&B solves an MIQP by constructing a search tree, where
at each node a Quadratic Program (QP) is solved to bound
the objective function over a subset of the search space.
As an order of magnitude, for large-scale control problems,
B&B can easily require millions of QPs to converge [6]. It is
therefore natural to ask whether at the end of the time step
all the information contained in the tree is necessarily lost,
or it can be reused to warm start the solution of the next
MIQP. This seems plausible considering that two consecutive
optimizations overlap for most of the time horizon, and differ
only for a one-step shift of the time window. This idea has
been extremely successful in linear MPC (see, e.g., [7], [8],
[9], [10], [11]), but its application in the hybrid case raises
many difficulties and has been obstructed by the complexity
of B&B algorithms.

A. Related Works

Given the difficulty of solving MIQPs online, techniques
to compute offline the optimal control as a function of the
system state have been intensively developed [12], [13], [14],
and also extended beyond hybrid linear systems [15], [16].
However, the application of these explicit methods is typically
limited to low-dimensional systems, with very few discrete
variables. Approximate explicit solutions to the hybrid MPC
problem have been proposed in [17], [18], [19]. These extend
the scope of exact approaches, but still require a substantial
amount of offline computations, which might not be feasible
in many applications. In fact, certain problem data might be
known only at run time, excluding the possibility of solving
the MPC problem offline.

Noticing that the hardness of these problems lies in the
identification of the optimal integer assignment, one can devise
a split of the problem into two: a cheap algorithm to generate a
good guess for the integers, followed by a rounding step [20],
[21], [22], [23]. This is a popular approach for hybrid nonlin-
ear systems, and warm starting is having a crucial role in its
advancement [24]. However, it is not particularly convenient
in our context, since the rounding step above typically suffers
from the same combinatorics as our original MIQP.

Even though heuristic [25] and local [26] methods have
recently been proved to be very effective, B&B is still the
most reliable algorithm for solving hybrid MPC problems on-
line [27, Section 17.4]. Many enhancements of B&B tailored
to MPC have been proposed, and attention has been mainly
focused on accelerating the solution of the quadratic subprob-
lems. To this end, various algorithms have been considered:
dual active set [28], dual gradient projection [29], [30], inte-
rior point [23], partially-nonnegative least squares [31], [32],
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and alternating-direction method of multipliers [33]. Search
heuristics that leverage the problem temporal structure have
also been proposed [34], [23].

Most of the B&B schemes mentioned above make full use
of warm start within a single B&B solve, using the parent
solution as a starting point for the child subproblems. However,
the issue of reusing computations across time steps has only
been discussed in [32]. There, a guess of the optimal integer
assignment (obtained by shifting the previous solution) is
prioritized within the construction of the new tree. A similar
approach has recently been proposed in [35], where the whole
path from the B&B root to the optimal leaf is propagated in
time. Even if these techniques can lead to considerable savings,
limiting the data propagated across time steps to a guess of
the optimal solution is generally very restrictive. In fact, in
practice, we often expect disturbances to make these guesses
inaccurate. More importantly, even in the ideal case in which
the integer warm start is actually optimal, these methods still
build a B&B tree almost from scratch, requiring the solution of
many subproblems. Note that, for an MIQP, proving optimality
of a candidate solution is in principle as hard as solving the
original optimization [36].

The problem of warm starting (or reoptimizing) a Mixed-
Integer Linear Program (MILP) is not new to the operations
research community [37]. For a sequence of MILPs with
common constraint matrix, the general approach is to start
each B&B search from the final frontier (B&B leaves) of the
previous solver run [38], [39]. Moreover, in case of changes
in the constraint right-hand side only, the dual bases of the
previous frontier can be used to bound the optimal values
of the new leaves [40]. This is a much more comprehensive
reuse of computations than what is currently done in MPC.
First, not only the optimal solution, but the whole B&B tree
is propagated between subsequent problems. This is very im-
portant, since, before convergence, the B&B algorithm might
also need to thoroughly explore regions of the search space
that are far away from the optimum. Second, by propagating
dual bounds between consecutive MILPs, these approaches are
capable of pruning large branches of the tree without solving
any subproblems.

The latter ideas do not transfer smoothly to MPC. In the
general case of a time-varying system, consecutive MPC
problems do not share the same constraint matrix, and the
techniques mentioned above do not apply. In the time-invariant
case, on the other hand, we could interpret a sequence of MPC
problems as MIQPs with variable constraint right-hand side,
as done in explicit MPC [41], [13]. However, proceeding as
in [40], B&B solutions would be reused without being shifted
in time, completely ignoring the receding-horizon structure of
the problem at hand.

B. Contribution

We present a novel warm-start procedure for hybrid MPC,
which bridges the gap with state-of-the-art reoptimization
techniques from operations research. First, we show how an
initial search frontier for the hybrid MPC problem can be
obtained by shifting in time part of the final frontier of the

previous B&B tree. Then, duality is used to derive tight bounds
on the cost of the new subproblems. Starting from this refined
partition of the search space, B&B generally requires only a
few subproblems to find the optimum. Then, the implied dual
bounds readily prune most of the search space, accelerating
convergence without sacrificing global optimality. Neither the
shift of the B&B frontier, nor the synthesis of the bounds,
causes any significant time overhead in the MIQP solves.

The proposed method copes naturally with model errors
and disturbances of any magnitude. Remarkably, as the time
horizon grows, and the MPC policy becomes stationary, our
approach reduces the hybrid MPC combinatorics to that of a
one-step look-ahead problem. In this asymptotic case, previous
computations are fully reused and only the variables of the
final time step have to be reoptimized.

We evaluate the performance of our algorithm with a
thorough statistical analysis. In the vast majority of the cases,
it leads to a drastic reduction of computation times and, even
in the worst case, it still performs better than the customary
approach of solving each MIQP from scratch.

C. Article Organization

We structured this paper trying to maximize readability. We
start in Section II presenting a minimal formulation of the
MPC problem, which contains only the components necessary
to the development of the warm-start algorithm. Section III
reviews the B&B algorithm, emphasizing the advantages of
dual methods in the solution of the subproblems. In the same
section, we identify the three main ingredients that compose a
warm start for an MIQP. Sections IV, V, and VI are devoted
to showing how each of these ingredients can be efficiently
computed for the minimal MPC problem at hand. Section VII
presents an asymptotic analysis of the algorithm as the MPC
time horizon tends to infinity. In Section VIII we generalize
the problem formulation from Section II, and we extend the
results to these more general settings. A statistical study of the
algorithm performance is reported in Section IX. Section X is
dedicated to conclusions. In Appendix A several extensions
of the proposed warm-start method are discussed, whereas
Appendices B and C contain mathematical derivations.

D. Notation

We denote the set of real numbers as R and, e.g., nonnega-
tive reals as R≥0. The same notation is used for integers Z, and
we let N := Z≥0. The Euclidean length of a vector x ∈ Rn
is |x|. We use the same symbol for the cardinality |S| of a
set S. For two vectors x ∈ Rn and y ∈ Rm, (x, y) ∈ Rn+m
represents their concatenation. For a matrix A ∈ Rn×m, we let
A′ be its transpose, A+ its pseudoinverse, ‖A‖ its maximum
singular value, and ker(A) its nullspace. All physical units
may be assumed to be expressed in the MKS system.

II. HYBRID MODEL PREDICTIVE CONTROL

Many equivalent descriptions of hybrid linear systems can
be found in the literature [42], in this paper we employ
the popular framework of Mixed Logical Dynamical (MLD)
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systems [2]. This description naturally lends itself to mixed-
integer optimization, and it is the intermediate representation
in which hybrid systems are more commonly cast for numer-
ical optimal control [27, Section 17.4]. In this section, we
introduce MLD systems (Section II-A) and we formulate the
associated MPC problem (Section II-B).

A. Mixed Logical Dynamical Systems

We compactly represent an MLD system as

xτ+1 = Axτ +Buτ + eτ , (xτ , uτ ) ∈ D, (1)

where xτ ∈ Rnx denotes the system state at discrete time
τ ∈ N, uτ ∈ Rnu × {0, 1}mu collects continuous and binary
inputs, eτ ∈ Rnx represents the model error, and the domain
D := {(x, u) | Fx + Gu ≤ h} is a polyhedral subset of
Rnx+nu+mu which contains the origin. We denote by vτ ∈
{0, 1}mu the binary entries in the input vector, and we let V
be the selection matrix such that vτ = V uτ .

Even if the MLD model (1) is more compact than the usual
description employed in the MPC literature, it can be used
without loss of generality:
• Often a distinction between independent and dependent

(auxiliary) input variables uτ is made [2]. For a well-
posed MLD system, the second are assumed to be
uniquely determined by the first and the state xτ through
the constraint set D. However, the role of these variables
is identical from the optimization viewpoint, so we do
not distinguish between them here.

• Affine MLD dynamics as in [27, Section 16.5] can be
made linear through a shift of the system coordinates
around an equilibrium point (x̂, û), provided that binary
inputs are defined so that V û = 0.

• Binary states can be handled introducing auxiliary inputs.
Let Ai and Bi be the ith rows of A and B, respectively,
and let uτ,j ∈ {0, 1} be the jth input. Enforcing Aixτ +
Biuτ = uτ,j through the constraint set D, we obtain
xτ+1,i ∈ {0, 1}.

Handling binary states with auxiliary inputs simplifies the
analysis but can be computationally inefficient: Appendix A-A
shows how our warm-start algorithm can cope directly with
binary states. Moreover, paying the price of a heavier nota-
tion, the proposed method also applies to time-varying MLD
systems. This extension is presented in Appendix A-B.

B. The Optimal Control Problem

We now describe the optimization problem beneath the
hybrid MPC controller. To streamline the presentation, in the
main body of this paper, we consider the simplified problem
statement (2) given below. This formulation does not allow
terminal penalties and constraints, which are fundamental
tools to ensure the stability of the closed-loop system [1]. In
Section VIII we extend our algorithm to incorporate these im-
portant MPC ingredients. Additionally, in this paper, we limit
our attention to quadratic objective functions, even though the
results we present can be easily adjusted in case of different
convex costs (e.g., 1-norm or ∞-norm).

Under the assumption of a perfect model (eτ = 0 for all τ ),
an MPC controller regulates system (1) to the origin by solving
an open-loop optimal control problem at each time step. Let τ
be the time step at which the optimization problem is solved
(the current time), and let t ∈ N denote the relative time within
the MPC problem. Given the current state xτ , we formulate
the MIQP

min

T∑
t=0

|Qxt|τ |2 +

T−1∑
t=0

|Rut|τ |2 (2a)

s.t. x0|τ = xτ , (2b)
xt+1|τ = Axt|τ +But|τ , t = 0, . . . , T − 1, (2c)
(xt|τ , ut|τ ) ∈ D, t = 0, . . . , T − 1, (2d)
V ut|τ ∈ {0, 1}mu , t = 0, . . . , T − 1. (2e)

Here the optimization variables are {ut|τ}T−1t=0 and {xt|τ}Tt=0,
and the time horizon T is assumed to be fixed (the case with
variable horizon is briefly discussed in Appendix A-C). We
do not assume the objective (2a) to be strictly convex, i.e., the
weight matrices Q and R are allowed to be rank deficient.

The outcome of (2) is an optimal (up to a tolerance ε ∈
R≥0) open-loop control sequence {u∗t|τ}T−1t=0 , with the related
state trajectory {x∗t|τ}Tt=0. In MPC, only the first action uτ :=
u∗0|τ is applied to the system. Then, at time step τ+1, the new
current state xτ+1 is measured and problem (2) is solved in a
receding-horizon fashion. Given the similarity of the problems
we solve at time τ and τ+1, it is natural to ask whether part of
the computations performed at one time step can be exploited
to speed up the solution of the consecutive problem. In the
next section we introduce the notions necessary to formalize
this question.

III. HYBRID MPC VIA BRANCH-AND-BOUND

This section reviews the bases of B&B by considering its
application to problem (2). In Section III-A, we describe the
main steps of the algorithm. Placing a special emphasis on the
input-output behavior of each iteration, we provide a simple
formalization of the warm-start problem. In Section III-B, we
discuss how Lagrangian duality can facilitate the solution of
the B&B subproblems. For a more thorough description of
B&B, we refer the reader to, e.g., [4, Section 9.2].

A. The Branch-and-Bound Algorithm

Generally, B&B is presented as a tree search, where each
node corresponds to a convex relaxation of the MIQP. Here we
emphasize the set-cover interpretation of B&B, which enables
a more fluent analysis of the warm-start problem. Similar
presentations can also be found in [38], [39].

We denote problem (2) by P and its optimal value by θ ∈
R≥0 ∪ {∞}, where θ =∞ in case of an infeasible MIQP. In
this section, for simplicity, we do not explicitly annotate the
dependence of problem P on the time step τ . The B&B search
relies on the solution of convex relaxations (or subproblems)
of P, where the nonconvex constraints (2e) are replaced by
the linear inequalities

¯
vt|τ ≤ vt|τ := V ut|τ ≤ v̄t|τ , (3)
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for some
¯
vt|τ , v̄t|τ ∈ {0, 1}mu such that

¯
vt|τ ≤ v̄t|τ . A convex

relaxation of P is hence a QP identified by the interval

V := [(
¯
vt|τ )T−1t=0 , (v̄t|τ )T−1t=0 ] ⊂ RTmu , (4)

and we denote it by P(V). Similarly, θ(V) ∈ R≥0∪{∞} will
represent its optimal value.

At iteration i ∈ N of the B&B algorithm, we are given three
inputs:

1) A collection V i of intervals of the form (4), whose
union covers the set {0, 1}Tmu . Each interval V in V i

determines a subproblem P(V) which, in the tree inter-
pretation of the algorithm, is a leaf node. Analogously,
the cover V i can be understood as the whole B&B
frontier. It is important to remark that we do not assume
the tree to have a single root, i.e., we allow |V 0| ≥ 1.
Without loss of generality, we can assume the sets in
V i to be disjoint.

2) A lower bound
¯
θ(V) ∈ R≥0∪{∞} on the optimal value

θ(V) for each set V in V i. Except for root nodes, this
represents the dual bound implied by the solution of the
parent subproblem.

3) An upper bound θ̄i ∈ R≥0 ∪ {∞} on the optimal value
of P. This is the objective of the best (lowest in cost)
subproblem solved so far that is binary feasible, i.e.,
whose solution verifies (2e).

Central to this work is the choice of the B&B inputs: the
initial cover V 0, the lower bounds

¯
θ(V) for each V in V 0,

and the upper bound θ̄0. Clearly, in case no information about
the solution is available, the initialization V 0 := {V}, with
V := [0, 1]Tmu the unit hypercube,

¯
θ(V) := 0, and θ̄0 :=∞ is

always valid. On the other hand, as we will see in the following
sections, the structure of problem (2) allows the synthesis of
nontrivial B&B initializations, leveraging the solutions coming
from the previous time steps.

