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Abstract— Feedback control of robotic systems interacting
with the environment through contacts is a central topic in
legged robotics. One of the main challenges posed by this
problem is the choice of a model sufficiently complex to capture
the discontinuous nature of the dynamics but simple enough to
allow online computations. Linear models have proved to be the
most effective and reliable choice for smooth systems; we believe
that piecewise affine (PWA) models represent their natural
extension when contact phenomena occur. Discrete-time PWA
systems have been deeply analyzed in the field of hybrid Model
Predictive Control (MPC), but the straightforward application
of MPC techniques to complex systems, such as a humanoid
robot, leads to mixed-integer optimization problems which are
not solvable at real-time rates. Explicit MPC methods can
construct the entire control policy offline, but the resulting
policy becomes too complex to compute for systems at the
scale of a humanoid robot. In this paper we propose a novel
algorithm which splits the computational burden between an
offline sampling phase and a limited number of online convex
optimizations, enabling the application of hybrid predictive
controllers to higher-dimensional systems. In doing so we are
willing to partially sacrifice feedback optimality, but we set
stability of the system as an inviolable requirement. Simulation
results of a simple planar humanoid that balances by making
contact with its environment are presented to validate the
proposed controller.

I. INTRODUCTION

For robots governed by smooth nonlinear differential equa-
tions, local linearization and linear optimal control provide
powerful tools for local stabilization of fixed points or
trajectories [1]. Convenient parameterizations (e.g. LQR)
allow designers to generate stabilizing controllers with tun-
able performance which can be applied to unconstrained
systems or (via online convex optimization) to systems with
linear constraints [2]. Through a natural description of the
dynamics in terms of momentum, rather than generalized
coordinates (i.e. joint angles), compact linear models are able
to capture the fundamental features of the robot’s physics
within a remarkably large portion of state space [3]. Such
models have been used with great success for humanoid
robots with pre-planned contact locations, as in the Linear
Inverted Pendulum Model (LIPM) [4], or pre-planned contact
timings [5], [6].

The state of the art in multi-contact feedback control, on
the other hand, is less mature: stabilization here is achieved
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Fig. 1. Two-dimensional humanoid. Hands can interact with the surfaces
that have the same color, green box-shaped sets represent the kinematic
limits for the limbs, and friction cones for the contact forces are depicted
in orange. The kinematics are roughly modeled after those of the NASA
Valkyrie robot.

mostly through one-step lookahead, e.g. using inverse dy-
namics approaches that involve solving a quadratic program
(QP) online, and/or hand-designed state machines [1], [7].
Hierarchical tools can plan and stabilize complex multi-
contact behaviors [1], [8] by choosing a contact sequence
at low frequency and stabilizing that sequence at a higher
control rate. In our case, however, we are specifically inter-
ested in creating fast online controllers which can choose
to make or break contact instantaneously, without any pre-
planned sequence of contacts or hybrid modes. To date, the
major obstacle to achieving this is a systematic procedure
for control design that can reason about stabilization across
contact modes.

In this paper, we adopt PWA approximations of the system
dynamics in floating-base coordinates as the natural and
reasonable analog to linearization when local stabilization
of fixed-points or trajectories requires crossing contact-mode
boundaries. Piecewise affinity occurs naturally in the analysis
of the centroidal dynamics of a robot subject to contact
phenomena. A naı̈ve but effective elastic contact model
relates normal force to normal penetration (and, possibly,
normal velocity) as well as friction force to tangential veloc-
ity directly in a PWA way. Complementarity-based contact
models [9] also result in PWA dynamics, though as the result
of the solution of a feasibility problem rather than a closed-
form function. Moreover, it is well known that the time



evolution of the linear momentum of a robot is governed by a
set of equations that are linear in the contact forces. The only
issue with this model is angular momentum, whose dynamics
are bilinear (because of dependency on the cross product of
limb positions and contact forces) [10]. Here we neglect an-
gular momentum and focus only on translational dynamics:
nonetheless, recent works have shown the potential of the
combined use of McCormick envelopes and binary indicators
for the piecewise approximation of bilinear laws in the
context of motion planning of legged robots [10]. Although
it is not problematic, the integration of these techniques in
the presented framework goes beyond the scope of this paper
and will be object of future improvements.

