
Robot Manipulation with Learned Representations

by

Lucas Manuelli

A.B., Princeton University (2012)
S.M. Massachusetts Institute of Technology (2018)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2020

c○ Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 24, 2020

Certified by. .
Russ Tedrake

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science,
Chair, Department Committee on Graduate Students

2

Robot Manipulation with Learned Representations

by

Lucas Manuelli

Submitted to the Department of Electrical Engineering and Computer Science
on August 24, 2020, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

We would like to have robots which can perform useful manipulation tasks in real-world
environments. This requires robots that can perceive the world with both precision and
semantic understanding, methods for communicating desired tasks to these systems,
and closed loop visual feedback controllers for robustly executing manipulation tasks.
This is hard to achieve with previous methods: prior work hasn’t enabled robots
to densely understand the visual world with sufficient precision to perform robotic
manipulation or endowed them with the semantic understanding needed to perform
tasks with novel objects. This limitation arises partly from the object representations
that have been used, the challenge in extracting these representations from the available
sensor data in real-world settings, and the manner in which tasks have been specified.
This thesis presents a family of approaches that leverage self-supervision, both in
the visual domain and for learning physical dynamics, to enable robots to perform
manipulation tasks. Specifically we (i) develop a pipeline to efficiently annotate
visual data in cluttered and multi-object environments (ii) demonstrate the novel
application of dense visual object descriptors to robotic manipulation and provide
a fully self-supervised robot system to acquire them (iii) introduce the concept of
category-level manipulation tasks and develop a novel object representation based
on semantic 3D keypoints along with a task specification that uses these keypoints
to define the task for all objects of a category, including novel instances, (iv) utilize
our dense visual object descriptors to quickly learn new manipulation skills through
imitation and (v) use our visual object representations to learn data-driven models
that can be used to perform closed loop feedback control in manipulation tasks.

Thesis Supervisor: Russ Tedrake
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

There are many people that I would like to thank for helping me along the road to

earning a PhD.

First and foremost I would like to thank my advisor Russ Tedrake. Russ took a

chance on me when I was still an cconomics PhD student and gave me a wonderful

opportunity to join the MIT Darpa Robotics Challenge team, and later the Robot

Locomotion Group. Russ has an incredible mix of detailed technical knowledge and

interest, along with the ability to layout a long-term vision and push his students

to tackle important challenges in the field. Russ has been an incredibly kind and

encouraging mentor to me through the PhD and I am sure we will keep in touch in

the years to come.

Next I want to thank my committee members, Professors Alberto Rodriguez and

Phil Isola for giving great feedback on the thesis and being very supportive throughout

the process. In particular Alberto has been a great mentor to me throughout my years

at MIT, even before he was part of my committee.

I also want to thank a host of other MIT faculty that I have interacted with through

the years. These interactions are a big part of what made MIT such a special place to

do a PhD. Specifically I would like to thank Tomás Lozano-Peréz, Leslie Kaelbling,

Nicholas Roy, Neville Hogan, John Leonard, Rob Townsend and Ivan Werning.

Being on the MIT Darpa Robotics Challenge team was my first exposure to

practical field robotics and served as an amazing learning experience that profoundly

shaped my research interests and style throughout the PhD. I want to my fellow DRC

teammates, Matt Antone, Andrés Valenzuela, Bryt Bradley, Claudia Perez D’Arpino,

Gregory Izatt, Hongkai Dai, John Carter, Robin Deits , Steve Proulx, Toby Schneider,

Twan Koolen, Scott Kuindersma, Pat Marion and Maurice Fallon. I especially want

to thank Pat Marion and Andres Valenzuela for spending countless hours explaining

the finer points of robotics to me in the cramped confines of our office in N9.

I want to thank my co-author and labmate Pete Florence. Pete has been a great

co-author and friend throughout the PhD. The late nights spent in 32-380 hacking on

5

the robots were some of the funnest times of the PhD. I learned a lot from Pete and

being able to share the PhD journey with someone that I also call a friend definitely

made the experience much more enjoyable.

I also want to thank the members of the Robot Locomotion Group that I have

had the pleasure of interacting with over the years for creating a stimulating research

environment: Michael Posa, Frank Permenter, Ani Mujumdar, Tobia Marcucci, Jack

Umenberger, Mark Petersen, Shen Shen, Terry Suh, Robin Deits, Twan Koolen, Benoit

Landry, Vincent Tjeng, Yunzhu Li, Wei Gao.

I want to thank my family, Mom, Dad and Bianca for always encouraging and

believing in me, even through periods of difficulty and uncertainty. I especially want to

acknowledge my parents for spending so much time with me growing up and working

hard to give me every opportunity to succeed. They have really shaped who I have

become, both as a scholar and more importantly as a person.

Finally I want to thank my partner Katie for all of her support. You remind

me that there is a life outside of research and all the great adventures we have had

throughout the years have helped me keep a great balance in my life.