The ith iteration of B&B consists of the following steps.
Given an optimality tolerance ε, we select a subproblem,
identified by the set Vi ∈ V i, such that

¯
θ(Vi) < θ̄i − ε. (5)

We solve the convex program P(Vi), and we apply the first
valid condition from the following list:

1) Pruning. If θ(Vi) ≥ θ̄i − ε, any binary assignment in
Vi cannot be “ε-cheaper” than the one we already have.
Hence, we set

¯
θ(Vi) ← θ(Vi) and we let V i+1 ← V i,

θ̄i+1 ← θ̄i.
2) Solution update. If the condition for 1) is not met, and

the solution of P(Vi) is binary feasible, then the optimal
value θ(Vi) is an upper bound for the objective of P,
tighter than the one we have. Hence we update the
bounds θ̄i+1 ← θ(Vi) and

¯
θ(Vi) ← θ(Vi), but we do

not refine the cover V i+1 ← V i.
3) Branching. If neither 1) nor 2) applies, we select a time t

and an element of vt|τ whose optimal value is not binary.
We then split Vi into two subsets, U i and Wi: one in
which this element is forced to be zero, the other in
which it equals one. We then update the cover V i+1 ←
{U i,Wi} ∪ V i\{Vi}, and we leave the upper bound

unchanged θ̄i+1 ← θ̄i. The lower bounds
¯
θ(U i) and

¯
θ(Wi) are obtained through a simple duality argument
discussed in Section III-B.

The algorithm terminates when condition (5) is not met for
any set in V i, and returns the cover V ∗ := V i and the cost
θ∗ := θ̄i ≤ θ+ ε. Clearly, B&B is a finite algorithm, since, in
the worst case, it amounts to the enumeration of all the 2Tmu

potential binary assignments.

B. Lagrangian Duality in the Solution of the Subproblem
The algorithm we present in this paper makes use of the dual

D(V) of the subproblem P(V). However, this does not entail
any practical limitation: most efficient B&B implementations
employ dual methods for the solution of the subproblems (see,
e.g., [5], [43], [28], [29], [30]). In this subsection, we analyze
the structure of D(V) and we briefly discuss the main affinities
between Lagrangian duality and B&B.

The dual D(V) is derived in Appendix B, and reported in
Equation (6). Its decision variables are the following Lagrange
multipliers:
• λt|τ associated, for t = 0, with the initial conditions (2b)

and, for t ≥ 1, with the MLD dynamics (2c);
• µt|τ corresponding to the MLD constraints (2d);
•

¯
νt|τ and ν̄t|τ coupled with the lower and upper bounds (3)
on the relaxed binary variables;

• ρt|τ and σt|τ resulting from the introduction of auxiliary
primal variables needed to handle the rank deficiency of
Q and R (see Appendix B).

By strong duality, the optimal value of D(V) coincides with
θ(V).

The first thing we notice when analyzing D(V) is that all
the B&B subproblems share the same dual feasible set, since
the primal bounds

¯
vt|τ and v̄t|τ become cost coefficients in (6).

This allows us to use the dual solution of a subproblem both
to warm start the child QPs and to find lower bounds on
their optimal values. The bounds

¯
θ(U i),

¯
θ(Wi) required in the

branching step can, in fact, be obtained simply by substituting
the parent multipliers into the child objectives. Note that, by
nonnegativity of

¯
νt|τ , ν̄t|τ and since descending in the B&B

tree the bounds
¯
vt|τ , v̄t|τ can only be tightened, we have

¯
θ(U i) ≥

¯
θ(Vi) and

¯
θ(Wi) ≥

¯
θ(Vi).

Another advantage of working on the dual emerges during
pruning. Algorithms such as dual active set or dual gradient
projection, which take great advantage of warm starts, con-
verge to the optimal value θ(Vi) from below. This allows us to
prematurely terminate a QP solve whenever the threshold θ̄i−ε
is exceeded, leading to considerable computational savings.

Finally, we observe that D(V) is always feasible, since
setting all the multipliers to zero satisfies the constraints in (6).
This implies that unboundedness of the dual is not only
sufficient but also necessary for infeasibility of the primal.
Therefore, when solving a primal-infeasible QP, a dual solver
will detect a set of feasible multipliers whose cost

¯
θ(V) is

strictly positive and for which ρt|τ = 0 and σt|τ = 0 for all
t. In fact, these dual variables can be scaled by an arbitrary
positive coefficient while preserving feasibility and increasing
the dual objective. In the following, we will refer to such a
set of multipliers as a certificate of infeasibility for P(V).
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max −
T∑
t=0

|ρt|τ/2|2 −
T−1∑
t=0

(|σt|τ/2|2 + h′µt|τ + v̄′t|τ ν̄t|τ − ¯
v′t|τ¯

νt|τ )− x′τλ0|τ (6a)

s.t. Q′ρt|τ + λt|τ −A′λt+1|τ + F ′µt|τ = 0, t = 0, . . . , T − 1, (6b)
Q′ρT |τ + λT |τ = 0, (6c)
R′σt|τ −B′λt+1|τ +G′µt|τ + V ′(ν̄t|τ − ¯

νt|τ ) = 0, t = 0, . . . , T − 1, (6d)
(µt|τ ,¯

νt|τ , ν̄t|τ ) ≥ 0, t = 0, . . . , T − 1. (6e)

IV. CONSTRUCTION OF THE INITIAL COVER

In Section III, we have seen that a warm start for prob-
lem (2) should consist of: an initial cover V 0, a set of lower
bounds

¯
θ(V) for each set V in V 0, and an upper bound θ̄0 on

the MIQP objective. We now show how to efficiently construct
these elements by leveraging the structure of problem (2). In
this section, we focus on the initial cover V 0. Sections V
and VI will be devoted to the synthesis of the lower bounds

¯
θ(V) and the upper bound θ̄0. An illustrative example of the
following procedure is given at the end of this section (see
also Figure 1).

In the following, to distinguish between instances of prob-
lem (2) associated with different time steps, we make use of
the subscript τ . For example, the MIQP (2) will be denoted
by Pτ and its initial cover by V 0

τ . Without loss of generality,
we consider the current time to be τ = 1. We assume the
previous optimization, P0, to be feasible, and we let V ∗0 be
the cover of {0, 1}Tmu that we obtain from its solution. By
construction, V ∗0 is composed of disjoint intervals V0 of the
form (4), i.e., V0 := [(

¯
vt|0)T−1t=0 , (v̄t|0)T−1t=0 ].

We assemble the initial cover V 0
1 as follows:

1) Since at time τ = 1 the binary input v0 applied to the
system at τ = 0 is known, we discard from V ∗0 all the
intervals which do not agree with this control action.
More precisely, we only keep the sets V0 which satisfy
the condition

¯
v0|0 ≤ v0 ≤ v̄0|0. (7)

2) For all the retained sets, we add to V 0
1 the interval

V1 := [(
¯
v1|0, . . . ,¯

vT−1|0,

mu times︷ ︸︸ ︷
0, . . . , 0),

(v̄1|0, . . . , v̄T−1|0, 1, . . . , 1︸ ︷︷ ︸
mu times

)]. (8)

In words, this operation shifts the bounds defining V0
one step backwards in time, and appends the trivial
bound [0, 1]mu on the binaries of the new terminal stage.

We now verify that the resulting collection of sets is a valid
initialization for the B&B algorithm.

Proposition 1. The collection V 0
1 covers {0, 1}Tmu and is

composed of disjoint intervals.

Proof. Let (vt|1)T−1t=0 be a generic element of {0, 1}Tmu .
Since V ∗0 covers {0, 1}Tmu , there must be a set in it that
contains (v0, v0|1, . . . , vT−2|1). This implies, by construction,

the existence of a set in V 0
1 that contains (vt|1)T−1t=0 . Hence

V 0
1 covers {0, 1}Tmu . Now consider (vt|1)T−1t=0 ∈ RTmu , and

assume the existence of two sets in V 0
1 which contain this

point. Then there must also be two sets in V ∗0 which contain
(v0, v0|1, . . . , vT−2|1). This contradicts our assumption on V ∗0 ,
hence the sets in V 0

1 are disjoint.

It should be noted that this shifting process propagates the
whole B&B frontier from one time step to the next, and not
just the optimal solution as previously done in [32], [35]. As
we analyze in depth in Section VII, this ensures that both the
work done to identify the optimal solution and that necessary
to prove its ε-optimality (which generally is the dominant
computation effort) are reused across time steps. We highlight
that this construction can be entirely completed before the
measurement of the next state x1, hence it is not cause of any
delay in the solution of the MIQP P1.

We conclude this section with a simple synthetic example,
illustrated in Figure 1, of the procedure presented above.

Example 1. We consider a toy problem where the system has a
single binary variable mu = 1 and the horizon of the controller
is T = 3. At time τ = 0 the B&B algorithm is initialized
with the trivial cover V 0

0 = {[(0, 0, 0), (1, 1, 1)]} (top-left cell
in Figure 1). Assuming the ε-optimal binary assignment to
be (v∗0|0, v

∗
1|0, v

∗
2|0) = (1, 1, 0), the B&B tree is shown in

the top-center cell. The root node (light blue) consists in the
solution of the subproblem P0([(0, 0, 0), (1, 1, 1)]), whereas
the optimal leaf node has a dashed contour and is associated
with P0([(1, 1, 0), (1, 1, 0)]). The final cover for P0 is

V ∗0 = {[(0, 0, 0), (1, 0, 1)], [(0, 1, 0), (0, 1, 1)],

[(1, 1, 0), (1, 1, 0)], [(1, 1, 1), (1, 1, 1)]} (9)

and is depicted in the top-right cell.
Among all the leaves at time τ = 0, the only one that does

not verify condition (7), for v0 := v∗0|0 = 1, is colored in red
and represents problem P0([(0, 1, 0), (0, 1, 1)]). This interval
is hence dropped in the construction of the initial cover V 0

1 ,
while all the other leaves (green) are shifted in time and added
to V 0

1 . (Note that the sets in the final cover are colored and
contoured to match the B&B tree.) After the time shift (8) of
the bounds, we get the initial cover for P1:

V 0
1 = {[(0, 0, 0), (0, 1, 1)], [(1, 0, 0), (1, 0, 1)],

[(1, 1, 0), (1, 1, 1)]}, (10)
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Ti
m

e
τ

=
0 v1|0

<latexit sha1_base64="0tuB3JFNVOcKFM/xanrfzFTaUjQ=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF49V7Ac0oWw2m3bp7ibsbgol9G948aCIV/+MN/+N2zYHbX0w8Hhvhpl5YcqZNq777ZQ2Nre2d8q7lb39g8Oj6vFJRyeZIrRNEp6oXog15UzStmGG016qKBYhp91wfDf3uxOqNEvkk5mmNBB4KFnMCDZW8ieD3EO+YBFyZ4Nqza27C6B14hWkBgVag+qXHyUkE1QawrHWfc9NTZBjZRjhdFbxM01TTMZ4SPuWSiyoDvLFzTN0YZUIxYmyJQ1aqL8nciy0norQdgpsRnrVm4v/ef3MxLdBzmSaGSrJclGccWQSNA8ARUxRYvjUEkwUs7ciMsIKE2NjqtgQvNWX10mnUfeu6o2H61rzsYijDGdwDpfgwQ004R5a0AYCKTzDK7w5mfPivDsfy9aSU8ycwh84nz/6NpEK</latexit>

v0|0
<latexit sha1_base64="qXLEvOZwV0dN+wzyBwIuPEWq85Y=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF49V7Ac0oWw2m3bp7ibsbgol9G948aCIV/+MN/+N2zYHbX0w8Hhvhpl5YcqZNq777ZQ2Nre2d8q7lb39g8Oj6vFJRyeZIrRNEp6oXog15UzStmGG016qKBYhp91wfDf3uxOqNEvkk5mmNBB4KFnMCDZW8ieD3EW+YBFyZ4Nqza27C6B14hWkBgVag+qXHyUkE1QawrHWfc9NTZBjZRjhdFbxM01TTMZ4SPuWSiyoDvLFzTN0YZUIxYmyJQ1aqL8nciy0norQdgpsRnrVm4v/ef3MxLdBzmSaGSrJclGccWQSNA8ARUxRYvjUEkwUs7ciMsIKE2NjqtgQvNWX10mnUfeu6o2H61rzsYijDGdwDpfgwQ004R5a0AYCKTzDK7w5mfPivDsfy9aSU8ycwh84nz/4qpEJ</latexit>

v2|0
<latexit sha1_base64="6m92VL1lIKjogP74T4ZkbBWfU5E=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF49V7Ac0oWw2m3bp7ibsbgol9G948aCIV/+MN/+N2zYHbX0w8Hhvhpl5YcqZNq777ZQ2Nre2d8q7lb39g8Oj6vFJRyeZIrRNEp6oXog15UzStmGG016qKBYhp91wfDf3uxOqNEvkk5mmNBB4KFnMCDZW8ieDvIF8wSLkzgbVmlt3F0DrxCtIDQq0BtUvP0pIJqg0hGOt+56bmiDHyjDC6aziZ5qmmIzxkPYtlVhQHeSLm2fowioRihNlSxq0UH9P5FhoPRWh7RTYjPSqNxf/8/qZiW+DnMk0M1SS5aI448gkaB4AipiixPCpJZgoZm9FZIQVJsbGVLEheKsvr5NOo+5d1RsP17XmYxFHGc7gHC7Bgxtowj20oA0EUniGV3hzMufFeXc+lq0lp5g5hT9wPn8A+8KRCw==</latexit>

v1|0 = 0
<latexit sha1_base64="3gZ3MqlXhgo7fQRs+1joyrsGxhQ=">AAAB+XicbVBNS8NAEJ34WetX1KOXxSJ4KkkV9CIUvHisYj+gDWGz2bZLdzdhd1Moof/EiwdFvPpPvPlv3LY5aOuDgcd7M8zMi1LOtPG8b2dtfWNza7u0U97d2z84dI+OWzrJFKFNkvBEdSKsKWeSNg0znHZSRbGIOG1Ho7uZ3x5TpVkin8wkpYHAA8n6jGBjpdB1x2Huo55gMfKm6BZ5oVvxqt4caJX4BalAgUbofvXihGSCSkM41rrre6kJcqwMI5xOy71M0xSTER7QrqUSC6qDfH75FJ1bJUb9RNmSBs3V3xM5FlpPRGQ7BTZDvezNxP+8bmb6N0HOZJoZKsliUT/jyCRoFgOKmaLE8IklmChmb0VkiBUmxoZVtiH4yy+vklat6l9Waw9XlfpjEUcJTuEMLsCHa6jDPTSgCQTG8Ayv8Obkzovz7nwsWtecYuYE/sD5/AEdaZIQ</latexit>

v1|0 = 1
<latexit sha1_base64="EFBsnXKitwBJ09rK/ITuvDI4UqI=">AAAB+XicbVBNS8NAEJ34WetX1KOXxSJ4KkkV9CIUvHisYj+gDWGz2bZLdzdhd1Moof/EiwdFvPpPvPlv3LY5aOuDgcd7M8zMi1LOtPG8b2dtfWNza7u0U97d2z84dI+OWzrJFKFNkvBEdSKsKWeSNg0znHZSRbGIOG1Ho7uZ3x5TpVkin8wkpYHAA8n6jGBjpdB1x2Huo55gMfKm6Bb5oVvxqt4caJX4BalAgUbofvXihGSCSkM41rrre6kJcqwMI5xOy71M0xSTER7QrqUSC6qDfH75FJ1bJUb9RNmSBs3V3xM5FlpPRGQ7BTZDvezNxP+8bmb6N0HOZJoZKsliUT/jyCRoFgOKmaLE8IklmChmb0VkiBUmxoZVtiH4yy+vklat6l9Waw9XlfpjEUcJTuEMLsCHa6jDPTSgCQTG8Ayv8Obkzovz7nwsWtecYuYE/sD5/AEe7ZIR</latexit>