It is straightforward to directly transcribe a hybrid optimal
control problem using PWA dynamics into a mixed-integer
optimization problem, i.e. a problem with both continuous
and discrete-valued variables [10], but such models have
proved difficult to solve at real-time rates. On the other hand,
stability and optimal control of PWA systems have been
extensively developed in the context of hybrid MPC [11],
[12]: for these models, in fact, not only several stabilizing
optimal controllers have been developed [13], but also the
nature of the resulting feedback law and optimal-value func-
tion has been deeply investigated [14], [15], [16]. As in the
straightforward mixed-integer case, however, the complexity
of the optimal policy also scales poorly with the problem
dimensions, making explicit solutions complex to compute,
store, and evaluate even for relatively small problems.

In this paper we propose a novel algorithm that allows
online generation of suboptimal solutions of mixed-integer
programs arising in hybrid MPC. The method we propose
consists in the offline generation of a map that, given the
current state of the system, returns one or more feasible
binary assignments (i.e., mode sequences), reducing online
computations to the solution of a small number of QPs.
Through the use of a sampling approach the complexity of
this map is very limited and, despite the suboptimality of the
proposed control scheme, closed-loop stability of the feed-
back law is proved. A further contribution of this work is an
algorithm for the incremental approximation of QP feasible
sets; this is the key ingredient that allows the application of
the overall method to large scale systems. Simulation results
of a simple planar humanoid that balances by making contact
with its environment are presented to validate the proposed
controller. In conclusion, we remark that, even though the
synthesized controller is specific to a particular partition of
the domain of the PWA system (i.e., the geometry of the
environment in case of the push recovery problem), it is not
complicated to extend this method to consider parametric
domains, for example, treating wall positions as additional
fictitious states. The analysis of this aspect is left to future
developments.

A. Notation

Let a ∈ Rn and b ∈ Rm. We denote with (a, b) ∈ Rn+m

the vertical concatenation of a and b. Weighted 2-norms
are denoted as ‖a‖2A := aTAa, with A ∈ Rn×n. The

space of positive definite (semidefinite) symmetric matrices
of dimension n×n is denoted as Sn�0 (Sn�0). In represents the
n×n identity matrix. int(S) and conv(S) denote the interior
and the convex hull of the set S, respectively. All physical
units may be assumed to be in meters/kilograms/seconds.

II. HYBRID AND EXPLICIT MPC BACKGROUND

Motivated by the observations presented in Section I,
in this work we consider the class of discrete-time PWA
dynamical systems in the form

xt+1 = Aixt +Biut + ci if (xt, ut) ∈ Di, (1)

where i ∈ {1, . . . , s}, xt ∈ Rn denotes the state vector at the
generic sampling time t ∈ N, ut ∈ Rm represents the input
vector, and the sets Di ⊂ Rn+m are polytopic domains. The
overall domain of the system D :=

⋃s
i=1Di is assumed to be

completely well-posed, i.e., int(Di) ∩ int(Dj) = ∅ ∀ i, j ∈
{1, . . . , s} if i 6= j [12]. In order to avoid inconsistencies, we
further suppose D to be connected and the map xt+1(xt, ut)
from (1) to be continuous on D. Finally, we assume: (x, u) =
0 ∈ int(D1), c1 = 0 (i.e., the origin is an equilibrium for
the dynamics (1) in mode i = 1), and the pair A1, B1 to be
stabilizable.

With the aim of regulating system (1) to the origin, given
the initial state x̄ of the system, we consider the optimal
control problem

min
x,u
‖xN‖2P +

N−1∑
t=0

‖xt‖2Q + ‖ut‖2R (2a)

subject to x0 = x̄, (2b)
dynamics (1) ∀ t ∈ {0, . . . , N − 1}, (2c)
xN ∈ X g, (2d)

where x := (x0, . . . , xN ), u := (u0, . . . , uN−1), P ∈
Sn�0, Q ∈ Sn�0, R ∈ Sm�0, and the polytope X g ⊂ Rn
represents a goal terminal set with x = 0 ∈ int(X g).
We denote with V ?(x) the optimal value function of
problem (2), and with x?(x) := (x?0(x), . . . , x?N (x)),
u?(x) := (u?0(x), . . . , u?N−1(x)) the arguments that mini-
mize it. Through the introduction of sN binary variables (one
per domain per sampling time), a big-M reformulation can be
employed to cast problem (2) as a Mixed-Integer Quadratic
Program (MIQP) (see, e.g., the procedure presented in [12]
in case of piecewise linear systems). At each sampling time
the state of the system x̄ is measured, the MIQP is solved,
and the control action u?0(x̄) is applied to the system in a
receding horizon fashion.