6

Contents

1 Introduction 27

1.1 Problem Statement . 28

1.2 Contributions . 30

1.3 Thesis Questions . 31

1.3.1 State Space and Object Representations 32

1.3.2 Task Specification . 33

1.3.3 Closed-Loop Feedback Control 35

1.4 Related Work . 35

2 LabelFusion 39

2.1 Introduction . 39

2.2 Related Work . 40

2.2.1 Methods for Generating Labeled RGBD Datasets 41

2.2.2 Object-Specific Pose Estimation in Clutter for Robotic Manipu-

lation . 42

2.2.3 Empirical Evaluations of Data Requirements for Image Segmen-

tation Generalization . 43

2.3 Data Generation Pipeline . 43

2.3.1 RGBD Data Collection . 43

2.3.2 Dense 3D Reconstruction . 44

2.3.3 Object Mesh Generation . 45

2.3.4 Human Assisted Annotation 45

2.3.5 Rendering of Labeled Images and Object Poses 47

7

2.3.6 Discussion . 47

2.4 Results . 47

2.4.1 Evaluation of Data Generation Pipeline 47

2.4.2 Empirical Evaluations: How Much Data Is Needed For Practical

Object-Specific Segmentation? 50

2.5 Conclusion . 53

3 DenseObjectNets 55

3.1 Introduction . 55

3.2 Related Work . 57

3.3 Methodology . 58

3.3.1 Preliminary: Self-Supervised Pixelwise Contrastive Loss 58

3.3.2 Training Procedures for Object-Centric Descriptors 59

3.3.3 Multi-Object Dense Descriptors 61

3.4 Experimental . 62

3.5 Results . 64

3.5.1 Single-Object Dense Descriptors 64

3.5.2 Multi-Object Dense Descriptors 65

3.5.3 Selective Class Generalization or Instance Specificity 67

3.5.4 Example Applications to Robotic Manipulation: Grasping Spe-

cific Points . 68

3.6 Conclusion . 70

4 kPAM: Keypoint Affordances for Robotic Manipulation 73

4.1 Introduction . 73

4.2 Related Work . 75

4.2.1 Object Representations and Perception for Manipulation . . . 75

4.2.2 Grasping Algorithms . 77

4.2.3 End-to-End Reinforcement Learning 77

4.3 Manipulation Formulation . 78

4.3.1 Concrete Motivating Example 79

8

4.3.2 General Formulation . 81

4.4 Comparison and Discussions . 84

4.4.1 Keypoint Representation vs Pose Representation 85

4.4.2 Keypoint Target vs Pose Target 87

4.5 Results . 88

4.5.1 Put shoes on a shoe rack . 89

4.5.2 Put mugs upright on a shelf 91

4.5.3 Hang the mugs on the rack by their handles 92

4.6 Limitations and Future Work . 94

4.7 Conclusion . 94

5 Self-Supervised Correspondence in Visuomotor Policy Learning 97

5.1 Introduction . 97

5.1.1 Contributions . 98

5.2 Related Work . 98

5.2.1 Visual Training Methods for Visuomotor Policies 100

5.2.2 Methods for Learning Vision-Based Closed-Loop Policies . . . 101

5.3 Visuomotor Formulation . 102

5.3.1 Preliminary: Visuomotor Policies 102

5.3.2 Visual Correspondence Models for Visuomotor Policy Learning 103

5.4 Visual Imitation Formulation . 106

5.4.1 Robot Observation and Action Spaces 106

5.4.2 Imitation Learning Visuomotor Policies 106

5.4.3 Training for Feedback through Data Augmentation 107

5.4.4 Multi-View Time-Synchronized Correspondence Training . . . 107

5.4.5 Policy Models . 108

5.5 Results . 108

5.5.1 Simulation Experimental Setup 109

5.5.2 Simulation Results . 110

5.5.3 Hardware Experimental Setup 114

9

5.5.4 Hardware Results . 114

5.6 Conclusion . 116

6 Keypoints into the Future: Self-Supervised Correspondence with

Model-Based Reinforcement Learning 119

6.1 Introduction . 119

6.2 Related Work . 121

6.3 Formulation: Self-Supervised Correspondence in Model-Based RL . . 123

6.3.1 Model-Based Reinforcement Learning 123

6.3.2 Learning a Visual Representation 124

6.3.3 Learning the Dynamics . 128

6.3.4 Online Planning for Closed-Loop Control 128

6.4 Results . 129

6.4.1 Visual-correspondence Performance 130

6.4.2 Ablations on visual-correspondence for dynamics learning . . . 130

6.4.3 Comparison of visual-correspondence pretraining with baselines 132

6.4.4 Hardware . 133

6.5 Conclusion . 134

7 Conclusion 137

7.1 Summary of Contributions . 137

7.2 Future Directions . 141

Appendices 143

Appendix A Dense Object Nets 145

A.1 Experimental Hardware . 145

A.2 Experimental Setup: Data Collection and Pre-Processing 145

A.3 Grasping Pipeline . 147

A.4 Network Architecture and Training Details 148

A.4.1 Descriptor Projection to Unit Sphere 149

A.4.2 Additional Approaches Which Did not Improve Performance . 149

10

Appendix B kPAM 151

B.1 Robot Hardware . 151

B.2 Dataset Generation and Annotation 151

B.2.1 3D Reconstruction and Masking 152

B.2.2 Instance Segmentation . 152

B.2.3 Keypoint Detection . 153

B.3 Neural Network Architecture and Training 154

B.3.1 Instance Segmentation . 154

B.3.2 Keypoint Detection . 155

B.4 Experiments . 155

B.4.1 Mugs Upright on Shelf . 155

B.4.2 Hang mug on rack by its handle 160

Appendix C Self-Supervised Correspondence in Visuomotor Policy Learn-

ing 161

C.1 Simulation Tasks . 161

C.2 Policy Networks . 162

C.3 Vision Networks . 162

Appendix D Keypoints into the Future: Self-Supervised Correspon-

dence with Model-Based Reinforcement Learning 163

D.1 Dense Correspondence . 163

D.1.1 Network Architecture . 163

D.1.2 Loss Function . 164

D.1.3 Correspondence Function . 165

D.2 Training Details . 166

D.2.1 Trajectory Data Augmentation 166

D.2.2 Training Details . 166

D.3 Online Model-Predictive Control . 167

D.4 Simulation Experiments . 168

D.4.1 Data Collection . 169

11

D.4.2 Evaluating closed-Loop MPC performance 169

D.4.3 Baselines . 170

D.5 Hardware Experiments . 171

D.5.1 Hardware Setup . 171

D.5.2 One-Shot Imitation Learning 173

D.5.3 Results . 173

12

List of Figures

2-1 Overview of the data generation pipeline. (a) Raw data is collected using

an Xtion RGBD sensor. (b) RGBD data processed by ElasticFusion

into reconstructed pointcloud. (c) User annotation tool that allows for

easy alignment using 3 clicks. User clicks are shown as red and blue

spheres. The transform mapping the red spheres to the green spheres

is then the user specified guess. (d) Cropped pointcloud coming from

user specified pose estimate is shown in green. The mesh model shown

in grey is then finely aligned using ICP on the cropped pointcloud. ICP

is seeded with the user provided rough alignment. (e) All the aligned

objects shown in reconstructed pointcloud. (f) The aligned meshes

are rendered as masks in all RGB images, producing pixelwise labeled

RGBD images for each view. 44

2-2 Examples of labeled data generated by our pipeline: (a) heavily cluttered

multi-object, (b) low light conditions, (c) motion blur, (d) distance

from object, (e) 25 different environments. All of these scenes were

collected by hand-carrying the RGBD sensor. 48

2-3 Time required for each step of pipeline. 49

2-4 Example segmentation performance (alpha-blended with RGB image)