v0|0 = 1
<latexit sha1_base64="gKOyzu5N9JtISqYg0BcNtl67nzo=">AAAB+XicbVBNS8NAEJ34WetX1KOXxSJ4KkkV9CIUvHisYj+gDWGz2bZLdzdhd1Moof/EiwdFvPpPvPlv3LY5aOuDgcd7M8zMi1LOtPG8b2dtfWNza7u0U97d2z84dI+OWzrJFKFNkvBEdSKsKWeSNg0znHZSRbGIOG1Ho7uZ3x5TpVkin8wkpYHAA8n6jGBjpdB1x2HuoZ5gMfKm6Bb5oVvxqt4caJX4BalAgUbofvXihGSCSkM41rrre6kJcqwMI5xOy71M0xSTER7QrqUSC6qDfH75FJ1bJUb9RNmSBs3V3xM5FlpPRGQ7BTZDvezNxP+8bmb6N0HOZJoZKsliUT/jyCRoFgOKmaLE8IklmChmb0VkiBUmxoZVtiH4yy+vklat6l9Waw9XlfpjEUcJTuEMLsCHa6jDPTSgCQTG8Ayv8Obkzovz7nwsWtecYuYE/sD5/AEdXZIQ</latexit>

v0|0 = 0
<latexit sha1_base64="SphtqoScGjLgcVWV9IBcRSPk8RM=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqkyqoBuh4MZlFfuANoTJZNIOnUnCzKRSYj/FjQtF3Pol7vwbJ20W2nrgwuGce7n3Hj/hTGmEvq3S2vrG5lZ5u7Kzu7d/YFcPOypOJaFtEvNY9nysKGcRbWumOe0lkmLhc9r1xze5351QqVgcPehpQl2BhxELGcHaSJ5dnXgZggPBAohm8BqiimfXUB3NAVeJU5AaKNDy7K9BEJNU0EgTjpXqOyjRboalZoTTWWWQKppgMsZD2jc0woIqN5ufPoOnRglgGEtTkYZz9fdEhoVSU+GbToH1SC17ufif1091eOVmLEpSTSOyWBSmHOoY5jnAgElKNJ8agolk5lZIRlhiok1aeQjO8surpNOoO+f1xt1FrXlfxFEGx+AEnAEHXIImuAUt0AYEPIJn8ArerCfrxXq3PhatJauYOQJ/YH3+AFTSkiM=</latexit>

v2|0 = 0
<latexit sha1_base64="TLXUQGOcrVHp9SvgZzKFfRWyRbk=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiRV0I1QcOOyin1AG8JkMmmHzkzCzKRSYj/FjQtF3Pol7vwbJ20W2nrgwuGce7n3niBhVGnH+bZKa+sbm1vl7crO7t7+gV097Kg4lZi0ccxi2QuQIowK0tZUM9JLJEE8YKQbjG9yvzshUtFYPOhpQjyOhoJGFCNtJN+uTvysAQechtCZwWvoVHy75tSdOeAqcQtSAwVavv01CGOcciI0Zkipvusk2suQ1BQzMqsMUkUShMdoSPqGCsSJ8rL56TN4apQQRrE0JTScq78nMsSVmvLAdHKkR2rZy8X/vH6qoysvoyJJNRF4sShKGdQxzHOAIZUEazY1BGFJza0Qj5BEWJu08hDc5ZdXSadRd8/rjbuLWvO+iKMMjsEJOAMuuARNcAtaoA0weATP4BW8WU/Wi/VufSxaS1YxcwT+wPr8AVf0kiU=</latexit>

v2|0 = 1
<latexit sha1_base64="zOMYDc1045uJAuhd02FiFmBtNXw=">AAAB+XicbVBNS8NAEJ34WetX1KOXxSJ4KkkV9CIUvHisYj+gDWGz2bZLdzdhd1Moof/EiwdFvPpPvPlv3LY5aOuDgcd7M8zMi1LOtPG8b2dtfWNza7u0U97d2z84dI+OWzrJFKFNkvBEdSKsKWeSNg0znHZSRbGIOG1Ho7uZ3x5TpVkin8wkpYHAA8n6jGBjpdB1x2FeQz3BYuRN0S3yQ7fiVb050CrxC1KBAo3Q/erFCckElYZwrHXX91IT5FgZRjidlnuZpikmIzygXUslFlQH+fzyKTq3Soz6ibIlDZqrvydyLLSeiMh2CmyGetmbif953cz0b4KcyTQzVJLFon7GkUnQLAYUM0WJ4RNLMFHM3orIECtMjA2rbEPwl19eJa1a1b+s1h6uKvXHIo4SnMIZXIAP11CHe2hAEwiM4Rle4c3JnRfn3flYtK45xcwJ/IHz+QMgfZIS</latexit>

v1|0
<latexit sha1_base64="0tuB3JFNVOcKFM/xanrfzFTaUjQ=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF49V7Ac0oWw2m3bp7ibsbgol9G948aCIV/+MN/+N2zYHbX0w8Hhvhpl5YcqZNq777ZQ2Nre2d8q7lb39g8Oj6vFJRyeZIrRNEp6oXog15UzStmGG016qKBYhp91wfDf3uxOqNEvkk5mmNBB4KFnMCDZW8ieD3EO+YBFyZ4Nqza27C6B14hWkBgVag+qXHyUkE1QawrHWfc9NTZBjZRjhdFbxM01TTMZ4SPuWSiyoDvLFzTN0YZUIxYmyJQ1aqL8nciy0norQdgpsRnrVm4v/ef3MxLdBzmSaGSrJclGccWQSNA8ARUxRYvjUEkwUs7ciMsIKE2NjqtgQvNWX10mnUfeu6o2H61rzsYijDGdwDpfgwQ004R5a0AYCKTzDK7w5mfPivDsfy9aSU8ycwh84nz/6NpEK</latexit>

v0|0
<latexit sha1_base64="qXLEvOZwV0dN+wzyBwIuPEWq85Y=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF49V7Ac0oWw2m3bp7ibsbgol9G948aCIV/+MN/+N2zYHbX0w8Hhvhpl5YcqZNq777ZQ2Nre2d8q7lb39g8Oj6vFJRyeZIrRNEp6oXog15UzStmGG016qKBYhp91wfDf3uxOqNEvkk5mmNBB4KFnMCDZW8ieD3EW+YBFyZ4Nqza27C6B14hWkBgVag+qXHyUkE1QawrHWfc9NTZBjZRjhdFbxM01TTMZ4SPuWSiyoDvLFzTN0YZUIxYmyJQ1aqL8nciy0norQdgpsRnrVm4v/ef3MxLdBzmSaGSrJclGccWQSNA8ARUxRYvjUEkwUs7ciMsIKE2NjqtgQvNWX10mnUfeu6o2H61rzsYijDGdwDpfgwQ004R5a0AYCKTzDK7w5mfPivDsfy9aSU8ycwh84nz/4qpEJ</latexit>

v2|0
<latexit sha1_base64="6m92VL1lIKjogP74T4ZkbBWfU5E=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF49V7Ac0oWw2m3bp7ibsbgol9G948aCIV/+MN/+N2zYHbX0w8Hhvhpl5YcqZNq777ZQ2Nre2d8q7lb39g8Oj6vFJRyeZIrRNEp6oXog15UzStmGG016qKBYhp91wfDf3uxOqNEvkk5mmNBB4KFnMCDZW8ieDvIF8wSLkzgbVmlt3F0DrxCtIDQq0BtUvP0pIJqg0hGOt+56bmiDHyjDC6aziZ5qmmIzxkPYtlVhQHeSLm2fowioRihNlSxq0UH9P5FhoPRWh7RTYjPSqNxf/8/qZiW+DnMk0M1SS5aI448gkaB4AipiixPCpJZgoZm9FZIQVJsbGVLEheKsvr5NOo+5d1RsP17XmYxFHGc7gHC7Bgxtowj20oA0EUniGV3hzMufFeXc+lq0lp5g5hT9wPn8A+8KRCw==</latexit>

Ti
m

e
τ

=
1

v2|1
<latexit sha1_base64="qwBabENWuWo7SmHgH7geaCe9qP8=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF49V7Ac0oWw2m3bp7ibsbgol9G948aCIV/+MN/+N2zYHbX0w8Hhvhpl5YcqZNq777ZQ2Nre2d8q7lb39g8Oj6vFJRyeZIrRNEp6oXog15UzStmGG016qKBYhp91wfDf3uxOqNEvkk5mmNBB4KFnMCDZW8ieDvIF8wSLkzQbVmlt3F0DrxCtIDQq0BtUvP0pIJqg0hGOt+56bmiDHyjDC6aziZ5qmmIzxkPYtlVhQHeSLm2fowioRihNlSxq0UH9P5FhoPRWh7RTYjPSqNxf/8/qZiW+DnMk0M1SS5aI448gkaB4AipiixPCpJZgoZm9FZIQVJsbGVLEheKsvr5NOo+5d1RsP17XmYxFHGc7gHC7Bgxtowj20oA0EUniGV3hzMufFeXc+lq0lp5g5hT9wPn8A/UeRDA==</latexit>

v1|1
<latexit sha1_base64="TJrt6sv2uNWP//Ge1NooFvEtvNg=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF49V7Ac0oWw2m3bp7ibsbgol9G948aCIV/+MN/+N2zYHbX0w8Hhvhpl5YcqZNq777ZQ2Nre2d8q7lb39g8Oj6vFJRyeZIrRNEp6oXog15UzStmGG016qKBYhp91wfDf3uxOqNEvkk5mmNBB4KFnMCDZW8ieD3EO+YBHyZoNqza27C6B14hWkBgVag+qXHyUkE1QawrHWfc9NTZBjZRjhdFbxM01TTMZ4SPuWSiyoDvLFzTN0YZUIxYmyJQ1aqL8nciy0norQdgpsRnrVm4v/ef3MxLdBzmSaGSrJclGccWQSNA8ARUxRYvjUEkwUs7ciMsIKE2NjqtgQvNWX10mnUfeu6o2H61rzsYijDGdwDpfgwQ004R5a0AYCKTzDK7w5mfPivDsfy9aSU8ycwh84nz/7u5EL</latexit>

v0|1
<latexit sha1_base64="FE9hi8o8fgoWG+2OdyX+jENKrro=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF49V7Ac0oWw2m3bp7ibsbgol9G948aCIV/+MN/+N2zYHbX0w8Hhvhpl5YcqZNq777ZQ2Nre2d8q7lb39g8Oj6vFJRyeZIrRNEp6oXog15UzStmGG016qKBYhp91wfDf3uxOqNEvkk5mmNBB4KFnMCDZW8ieD3EW+YBHyZoNqza27C6B14hWkBgVag+qXHyUkE1QawrHWfc9NTZBjZRjhdFbxM01TTMZ4SPuWSiyoDvLFzTN0YZUIxYmyJQ1aqL8nciy0norQdgpsRnrVm4v/ef3MxLdBzmSaGSrJclGccWQSNA8ARUxRYvjUEkwUs7ciMsIKE2NjqtgQvNWX10mnUfeu6o2H61rzsYijDGdwDpfgwQ004R5a0AYCKTzDK7w5mfPivDsfy9aSU8ycwh84nz/6L5EK</latexit>

v2|1 = 0
<latexit sha1_base64="2esVEsZVBBi6kWZo9QM5PG1TjcA=">AAAB+XicbVBNS8NAEJ34WetX1KOXxSJ4KkkV9CIUvHisYj+gDWGz2bZLdzdhd1Moof/EiwdFvPpPvPlv3LY5aOuDgcd7M8zMi1LOtPG8b2dtfWNza7u0U97d2z84dI+OWzrJFKFNkvBEdSKsKWeSNg0znHZSRbGIOG1Ho7uZ3x5TpVkin8wkpYHAA8n6jGBjpdB1x2FeQz3BYuRP0S3yQrfiVb050CrxC1KBAo3Q/erFCckElYZwrHXX91IT5FgZRjidlnuZpikmIzygXUslFlQH+fzyKTq3Soz6ibIlDZqrvydyLLSeiMh2CmyGetmbif953cz0b4KcyTQzVJLFon7GkUnQLAYUM0WJ4RNLMFHM3orIECtMjA2rbEPwl19eJa1a1b+s1h6uKvXHIo4SnMIZXIAP11CHe2hAEwiM4Rle4c3JnRfn3flYtK45xcwJ/IHz+QMggpIS</latexit>

v2|1 = 1
<latexit sha1_base64="ObklZutOdrQnsuD1TILanWSXlE4=">AAAB+XicbVBNS8NAEJ34WetX1KOXxSJ4KkkV9CIUvHisYj+gDWGz2bZLdzdhd1Moof/EiwdFvPpPvPlv3LY5aOuDgcd7M8zMi1LOtPG8b2dtfWNza7u0U97d2z84dI+OWzrJFKFNkvBEdSKsKWeSNg0znHZSRbGIOG1Ho7uZ3x5TpVkin8wkpYHAA8n6jGBjpdB1x2FeQz3BYuRP0S3yQ7fiVb050CrxC1KBAo3Q/erFCckElYZwrHXX91IT5FgZRjidlnuZpikmIzygXUslFlQH+fzyKTq3Soz6ibIlDZqrvydyLLSeiMh2CmyGetmbif953cz0b4KcyTQzVJLFon7GkUnQLAYUM0WJ4RNLMFHM3orIECtMjA2rbEPwl19eJa1a1b+s1h6uKvXHIo4SnMIZXIAP11CHe2hAEwiM4Rle4c3JnRfn3flYtK45xcwJ/IHz+QMiBpIT</latexit>

v0|1 = 1
<latexit sha1_base64="a7rXWBG8RQcPD/HdDpTQ15A275c=">AAAB+XicbVBNS8NAEJ34WetX1KOXxSJ4KkkV9CIUvHisYj+gDWGz2bZLdzdhd1Moof/EiwdFvPpPvPlv3LY5aOuDgcd7M8zMi1LOtPG8b2dtfWNza7u0U97d2z84dI+OWzrJFKFNkvBEdSKsKWeSNg0znHZSRbGIOG1Ho7uZ3x5TpVkin8wkpYHAA8n6jGBjpdB1x2HuoZ5gMfKn6Bb5oVvxqt4caJX4BalAgUbofvXihGSCSkM41rrre6kJcqwMI5xOy71M0xSTER7QrqUSC6qDfH75FJ1bJUb9RNmSBs3V3xM5FlpPRGQ7BTZDvezNxP+8bmb6N0HOZJoZKsliUT/jyCRoFgOKmaLE8IklmChmb0VkiBUmxoZVtiH4yy+vklat6l9Waw9XlfpjEUcJTuEMLsCHa6jDPTSgCQTG8Ayv8Obkzovz7nwsWtecYuYE/sD5/AEe5pIR</latexit>

v1|1 = 0
<latexit sha1_base64="/Y3wWh9vYnKxSa0GT13jAJ4BFyU=">AAAB+XicbVBNS8NAEJ34WetX1KOXxSJ4KkkV9CIUvHisYj+gDWGz2bZLdzdhd1Moof/EiwdFvPpPvPlv3LY5aOuDgcd7M8zMi1LOtPG8b2dtfWNza7u0U97d2z84dI+OWzrJFKFNkvBEdSKsKWeSNg0znHZSRbGIOG1Ho7uZ3x5TpVkin8wkpYHAA8n6jGBjpdB1x2Huo55gMfKn6BZ5oVvxqt4caJX4BalAgUbofvXihGSCSkM41rrre6kJcqwMI5xOy71M0xSTER7QrqUSC6qDfH75FJ1bJUb9RNmSBs3V3xM5FlpPRGQ7BTZDvezNxP+8bmb6N0HOZJoZKsliUT/jyCRoFgOKmaLE8IklmChmb0VkiBUmxoZVtiH4yy+vklat6l9Waw9XlfpjEUcJTuEMLsCHa6jDPTSgCQTG8Ayv8Obkzovz7nwsWtecYuYE/sD5/AEe8pIR</latexit>