In opposition to the pure online mixed-integer approach,
explicit MPC techniques can solve problem (2) offline,
computing the map u?(x) explicitly. To do that, it is nec-
essary to reason in terms of single mode sequences z :=
(z0, . . . , zN−1) ∈ {1, . . . , s}N . Once a mode sequence is
fixed, system (1) becomes a time-varying affine system

xt+1 = Aztxt +Bztut + czt . (3)

Exploiting (3) recursively, it is now possible to explicitly
express the state evolution as a function of the initial state



and the input sequence. Substituting the resulting expression
in (2), we get a condensed multiparametric QP (mpQP) [14]
with the characteristic dependence on the initial state x̄

min
u

qz(u, x̄) (4a)

subject to Gzu ≤ wz + Ezx̄, (4b)

where qz(u, x̄) is a quadratic function of (u, x̄), and Gz ,
wz , and Ez are properly assembled matrices that enforce
stage and terminal constraints. We will denote with V z?(x)
the (convex piecewise quadratic) optimal value function of
problem (4) and with uz?(x) the related (PWA continuous)
optimal input sequence [14]. For problem (4), we define the
feasible set as X zf := {x | ∃u : Gzu ≤ wz + Ezx}. By
definition, X zf is the orthogonal projection of the polytopic
constraint set (4b) from RNm+n (the space of (u, x)) onto
Rn (the space of x) and, hence, is a polytope itself. We then
define the feasible set of the hybrid MPC problem (2) as
X f := {x | ∃z : x ∈ X zf} and we denote the set of feasible
mode sequences for a state x as Z f(x) := {z | x ∈ X zf}.

Typically, explicit hybrid MPC algorithms share the fol-
lowing structure [15], [16]:
• Enumeration of all the feasible mode sequences {z |
X zf 6= ∅}. This is done through a backwards reacha-
bility analysis and, especially for long horizons N , it
might return in a huge number of sequences (see, e.g.,
Section V-A).

• Solution of a mpQP for each feasible mode sequence.
The results of this step are the laws uz?(x) and V z?(x),
whose complexity is exponential in both the number of
constraints and optimization variables.

• Comparison of the optimal-value functions V z?(x) to
determine the pointwise optimal binary assignments.
This requires non-convex programming techniques and
results in a discontinuous PWA control policy defined
on non-convex domains [17]. (This step is sometimes
substituted by a runtime comparison.)

The computational complexity of these steps limits the
applicability of explicit hybrid MPC to systems of very small
dimension [16].

III. STABLE MPC FOR HIGH-DIMENSIONAL HYBRID
SYSTEMS

Interestingly, the gray area between a pure online approach
and the explicit offline solution of the MPC problem has not
received much attention in the MPC literature. In this work
we propose a method which aims to split the computational
burden between the offline and the online phases in a way
that is more effective than the two extreme approaches indi-
vidually. The key observation of the algorithm we propose is
that the stabilizing properties of the feedback law from (2)
are not directly related to the optimality of the MIQP, but
just to its feasibility (see Theorem 1). Once that feasibility of
the MIQP is guaranteed, a Lyapunov argument can be made
just assuming optimality of the condensed QP (4). In light of
this observation, we propose to generate a map offline that,
given the state of the system, returns a set of feasible mode

sequences; reducing the online phase of the controller to the
solution of a limited number of QPs. Beside the clear online
advantage, the algorithm we propose uses the relatively large
feasible sets X zf to cover the state space instead of tiny
critical regions, as it is done in explicit MPC [14].

In the following we will assume the availability of the map
Z̃ f(x) ⊆ Z f(x) that for all x ∈ X f returns a nonempty set
of feasible mode sequences; details about the construction
of this map are given in next section. Denoting with τ ∈
N the absolute time step from the instant (τ = 0) where
the controller is turned on, Algorithm 1 describes how the
feedback control is derived from the measured state x̄.