of network (𝑒) on a multi-object test scene. 49

2-5 Comparisons of training on single-object vs. multi-object scenes and

testing on single-object (left) and multi-object (right) scenes. 50

13

2-6 Comparison of segmentation performance on novel multi-object test

scenes. Networks are either trained on (a) single object scenes only,

(b,d), multi-object test scenes only, or a mixture (c,e). 51

2-7 (left) Generalization performance as a function of the number of envi-

ronments provided at training time, for a set of six networks trained

on 50 different scenes or some subset ({1, 2, 5, 10, 25}) of those

scenes. (right) Performance on the same test set of unknown scenes,

but measured for the 5 training configurations for the multi-object,

single-environment-only setup described previously. 52

2-8 Comparison of segmentation performance on novel background envi-

ronments. Networks were trained on {1, 2, 5, 10, 25, 50} background

environments. 52

2-9 Pixelwise segmentation performance as a function of the number of

views per scene, reduced by downsampling the native 30 Hz sensor to

{0.03, 0.3, 3.0.} Hz. 53

3-1 Overview of the data collection and training procedure. (a) automated

collection with a robot arm. (b) change detection using the dense 3D

reconstruction. (c)-(f) matches depicted in green, non-matches depicted

in red. 60

3-2 Learned object descriptors can be consistent across significant deforma-

tion (a) and, if desired, across object classes (b-d). Shown for each (a)

and (b-d) are RGB frames (top) and corresponding descriptor images

(bottom) that are the direct output of a feed-forward pass through a

trained network. (e)-(f) shows that we can learn descriptors for low

texture objects, with the descriptors masked for clear visualization. Our

object set is also summarized (right). 64

14

3-3 (a) table describing the network training procedures referenced in

experiments. (standard-SO = “standard single object”. standard-

SO-P is detailed in Appendix A.4.1). (b) Plots the cdf of the L2 pixel

distance (normalized by image diagonal, 800 for a 640 x 480 image)

between the best match �̂�𝑏 and the true match 𝑢*
𝑏 , e.g. for standard-

SO in 93% of image pairs the normalized pixel distance between 𝑢*
𝑏

and �̂�𝑏 is less than 13%. All networks were trained on the same dataset.

(c) Plots the cdf of the fraction of pixels 𝑢𝑏 of the object pixels with

𝐷(𝐼𝑎, 𝑢
*
𝑎, 𝐼𝑏, 𝑢𝑏) < 𝐷(𝐼𝑎, 𝑢

*
𝑎, 𝐼𝑏, 𝑢

*
𝑏), i.e. they are closer in descriptor

space to 𝑢*
𝑎 than the true match 𝑢*

𝑏 . 66

3-4 (a), with same axes as Figure 3-3b, compares standard-SO with

without-DR, for which the only difference is that without-DR used

no background domain randomization during training. The dataset used

for (a) is of three objects, 4 scenes each. (b) shows that for a dataset

containing 10 scenes of a drill, learned descriptors are inconsistent

without background and orientation randomization during training

(middle), but consistent with them (right). 66

3-5 Comparison of training without any distinct object loss (a) vs. using

cross-object loss (b). In (b), 50% of training iterations applied cross-

object loss and 50% applied single-object within-scene loss, whereas

(a) is 100% single-object within-scene loss. The plots show a scatter

of the descriptors for 10,000 randomly-selected pixels for each of three

distinct objects. Networks were trained with 𝐷 = 2 to allow direct

cluster visualization. (c) Same axes as Figure 3-3 (a). All networks

were trained on the same 3 object dataset. Networks with a number

label were trained with cross object loss and the number denotes the

descriptor dimension. no-cross-object is a network trained without cross

object loss. 67

15

3-6 Depiction of “grasp specific point” demonstrations. For each the user

specifies a pixel in a single reference image, and the robot automatically

grasps the best match in test configurations. For single-object demon-

strations, two different points for the caterpillar object are shown: tail

(i) and right ear (ii). Note that the “right-ear” demonstration is an

example of the ability to break symmetry on reasonably symmetrical

objects. For class generalization (iii), trained with consistent, the

robot grasps the class-general point on a variety of instances. This

was trained on only 4 shoes and extends to unseen instances of the

shoe class, for example (iii-i). For instance-specificity (iv) trained with

specific and augmented with synthetic multi object scenes (3.3.3.iii),

the robot grasps this point on the specific instance even in clutter. . . 69

4-1 kPAM is a framework for defining and accomplishing category level

manipulation tasks. The key distinction of kPAM is the use of semantic

3D keypoints as the object representation (a), which enables flexible

specification of manipulation targets as geometric costs/constraints on

keypoints. Using this framework we can handle wide intra-class shape

variation (a) and reliably accomplish category-level manipulation tasks

such as perceiving (b), grasping (c), and (d) placing any mug on a rack

by its handle. A video demo for this task is available on our project page. 74

4-2 An overview of our manipulation formulation using the “put mugs up-

right on the table” task as an example: (a) we train a category level key-

point detector that produces two keypoints: 𝑝bottom_center and 𝑝top_center.

The axis of the mug 𝑣mug_axis is a unit vector from 𝑝bottom_center to

𝑝top_center. (b) Given an observed mug, its two keypoints on bottom

center and top center are detected. The rigid transform 𝑇action, which

represents the robotic pick-and-place action, is solved to move the

bottom center of the mug to the target location 𝑝target and align the

mug axis with the target direction 𝑣target_axis. 78

16

https://sites.google.com/view/kpam

4-3 An overview of the category level pick and place pipeline using our

manipulation formulation. Given a RGBD image with instance seg-

mentation, the semantic 3D keypoints of the object in question are

detected. We then feed these 3D keypoints into an optimization based

planning algorithm to compute the robot pick and place actions, which

is represented by a rigid transformation 𝑇action. Finally, we use an

object-agnostic grasp planner to pick up the object and apply the

computed robot action. 80

4-4 A pose representation cannot capture large intra-category variations.