v0|1 = 0
<latexit sha1_base64="9thIIf38ulRDVbfnpETcLmVd+EA=">AAAB+XicbVBNS8NAEJ34WetX1KOXxSJ4KkkV9CIUvHisYj+gDWGz2bZLdzdhd1Moof/EiwdFvPpPvPlv3LY5aOuDgcd7M8zMi1LOtPG8b2dtfWNza7u0U97d2z84dI+OWzrJFKFNkvBEdSKsKWeSNg0znHZSRbGIOG1Ho7uZ3x5TpVkin8wkpYHAA8n6jGBjpdB1x2HuoZ5gMfKn6BZ5oVvxqt4caJX4BalAgUbofvXihGSCSkM41rrre6kJcqwMI5xOy71M0xSTER7QrqUSC6qDfH75FJ1bJUb9RNmSBs3V3xM5FlpPRGQ7BTZDvezNxP+8bmb6N0HOZJoZKsliUT/jyCRoFgOKmaLE8IklmChmb0VkiBUmxoZVtiH4yy+vklat6l9Waw9XlfpjEUcJTuEMLsCHa6jDPTSgCQTG8Ayv8Obkzovz7nwsWtecYuYE/sD5/AEdYpIQ</latexit>

v1|1 = 1
<latexit sha1_base64="6gZH8rnLwXv+6e4NdghzFPChhuU=">AAAB+XicbVBNS8NAEJ34WetX1KOXxSJ4Ktkq6EUoePFYxX5AG8Jms22X7iZhd1Moof/EiwdFvPpPvPlv3LY5aOuDgcd7M8zMC1PBtfG8b2dtfWNza7u0U97d2z84dI+OWzrJFGVNmohEdUKimeAxaxpuBOukihEZCtYOR3czvz1mSvMkfjKTlPmSDGLe55QYKwWuOw5yjHqSRwhP0S3CgVvxqt4caJXgglSgQCNwv3pRQjPJYkMF0bqLvdT4OVGGU8Gm5V6mWUroiAxY19KYSKb9fH75FJ1bJUL9RNmKDZqrvydyIrWeyNB2SmKGetmbif953cz0b/ycx2lmWEwXi/qZQCZBsxhQxBWjRkwsIVRxeyuiQ6IINTassg0BL7+8Slq1Kr6s1h6uKvXHIo4SnMIZXACGa6jDPTSgCRTG8Ayv8Obkzovz7nwsWtecYuYE/sD5/AEgdpIS</latexit>

v0|1 = 1
<latexit sha1_base64="a7rXWBG8RQcPD/HdDpTQ15A275c=">AAAB+XicbVBNS8NAEJ34WetX1KOXxSJ4KkkV9CIUvHisYj+gDWGz2bZLdzdhd1Moof/EiwdFvPpPvPlv3LY5aOuDgcd7M8zMi1LOtPG8b2dtfWNza7u0U97d2z84dI+OWzrJFKFNkvBEdSKsKWeSNg0znHZSRbGIOG1Ho7uZ3x5TpVkin8wkpYHAA8n6jGBjpdB1x2HuoZ5gMfKn6Bb5oVvxqt4caJX4BalAgUbofvXihGSCSkM41rrre6kJcqwMI5xOy71M0xSTER7QrqUSC6qDfH75FJ1bJUb9RNmSBs3V3xM5FlpPRGQ7BTZDvezNxP+8bmb6N0HOZJoZKsliUT/jyCRoFgOKmaLE8IklmChmb0VkiBUmxoZVtiH4yy+vklat6l9Waw9XlfpjEUcJTuEMLsCHa6jDPTSgCQTG8Ayv8Obkzovz7nwsWtecYuYE/sD5/AEe5pIR</latexit>

v2|1
<latexit sha1_base64="qwBabENWuWo7SmHgH7geaCe9qP8=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF49V7Ac0oWw2m3bp7ibsbgol9G948aCIV/+MN/+N2zYHbX0w8Hhvhpl5YcqZNq777ZQ2Nre2d8q7lb39g8Oj6vFJRyeZIrRNEp6oXog15UzStmGG016qKBYhp91wfDf3uxOqNEvkk5mmNBB4KFnMCDZW8ieDvIF8wSLkzQbVmlt3F0DrxCtIDQq0BtUvP0pIJqg0hGOt+56bmiDHyjDC6aziZ5qmmIzxkPYtlVhQHeSLm2fowioRihNlSxq0UH9P5FhoPRWh7RTYjPSqNxf/8/qZiW+DnMk0M1SS5aI448gkaB4AipiixPCpJZgoZm9FZIQVJsbGVLEheKsvr5NOo+5d1RsP17XmYxFHGc7gHC7Bgxtowj20oA0EUniGV3hzMufFeXc+lq0lp5g5hT9wPn8A/UeRDA==</latexit>

v1|1
<latexit sha1_base64="TJrt6sv2uNWP//Ge1NooFvEtvNg=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF49V7Ac0oWw2m3bp7ibsbgol9G948aCIV/+MN/+N2zYHbX0w8Hhvhpl5YcqZNq777ZQ2Nre2d8q7lb39g8Oj6vFJRyeZIrRNEp6oXog15UzStmGG016qKBYhp91wfDf3uxOqNEvkk5mmNBB4KFnMCDZW8ieD3EO+YBHyZoNqza27C6B14hWkBgVag+qXHyUkE1QawrHWfc9NTZBjZRjhdFbxM01TTMZ4SPuWSiyoDvLFzTN0YZUIxYmyJQ1aqL8nciy0norQdgpsRnrVm4v/ef3MxLdBzmSaGSrJclGccWQSNA8ARUxRYvjUEkwUs7ciMsIKE2NjqtgQvNWX10mnUfeu6o2H61rzsYijDGdwDpfgwQ004R5a0AYCKTzDK7w5mfPivDsfy9aSU8ycwh84nz/7u5EL</latexit>

v0|1
<latexit sha1_base64="FE9hi8o8fgoWG+2OdyX+jENKrro=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF49V7Ac0oWw2m3bp7ibsbgol9G948aCIV/+MN/+N2zYHbX0w8Hhvhpl5YcqZNq777ZQ2Nre2d8q7lb39g8Oj6vFJRyeZIrRNEp6oXog15UzStmGG016qKBYhp91wfDf3uxOqNEvkk5mmNBB4KFnMCDZW8ieD3EW+YBHyZoNqza27C6B14hWkBgVag+qXHyUkE1QawrHWfc9NTZBjZRjhdFbxM01TTMZ4SPuWSiyoDvLFzTN0YZUIxYmyJQ1aqL8nciy0norQdgpsRnrVm4v/ef3MxLdBzmSaGSrJclGccWQSNA8ARUxRYvjUEkwUs7ciMsIKE2NjqtgQvNWX10mnUfeu6o2H61rzsYijDGdwDpfgwQ004R5a0AYCKTzDK7w5mfPivDsfy9aSU8ycwh84nz/6L5EK</latexit>

Fig. 1. Illustration of the synthetic Example 1. The first row describes the cold-started solution of the MIQP at time τ = 0, reporting the initial cover V 0
0 ,

the B&B tree, and the final cover V ∗0 . In the second row we depict the same elements for the warm-started MIQP at time τ = 1. The optimal binary actions
for τ = 0 and τ = 1 are v0 := v∗

0|0 = 1 and v1 := v∗
0|1 = 1, respectively. These determine which leaves are kept (green) and which are discarded (red)

during the construction of the subsequent initial covers. Root nodes are colored in light blue, and leaves associated with the optimal solutions have a dashed
contour. The sets in the initial and final covers are colored and contoured in accordance with the B&B tree.

which is depicted in the bottom-left cell in Figure 1.1

The B&B tree at time τ = 1 (bottom-center cell) has three
root nodes, one per set in V 0

1 . Its ε-optimal solution (dashed
leaf) is (v∗0|1, v

∗
1|1, v

∗
2|1) = (1, 0, 0), and leads to the final cover

V ∗1 depicted in the bottom-right cell. The same procedure is
then applied again to select the leaves for the construction of
V 0
2 : green leaves are kept, the red leaf is dropped. 4

V. PROPAGATION OF SUBPROBLEM LOWER BOUNDS

The second step in the construction of our warm start is to
equip each set in the cover V 0

1 with a lower bound for the
associated minimization problem. The strategy we adopt is to
construct a dual-feasible solution for each of these QPs.

From the solution of P0 via B&B we retrieve the terminal
cover V ∗0 and, for each interval V0 in it, we have a feasible
solution for the dual subproblem D0(V0). This can be optimal
or just feasible, or even a certificate of infeasibility in case we
proved that θ0(V0) = ∞. By means of the construction pre-
sented in Section IV, a set V0 (if not discarded) is associated
with an element V1 of the initial cover V 0

1 . The following
lemma shows how a solution of D0(V0) can be shifted in
time to comply with the constraints of D1(V1).

Lemma 1. Let {λt|0, ρt|0}Tt=0 and {µt|0,¯νt|0, ν̄t|0, σt|0}
T−1
t=0

be feasible multipliers for D0(V0). The following set of
multipliers is feasible for D1(V1):

1 The shifting process can also be visualized by looking at the covers V ∗0
and V 0

1 . First, intersect the intervals in V ∗0 with the plane v0|0 = 1 and
project the resulting sets onto the plane v1|0, v2|0. Then, rename the residual
coordinates v1|0 and v2|0 as v0|1 and v1|1, respectively. The latter sets are
now the projection of V 0

1 onto the plane v0|1, v1|1: the cover V 0
1 is recovered

by extruding them in the v2|1 direction between 0 and 1.

• (λt|1, ρt|1) := (λt+1|0, ρt+1|0) for t = 0, . . . , T − 1,
• (λT |1, ρT |1) := 0,
• (µt|1,¯

νt|1, ν̄t|1, σt|1) := (µt+1|0,¯
νt+1|0, ν̄t+1|0, σt+1|0)

for t = 0, . . . , T − 2,
• (µT−1|1,¯

νT−1|1, ν̄T−1|1, σT−1|1) := 0.

Proof. We substitute the candidate solution in the constraints
of D1(V1). From (6b) we obtain Q′ρt+1|0 + λt+1|0 −
A′λt+2|0 + F ′µt+1|0 = 0 for t = 0, . . . , T − 2, and Q′ρT |0 +
λT |0 = 0. These constraints are verified by feasibility of the
multipliers at time τ = 0. The constraint (6c) holds trivially,
as well as condition (6d) for t = T − 1. For t = 0, . . . , T − 2,
the constraint (6d) becomes R′σt+1|0−B′λt+2|0+G′µt+1|0+
V ′(ν̄t+1|0 − ¯

νt+1|0) = 0, which holds again by feasibility of
the multipliers at time τ = 0. Nonnegativity of µt|1,

¯
νt|1, and

ν̄t|1 is ensured by construction.

Lemma 1 has several implications. Given a set in V ∗0 and a
dual-feasible solution for the associated QP, we can now equip
with feasible multipliers, and hence a lower bound, the related
set in V 0

1 . Since we just assumed feasibility of the multipliers
at time step τ = 0, Lemma 1 applies even if, as it is frequently
the case, D0(V0) is not solved to optimality. Similarly, if the
bound we generate for D1(V1) is tight enough to prevent
its solution within the B&B at time τ = 1, the synthesized
dual variables can in turn be propagated to bound the optimal
value of a subproblem at time τ = 2. On the other hand, if
solving D1(V1) turns out to be necessary, we can still use the
multipliers from Lemma 1 to warm start this QP solve. Clearly,
as we shift a dual solution across time steps, the tightness of
the implied bound will gradually decay, and a few iterations
of the QP solver will eventually be required. However, this is
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inevitable: the problem on which we are inferring a bound is
increasingly different from the one we actually solved. Finally,
note that Lemma 1 holds despite any potential model error e0:
the current state x1 = Ax0 + Bu0 + e0 appears in the dual
problem D1(V1) as a cost coefficient and, as such, it does not
affect dual feasibility.

The following theorem concerns the tightness of the lower
bounds we construct via Lemma 1.

Theorem 1. Let {λt|0, ρt|0}Tt=0 and {µt|0,¯νt|0, ν̄t|0, σt|0}
T−1
t=0

be feasible multipliers for D0(V0) with cost
¯
θ0(V0). Define

π1 := − |Qx0|2 − |Ru0|2, (11a)

π2 := |ρ0|0/2−Qx0|2 + |σ0|0/2−Ru0|2, (11b)
π3 := (h− Fx0 −Gu0)′µ0|0 + (v0 −

¯
v0|0)′

¯
ν0|0

+ (v̄0|0 − v0)′ν̄0|0, (11c)
π4 := − e′0λ1|0. (11d)

The following is a lower bound on θ1(V1):

¯
θ1(V1) :=

¯
θ0(V0) +

4∑
i=1

πi. (12)

Proof. See Appendix C.

Despite the many terms, Theorem 1 is very informative, and
an inspection of the expressions in (11) reveals the following.
We recall that, since we are working with lower bounds, we
would like these terms to be positive.
π1: This term represents the MIQP stage cost for τ = 0.

It is nonpositive, but this was expected: standard MPC
arguments show that the value function θτ can actually
decrease at this rate (in the absence of disturbances and
as the horizon T tends to infinity).

π2: Recalling the stationarity conditions (29) from Ap-
pendix B, we notice that this nonnegative term vanishes
in case the multipliers ρ0|0, σ0|0 are optimal for D0(V0),
and the control action u0 (injected in the system at time
τ = 0) is optimal for the subproblem P0(V0).

π3: Because of the feasibility of u0, the condition
¯
v0|0 ≤

v0 ≤ v̄0|0 imposed in the construction of V 0
1 , and the

nonnegativity of µ0|0,
¯
ν0|0, ν̄0|0, this term is nonnegative.

If these multipliers are optimal for D0(V0) and u0 is
optimal for P0(V0), this term vanishes by complementary
slackness.

π4: This term is linear in the model error e0. It is null in case
of a perfect model, while it can have either sign in case
of discrepancies.

Notably, for a perfect model e0 = 0, the difference
¯
θ1(V1)−

¯
θ0(V0) is bounded below by π1, which does not depend on
the particular pair P0(V0), P1(V1) of subproblems we are
considering.

Together with a better insight into the tightness of the
bounds we propagate, Theorem 1 also gives us a sufficient
condition for the infeasibility of P1(V1). The next corollary
shows how a certificate of infeasibility for P0(V0) can be
transformed into a certificate for P1(V1).

Corollary 1. Let {λt|0, ρt|0}Tt=0 and {µt|0,¯νt|0, ν̄t|0, σt|0}
T−1
t=0

be a certificate of infeasibility for P0(V0) with dual objective

¯
θ0(V0). Then, the set of dual variables defined in Lemma 1 is
a certificate of infeasibility for P1(V1) as long as e0 lies in
the open halfspace

λ′1|0e0 < ¯
θ0(V0) + π3. (13)

Moreover, this inequality is always verified if e0 = 0.

Proof. We check the definition of a certificate of infeasibility
from Section III-B. In Lemma 1 we have shown dual feasibil-
ity of these multipliers, and, by construction, we have ρt|1 = 0
and σt|1 = 0 for all t. We are then left to verify positivity of
their dual cost

¯
θ1(V1). Using Theorem 1, we have π1+π2 = 0

and
¯
θ1(V1) =

¯
θ0(V0) + π3 + π4, which leads to (13). Finally,

since π3 ≥ 0 and
¯
θ0(V0) > 0, e0 = 0 always satisfies this

inequality.