Algorithm 1: Feedback control uτ0 for state x̄ at time τ
Result: Feedback uτ0
if τ = 0 then

Pick any feasible mode sequence z ∈ Z̃ f(x̄)
else

z := (zτ−1
1 , . . . , zτ−1

N−1, 1)
end
Solve QP (4) to get uz?(x̄), V z?(x̄)
Set uτ = uz?(x̄), zτ = z, V τ = V z?(x̄)
while Additional computation time remains do

Pick a new z ∈ Z̃ f(x̄)
Solve QP (4) to get uz?(x̄), V z?(x̄)
if V z?(x̄) < V τ then

Set uτ = uz?(x̄), zτ = z, V τ = V z?(x̄)
end

end

In order to guarantee stability, Algorithm 1 requires the
solution of only one QP. Nonetheless, the performance, in
terms of cost (2a), of the feedback can be improved by
solving additional (feasible) QPs until the the allocated time
for the feedback computation is over. Moreover, the solution
of these QPs can be parallelized, keeping the overall solution
time potentially equal to the time necessary to solve a single
QP. The online evaluation of the map Z̃ f(x) consists in
checking membership of x̄ to a set of polytopes in halfspace
representation; this requires a negligible amount of time and
can be parallelized as well.

The following theorem addresses the closed-loop stability
of system (1) with the feedback from Algorithm 1.

Theorem 1: Assume that:
H1 P in (2a) is the solution of the discrete algebraic Riccati

equation for the system xt+1 = A1xt + B1ut with the
related optimal feedback K ∈ Rm×n.

H2 X g in (2d) is an invariant constraint-admissible set for
the closed-loop system xt+1 = Λxt with Λ := A1 +
B1K (i.e., x ∈ X g ⇒ (Λtx,KΛtx) ∈ D1∀t ∈ N [18]).

Then system (1) in closed loop with the feedback control
from Algorithm 1 is asymptotically stable with domain of
attraction X f .

Proof: Consider a generic time step τ . Call xτ the
trajectory obtained by applying uτ from the initial state



xτ0 ∈ X f . At time τ + 1, starting from the new ini-
tial state xτ+1

0 = xτ1 , we exploit H2 and the fact that
xτN ∈ X g to construct a feasible input sequence ũτ+1 :=
(uτ1 , . . . , u

τ
N−1,Kx

τ
N ) that results in a feasible state trajec-

tory x̃τ+1 := (xτ1 , . . . , x
τ
N ,Λx

τ
N ) for the mode sequence

z̃τ+1 := (zτ1 , . . . , z
τ
N−1, 1). The cost of the latter control

action is Ṽ τ+1 = V τ − ‖xτ0‖2Q − ‖uτ0‖2R − ‖xτN‖2P +
‖xτN‖2Q + ‖KxτN‖2R + ‖ΛxτN‖2P = V τ − ‖xτ0‖2Q − ‖uτ0‖2R,
where the second equality follows from H1. Since ũτ+1

is a feasible control, we have that Ṽ τ+1 ≥ V τ+1 (which
holds even if a “cheaper” mode sequence is found in the
allocated time in Algorithm 1) and hence V τ − V τ+1 ≥
‖xτ0‖2Q + ‖uτ0‖2R ≥ 0. Since {V τ}∞τ=0 is a nonnegative
decreasing sequence, there exists a limit limτ→∞ V τ and,
consequently, limτ→∞ V τ+1−V τ = 0. This in turn implies
limτ→∞ xτ0 = 0 and limτ→∞ uτ0 ∈ ker(R), hence the thesis.

Remark 1: Assumptions in Theorem 1, together with
(x, u) = 0 ∈ int(D1), can be relaxed with a more complex
formulation of problem (2), see [13]. These assumptions are
made here for simplicity and also because they are generally
fulfilled by the family of systems we are interested in.

IV. OFFLINE GENERATION OF FEASIBLE MODE
SEQUENCES

In the developments of the previous section we have
assumed the availability of a map Z̃ f(x) that, for each
feasible state x ∈ X f , returns a nonempty set of feasible
mode sequences. In this section we propose an algorithm for
its computation that allows generation of such a map even
for systems of dimensions that would be prohibitive for both
online solution of the MIQP and explicit hybrid MPC.

A straightforward approach to the generation of Z̃ f(x)
consists in the enumeration of all the feasible mode se-
quences, as done in hybrid explicit MPC, and then in the
computation of the orthogonal projection of (4b) to derive
the feasible set for each mode sequence. (Note that this
strategy would actually generate the complete map Z f(x).)
Unfortunately this naı̈ve approach has two limitations:
• It results in an excessive number of QPs to be solved

online. In fact, only a small subset of the feasible mode
sequences is actually optimal for some x ∈ X f and,
since we do not want to derive the explicit expression
of the optimal value functions V z?(x), we cannot
eliminate never-optimal sequences as done in [15].