Here we show different alignment results from a shoe template (blue)

to a boot observation (red). (a) and (b) are produced by [33] with

variation on the random seed, and the estimated transformation consists

of a rigid pose and a global scale. In (c), the estimated transformation

is a fully non-rigid deformation field in [90]. In these examples, the

shoe template and transformations can not capture the geometry of the

boot observation. Additionally, there may exist multiple suboptimal

alignments which make the pose estimator ambiguous. The subsequent

robotic pick and place action from these estimations are different,

despite these alignments being reasonable geometrically. 85

17

4-5 A comparison of the keypoint based manipulation with pose based

manipulation for two different tasks involving mugs. The first row

considers the mug on rack task, where a mug must be hung on a rack

by its handle. (a) Shows a reference mug in the goal state, (b) and (c)

show a scaled down mug instance that could be encountered at test

time. (b) uses keypoint based optimization with a constraint on the

handle keypoint to find the target state for the mug. The optimized

goal state successfully achieves the task of hanging the mug on the rack.

In contrast (c) shows the scaled mug instance at the pose defined by

(a), which leads to the handle of the mug completely missing the rack,

a failure of the task. The second row shows the task of putting a mug

on a table. Again (a) shows a reference mug in a goal state, (b) - (c)

show a scaled up mug that could be encountered at test time. (b) uses

keypoint based optimization with costs/constraints on the bottom and

top keypoints to place the mug in a valid goal state. (c) directly uses

the pose from (a) on the new mug instance which leads to an invalid

goal state where the mug is penetrating the table. 86

4-6 An overview of our experiments. (a) and (b) are the semantic keypoints

we used for the manipulation of shoes and mugs. We use three manipu-

lation tasks to evaluate our pipeline: (c) put shoes on a shelf; (d) put

mugs on a mug shelf; (e) hang mugs on a rack by the mug handles. The

video of these experiments are available on our project page. 88

18

https://sites.google.com/view/kpam

4-7 Quantitative results from the 3 hardware experiments. (a) and (b)

show some of the test objects for the experiments. (c) statistics of the

training data (d) We report the average heel and toe errors (along the

horizontal direction) from their desired locations as well as the standard

deviation. (e) The reported errors for the mug on shelf task are the

distance from the bottom center keypoint to the target location of that

keypoint in the optimization program. (f) reports success rates for the

mug on rack task for different sized mugs. Mugs with handles having

either height or width less than 2cm are classified as “small” (more

details in supplementary material). A trial was deemed successful if

the mug ended up hanging on the rack by the mug handle. Videos of

the experiments are available on our project page. 89

5-1 Examples of autonomous policies, including a variety of non-prehensile,

class-general, and deformable manipulation. Table 5.3 details hardware

results. 99

5-2 Diagram of common visuomotor policy factorization (a), and our pro-

posed model (b) using visual models trained on correspondence. . . . 102

5-3 RGB images used for visuomotor control in each of the simulation tasks.

T=translation, R=rotation, see Appendix for task descriptions. . . . 110

19

https://sites.google.com/view/kpam

5-4 Task success distribution plotted over the 2D projection of the varied

box configurations for the “Reach, T + R” task. The color of each

point represents the result of deploying the learned policy with the

object at that 𝜃, 𝑦. Specifically the color encodes the distance to target

threshold: min(0,−(∆translation + ∆rotation) + 𝜖), where 𝜖 is the

success threshold. The 𝑥 coordinate is not shown in order to plot in

2D. Dark blue corresponds to perfect performance on the task with the

object in that configuration, red is poor performance. Note that the

color scale cuts off at -2 in order to highlight differences in the range

[-2,0]. Each gray “x” in each subplot represents the configurations of

the box in the training set, for either (from top to bottom) 30, 50, or

200 demonstrations. The dashed gray line shows the convex hull of the

respective training sets. 113

5-5 Learned correspondences from demonstration data, depicted as cor-

respondence heatmaps between a source pixel (left, with the green

reticle) and target scenes (right, with red reticle as best predicted

correspondence). 115

5-6 Learned correspondences (left) between a standard-sized shoe and an

extra-tall boot. A small amount of movement near the top of the ankle

on the shoe (far left) corresponds to a “stretched-out” movement on the

boot (right). Images cropped for visualization. Also shown are shoe

train and test instances (far right). 115

20

6-1 (a) Shows the initial pose (blue keypoints) and goal pose (green key-

points) along with the demonstration trajectory. (b) - (d) show the

MPC at different points along the episode. Current keypoints are in

blue, white lines and purple keypoints show the optimized trajectory

from the MPC algorithm, using the learned dynamics model. Goal key-

points are still shown in green. (e) shows the demonstration trajectory

in a 3D visualizer. (f) Illustrates a dynamics model on a category level

task. The actual keypoint trajectory is shown in green; the predicted

trajectory using the learned model shown in blue. (g) Overview of our

hardware setup. (h) Example of visual clutter. 121

6-2 Visualization of the learned visual-correspondence model on a reference

image (left) and target image (right). Colored numbers in the target

image represent the probability that the detected correspondence is

valid. Green reticle shows a valid correspondence with a high confidence

score, red reticle shows a case where no correspondence exists in the

target image due to occlusion, hence the low confidence probability.

Confidence heatmap shown in bottom right. 127

6-3 This figure shows reference descriptors {𝑑𝑖}𝐾𝑖=1 of the Spatial Descrip-

tor Set variant for our different simulation environments. In particular

in (c) the sides of the object undergo occlusions as the box rotates about

the vertical axis. (d)-(e) show two different mugs from the category-level

mugs (category) task. 130

6-4 Left image shows demonstration for trajectory 4. Scatter plots show

results of our approach on the four different reference trajectory tracking

tasks. The axes of the plots show the deviation of the object starting

pose from the initial pose of the demonstration. Color indicates the

distance between final and goal poses, lower cost is better. The various

reference trajectories are of different difficulties, as reflected by the

different regions of attraction of the MPC controller. More details can

be found in Appendix D.5 and videos are on our project page 135

21

https://sites.google.com/view/keypointsintothefuture

A-1 (a) Kuka IIWA LRB robot arm. (b) Schunk WSG 50 gripper with

Primesense Carmine 1.09 attached . 146

B-1 Multi object composite images used in instance segmentation training 153

B-2 A screenshot from our custom keypoint annotation tool. 153

B-3 3D visualization of pointcloud and keypoint detections for the image

from (a). The keypoints are colored as in Figure 4-6. The top center

keypoint is green, the bottom center keypoint is red, and the handle

center keypoint is purple. 154

B-4 Before and after images of the shoe on rack experiment for all 100 trials.156