Corollary 1 completes the tools we need to equip with
lower bounds the initial cover V 0

1 . For any set V0 in V ∗0
that corresponds to an infeasible QP, we can now associate
a halfspace in the error space inside which the descendant
problem P1(V1) will also be infeasible. Moreover, since the
set defined by (13) contains the origin, in case of an exact
MLD model, infeasibility of the descendant subproblem is
guaranteed. As for Lemma 1, this process can be iterated and
the same certificate propagated across multiple time steps.

Except for the computation of π4, which only amounts to
|V 0

1 | scalar products in Rnx , all the steps in this section can
be performed before the measurement of the next state x1,
leading to a negligible time delay in the solution of P1.

VI. PROPAGATION OF AN UPPER BOUND

The last element we need to warm start the solution of the
MIQP P1 is an upper bound θ̄01 on its optimal value. The
natural way to address this problem is to shift the ε-optimal
solution of P0 and synthesize a feasible solution for P1.

The issue of persistent feasibility has been widely studied
in hybrid MPC (see [44, Section 3.5] or [27, Sections 12.3.1
and 17.8.1]). The standard approach consists in designing the
MPC problem so that the terminal state xT |τ lies in a control-
invariant set X which contains the origin. More specifically,
for all x in X there must exist a control action u ∈ Rnu ×
{0, 1}mu such that (x, u) ∈ D and Ax + Bu ∈ X . When
this is the case, the existence of an input uT−1|1, such that
the control sequence {u∗1|0, . . . , u∗T−1|0, uT−1|1} is feasible for
P1, is guaranteed. The computation of the upper bound θ̄01 then
amounts, in the worst case, to the solution of 2mu QPs.

There are two standard ways to fulfill the requirement
xT |τ ∈ X , both with well-known pros and cons [1]. The first is
to make the MPC horizon T long enough so that the invariance
condition is spontaneously verified. The second is to enforce it
explicitly as a terminal constraint in our MIQP. While the first
approach complies with the problem formulation from (2), as
already mentioned, the implementation of the second requires
a more versatile problem statement which we will consider in
Section VIII.

In contrast to Section V, here we can only generate upper
bounds for a perfect model e0 = 0. A potential workaround
would be to consider a robust version of problem (2), where
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persistent feasibility is guaranteed despite disturbances of
bounded magnitude. This, however, would lead to substantially
harder optimization problems (see, e.g., [45] or [44, Chap-
ter 5]).

VII. ASYMPTOTIC ANALYSIS

We proceed in the analysis of the warm-start algorithm
studying its asymptotic behavior as the horizon T grows. In
doing so, we assume the MLD model to be perfect (e0 = 0).

In order to link the lower bounds from Theorem 1 with the
decrease rate of the cost to go θτ , we take advantage of the
following observation.

Lemma 2. Consider a perfect MLD model (1). For any control
action u0 ∈ Rnu×{0, 1}mu applied to the system at time τ =
0 such that (x0, u0) ∈ D, we have θ1 ≥ θ0−|Qx0|2−|Ru0|2.

Proof. Let
¯
θ1 ∈ R≥0 ∪ {∞} be the optimal value of the

problem we obtain by shortening the horizon of P1 by one
time step. Clearly,

¯
θ1 ≤ θ1. On the other hand, we must also

have θ0 ≤
¯
θ1 + |Qx0|2 + |Ru0|2. In fact, if this was not

true, prepending u0 to the optimal controls from the shortened
P1 we would get a solution for P0 with cost lower than θ0,
a contradiction. The lemma follows by chaining these two
inequalities.

The following theorems can be seen as “sanity checks”
for the asymptotic behavior of the warm-start algorithm as
T tends to infinity. More specifically, let V∗0 ∈ V ∗0 be the
set which contains the ε-optimal binary assignment found via
B&B at time τ = 0, and denote with V∗1 its descendant through
the procedure presented in Section IV. We show that V∗1
must contain a binary assignment which is ε-optimal for P1.
Moreover, ε-optimality of this assignment is directly proved
by the initial cover V 0

1 from Section IV, equipped with the
lower bounds from Theorem 1. This formalizes the intuition
that, as the horizon grows and the MPC policy tends to be
stationary, the warm-started B&B should only reoptimize the
final stage of the trajectory.

Theorem 2. Consider a perfect MLD model (1), and let the
horizon T go to infinity. The set V∗1 contains a binary-feasible
assignment for P1 with cost θ∗1 ≤ θ1 + ε.

Proof. As T goes to infinity, the terminal state xT |0 of any
feasible solution for P0 must lie in a control-invariant set X
within which cost is not accumulated. More precisely, X ⊆
ker(Q) and for all x ∈ X there must exist a u ∈ Rnu ×
{0, 1}mu such that Ru = 0, (x, u) ∈ D, and Ax + Bu ∈ X .
Thus, the ε-optimal solution of P0 with cost θ∗0 ≤ θ0 + ε can
be shifted in time to synthesize a feasible solution for P1 with
cost θ∗1 := θ∗0 − |Qx0|2− |Ru0|2 ≤ θ0 + ε− |Qx0|2− |Ru0|2.
The binaries of the synthesized solution belong to V∗1 and,
using Lemma 2, we get θ∗1 ≤ θ1 + ε.

Theorem 3. Let the assumptions of Theorem 2 hold, and let
θ∗1 be defined as in its proof. The bounds from Theorem 1
verify the condition

¯
θ1(V1) ≥ θ∗1 − ε for all V1 in V 0

1 .

Proof. Consider a generic set V1 ∈ V 0
1 and its ancestor V0 ∈

V ∗0 . Since π2 and π3 from Theorem 1 are nonnegative and

π4 = 0 by assumption, we have
¯
θ1(V1) ≥

¯
θ0(V0) + π1. By

convergence of the B&B at time τ = 0, we have
¯
θ0(V0) ≥

θ∗0−ε for all V0 in V ∗0 (see condition (5)). These imply θ∗1 :=
θ∗0 +π1 ≤

¯
θ0(V0)+ε+π1 ≤

¯
θ1(V1)+ε for all V1 in V 0

1 .

VIII. TERMINAL PENALTIES AND CONSTRAINTS

The main limitation of problem statement (2) is its in-
compatibility with terminal penalties and constraints. In this
section, we extend the warm-start algorithm to cost functions
and constraints which vary with the relative time t. First, we
consider time-dependent weight matrices Qt and Rt in the
objective (2a). Once again, we make no assumptions on the
rank of these matrices. Then we replace the constraint set D
in (2d) with the time-dependent polyhedron Dt := {(x, u) |
Ftx + Gtu ≤ ht}, which is assumed to contain the origin
and to be contained in D. In this wider framework, terminal
penalties can be enforced by modulating the value of QT and
terminal constraints via a suitable definition of DT−1. Note
that, a polyhedral constraint on xT |τ maps to a polyhedral
constraint on (xT−1|τ , uT−1|τ ) via the dynamics (2c).

Clearly, in these more general settings, the asymptotic
analysis from Section VII, which was based on the limiting
stationarity of the MPC policy, might not hold. In addition, in
case of wild variations of the problem data Qt, Rt, Dt with the
relative time t, we expect a warm start generated by shifting
the previous solution to be fairly ineffective. However, as we
show in this section, our algorithm deals with these issues very
transparently, propagating dual bounds that are parametric in
the variations of these problem data.

A. Stage Cost Varying with the Relative Time

We start discussing the implications of time-dependent
weight matrices Qt and Rt. We do so under the following
assumption which, in words, requires the weight matrices for
time t+ 1 to penalize only the state and input entries that are
also penalized at stage t.

Assumption 1. The row space of Qt contains the row space
of Qt+1 for t = 0, . . . , T−1, and the row space of Rt contains
the row space of Rt+1 for t = 0, . . . , T − 2.

Out of the three components of our warm-start procedure,
only the propagation of lower bounds (discussed in Section V)
is affected by the time dependency of Qt and Rt. Here,
we extend this component starting from Lemma 1, and then
considering Theorem 1 and Corollary 1.

1) Modifications to Lemma 1: Following the steps from
Appendix B, the dual problem (6) can be easily adjusted to
comply with time-varying weights. Constraints (6b) and (6d)
require the substitution of Q and R with Qt and Rt, re-
spectively. Constraint (6c) now depends on QT instead of Q.
This modification breaks the shifting procedure presented in
Lemma 1. To restore it, we redefine ρt|1 for t = 0, . . . , T − 1
and σt|1 for t = 0, . . . , T − 2, explicitly enforcing the
conditions Q′tρt|1 = Q′t+1ρt+1|0 and R′tσt|1 = R′t+1σt+1|0.
Furthermore, among all the solutions of these linear systems,
we select the ones that maximize the lower bound

¯
θ1(V1)

or, equivalently, minimize |ρt|1|2 and |σt|1|2. This choice
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leads to two quadratic optimization problems, which, under
Assumption 1, are always feasible and admit closed-form
solution:

ρt|1 := (Q′t)
+Q′t+1ρt+1|0, t = 0, . . . , T − 1, (14a)

σt|1 := (R′t)
+R′t+1σt+1|0, t = 0, . . . , T − 2. (14b)

2) Modifications to Theorem 1 and Corollary 1: Theorem 1
can be adapted to the time dependency of Qt and Rt by
retracing the steps from Appendix C. The definitions in (11)
are still valid, provided that we substitute the matrices Q and
R with Q0 and R0. The lower bound

¯
θ1(V1) from (12) requires

the addition of two terms:

π5 :=
1

4

T−1∑
t=0

(|ρt+1|0|2 − |ρt|1|2), (15a)

π6 :=
1

4

T−2∑
t=0

(|σt+1|0|2 − |σt|1|2), (15b)

which do not cancel out anymore. In the following proposi-
tions we analyze the sign of π5 and π6.

Proposition 2. A necessary and sufficient condition for π5 to
be nonnegative for all ρ1|0, . . . , ρT |0 is ‖Qt+1Q

+
t ‖ ≤ 1 for

t = 0, . . . , T − 1.

Proof. By definition of the operator norm, we have |ρt|1| ≤
‖Qt+1Q

+
t ‖|ρt+1|0|. Sufficiency follows from

π5 ≥
1

4

T−1∑
t=0

(1− ‖Qt+1Q
+
t ‖2)|ρt+1|0|2. (16)

For the other direction, note that equality in (16) can always
be attained for some nonzero ρ1|0, . . . , ρT |0.

Proposition 3. A necessary and sufficient condition for π6 to
be nonnegative for all σ1|0, . . . , σT−1|0 is ‖Rt+1R

+
t ‖ ≤ 1 for

t = 0, . . . , T − 2.

Proof. Analogous to the proof of Proposition 2.

These propositions suggest that, when the magnitude of the
weight matrices Qt and Rt increases with the relative time t,
the terms π5 and π6 might be negative. On the other hand,
when the weights decrease with t (or when they are constant
as in Theorem 1), π5 and π6 tend to tighten the bounds

¯
θ1(V1).

Unfortunately, terminal penalties fall under the first scenario,
but this was to be expected: since the final state of P1(V1)
is likely to be smaller in magnitude than the one of P0(V0),
when increasing QT , we expect the difference θ1(V1)−θ0(V0)
to decrease.

Finally, Corollary 1 remains unchanged as well as inequal-
ity (13). In fact, if the multipliers we are given for τ = 0
certify infeasibility of P0(V0), then ρt|0 = 0 and σt|0 = 0
for all t. Using (14), we get ρt|1 = 0 and σt|1 = 0, and the
additional terms π5 and π6 from (15) vanish.

B. Constraint Set Varying with the Relative Time

We discuss time-dependent constraints under the following
assumption, which holds, for example, in the common case of
bounded constraint sets Dt.

Assumption 2. The conic hull of the rows of [Ft Gt] contains
the conic hull of the rows of [Ft+1 Gt+1] for t = 0, . . . , T −2.

Out of the three warm start components, the time depen-
dency of Dt affects mainly the propagation of lower bounds.
The construction of the initial cover is unchanged and, for
the upper-bound propagation, in order to preserve persistent
feasibility, we only require Dt+1 ⊆ Dt for t = 0, . . . , T − 2.
Once again we discuss the adaptations of Lemma 1 and of
Theorem 1 and Corollary 1 separately.

1) Modifications to Lemma 1: In case of time-dependent
constraints Dt, the matrices F , G, and h in the dual prob-
lem (6) must have the subscript t. This modification makes
the arguments from Lemma 1 untrue. The ideal fix would be
to define µt|1 through the Linear Program (LP)

min h′tµt|1 (17a)
s.t. F ′tµt|1 = F ′t+1µt+1|0, (17b)

G′tµt|1 = G′t+1µt+1|0, (17c)
µt|1 ≥ 0, (17d)

for t = 0, . . . , T − 2. These LPs would maximize the lower
bounds

¯
θ1(V1) and, under Assumption 2, they would always

be feasible. However, keeping in mind that our ultimate goal
is to bound the optimal value of a QP, this definition of µt|1 is
clearly impractical. Nonetheless, finding a good approximate
solution to these LPs turns out to be relatively simple.

Let µ∗t|1(µt+1|0) be the parametric minimizer of prob-
lem (17). We define Mt|1 as the matrix whose ith column
is µ∗t|1(εi), with εi ith element of the standard basis. Note that
Mt|1 can be easily computed offline by solving one LP per
entry in µt+1|0 (i.e., per facet of the polyhedron Dt+1).

Proposition 4. The multiplier µt|1 := Mt|1µt+1|0 is feasible
for the LP (17).

Proof. Since µt+1|0 and µ∗t|1(εi) are nonnegative, so is µt|1.
By feasibility of µ∗t|1, we have F ′tMt|1 = F ′t+1 and G′tMt|1 =
G′t+1, which imply conditions (17b) and (17c).

Coming back to the primal side, the LP (17) has a clear
geometrical meaning. Its dual reads

max µ′t+1|0(Ft+1xt|1 +Gt+1ut|1) (18a)

s.t. Ftxt|1 +Gtut|1 ≤ ht, (18b)

where the optimization variables are the state xt|1 and the input
ut|1. For µt+1|0 = εi, the LP (18) is illustrated in Figure 2,
and allows to determine whether the polyhedron Dt lies within
the halfspace delimited by the ith facet of Dt+1. In words, this
optimization finds the point in Dt which violates most the ith
inequality defining Dt+1. Containment is certified in case the
maximum of this problem, which corresponds to h′tµ

∗
t|1(εi) by

strong duality, is lower or equal to the ith entry of ht+1.2

If the polyhedron Dt is entirely contained in Dt+1, the
above observation applies for all i, and we have h′tMt|1 ≤

2 In the context of problem (18), Assumption 2 has a simple geometrical
interpretation as well. It ensures that the normal to each facet of Dt+1 is not
a ray of the polyhedron Dt, i.e., it ensures boundedness of (18). Moreover,
note that feasibility of (18) (and hence boundedness of (17)) is also ensured,
since we assumed the polyhedra Dt to be nonempty for all t.
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Fig. 2. Geometrical interpretation of the LP (18) as a containment problem.
The color gradient in Dt symbolizes the objective function. For µt+1|0 = εi,
problem (18) returns the point (blue star) in Dt which violates most the ith
constraint (facet) of Dt+1. Depending on whether the polyhedron Dt lies
inside the ith facet of Dt+1, the optimal value of (17), and of its dual (18),
is lower (left image) or greater (right image) than the ith entry of ht+1.

h′t+1. This inequality can in turn be used to bound the cost of
µt|1 from Proposition 4, leading to

h′tµt|1 = h′tMt|1µt+1|0 ≤ h′t+1µt+1|0. (19)

We will take advantage of this bound in the revision of
Theorem 1.