• Orthogonal projection of polytopes is a very com-
plex operation (see [19] and the references therein).
Choosing the right algorithm is a very case-dependent
process and, in general, it is a tradeoff between speed
and numerical robustness. In practice, unless some
assumptions (that typically do not hold in the MPC
context) on the orientation of the polytope are made, this
operation becomes prohibitive for system with roughly
n > 5, m > 2, and N > 5. Some algorithms tailored
for the computation of MPC feasible sets have been
proposed [20], but they proved to be applicable only to
small scale problems (e.g., n = 4, m = 2, and N = 10).

In order to overcome these difficulties, we adopt a sam-
pling approach; this choice entails multiple advantages:
• Feasible mode sequences do not have to be enumer-

ated; instead they are discovered automatically by the
sampling process, which, at the same time, filters never-
optimal mode sequences.

• As shown in the previous subsection, stability of hy-
brid MPC is a consequence of feasibility rather than
optimality. In this sense a sampling rejection strategy
(i.e., discard a sample if it already belongs to a feasible
set) can be adopted to greatly reduce the number of
mode sequences to take into account.

• Sampling allows the development of tailored algo-
rithms for the approximation of feasible sets with low-
complexity polytopes, enabling the application of these
methods to high-dimensional spaces.

Algorithm 2 illustrates the generation of the map Z̃ f(x).
X̃ zf ⊆ X zf denotes an inner approximation of the feasible
set for the mode sequence z, whereas z?(x̄) represents
the optimal mode sequence derived by solving (2) for the
initial condition x̄. Once the collection of polytopes X̃ zf is
generated, the evaluation of the map Z̃ f(x̄) returns the set
{z | x̄ ∈ X̃ zf}.

Algorithm 2: Coverage of the feasible set X f

Result: Collection of polytopes X̃ zf

Initialize X̃ zf = ∅, ∀z ∈ {1, . . . , s}N
while Samples x̄ are generated do

if ∃z | x̄ ∈ X̃ zf then
Reject x̄

else
Solve MIQP (2) to get z?(x̄)
if MIQP (2) is infeasible then

Reject x̄
else

Expand X̃ z?(x̄)f to include x̄ (Algorithm 3)
end

end
end

Algorithm 3 illustrates the details about the expansion
process in Algorithm 2. This procedure is based on the
Convex-Hull method for orthogonal projections, originally
proposed in [21]. Given a point x̄ which is known to belong
to the feasible set X zf , the polytopic inner approximation
X̃ zf := {x | Dx ≤ d} is expanded until x̄ ∈ X̃ zf .
The initialization of X̃ zf is performed finding, through the
solution of n + 1 linear programs, a set of vertices of X zf

that generate a full-dimensional simplex (see Algorithm 4).
The method then consists in an iterative expansion in the
direction normal to the facet of X̃ zf whose inequality is
most violated by x̄. At each step a new vertex of X zf

is found and added to the vertex representation of X̃ zf .
The latter is the most expensive operation of the algorithm
but it can be easily performed even for high-dimensional
polytopes (the free library Qhull, for example, implements



such a progressive construction of a convex hull [22]). For
brevity, the constraint set from (4b) is here denoted as
Cz := {(u, x) | Gz ≤ wz + Ezx}. Figure 2 illustrates
the various steps of Algorithm 3 and Algorithm 4 in case of
a simple two-dimensional example.

Algorithm 3: Inner approximation of the set X zf

Result: Inner approximation X̃ zf

if X̃ zf = ∅ then
Initialize X̃ zf (Algorithm 4)

end
while x̄ /∈ X̃ zf do

Call i the index of the greatest element of Dx̄− d
and Di the ith row of D

(u?, x?) := arg max(u,x)∈Cz Dix

Update X̃ zf ← conv(X̃ zf ∪ {x = x?})
end

Algorithm 4: Initialization of X̃ zf

Result: Inner approximation X̃ zf

Pick a random direction a ∈ Rn
(u1, x1) := arg max(u,x)∈Cz a

Tx
(u2, x2) := arg min(u,x)∈Cz a

Tx
for i = 3, . . . , n+ 1 do

Pick any hyperplane H := {x | aTx = b ∈ R} such
that xj ∈ H, ∀j ∈ {1, . . . , i− 1}

(ui, xi) := arg max(u,x)∈Cz sign(aT x̄− b)aTx
end
Initialize X̃ zf = conv(

⋃n+1
i=1 {x = xi})