B-5 Before and after images of the mug on rack experiments for all 120 trials.157

B-6 Before and after images of the mug on shelf experiments for all 118 trials.158

B-7 (a) The RGB image for the single failure trial of the mug on shelf task

that led to the mug being put in an incorrect orientation. In this case

the keypoint detection confused the top and bottom of the mug and it

was placed upside down. (b) The resulting upside down placement of

the mug. 159

B-8 The 5 mugs on the left are the test mugs used in experiment that were

characterized as small. For comparison the four mugs on the right are

part of the regular category. 160

D-1 Overview of our experimental setup, including the two external Re-

alsense D415 cameras. Images from both cameras are used to train the

dense-descriptor model, while only the right camera is used at runtime

to localize the keypoints on the object. 172

D-2 The 4 demonstration trajectories used for the hardware experiments.

The left image of each row shows the starting position blended with

the goal position. The SDS keypoints are shown in teal for each frame.

The green lines show the paths followed by the keypoints moving from

the starting position to the final position. The right image of each row

shows the final/goal position. 174

22

D-3 Scatter plots show results of our approach on the four different reference

trajectory tracking tasks. The axes of the plots show the deviation of the

object starting pose from the initial pose of the demonstration. The top

row shows the deviation in the 𝑥 and 𝑦𝑎𝑤 axes, while the bottom shows

the deviation in the 𝑦 and 𝑦𝑎𝑤 axes. Axes are illustrated in Figure 6-4.

The color indicates the distance between final and goal poses, lower

cost is better. The numerical value is computed as cost = Δpos
3

+ Δangle
30

where ∆pos,∆angle are the translational (in centimeters) and angular

(in degrees) errors between the object’s final position and the goal

position. The costs are rescaled and plotted in the range [0, 1]. The

various reference trajectories, shown in Figure D-2, are of different

difficulties, as reflected by the different regions of attraction of the MPC

controller. Videos of the closed-loop rollouts can be found at project

page. 175

23

https://sites.google.com/view/keypointsintothefuture
https://sites.google.com/view/keypointsintothefuture

24

List of Tables

2.1 Dataset Description . 48

5.1 Summary of simulation results (success rate, as %). DD = Dense

Descriptor. See Appendix for task success criteria and additional details.111

5.2 Comparison of using our feedback-training noise augmentation tech-

nique or not (success rate, as %) on the “Reach, T + R” task. No noise

uses 𝜎𝑖 = 0.0, whereas With noise uses 𝜎translation = 1mm, 𝜎rotation = 1

degree. See Section 5.5.1 for descriptions of GT-2D (ground truth) and

DD-2D (our method). 112

5.3 Summary of task attempts and success rates for hardware validation

experiments. Autonomous re-tries are counted as successes. 114

6.1 Ablations and comparison with ground-truth – quantitative results for

various ablations of our method on four simulated tasks. Each method

was evaluated on the same set of 200 different initial and goal states. The

pos and angle columns denote the translational (in cm) and rotational

(in degrees) deviations of the object from the goal position, averaged

across all trials for a specific method and task. Avg. trajectory denotes

the average translation and rotation between the initial and goal poses

for each task. 131

25

6.2 Comparisons with baselines – quantitative results of our method com-

pared to various baselines on our four simulated tasks. Each method

was evaluated on the same set of 200 different initial and goal states. pos

and angle denote the translational (in cm) and rotational (in degrees)

deviations of the object from the goal position, averaged across all trials

for a specific method and task. 132

D.1 The set of learnable parameters for the different methods during the

dynamics learning phase. For our methods and transporter, these

parameters don’t include the weights of the visual model which remain

fixed during the dynamics learning phase. 167

D.2 Quantitative results of hardware experiments. A trial is considered

a success rate if the final object position was within 3 cm and 30

degrees of the goal pose. Note that, as shown in Figure D-3 the initial

conditions were intentionally chosen to test the region of attraction

of our controller, thus the success rates are not meaningful in and of

themselves and are included only for completeness. The pos (cm) and

angle columns show the deviation of the final object position from the

target. Note that the mean and standard deviation are only calculated

over the successful trials. This serves to give a sense of the accuracy

that can be achieved by using our closed-loop MPC controller. 176

26

Chapter 1

Introduction

One of the goals of robotics, and robotic manipulation specifically, is a general purpose

robot, such as Baymax or C-3PO, that can perform useful tasks. Such a goal is still a

work in progress, but in recent years significant advances have been made in related

fields. AlphaGo [123], a reinforcement learning system trained entirely from self-play,

was able to defeat Lee Sedong, the strongest human player at the time. In follow on

work [122] this approach was generalized and the same algorithmic approach was used

to master not only Go, but also Chess and Shogi. Meanwhile the world of computer

vision was revolutionized in 2012 with the arrival of AlexNet [57]. The following years

saw impressive advances in other visual tasks such as semantic segmentation [67],

object detection and recognition [43] and human pose estimation [4]. Robotics has

also seen impressive advances ranging from autonomous vehicles [142] to humanoid

robots capable of impressively dynamic tasks [10].

For all of these advances most of the widely deployed robotic manipulation systems

haven’t changed much in the last 30 years. Typical robots that are deployed in

auto-factories are still performing repetitive tasks such as welding and painting, where

the robot is following a pre-programmed trajectory without any feedback from the

environment. If we want to improve the usefulness of our robots, we need to move

away from highly structured environments and robots that are performing repetitive

motions with no capability for feedback and adaptation. Liberating ourselves of these

constraints opens up new markets, as exemplified by the explosion of companies

27

(Righthand Robotics, Berkshire Grey, Covariant AI, etc.) that are competing in the

logistics space.