2) Modifications to Theorem 1 and Corollary 1: When the
sets Dt vary with the relative time t, the matrices F , G, and
h in the definition of π3 must be substituted with F0, G0,
and h0. The lower bounds

¯
θ1(V1) from Theorem 1 require the

additional term

π7 :=

T−2∑
t=0

(h′t+1µt+1|0 − h′tµt|1). (20)

The observation made in (19) suggests the following suffi-
cient condition for the nonnegativity of π7.

Proposition 5. Let µt|1 be defined as in Proposition 4. If
Dt ⊆ Dt+1 for t = 0, . . . , T − 2, then π7 ≥ 0. Additionally,
if Dt = Dt+1, we have π7 = 0.

Proof. The nonnegativity condition follows from (19). In case
Dt = Dt+1, the optimal value of (17) for µt+1|0 = εi
coincides with the ith entry of ht+1, for all i. Therefore,
we have h′tMt|1 = h′t+1, the relation in (19) holds with the
equality, and π7 vanishes.

Even if the condition Dt ⊆ Dt+1 is frequently violated in
practice (terminal constraints, for example, lead to DT−2 ⊃
DT−1), Proposition 5 shows that the definition of µt|1 from
Proposition 4 is a natural generalization of the shifting process
from Lemma 1. In fact, when the constraint setsDt are actually
constant with the relative time t, the two approaches lead to
the same lower bounds

¯
θ1(V1).

With this choice of the multipliers µt|1, the statement of
Corollary 1 is still valid, provided that we add π7 to the right-
hand side of (13). Furthermore, if Dt ⊆ Dt+1 for all t, the
origin e0 = 0 is still guaranteed to verify condition (13). On
the contrary, if the constraint sets shrink with the relative time
t, it might be the case that an infeasible subproblem at time
τ = 0 has a feasible descendant at τ = 1, even in the nominal
case e0 = 0.
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d
<latexit sha1_base64="ROx/Xw0XRiZy5/Eopabg5924NLE=">AAAB6HicbZBNS8NAEIYnftb6VfXoZbEInkoigh6LXjy2YD+gDWWzmbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vrCwsM7M+zMG6SCa+O6387a+sbm1nZpp7y7t39wWDk6buskUwxbLBGJ6gZUo+ASW4Ybgd1UIY0DgZ1gfDerd55QaZ7IBzNJ0Y/pUPKIM2qs1QwHlapbc+ciq+AVUIVCjUHlqx8mLItRGiao1j3PTY2fU2U4Ezgt9zONKWVjOsSeRUlj1H4+X3RKzq0TkihR9klD5u7viZzGWk/iwHbG1Iz0cm1m/lfrZSa68XMu08ygZIuPokwQk5DZ1STkCpkREwuUKW53JWxEFWXGZlO2IXjLJ69C+7LmWW5eVeu3RRwlOIUzuAAPrqEO99CAFjBAeIZXeHMenRfn3flYtK45xcwJ/JHz+QPH64zo</latexit><latexit sha1_base64="ROx/Xw0XRiZy5/Eopabg5924NLE=">AAAB6HicbZBNS8NAEIYnftb6VfXoZbEInkoigh6LXjy2YD+gDWWzmbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vrCwsM7M+zMG6SCa+O6387a+sbm1nZpp7y7t39wWDk6buskUwxbLBGJ6gZUo+ASW4Ybgd1UIY0DgZ1gfDerd55QaZ7IBzNJ0Y/pUPKIM2qs1QwHlapbc+ciq+AVUIVCjUHlqx8mLItRGiao1j3PTY2fU2U4Ezgt9zONKWVjOsSeRUlj1H4+X3RKzq0TkihR9klD5u7viZzGWk/iwHbG1Iz0cm1m/lfrZSa68XMu08ygZIuPokwQk5DZ1STkCpkREwuUKW53JWxEFWXGZlO2IXjLJ69C+7LmWW5eVeu3RRwlOIUzuAAPrqEO99CAFjBAeIZXeHMenRfn3flYtK45xcwJ/JHz+QPH64zo</latexit><latexit sha1_base64="ROx/Xw0XRiZy5/Eopabg5924NLE=">AAAB6HicbZBNS8NAEIYnftb6VfXoZbEInkoigh6LXjy2YD+gDWWzmbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vrCwsM7M+zMG6SCa+O6387a+sbm1nZpp7y7t39wWDk6buskUwxbLBGJ6gZUo+ASW4Ybgd1UIY0DgZ1gfDerd55QaZ7IBzNJ0Y/pUPKIM2qs1QwHlapbc+ciq+AVUIVCjUHlqx8mLItRGiao1j3PTY2fU2U4Ezgt9zONKWVjOsSeRUlj1H4+X3RKzq0TkihR9klD5u7viZzGWk/iwHbG1Iz0cm1m/lfrZSa68XMu08ygZIuPokwQk5DZ1STkCpkREwuUKW53JWxEFWXGZlO2IXjLJ69C+7LmWW5eVeu3RRwlOIUzuAAPrqEO99CAFjBAeIZXeHMenRfn3flYtK45xcwJ/JHz+QPH64zo</latexit><latexit sha1_base64="ROx/Xw0XRiZy5/Eopabg5924NLE=">AAAB6HicbZBNS8NAEIYnftb6VfXoZbEInkoigh6LXjy2YD+gDWWzmbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vrCwsM7M+zMG6SCa+O6387a+sbm1nZpp7y7t39wWDk6buskUwxbLBGJ6gZUo+ASW4Ybgd1UIY0DgZ1gfDerd55QaZ7IBzNJ0Y/pUPKIM2qs1QwHlapbc+ciq+AVUIVCjUHlqx8mLItRGiao1j3PTY2fU2U4Ezgt9zONKWVjOsSeRUlj1H4+X3RKzq0TkihR9klD5u7viZzGWk/iwHbG1Iz0cm1m/lfrZSa68XMu08ygZIuPokwQk5DZ1STkCpkREwuUKW53JWxEFWXGZlO2IXjLJ69C+7LmWW5eVeu3RRwlOIUzuAAPrqEO99CAFjBAeIZXeHMenRfn3flYtK45xcwJ/JHz+QPH64zo</latexit>

mp
<latexit sha1_base64="pZTrNP+sNMYcDkCnOQ3Oti7TeYk=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkRdFl047KCfUA7lEyaaUPzGJNMoQz9DjcuFHHrx7jzb8y0s9DWA4HDOfdyT06UcGas7397a+sbm1vbpZ3y7t7+wWHl6LhlVKoJbRLFle5E2FDOJG1aZjntJJpiEXHajsZ3ud+eUG2Yko92mtBQ4KFkMSPYOikU/awnsB1pgZJZv1L1a/4caJUEBalCgUa/8tUbKJIKKi3h2Jhu4Cc2zLC2jHA6K/dSQxNMxnhIu45KLKgJs3noGTp3ygDFSrsnLZqrvzcyLIyZishN5gnNspeL/3nd1MY3YcZkkloqyeJQnHJkFcobQAOmKbF86ggmmrmsiIywxsS6nsquhGD5y6ukdVkLHH+4qtZvizpKcApncAEBXEMd7qEBTSDwBM/wCm/exHvx3r2PxeiaV+ycwB94nz/2Q5I1</latexit><latexit sha1_base64="pZTrNP+sNMYcDkCnOQ3Oti7TeYk=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkRdFl047KCfUA7lEyaaUPzGJNMoQz9DjcuFHHrx7jzb8y0s9DWA4HDOfdyT06UcGas7397a+sbm1vbpZ3y7t7+wWHl6LhlVKoJbRLFle5E2FDOJG1aZjntJJpiEXHajsZ3ud+eUG2Yko92mtBQ4KFkMSPYOikU/awnsB1pgZJZv1L1a/4caJUEBalCgUa/8tUbKJIKKi3h2Jhu4Cc2zLC2jHA6K/dSQxNMxnhIu45KLKgJs3noGTp3ygDFSrsnLZqrvzcyLIyZishN5gnNspeL/3nd1MY3YcZkkloqyeJQnHJkFcobQAOmKbF86ggmmrmsiIywxsS6nsquhGD5y6ukdVkLHH+4qtZvizpKcApncAEBXEMd7qEBTSDwBM/wCm/exHvx3r2PxeiaV+ycwB94nz/2Q5I1</latexit><latexit sha1_base64="pZTrNP+sNMYcDkCnOQ3Oti7TeYk=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkRdFl047KCfUA7lEyaaUPzGJNMoQz9DjcuFHHrx7jzb8y0s9DWA4HDOfdyT06UcGas7397a+sbm1vbpZ3y7t7+wWHl6LhlVKoJbRLFle5E2FDOJG1aZjntJJpiEXHajsZ3ud+eUG2Yko92mtBQ4KFkMSPYOikU/awnsB1pgZJZv1L1a/4caJUEBalCgUa/8tUbKJIKKi3h2Jhu4Cc2zLC2jHA6K/dSQxNMxnhIu45KLKgJs3noGTp3ygDFSrsnLZqrvzcyLIyZishN5gnNspeL/3nd1MY3YcZkkloqyeJQnHJkFcobQAOmKbF86ggmmrmsiIywxsS6nsquhGD5y6ukdVkLHH+4qtZvizpKcApncAEBXEMd7qEBTSDwBM/wCm/exHvx3r2PxeiaV+ycwB94nz/2Q5I1</latexit><latexit sha1_base64="pZTrNP+sNMYcDkCnOQ3Oti7TeYk=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkRdFl047KCfUA7lEyaaUPzGJNMoQz9DjcuFHHrx7jzb8y0s9DWA4HDOfdyT06UcGas7397a+sbm1vbpZ3y7t7+wWHl6LhlVKoJbRLFle5E2FDOJG1aZjntJJpiEXHajsZ3ud+eUG2Yko92mtBQ4KFkMSPYOikU/awnsB1pgZJZv1L1a/4caJUEBalCgUa/8tUbKJIKKi3h2Jhu4Cc2zLC2jHA6K/dSQxNMxnhIu45KLKgJs3noGTp3ygDFSrsnLZqrvzcyLIyZishN5gnNspeL/3nd1MY3YcZkkloqyeJQnHJkFcobQAOmKbF86ggmmrmsiIywxsS6nsquhGD5y6ukdVkLHH+4qtZvizpKcApncAEBXEMd7qEBTSDwBM/wCm/exHvx3r2PxeiaV+ycwB94nz/2Q5I1</latexit>

mc
<latexit sha1_base64="sTXgahuSuBX3ViRBuOWjG5sF9M0=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkRdFl047KCfUA7lEyaaUPzGJNMoQz9DjcuFHHrx7jzb8y0s9DWA4HDOfdyT06UcGas7397a+sbm1vbpZ3y7t7+wWHl6LhlVKoJbRLFle5E2FDOJG1aZjntJJpiEXHajsZ3ud+eUG2Yko92mtBQ4KFkMSPYOikU/awnsB1pgcisX6n6NX8OtEqCglShQKNf+eoNFEkFlZZwbEw38BMbZlhbRjidlXupoQkmYzykXUclFtSE2Tz0DJ07ZYBipd2TFs3V3xsZFsZMReQm84Rm2cvF/7xuauObMGMySS2VZHEoTjmyCuUNoAHTlFg+dQQTzVxWREZYY2JdT2VXQrD85VXSuqwFjj9cVeu3RR0lOIUzuIAArqEO99CAJhB4gmd4hTdv4r14797HYnTNK3ZO4A+8zx/igpIo</latexit><latexit sha1_base64="sTXgahuSuBX3ViRBuOWjG5sF9M0=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkRdFl047KCfUA7lEyaaUPzGJNMoQz9DjcuFHHrx7jzb8y0s9DWA4HDOfdyT06UcGas7397a+sbm1vbpZ3y7t7+wWHl6LhlVKoJbRLFle5E2FDOJG1aZjntJJpiEXHajsZ3ud+eUG2Yko92mtBQ4KFkMSPYOikU/awnsB1pgcisX6n6NX8OtEqCglShQKNf+eoNFEkFlZZwbEw38BMbZlhbRjidlXupoQkmYzykXUclFtSE2Tz0DJ07ZYBipd2TFs3V3xsZFsZMReQm84Rm2cvF/7xuauObMGMySS2VZHEoTjmyCuUNoAHTlFg+dQQTzVxWREZYY2JdT2VXQrD85VXSuqwFjj9cVeu3RR0lOIUzuIAArqEO99CAJhB4gmd4hTdv4r14797HYnTNK3ZO4A+8zx/igpIo</latexit><latexit sha1_base64="sTXgahuSuBX3ViRBuOWjG5sF9M0=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkRdFl047KCfUA7lEyaaUPzGJNMoQz9DjcuFHHrx7jzb8y0s9DWA4HDOfdyT06UcGas7397a+sbm1vbpZ3y7t7+wWHl6LhlVKoJbRLFle5E2FDOJG1aZjntJJpiEXHajsZ3ud+eUG2Yko92mtBQ4KFkMSPYOikU/awnsB1pgcisX6n6NX8OtEqCglShQKNf+eoNFEkFlZZwbEw38BMbZlhbRjidlXupoQkmYzykXUclFtSE2Tz0DJ07ZYBipd2TFs3V3xsZFsZMReQm84Rm2cvF/7xuauObMGMySS2VZHEoTjmyCuUNoAHTlFg+dQQTzVxWREZYY2JdT2VXQrD85VXSuqwFjj9cVeu3RR0lOIUzuIAArqEO99CAJhB4gmd4hTdv4r14797HYnTNK3ZO4A+8zx/igpIo</latexit><latexit sha1_base64="sTXgahuSuBX3ViRBuOWjG5sF9M0=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkRdFl047KCfUA7lEyaaUPzGJNMoQz9DjcuFHHrx7jzb8y0s9DWA4HDOfdyT06UcGas7397a+sbm1vbpZ3y7t7+wWHl6LhlVKoJbRLFle5E2FDOJG1aZjntJJpiEXHajsZ3ud+eUG2Yko92mtBQ4KFkMSPYOikU/awnsB1pgcisX6n6NX8OtEqCglShQKNf+eoNFEkFlZZwbEw38BMbZlhbRjidlXupoQkmYzykXUclFtSE2Tz0DJ07ZYBipd2TFs3V3xsZFsZMReQm84Rm2cvF/7xuauObMGMySS2VZHEoTjmyCuUNoAHTlFg+dQQTzVxWREZYY2JdT2VXQrD85VXSuqwFjj9cVeu3RR0lOIUzuIAArqEO99CAJhB4gmd4hTdv4r14797HYnTNK3ZO4A+8zx/igpIo</latexit>