A fundamental property of the algorithm we propose is
that coverage of the feasible set X f can be achieved after a
finite number of samples. A sketch of proof for this claim is
the following: Let us denote with X z? ⊆ X zf the region of
state space where the mode sequence z is optimal. As long
as there exists a full-dimensional subset of X z? that has not
been included in any X̃ zf , the event of a sample (drawn
from a uniform distribution) ending up in this region has a
finite probability. Every time that this event happens, a vertex
of X zf is added to the vertex-representation of X̃ zf . Since
X zf has a finite number of vertices and X z? is contained
in their convex hull, there is a finite upper bound to the
number of events that can happen. The finiteness of the
event probability and the bound on the maximum number of
events, are together sufficient conditions to claim that after a
sufficiently high number of samples an event (i.e., a sample
in a full-dimensional uncovered region of X f ) cannot occur.

The previous observation implies that the number of
samples after which the map from Algorithm 2 is such
that the feedback controller is stabilizing is finite. Moreover,
note that, due to the rejection sampling in Algorithm 2, our
algorithm does not necessarily converge to the optimal MIQP
solution, but rather to a feasible (and stabilizing) solution.

Exact feasible set
Inner approximation
First sample
Second sample

x1

x 2

x1

x 2

x1

x 2

x1

x 2

x1

x 2

Fig. 2. Result of Algorithm 3 for a two-dimensional example. From left
to right: first sample inside the orthogonal projection, inclusion of the first
sample in the inner approximation of the projection, second sample, first
expansion for the inclusion of the second sample, inclusion of the second
sample.

x1

x 2 1

23

4 5

x1

x 2

Fig. 3. Result of the application of Algorithm 2 to a synthetic two-
dimensional example. Left: five overlapping feasible sets numbered by
their cost (e.g., whenever feasible, set 1 is always preferable). Right: inner
approximation after 104 samples (only samples that required the expansion
of a set are shown). The proposed algorithm limits automatically the
complexity of the representation of the feasible sets in the regions where
there is overlapping, whereas it converges to the exact shape in the regions
where only a single mode sequence is feasible.

The main advantage of the method we propose is that
it automatically adapts the complexity of the approximated
feasible sets X̃ zf to our needs. Generally speaking, feasible
sets might be very complex polytopes defined by a large
number of facets; however, if our goal is closed-loop stability,
we actually do not need a detailed representation of these
sets: we only care about coverage of the state space. In this
sense, in the regions where multiple feasible sets overlap,
it is not necessary to derive a detailed description of their
boundaries. Algorithm 2 performs this reduction of complex-
ity automatically: simplifying the coverage process, reducing
memory requirements, and speeding up online evaluations.
Figure 3 depicts this effect for a simple example. This
coverage requirement resembles the one in the LQR Trees
approach [23] which also covers the state with locally stable
policies, rather than seeking global optimality.

V. SIMULATION RESULTS

In this section we validate the proposed controller with two
systems. First we consider a simple inverted pendulum that
is allowed to interact with an elastic wall in order to keep the
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Fig. 4. Linear inverted pendulum with elastic wall.

vertical position. Then we test the controller with a simple
two-dimensional humanoid that can make or break contacts
with a complex environment in order to recover from a push.

A. Inverted Pendulum with Elastic Wall

Consider the inverted pendulum depicted in Figure 4 with
m = 1, l = 1, d = 0.1, g = 10, and k = 1000. The state of
the continuous time system is x := (q, q̇) and the dynamics
are linearized around the vertical configuration q = 0. The
system has two modes: not in contact with the wall (mode
1), in contact with the wall (mode 2). Discretizing the model
with the explicit Euler scheme with a sampling time h =
0.01, we get a model in the form (1), with

A1 =

[
1 0.01

0.1 1

]
, B1 =

[
0

0.01

]
, c1 =

[
0
0

]
,

D2 = {(x, u) | (−0.12,−1) ≤ x ≤ (0.1, 1),−4 ≤ u ≤ 4},

A2 =

[
1 0.01
−9.9 1

]
, B2 =

[
0

0.01

]
, c2 =

[
0
1

]
,

D2 = {(x, u) | (0.1,−1) ≤ x ≤ (0.12, 1),−4 ≤ u ≤ 4}.

We then synthesize the MPC controller with N = 10, Q =
I2, R = 1, and X g equal to the maximal invariant constraint-
admissible set for the system in mode 1 [18].