In this thesis we aim to go further and enable our robots to perform complex

manipulation tasks in real world settings. To accomplish this we use a combination of

tools from both classical robotics and modern deep learning. While there are lessons

to be learned from the previously mentioned advances in reinforcement learning and

computer vision, we highlight the unique challenges of the robotic manipulation

problem and propose new algorithms for tackling them.

1.1 Problem Statement

This thesis focuses on the question of how to enable robots to accomplish useful

manipulation tasks in the wild. By in the wild we mean manipulation tasks requiring

any/all of the following; (i) the use of perceptual sensors, i.e. RGBD sensors not

external motion capture systems (ii) manipulating novel objects (iii) manipulating

deformable objects, (iv) real-time closed loop visual feedback.

Robotics has shown large advances in the previous decade with the arrival of

autonomous vehicles [142], humanoid robots that can do parkour [10] and drones

that can navigate autonomously in cluttered GPS-denied environments [127]. These

advances are impressive and one might wonder whether the techniques that led to

those advances can be applied to the area of robotic manipulation. In this thesis

we argue that manipulation presents a unique set of challenges from other areas of

robotics that require novel solutions. A useful device to organize our thinking is to

formulate the manipulation problem using the language of optimal control theory.

min
𝜋

E𝜋

[︃∑︁
𝑡

𝑐(𝑥𝑡, 𝑢𝑡)

]︃
(1.1a)

subject to (1.1b)

𝑥𝑡+1 = 𝑓(𝑥𝑡, 𝑢𝑡) (1.1c)

𝑢𝑡 = 𝜋(𝑥𝑡) (1.1d)

28

I argue that the manipulation problem differs from other areas of robotics in at least

three dimensions. We give a brief overview here and provide further discussion in

Sections 1.3.1 - 1.3.3.

1. In (1.1) the state-space is represented as 𝑥𝑡. For a typical robot this would

often include things such as the robot’s pose and joint angles as well as relevant

information about the environment. In the manipulation domain however, the

challenge is in representing the state of objects that must be manipulated (i.e.

“state of the world”) rather than the state of the robot itself. Defining and

perceiving such an object representation is challenging since it must generalize

to objects that the robot has never encountered before, and must be extracted

from raw perceptual sensory data (e.g. RGB images).

2. The second way in which manipulation is distinct from other areas of robotics

is the specification of the cost function 𝑐(𝑥𝑡, 𝑢𝑡). While for a drone a standard

trajectory tracking cost of the form 𝑐(𝑥𝑡, 𝑢𝑡) = 𝑥𝑇
𝑡 𝑄𝑥𝑡 + 𝑢𝑇

𝑡 𝑅𝑢𝑡 is adequate

for encoding the task, such a quadratic cost cannot easily encode a complex

manipulation task such as “clean up the kitchen” and struggles when dealing

with novel objects.

3. A final difference is that in manipulation problems the dynamics model (1.1c) is

often unknown. As above with regards to the state representation 𝑥𝑡, the part

that is unknown or difficult to model is the dynamics of the objects/world that

the robot is interacting with, rather than the dynamics of the robot itself.

Inspired by these challenges this thesis studies the following three questions.

Question 1: State Space and Object Representation What is an appropriate

state-space and/or object representation for performing manipulation?

Question 2: Task Specification How can we communicate task objectives to the

robot, specifically in the case where the robot must manipulate novel object

instances?

29

Question 3: Feedback Control How can we enable robots to perform closed loop

feedback control for manipulation?

1.2 Contributions

This thesis develops novel contributions in several areas related to robotic manipulation.

∙ Chapter 2 develops a pipeline to rapidly generate ground truth labels for RGBD

data of cluttered scenes. By taking advantage of 3D reconstruction techniques

we are able to vastly increase the efficiency of human labelling efforts. We used

this pipeline to generate a large dataset with object pose labels (352,000 labelled

images, 1,000,000+ object instances) in only a few days. This work previously

appeared as [75].

∙ In Chapter 3 we propose dense descriptors as a useful representation for manip-

ulation. We show how these descriptors can be quickly learned in a completely

self-supervised manner (20 minutes), that they are applicable to a wide variety

of objects and categories of objects, and that they enable novel manipulation

tasks. In hardware experiments we demonstrate using our dense descriptor

representation to grasp specific points on specific objects, including deformable

objects, show that we can achieve this for a specific object in clutter, and also

transfer specific grasps across objects in a class. We also contribute novel training

techniques which allow us to to learn distinct multi-object dense descriptors.

Additionally we show that by modifying the loss function and data sampling

procedure we learn descriptors which either generalize across classes of objects

or are distinct for each object instance. This work was previously published as

[31].

∙ In Chapter 4 we introduce the concept of “category-level“ manipulation tasks,

examples of a category are mugs or shoes, and the task is defined for all instances

of the class, rather than one particular object. To solve these types of tasks,

we introduce both a novel object formulation, semantic 3D keypoints, and

30

a novel task specification that uses geometric costs and constraints on these

keypoints to formally encode the category-level task. In addition we develop a

full perception-to-action manipulation pipeline that factors the manipulation

policy into instance segmentation, 3D keypoint detection, optimization based

planning and local dense-geometry-based action execution. Using this pipeline

we perform extensive hardware experiments demonstrating that our method can

reliably accomplish tasks with never before seen objects from a category that

exhibit large shape, texture and topology variations. This work was previously

published as [74].

∙ Chapter 5 leverages self-supervised correspondence learning to perform efficient

imitation learning. Specifically in hardware experiments we demonstrate four

different tasks requiring real-time closed loop visual feedback. With as few as 50

demonstrations our learned policies can generalize across classes of objects, react

to deformable object configurations and manipulate textureless symmetrical

objects in a variety of backgrounds. This work was previously published as [32].

∙ Chapter 6 develops a novel formulation of dynamics model learning using self-

supervised correspondence as the visual representation. We then show how to

use these learned models in a model-predictive control framework to achieve

closed loop feedback controllers. Using simulated manipulation experiments we

demonstrate that this approach offers performance benefits over a variety of

baselines, and we validate our approach in real-world robot experiments.

∙ We conclude by summarizing our contributions and discussing open questions

and directions for future work in Chapter 7

1.3 Thesis Questions

In this Section we provide an expanded discussion of the three main questions of the

thesis that were posed in Section 1.1.