l
<latexit sha1_base64="BM8fe6iHHCoJyPx8AuUhP7leDek=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjraYYlCtu1V2IrIOXQwVyNQblr/4wZmmE0jBBte55bmL8jCrDmcBZqZ9qTCib0BH2LEoaofazxaIzcmGdIQljZZ80ZOH+nshopPU0CmxnRM1Yr9bm5n+1XmrCGz/jMkkNSrb8KEwFMTGZX02GXCEzYmqBMsXtroSNqaLM2GxKNgRv9eR1aF9VPcvN60r9No+jCGdwDpfgQQ3qcA8NaAEDhGd4hTfn0Xlx3p2PZWvByWdO4Y+czx/UC4zw</latexit><latexit sha1_base64="BM8fe6iHHCoJyPx8AuUhP7leDek=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjraYYlCtu1V2IrIOXQwVyNQblr/4wZmmE0jBBte55bmL8jCrDmcBZqZ9qTCib0BH2LEoaofazxaIzcmGdIQljZZ80ZOH+nshopPU0CmxnRM1Yr9bm5n+1XmrCGz/jMkkNSrb8KEwFMTGZX02GXCEzYmqBMsXtroSNqaLM2GxKNgRv9eR1aF9VPcvN60r9No+jCGdwDpfgQQ3qcA8NaAEDhGd4hTfn0Xlx3p2PZWvByWdO4Y+czx/UC4zw</latexit><latexit sha1_base64="BM8fe6iHHCoJyPx8AuUhP7leDek=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjraYYlCtu1V2IrIOXQwVyNQblr/4wZmmE0jBBte55bmL8jCrDmcBZqZ9qTCib0BH2LEoaofazxaIzcmGdIQljZZ80ZOH+nshopPU0CmxnRM1Yr9bm5n+1XmrCGz/jMkkNSrb8KEwFMTGZX02GXCEzYmqBMsXtroSNqaLM2GxKNgRv9eR1aF9VPcvN60r9No+jCGdwDpfgQQ3qcA8NaAEDhGd4hTfn0Xlx3p2PZWvByWdO4Y+czx/UC4zw</latexit><latexit sha1_base64="BM8fe6iHHCoJyPx8AuUhP7leDek=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjraYYlCtu1V2IrIOXQwVyNQblr/4wZmmE0jBBte55bmL8jCrDmcBZqZ9qTCib0BH2LEoaofazxaIzcmGdIQljZZ80ZOH+nshopPU0CmxnRM1Yr9bm5n+1XmrCGz/jMkkNSrb8KEwFMTGZX02GXCEzYmqBMsXtroSNqaLM2GxKNgRv9eR1aF9VPcvN60r9No+jCGdwDpfgQQ3qcA8NaAEDhGd4hTfn0Xlx3p2PZWvByWdO4Y+czx/UC4zw</latexit>

u1
<latexit sha1_base64="Rk8M8bjRMqD4dHn2wrOX5AiNLL4=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9ZD1/b5b9WreXGQV/AKqUKjRd796g4RlMUrDBNW663upCXKqDGcCp5VepjGlbEyH2LUoaYw6yOerTsmZdQYkSpR90pC5+3sip7HWkzi0nTE1I71cm5n/1bqZia6DnMs0MyjZ4qMoE8QkZHY3GXCFzIiJBcoUt7sSNqKKMmPTqdgQ/OWTV6F1UfMt319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOcF+fd+Vi0lpxi5hj+yPn8AQcgjZ0=</latexit><latexit sha1_base64="Rk8M8bjRMqD4dHn2wrOX5AiNLL4=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9ZD1/b5b9WreXGQV/AKqUKjRd796g4RlMUrDBNW663upCXKqDGcCp5VepjGlbEyH2LUoaYw6yOerTsmZdQYkSpR90pC5+3sip7HWkzi0nTE1I71cm5n/1bqZia6DnMs0MyjZ4qMoE8QkZHY3GXCFzIiJBcoUt7sSNqKKMmPTqdgQ/OWTV6F1UfMt319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOcF+fd+Vi0lpxi5hj+yPn8AQcgjZ0=</latexit><latexit sha1_base64="Rk8M8bjRMqD4dHn2wrOX5AiNLL4=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9ZD1/b5b9WreXGQV/AKqUKjRd796g4RlMUrDBNW663upCXKqDGcCp5VepjGlbEyH2LUoaYw6yOerTsmZdQYkSpR90pC5+3sip7HWkzi0nTE1I71cm5n/1bqZia6DnMs0MyjZ4qMoE8QkZHY3GXCFzIiJBcoUt7sSNqKKMmPTqdgQ/OWTV6F1UfMt319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOcF+fd+Vi0lpxi5hj+yPn8AQcgjZ0=</latexit><latexit sha1_base64="Rk8M8bjRMqD4dHn2wrOX5AiNLL4=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9ZD1/b5b9WreXGQV/AKqUKjRd796g4RlMUrDBNW663upCXKqDGcCp5VepjGlbEyH2LUoaYw6yOerTsmZdQYkSpR90pC5+3sip7HWkzi0nTE1I71cm5n/1bqZia6DnMs0MyjZ4qMoE8QkZHY3GXCFzIiJBcoUt7sSNqKKMmPTqdgQ/OWTV6F1UfMt319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOcF+fd+Vi0lpxi5hj+yPn8AQcgjZ0=</latexit>

g
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Fig. 3. Benchmark problem: regulation of the cart-pole system through a
force applied to the cart and exploiting contacts with the soft walls.

IX. NUMERICAL STUDY

We test the proposed warm-start algorithm on a numerical
example. We consider a linearized version of the cart-pole
system depicted in Figure 3: the goal is to regulate the cart
in the center of the two walls with the pole in the upright
position. To accomplish this task, we can apply a force
directly on the cart and exploit contact forces that arise when
the tip of the pole collides with the walls. This regulation
problem has been used to benchmark control-through-contact
algorithms in [18], [46], and its moderate size allows an in-
depth statistical analysis of the performance of our warm-start
technique.

A. Mixed Logical Dynamical Model

We let x1 be the position of the cart, x2 the angle of the
pole, and we denote with x3 and x4 their time derivatives.
The force applied to the cart is u1, whereas the contact forces
with the left and right walls are u2 and u3, respectively. The
continuous-time equations of motion, linearized around the
nominal angle of the pole x2 = 0, are

ẋ1 = x3, (21a)
ẋ2 = x4, (21b)

ẋ3 =
mpg

mc
x2 +

1

mc
u1, (21c)

ẋ4 =
(mc +mp)g

mcl
x2 +

1

mcl
u1 −

1

mpl
u2 +

1

mpl
u3, (21d)

with mc = mp = 1 mass of the cart and the pole, g = 10
gravity acceleration, and l = 1 length of the pole. Dynamics
are discretized using the explicit Euler method with time step
h = 0.05. The force applied to the cart and the system state
are subject to the constrains

¯
u1 ≤ u1 ≤ ū1 and

¯
x ≤ x ≤ x̄,

where ū1 = −
¯
u1 = 1, x̄ = −

¯
x = (d, π/10, 1, 1) , and d = 0.5

is half of the distance between the walls (see Figure 3).
Impacts between the pole and the walls are modeled with

soft contacts: κ = 100 is the stiffness and ν = 10 is the
damping in the contact model. The position of the tip of the
pole with respect to the walls (positive in case of penetration),
after linearization, is δ2 := −x1+ lx2−d for the left wall, and
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δ3 := x1 − lx2 − d for the right wall. For i ∈ {2, 3}, contact
forces are required to obey the constitutive model

ui =

{
κδi + νδ̇i if δi ≥ 0 and κδi + νδ̇i ≥ 0,

0 otherwise.
(22)

These conditions ensure that contact forces are nonzero only
in case of penetration, and are always nonnegative (i.e., the
walls never pull on the pole). To model these piecewise-linear
functions, we introduce two binary indicators per contact

ui+2 :=

{
1 if δi ≥ 0,

0 otherwise,
ui+4 :=

{
1 if κδi + νδ̇i ≥ 0,

0 otherwise.
(23)

By means of the state limits, we can derive explicit bounds

¯
δi, δ̄i on the penetrations, as well as on their time derivatives

¯
δ̇i,

¯̇
δi. These, in turn, are used to bound the contact forces with

¯
ui := κ

¯
δi + ν

¯
δ̇i and ūi := κδ̄i + ν

¯̇
δi. Conditions (23) are then

enforced through the linear inequalities

¯
δi(1− ui+2) ≤ δi ≤ δ̄iui+2, (24a)

¯
ui(1− ui+4) ≤ κδi + νδ̇i ≤ ūiui+4. (24b)

With a similar logic, we can express (22) through the condi-
tions: ui ≥ 0, ui ≤ ūiui+2, ui ≤ ūiui+4, and

ν
¯̇
δi(ui+2 − 1) ≤ ui − κδi − νδ̇i ≤

¯
ui(ui+4 − 1). (25)

Considering the binary inputs introduced as contact indica-
tors, we have an MLD system with nx = 4 states, nu = 3
continuous inputs, and mu = 4 binary inputs.

B. Model Predictive Controller

We synthesize an MPC controller featuring both a terminal
penalty and a terminal constraint (see Section VIII). For the
stage cost, we let Qt = I and Rt = (1, 0, 0, 0, 0, 0, 0)′ for
t = 0, . . . , T−1. Using these weights and setting u2 = u3 = 0,
the terminal penalty QT is obtained by solving the Discrete
Algebraic Riccati Equation (DARE) for the discretized version
of (21). The terminal set is the maximal positive-invariant set
for system (21) after discretization, in closed loop with the
controller from the DARE and subject to the input and state
bounds, and the nonpenetration constraints δi ≤ 0 for i =
2, 3.3 With a time horizon T = 20, the resulting MIQP has
224 optimization variables (144 continuous and 80 binaries)
and 906 linear constraints (84 equalities and 822 inequalities).

C. Branch-and-Bound Implementation

The results we present in this section are obtained with a
very basic python implementation of B&B, which follows to
the letter the description given in Section III-A. This has the
advantage of simplifying result interpretation, since it leaves
out of the analysis the many heuristics that come into play
when using advanced B&B solvers. Nevertheless, we underline
that MILP reoptimization techniques similar in nature to
the one we propose have been successfully integrated, e.g.,

3 This set is known to be a polyhedron [47] and, in this case, it has a finite
number of facets. See also [27, Definition 10.8].
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Fig. 4. Optimal closed-loop trajectories for the cart-pole system recovering
from a push towards the right wall. Top: input force applied to the cart.
Bottom: horizontal position of the tip of the pole. The penetration of the pole
in the right wall is allowed by the soft contact model.

with the state-of-the-art solver SCIP [48] in [39]. The latter
work shows how advanced B&B routines (such as presolving,
domain propagation, and strong branching) can be handled
when reusing the B&B frontier from the previous solves.

In our implementation, we adopt a best-first search: among
all the sets which verify condition (5), we pick the set Vi ∈ V i

for which
¯
θ(Vi) is minimum. We perform the branching step

in chronological order: each time this routine is called, we
select the relaxed variables vt|τ for which t is lowest and,
among these, we split the one with the smallest index. This
frequently-used heuristic, leveraging the control limits, quickly
rules out excessively fast mode transitions [34], [23]. Since we
include model errors in the upcoming analysis, the recursive-
feasibility arguments from Section VI do not apply, and we
let θ̄0 = ∞ in all the B&B solves. The optimality tolerance
ε in (5) is set to zero. QPs are solved using the dual simplex
method provided by the commercial solver Gurobi 9.0.1,
with default options. Root-node subproblems are warm started
as discussed in Sections V and VIII while, deeper in the B&B
tree, subproblems are warm started using the parent active set.

D. Statistical Analysis

We test the warm-start algorithm in a “push-recovery” task
where, to simulate a push towards the right wall, we set the
initial state to x0 := (0, 0, 1, 0). Assuming a perfect model,
Figure 4 depicts the optimal control sequence, and the related
trajectory of the tip of the pole, for a closed-loop simulation of
50 steps. The system exploits the (soft) right wall to decelerate
and come back to the center of the track, whereas the control
requires a significant saturation to accomplish the task.

We study this task in presence of random model errors.
At each time τ we draw the ith entry of the error eτ :=
xτ+1 − Axτ − Buτ from the normal distribution with zero
mean and standard deviation σi = cx̄i, with x̄i upper bound
on the ith state. For c = 10−3, 3 ·10−3, 10−2, we simulate 100
closed-loop trajectories (for which model errors do not drive
the system to an infeasible state) and we monitor the number
of QPs solved within B&B and the MIQP solution times.

1) Number of Branch-and-Bound Subproblems: We start by
comparing the number of QPs solved within B&B in case of
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warm and cold start (i.e., when each MIQP is solved from
scratch). Furthermore, to show that the amount of information
propagated by the warm starts does not diverge as more and
more MIQPs are solved, we analyze the cardinality of the
initial covers V 0

τ . For these three quantities, Figure 5 reports
the minimum, maximum, 80th and 90th percentile of the
values registered in the 100 trials. Additionally, Figure 5 shows
the results obtained in the nominal case, eτ = 0 for all τ .

For small model errors, the warm-start approach almost
always requires an order of magnitude less QPs to solve
problem (2) to global optimality. Note that, for c = 3 · 10−3,
the curve of the 90th percentile almost coincides with the one
of the minima. For c = 10−2 model errors become very
significant: we often have mismatches in the cart position
greater than 10−2 which, if multiplied by κ, lead to variations
of the contact forces, with respect to the planned values,
greater than the input limit ū1 = 1. Despite that, 80% of the
times the proposed technique reduces the number of QP solves
by an order of magnitude. Moreover, even in the worst case,
our warm-start algorithm outperforms the cold-start approach.4

The asymptotic behavior discussed in Section VII is also
found in Figure 5. To solve a problem with m binaries, in
fact, the minimum number of B&B subproblems is 2m + 1
(the optimal branch plus the necessary leaves) and, in case of
warm start, the best-case complexity of a one-step look-ahead
problem (2mu+1 = 9 subproblems) is frequently approached.

The amount of information contained in the warm starts,
measured as the cardinality of V 0

τ , is very stable both in time
τ and as a function of the error standard deviation σi.

2) Computation Times: In Figure 6 we illustrate the com-
putation times of the statistical analysis.5 We compare three
alternatives to solve problem (2): the proposed warm-start
algorithm, its cold-started counterpart, and the state-of-the-art
solver Gurobi 9.0.1. Together with these, we report the
time delay in the solution of (2) due to the construction of the
warm start.

For our implementation of B&B, both warm and cold
started, in Figure 6 we report only the time spent solving
QPs (retrieved via the Runtime attribute of the Gurobi QP
model). This because almost the totality of the remaining time
is spent within the gurobipy interface, doing array manip-
ulations in numpy, or within python list comprehensions.
Currently, QP solves take around 15% of the overall B&B
function-call time. However, with a more mature implementa-
tion (e.g., in C++) we expect to reduce this overhead by two
orders of magnitude, making it one order of magnitude smaller
than the QP solve times. For the warm-start construction times,
we separate computations that can be done in the background
of the time step h (such as the assembly of the initial cover),
and computations that require the knowledge of the current
state xτ . In Figure 6 we report only the second: despite the
unoptimized python implementation, in this analysis, the
first take just a few milliseconds (median 3 ms, maximum

4 We report that, trying to further increase the error standard deviation by
setting c = 3 · 10−2, the model errors drive the system to an infeasible state
98 times on 100 trials, generating statistics of little value.

5Computations are performed on a machine with processor 2.4 GHz 8-Core
Intel Core i9 and memory 64 GB 2667 MHz DDR4.
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Fig. 5. Statistical analysis of the number of B&B subproblems necessary to
solve the MIQP (2) and regulate the cart-pole system to the origin. Orange
and blue lines: number of QP solves with warm and cold start, respectively,
as functions of time and for different standard deviations of the model error
eτ . Gray lines: amount of information propagated between time steps by the
warm start (represented by the cardinality of the initial cover V 0

τ ) as a function
of time and the error standard deviation. Solid, dashed, and dotted lines:
minimum and maximum, 80th percentile, and 90th percentile, respectively, of
the above quantities over 100 feasible trial trajectories.