Figure 5 shows the coverage of the feasible set X f

obtained by applying Algorithm 2 with 5 · 104 samples. The
result is compared with the plot of the feasible sets of all
the feasible mode sequences. In this case, all the possible
sN = 1024 mode sequences are actually feasible, resulting in
a huge map Z f(x); on the other hand, through the sampling
process only 17 mode sequences are selected, resulting in a
very compact map Z̃ f(x) that covers the entire feasible set.
The maximum number of overlapping feasible sets for Z f(x)
is 257 whereas for Z̃ f(x) it is only 6, resulting in a dramatic
reduction in the number of QPs to be solved online.

Figure 6 shows the state-space trajectories obtained by
simulating the closed-loop system from a set of initial states
(x̄ = (0.095,−0.5 + i0.05) for i = 0, . . . , 16) chosen to
force the system to switch between modes. The trajectories
derived using the feedback from Algorithm 1 are blue in the
foreground, whereas the ones obtained solving the MIQP (2)
are depicted in green in the background. Here we assumed to
have enough time to solve all the feasible QPs that the map
Z̃ f(x) returns at a given sampling time. In this case, it is
not possible to distinguish between the two controllers: this
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Fig. 5. Coverage of the feasible set of the MIQP (2) for the inverted
pendulum. Top: inner approximations of the feasible sets from Algorithm 2.
Bottom: feasible sets of all the mode sequences. The proposed algorithm
requires only 17 feasible mode sequences out of a total of 1024.
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Fig. 6. Closed loop trajectories for the inverted pendulum with the feedback
from Algorithm 1 (blue) and from the hybrid MPC controller (2) (green).

equivalence is due to the relatively long horizon N . In fact,
it is known that with the proposed formulation of the MPC
problem, if the value of N is sufficiently large to make the
terminal constraint redundant, the trajectory planned at the
initial time will coincide with the closed-loop trajectory of
the system. Consequently, the optimal mode sequence at each
time step will be the time-shifted copy of the one from the
previous time; which is exactly the “first try” in Algorithm 1.
Hence, if the map Z̃ f(x) contains the optimal mode sequence
for the initial state x̄, the two controllers will behave exactly
the same on the nominal system.

B. Two-Dimensional Humanoid in Complex Environment

In this subsection we evaluate the performance of the con-
troller from Algorithm 1 with the two-dimensional humanoid



robot shown in Figure 1. In this simple model we consider
only the translational dynamics of the body.

The massless arms are free to move in the plane and they
are velocity-controlled, while the feet have fixed positions
in contact with the ground. Using the acronyms “l” left, “r”
right, “h” hand, “f” foot, and “b” body, we denote with
q ∈ R2 the position of a part of the robot and with f ∈ R2

the contact force applied to a limb. The hands are allowed
to interact with the environment, generating forces flh and
frh, that are used to control the position of the body (colors
in Figure 1 indicate the surfaces that each hand can touch).
The resulting dynamics of the body is

mq̈b = flh + frh + flf + frf +mg,

with m = 1 the mass of the body and gravitational accel-
eration g = (0,−10). Denoting with fn and f t the normal
and tangential contact forces applied to a moving limb, and
with δn and δ̇t the related normal penetration and relative
tangential velocity, we employ the linear contact models
fn = −κδn and f t = −βδ̇t, with κ = 200 and β = 1000.

Considering a frame with horizontal axis q1 and vertical
axis q2, the wall for the left hand (red in Figure 1) is in
position q1 = 0.5, the floor (black) is at q2 = −0.5, and the
walls for the right hand (blue) are at q1 = −0.35 and q2 = 0.
The relative position of each limb with respect to the body
has to lie inside a 0.4 by 0.4 square set (green in Figure 1).
The centers of these regions (in body frame) are in the
position q̂lh = (0.3, 0), q̂rh = (−0.3, 0), q̂lf = (0.2,−0.5),
and q̂rf = (−0.2,−0.5). The equilibrium state of the system
is such that the body is in position q1 = q2 = 0, the limbs
are in the center of their box-shaped domains, the weight
is equally distributed between the feet, and velocities and
tangential forces are zero. Note that, in this configuration,
the hands are not in contact with the walls. The state and
the input vector are then

x := (qlh − q̂lh, qrh − q̂rh, qb, q̇b) ∈ R8,

u := (q̇lh, q̇rh, flf +mg/2, frf +mg/2) ∈ R8,

Velocity bounds are the same for each part of the robot
‖q̇‖∞ ≤ 1 whereas normal contact forces have to lie in
the interval [0, 2m‖g‖] for the feet and [0,m‖g‖] for the
hands. Tangential contact forces have to lie in the friction
cone (orange in Figure 1), with friction coefficient µ = 0.5.
Equations of motion are discretized with the explicit Euler
scheme with a sampling time h = 0.1.