31

1.3.1 State Space and Object Representations

The first question that we posed asks “what is an appropriate state-space and/or object

representation for performing manipulation?” A standard optimal control formulation

in robotics takes the form (1.1) and we must determine what is an appropriate

representation of 𝑥𝑡. In many areas of robotics, such as flying vehicles or walking

robots, 𝑥𝑡 is the state of the robot itself. For a flying vehicle this could be it’s 6-dof

pose and for a walking robot it may also include the robot’s joint angles. This however,

is not typically the case in manipulation. As defined by Mason in [79] “manipulation

refers to an agent’s control of its environment through selective contact.” In other

words manipulation requires robots to purposefully interact with their environment to

achieve tasks. Thus for robotic manipulation, the environment and the objects in it,

are a fundamental part of the state representation 𝑥𝑡. Knowing the joint angles of

your robot arm is generally not sufficient information for accomplishing meaningful

manipulation tasks. In our view this means that manipulation is concerned with

controlling and modifying the environment rather than oneself. This is in contrast

to the aforementioned cases of flying vehicles or walking robots, which are typically

concerned with moving themselves through an environment, rather that modifying

the environment itself.

Consider the case of a quadrotor that is tasked from moving from point A to point

B. The state of the quadrotor is well represented by it’s 6-DOF pose. To perform this

navigation task the quadrotor additionally requires some form of world representation.

Typically for a collision free navigation task a coarse geometric occupancy map (often

produced by a depth sensor or LIDAR), containing no semantic information, is a

sufficient representation to accomplish the task. In this case the quadrotor can get

away with a very coarse world representation containing no semantic information

since it simply needs to avoid colliding with the environment. In manipulation, on the

other hand, we need to reach out and interact with our environment. So performing a

manipulation task such as loading the dishwasher requires a much richer geometric

and semantic representation of the kitchen environment than is provided by a coarse

32

geometric occupancy map. Thus robot manipulation, which focuses on interacting

with the environment, requires fundamentally different representations than those

needed for moving through the world (e.g. flying robots, walking robots and self-driving

cars).

Object Representations in Manipulation

The classical literature in manipulation has traditionally used 6-DOF pose to represent

objects. If you are dealing with a known rigid object for which you have a mesh

model, then 6-DOF pose completely captures the state of the object. However this

representation has several limitations and drawbacks:

1. The requirement of a known mesh model. This assumption may be satisfied in

some settings, such as industrial assembly, but in many other settings of interest

which are unstructured (e.g. a home environment, a warehouse with a large

number of constantly changing objects) is is unlikely that a mesh model will be

provided for each object that must be manipulated. Although approaches such

as [56] attempt to build a mesh model online in a self-supervised manner, this

remains a challenging problem.

2. Because 6-DOF pose relies on matching to a rigid template model this object

representation doesn’t extend to deformable objects.

3. 6-DOF pose is not well defined for novel object instances. Thus it is not

obvious how a manipulation system that relies on 6-DOF pose as it’s object

representation can interact with and manipulate novel objects. Chapters 3 and

4 propose alternative object representations to 6-DOF pose.

1.3.2 Task Specification

The second question we posed asks “how can we communicate task objectives to the

robot, specifically in the case where the robot must manipulate novel object instances?”.

In other words how do we specify 𝑐(𝑥𝑡, 𝑢𝑡) in Equation (1.1). Traditional manipulation

33

approaches [68, 80] have typically specified tasks in terms of a target 6-DOF poses

of specific objects. Section 1.3.1 presented several drawbacks and limitations of a

pose-based approach. In particular 6-DOF pose is not well-defined for novel object

instances and doesn’t extend to deformable objects. Thus if we are to move beyond

pose as our object representation (in order to overcome the aforementioned limitations)

we will also need new approaches to specify the task. It is important to note that

reinforcement learning approaches, be they model-based or model-free, still face the

challenge of task specification even if the policies don’t explicitly represent objects

using 6-DOF pose. Reinforcement learning assumes access to a reward function, or at

least requires being able to observe the numerical rewards that were accrued during an

episode. Producing these reward values for tasks performed in the real world, rather

than in a simulator or game environment, can be quite challenging. In [64] rewards are

defined in terms of 6-DOF pose and the system uses privileged information at training

time to compute these rewards. A subsequent paper [26] removes this dependence on

priveleged information at training time by embedding observations in a latent space

and specifying goals directly in this latent space. Although many papers [26, 2, 119,

50] have taken this approach specifying the task in a latent space is not generally

guaranteed to correctly specify the goal.

As can be seen by the term 𝑐(𝑥𝑡, 𝑢𝑡) in Equation (1.1), the object representation 𝑥𝑡

is tightly coupled with the task specification, represented by 𝑐(𝑥𝑡, 𝑢𝑡). This coupling of

object representation and task specification is a major focus of Chapter 4 which shows

how categories of objects (such as mugs or shoes) can be represented by semantic 3D

keypoints, and many pick-and-place tasks on these categories of objects (e.g. hang the

mug on the rack by the handle) can be specified via costs and constraints on these

semantic 3D keypoints.

An alternative way to specify tasks is via demonstration. This is the strategy

taken in the approach of Chapter 5, which completely completely bypasses an explicit

definition of 𝑐(𝑥𝑡, 𝑢𝑡) and uses imitation learning to indirectly encode the task.

34

1.3.3 Closed-Loop Feedback Control

The final question we posed asks "how can we enable robots to perform closed loop

feedback control for manipulation?” Given that vision is such an important sensing

modality for manipulation this requires closing the perception-to-action loop. There

are several options for achieving this in practice. The approach in Chapter 5 performs

imitation learning which naturally leads to a closed-loop policy that simply attempts

to imitate the demonstrators action at a particular world state. This can work fairly

well but suffers from the standard limitations of imitation learning, as outlined in

Chapter 6.

If the dynamics model, 𝑓(𝑥𝑡, 𝑢𝑡) in Equation (1.1), is known, then one can apply

tools from optimal control theory to derive a feedback policy [47]. We must caveat

this by mentioning that even in the case of rigid objects with known mesh models

and perfect state estimation, synthesizing a feedback controller for manipulation tasks

(e.g. peg-in-hole insertion, screwing, toppling, assembly, etc.) remains a challenging

task due the hybrid nature of contact dynamics.