24 ms), which is smaller than the MIQP solve times and,
hence, of any reasonable sampling time h.

We let Gurobi run with default options and, to maximize
its performance, we use the shifted optimal solution from the
previous time step as initial guess for the binary variables
(this is used by the Gurobi heuristics to attempt to build an
initial binary assignment). More precisely, we set the initial
guess vt|τ+1 = v∗t+1|τ for t = 0, . . . , T − 2 and vT−1|τ+1 = 0
(where 0 is the equilibrium value of the binary inputs).

The comparison between warm and cold start is in line
with the one above: the great majority of the times the warm-
started B&B is an order of magnitude faster and, even in the
worst case, it is not slower than the cold-started one. When
warm started, our implementation frequently approaches the
solution times of Gurobi, which is widely recognised to
be the baseline solver for hybrid MPC [31], [30], [33], [32],
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Fig. 6. Statistical analysis of the solution times for problem (2). Orange,
blue, and green lines: solve times with warm start, cold start, and Gurobi,
respectively, as functions of time and for different standard deviations of the
model error eτ . (Gurobi runs with default options and is allowed to use
the shifted solution from the previous time step as initial guess.) Gray lines:
delay in the solution of the MIQPs due to the construction of the warm start
as a function of time and the error standard deviation. Solid, dashed, and
dotted lines: minimum and maximum, 80th percentile, and 90th percentile,
respectively, of the above quantities over 100 feasible trial trajectories.

[35]. This is a promising result, especially considering that our
implementation is single threaded, whereas we let Gurobi
run on 16 threads. Additionally, Gurobi makes a heavy use
of presolve techniques and heuristics that our implementation
does not feature.6 Finally, we highlight that the delays in the
MIQP solves due to the construction of the warm starts are
negligible since they require, in the worst case, 10−3 s.

X. CONCLUSIONS

The solution of a hybrid MPC problem via B&B generally
amounts to a very large number of convex optimizations.

6 With a custom QP solver, further computation savings could be brought
by linear-algebra routines specialized for the MPC sparsity pattern [7], [49].

In this paper we have shown how, leveraging the receding-
horizon structure of the problem, computations performed
at one time step can be efficiently reused to warm start
subsequent solves, greatly reducing the number of B&B sub-
problems.

A warm start for a B&B solver should include three
elements: a collection of sets which covers the search space,
a lower bound on the problem objective in each of these sets,
and an upper bound on the problem optimal value. We have
shown how the first can be generated by a simple shift in time
of the B&B frontier from the previous solve. For the second
we have used duality: dual solutions of the B&B frontier,
if properly shifted, lead to lower bounds for the leaves of
the new problem, even in presence of arbitrary model errors.
Finally, we have illustrated how standard persistent-feasibility
arguments can be applied to synthesize the third element. All
these three ingredients take a negligible time to be computed.

We have thoroughly analyzed the tightness of the bounds we
derived, revealing a connection between them and the decrease
rate of the MPC cost to go. This has led to the observation
that, as the problem horizon grows to infinity, the complexity
of the hybrid MPC problem tends to that of a one-step look-
ahead problem. In this case, the warm-started B&B needs to
reoptimize only the final stage of the control problem.

Theoretical results have been validated by a thorough sta-
tistical analysis. The latter has demonstrated that our method
greatly outperforms the standard approach of solving each
optimization problem from scratch.

APPENDIX A
EXTENSIONS AND ADDITIONAL APPLICATIONS

We collect here extensions and additional applications of the
proposed algorithm. In Appendix A-A we extend the results to
the case in which the MLD system to be controlled has binary
states. Appendix A-B deals with time-varying MLD systems.
Finally, in Appendix A-C, we analyze the case in which the
prediction horizon T is included among the decision variables
of the MPC problem (2).

A. MLD System with Binary States

As discussed in Section II-A, auxiliary inputs can be used to
constrain state components to assume binary values. However,
this approach might be suboptimal from the viewpoint of
computational efficiency: in this appendix, we show how
binary states can be explicitly included in the analysis.

We consider the state vector xτ ∈ Rnx × {0, 1}mx , and
we denote by yτ ∈ {0, 1}mx its binary entries. We define
the selection matrix Y so that yτ = Y xτ . The error vec-
tor eτ takes now values in Rnx × {−1, 0, 1}mx . In these
settings, problem (2) must include the additional constraint
Y xt|τ ∈ {0, 1}mx for t = 0, . . . , T , and B&B needs to find a
cover of {0, 1}(T+1)mx+Tmu . In the convex relaxation of Pτ ,
we have the additional constraints

¯
yt|τ ≤ Y xt|τ ≤ ȳt|τ for

t = 0, . . . , T , where
¯
yt|τ , ȳt|τ ∈ {0, 1}mx and

¯
yt|τ ≤ ȳt|τ .

Let
¯
ξt|τ and ξ̄t|τ be the nonnegative multipliers associated

with these constraints. The dual objective (6a) must now
include the additional linear term

∑T
t=0(

¯
y′t|τ

¯
ξt|τ − ȳ′t|τ ξ̄t|τ ).
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Similarly, the terms Y ′(ξ̄t|τ −
¯
ξt|τ ) and Y ′(ξ̄T |τ −

¯
ξT |τ )

must be added to the left-hand sides of (6b) and (6c),
respectively. The logic behind the shifting procedure from
Section IV is the same: the first step requires the additional
check

¯
y0|0 ≤ y0 ≤ ȳ0|0, the second generates the additional

bounds (
¯
y1|0, . . . ,

¯
yT |0, 0, . . . , 0), (ȳ1|0, . . . , ȳT |0, 1, . . . , 1). In

Lemma 1, we define (
¯
ξt|1, ξ̄t|1) := (

¯
ξt+1|0, ξ̄t+1|0) for t =

0, . . . , T − 1, and (
¯
ξT |1, ξ̄T |1) := 0. In Theorem 1, we add

to π3 the nonnegative term (y0 −
¯
y0|0)′

¯
ξ0|0 + (ȳ0|0 − y0)′ξ̄0|0,

whereas Corollary 1 remains unchanged. In Section VI, we
just need the additional condition Y x ∈ {0, 1}mx for control
invariance. The asymptotic analysis from Section VII and the
extensions in Sections VIII do not require any modification.

B. Time-Varying MLD System

All the results presented in this paper can be immediately
generalized to the case of a time-varying MLD system

xτ+1 = Aτxτ +Bτuτ + eτ , (xτ , uτ ) ∈ Dτ . (26)

Dynamics of this kind appear, e.g., in trajectory tracking or
local stabilization of limit cycles for hybrid nonlinear systems.
These are two common problems in robotics, where state-of-
the-art methods cannot reason yet about online modifications
of the preplanned switching sequence [50], [51], [52], [53].

In this case, the dynamics (2c) becomes xt+1|τ =
Aτ+txt|τ + Bτ+tut|τ , the constraint (2d) reads (xt|τ , ut|τ ) ∈
Dτ+t, and the weight matrices Qτ+t and Rτ+t can vary
with the absolute time τ + t. Note that this time dependency
is easier to handle than the one discussed in Section VIII.
There, problem data depend on the relative time t and they
can disagree after a shift of the MPC time window (e.g., the
matrix Qt+1 in problem Pτ might be different from Qt in
Pτ+1). Here, problem data still match after a window shift,
and procedures like the one from Lemma 1 do not break.

The dual problem (6) does not change structure, it only re-
quires a suitable modification of the subscripts of the matrices
in it. The shifting procedure in Section IV does not need any
adjustment. The results from Section V are also still valid,
provided that we add the subscript 0 to the matrices Q, R, F ,
G, and h in the statement of Theorem 1. Also the persistent-
feasibility argument from Section VI extends to the time-
varying case: we now have a sequence of control-invariant sets
Xτ and, for all x in Xτ , there must exists a u ∈ Rnu×{0, 1}mu
such that (x, u) ∈ Dτ+T and Aτ+Tx+ Bτ+Tu ∈ Xτ+1. The
asymptotic considerations from Section VII need only a couple
of adjustments: Q and R in Lemma 2 must be substituted with
Q0 and R0, and the invariance argument in Theorem 2 must
be revised as just shown with persistent feasibility.

The extension of the results from Section VIII is slightly
more involved. The weight matrices and the constraint sets de-
pend now on τ and t independently: we use the notation Qt|τ ,
Rt|τ , Dt|τ for the data of problem Pτ at time t. Note that, e.g.,
a terminal penalty implies QT |τ 6= QT−1|τ+1. Assumption 1
must now require that the row space of Qt|τ+1 and Rt|τ+1

contains the one of Qt+1|τ and Rt+1|τ , respectively. Then, the
generalization presented in Section VIII-A also applies to the
time-varying case if, e.g., instead of the matrices Qt and Qt+1,

we consider Qt|1 and Qt+1|0. Analogous changes are required
for Assumption 2 and the results from Section VIII-B.

C. Variable-Horizon MPC

In many applications, it is desirable to include the time
horizon T among the decision variables of the MPC problem.
Besides avoiding the tricky compromise of fixing a value for
T , this guarantees persistent feasibility and minimizes the
discrepancy between open- and closed-loop trajectories [54],
[55]. Additionally, it extends the scope of MPC beyond
regulation problems [56].

A common problem statement for variable-horizon MPC
is to find a control sequence that drives the system state to a
target set, despite disturbances and minimizing a weighted sum
of the reach time and the control effort [56], [57, Section 2.4].
In [56] this problem has been transcribed in mixed-integer
form by parameterizing the reach time with binary variables
bt|τ (bt|τ = 1 when the target set is reached, and bt|τ = 0 oth-
erwise). Because of coupling constraints between the binaries
of different time steps (e.g.,

∑T
t=0 bt|τ = 1), the formulation

in [56] does not have the form of an optimal control problem of
MLD systems. However, equivalent binary parameterizations
that enjoy this property can be easily found, resulting in
a problem of the form we considered in Section VIII and
allowing the use of the proposed warm-start technique.

APPENDIX B
LAGRANGIAN DUAL OF THE CONVEX RELAXATION OF (2)

In this appendix we derive the dual D(V) of the convex
relaxation P(V) of problem (2), with V defined in (4). We
describe this derivation since the nonstrict convexity of P(V)
requires some special care.

We start by introducing the auxiliary primal variables

zt|τ := Qxt|τ , t = 0, . . . , T, (27a)
wt|τ := Rut|τ , t = 0, . . . , T − 1. (27b)

After substituting these in the primal objective (2a), we define
the Lagrangian function

l :=

T∑
t=0

[|zt|τ |2 + ρ′t|τ (Qxt|τ − zt|τ )]

+

T−1∑
t=0

[|wt|τ |2 + σ′t|τ (Rut|τ − wt|τ )] + λ′0|τ (x0|τ − xτ )

+

T−1∑
t=0

λ′t+1|τ (xt+1|τ −Axt|τ −But|τ )

+

T−1∑
t=0

µ′t|τ (Fxt|τ +Gut|τ − h)

+

T−1∑
t=0

[
¯
ν′t|τ (

¯
vt|τ − V ut|τ ) + ν̄′t|τ (V ut|τ − v̄t|τ )], (28)

with {λt|τ , ρt|τ}Tt=0 and {µt|τ ,¯νt|τ , ν̄t|τ , σt|τ}
T−1
t=0 Lagrange

multipliers of appropriate dimensions. For any fixed value
of the multipliers such that the nonnegativity condition (6e)
holds, the infimum of the Lagrangian with respect to the primal
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variables yields a lower bound on the optimal value θ(V). We
seek the multipliers for which this lower bound is maximum.

For the outer maximization to be feasible (i.e., have an
optimal value greater than −∞), we must require the inner
minimization to be bounded. Since the Lagrangian is a convex
quadratic function of the primal variables, its infimum, if finite,
verifies the stationarity conditions ∇xt|τ l = 0 (corresponding
to (6b) and (6c)), ∇ut|τ l = 0 (corresponding to (6d)), and

∇zt|τ l = 2zt|τ − ρt|τ = 0, t = 0, . . . , T, (29a)

∇wt|τ l = 2wt|τ − σt|τ = 0, t = 0, . . . , T − 1. (29b)

Substituting the stationarity conditions in the Lagrangian (28),
we obtain its minimum value (6a). The dual problem D(V)
consists then in the maximization of (6a), subject to the
stationarity conditions and the nonnegativity of the multipliers
{µt|τ ,¯νt|τ , ν̄t|τ}

T−1
t=0 . Conditions (29) are removed from the

dual problem because they are redundant.

APPENDIX C
PROOF OF THEOREM 1

In this appendix we derive the lower bound (12). Given
a feasible solution for D0(V0) we define a set of feasible
multipliers for D1(V1) as in Lemma 1. Substituting these into
the objective (6a) of the latter problem, we get the lower bound

¯
θ1(V1) := −

T−1∑
t=0

|ρt+1|0/2|2 −
T−2∑
t=0

|σt+1|0/2|2 − x′1λ1|0

−
T−2∑
t=0

(h′µt+1|0 + v̄′t+1|0ν̄t+1|0 − ¯
v′t+1|0¯

νt+1|0). (30)

The cost of the candidate solution can be restated as
¯
θ1(V1) =

¯
θ0(V0) +

∑3
i=1 ωi, where

ω1 := x′0λ0|0 − x′1λ1|0, (31a)
ω2 := h′µ0|0 + v̄′0|0ν̄0|0 − ¯

v′0|0¯
ν0|0, (31b)

ω3 := |ρ0|0/2|2 + |σ0|0/2|2. (31c)

Enforcing the dynamics, we get

ω1 = x′0λ0|0 − (Ax0 +Bu0 + e0)′λ1|0, (32)

and using (6b) and (6d) for t = τ = 0, we have

ω1 = −x′0(Q′ρ0|0 + F ′µ0|0)

− u′0[R′σ0|0 +G′µ0|0 + V ′(ν̄0|0 − ¯
ν0|0)] + π4. (33)

Adding ω2, we obtain

ω1 + ω2 = −x′0Q′ρ0|0 − u′0R′σ0|0 + π3 + π4. (34)

Finally, we add ω3:

3∑
i=1

ωi = |ρ0|0/2|2 − x′0Q′ρ0|0 + |σ0|0/2|2 − u′0R′σ0|0

+ π3 + π4. (35)

Using the identities

|ρ0|0/2|2 − x′0Q′ρ0|0 = |ρ0|0/2−Qx0|2 − |Qx0|2, (36a)

|σ0|0/2|2 − u′0R′σ0|0 = |σ0|0/2−Ru0|2 − |R0u0|2, (36b)

and recalling the definition of π1 and π2, we obtain
∑3
i=1 ωi =∑4

i=1 πi, and hence (12).

ACKNOWLEDGMENT

This research was supported by the Grass Instruments
Company and the Department of the Navy, Office of Naval
Research, Award No. N00014-18-1-2210. Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of the Office of Naval Research.

The authors thank Twan Koolen for the many helpful
comments on the original manuscript.

REFERENCES

[1] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert, “Con-
strained model predictive control: Stability and optimality,” Automatica,
vol. 36, no. 6, pp. 789–814, 2000.

[2] A. Bemporad and M. Morari, “Control of systems integrating logic,
dynamics, and constraints,” Automatica, vol. 35, no. 3, pp. 407–427,
1999.

[3] M. Diehl, H. G. Bock, and J. P. Schlöder, “A real-time iteration scheme
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