In order to stabilize the robot in the equilibrium state, we
set the controller parameters to Q = MT Q̄M , Q̄ = R = I8,
N = 10, and for X g we employ the maximal invariant
constraint-admissible set for the system in the equilibrium
mode (the matrix M ∈ R8×8 is introduced to penalize the
relative position of the limbs with respect to the body).
Dividing the domain of the right hand position in four convex
sets (in contact with the top of the table, in contact with the
side of the table, over the table, on the side of the table) and
the domain of the left hand in two sets (in contact with the
wall, not in contact with the wall), the number of modes for

the PWA dynamics is s = 5 (modes in which both the hands
are in contact at the same time can be removed automatically
since they generate empty domains Di).

Running Algorithm 2 with 105 samples, we get a total
number of feasible sets X̃ zf equal to 593, which is satisfac-
torily low compared to all the potential sN = 510 ≈ 107

mode sequences. In Figure 7 we show the trajectories of the
robot in closed loop with the controller from Algorithm 1
starting from three different initial states. These are chosen
in such a way that, in each motion, the robot has to interact
with a different surface of the environment in order to recover
the equilibrium state. Comparing the costs obtained applying
the exact feedback from the MIQP (2) with the results in
Figure 7, we have that only for the first motion (contact with
the top of the table) is there a difference in cost, and even
in this case the loss in optimality is just 1.11%; the reason
for this is once again related to the relatively long horizon
N as in Section V-A. For these three initial configurations,
the solution of the MIQP (2) required 2.3 s, 9.6 s, and 3.0 s
whereas the solution of one of the feasible QPs (4) required
on average 26 ms, 24 ms, and 27 ms (using Gurobi 7.0.2 on
a 2.4 GHz Intel Core i7). In conclusion, to quantify the level
of optimality of the proposed control scheme, we considered
611 feasible random initial conditions x̄ ∈ X f . In only 11 of
611 cases was there no set X̃ zf covering the sample, meaning
that the coverage of the feasible set is almost complete after
the 105 samples. For the remaining samples, on average 6.71
and at most 39 feasible mode sequences were provided by
the map Z̃ f(x). In these cases, the loss of optimality as a
function of the maximum number of QPs we decide to solve
online in Algorithm 1 was 39.0% for 1 QP, 13.3% for 2 QPs,
3.30% for 5 QPs, 2.00% for 10 QPs, and 1.86% if we solve
all the feasible QPs returned by Z̃ f(x).

VI. CONCLUSIONS AND FUTURE WORKS

In this work we have presented a framework for multi-
contact feedback stabilization of robotic systems. We adopted
a PWA model for the description of the robot’s dynamics
that is able to capture the non-smooth nature of the problem
but, at the same time, is still tractable from a computational
point of view. Leveraging recent theoretical advances in
the field of hybrid MPC, we have developed a control
algorithm that is able to generate nearly-optimal feedback
in real time for systems of high dimensions. We proved
the effectiveness of the method on a two-dimensional model
of humanoid, showing that the proposed algorithm behaves
almost identically to the exact hybrid MPC controller.

Future works will be focused on developing a high-
performance implementation of the algorithm and testing it
on systems with higher dimension, parameterized environ-
ments, and real hardware.

SOURCE CODE

The source code for all the simulations presented in
this work can be found at https://github.com/
TobiaMarcucci/py-mpc/tree/humanoids2017.

https://github.com/TobiaMarcucci/py-mpc/tree/humanoids2017
https://github.com/TobiaMarcucci/py-mpc/tree/humanoids2017


Fig. 7. Trajectories of the two-dimensional humanoid in feedback with the controller from Algorithm 1 for three different initial states. From
top to bottom: contact with the top of the table for x̄ = (0, 0.15,−0.1, 0.15,−0.05, 0.1,−1,−0.5), contact with the side of the table for
x̄ = (0.1,−0.1, 0.1,−0.1, 0.1,−0.05,−1,−0.5), and contact with the wall for x̄ = (0, 0, 0, 0, 0, 0, 1,−0.5). From left to right: frame at time
τ = 0, 1, 2, 4, 8, 16, 100. Configurations at time τ = 100 are practically indistinguishable from the nominal configuration.
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