If the dynamics model is unknown then we are in the realm of reinforcement

learning. Here there exist at least two main options, model-free RL and model-based

RL. Model-free RL [3, 5, 138] attempts to directly search for a policy from observations

to actions. The other alternative, often denoted as model-based RL, is to learn a

model of the dynamics 𝑓(𝑥𝑡, 𝑢𝑡) and use this model to synthesize a policy. This is the

approach taken in Chapter 6.

1.4 Related Work

There is a broad literature of related work to this thesis. In an attempt to provide a

central and unified view of this related work I will give a brief overview of the main

areas of literature that are relevant to this thesis. Throughout the discussion below

I highlight chapters where additional detail can be found. The two main areas of

related work for this thesis are robotic manipulation and computer vision, with most

of the chapters drawing on techniques techniques from both.

35

The starting point for robotic manipulation are the classical model-based ap-

proaches. This covers the fundamental works [68, 80] along with more modern

approaches such as [47, 91]. These approaches typically assume complete world and

dynamics models, and often rely on the aid of external motion capture systems such

as Vicon [139]. Although many of these works have impresseive reults, they rely on

assumption that oftentimes aren’t satisfied when performing manipulation tasks in

more unstructured environments, specifically the assumptions of known object models

and external state-estimation systems. This leads us to develop alternate approaches

for perception, object representation and task specification. More details can be found

in Chapters 3 and 4.

In recent years there has been an explosion of literature tackling the problem

of robotic grasping [96, 101, 89, 71, 38, 156]. Some of these approaches are very

general in that they work for arbitrary unknown objects, but the downside is that

they cannnot accomplish any manipulation tasks beyond grasping the object and then

dropping it somewhere else, we affectionately label this the “pick-and-drop” problem.

Although grasping is an interesting question, we view it more as a building block in a

larger manipulation system rather than an end in itself. This motivates our desire to

create systems that are both “general” in that they manipulate novel objects, but also

“specific” in being able to accomplish meaningful manipulation tasks beyond just “pick

and drop”. Further discussion can be found in Chapters 3 and 4.

There is a large literature that emerged from the Amazon Picking Challenge (APC)

[156, 114, 16, 160, 44, 88]. The APC required competitors to solve a variety of pick-

and-place type tasks and serves as a nice follow on from the aforementioned grasping

literature since it highlights the challenges of attempting to perform a manipulation

task beyond just “pick-and-drop”. In particular the the APC required teams to

place specific items into specific locations, and pick a specific item out of a cluttered

pile. Thus being able to grasp an arbitrary object from a pile was not sufficient for

accomplishing these types of tasks. The APC demonstrated that perception, and

perceptual representations of objects, plays a major role in manipulation and can

oftentimes be one of the most challenging components. Many APC teams arrived

36

at solutions that essentially combined a “grasp anything” [71, 38, 156] algorithm

together with instance segmentation [43]. Although these systems were impressive

and represented a significant advance in the state of the art, they were still tackling

relatively simple tasks of the form “pick a specific object and drop it in a specified bin”.

The desire to move beyond these “pick-and-drop” style tasks was the motivation for

much of the work in this thesis. Specifically we concluded that achieving this would

require richer visual representations of objects, a focus of Chapters 3, 4.

On the computer vision side we make use of tools from both geometric computer

vision, and modern deep learning approaches. Tools from geometric computer vision

such as TSDF Fusion [17], KinectFusion [95], ElasticFusion [143], etc. are used

extensively throughout this thesis as part of our data-labelling and self-supervision

pipelines. A broad review of these techniques can be found in [130, 41]. These

approaches allow us to take advantage of a geometric view of the world which can

either be used to provide self-supervision, as in Chapter 3, or for augmenting the

efficiency of human labelling, as in Chapters 2 and 4. Since one of our goals in this

thesis is to be able to manipulate novel objects our perceptual systems need to be able

to generalize to unseen objects. This naturally leads us to use modern deep learning

based approaches, which have seen impressive advances in recent years [36]. A central

theme of the thesis is in developing novel approaches to bring state-of-the-art computer

vision techniques to bear on robotic manipulation problems. Chapter 3 combines the

geometrical computer vision approaches with dense pixelwise descriptors [112, 15]

to learn a novel object representation for manipulation. Chapter 4 uses advances in

object detection [104], instance segmentation [43] and keypoint detection [129] along

with geometrical computer vision techniques to define and accomplish category-level

manipulation tasks. A more detailed discussion can be found in Chapters 3 and 4.

Chapter 5 combines both the self-supervised visual representation learning of

Chapter 3 with Imitation Learning and Learning from Demonstration (LfD). For more

detail on imitation learning methods in robotics we refer the reader to existing reviews

[6, 9, 97]. Most related to our approach are methods that perform imitation learning

using visual inputs [28, 118, 98]. More details can be found in Chapter 5.

37

A final area of related work is robot self-supervision for dynamics learning which

can then be used to accomplish tasks in a model-predictive-control framework. This is

in contrast to the approaches of Chapters 3 and 5 where the self-supervision was only

used for the visual representation. Several approaches [24, 2] learn implicit dynamics

models via a video prediction task. In contrast approaches such as [46, 92] don’t solve

the perception problem and instead rely on a handcrafted explicit representation on

which to learn a dynamics model. Finally our work is most related to approaches such

as [2, 93, 151] which still address the perception problem, but learn dynamics in a

lower-dimensional latent space rather than the entire image. Chapter 6 provides more

details.

38

Chapter 2

LabelFusion

2.1 Introduction

Advances in neural network architectures for deep learning have made significant

impacts on perception for robotic manipulation tasks. State of the art networks are

able to produce high quality pixelwise segmentations of RGB images, which can be

used as a key component for 6DOF object pose estimation in cluttered environments

[145, 160]. However for a network to be useful in practice it must be fine tuned on

labeled scenes of the specific objects targeted by the manipulation task, and these

networks can require tens to hundreds of thousands of labeled training examples to

achieve adequate performance. To acquire sufficient data for each specific robotics

application using once-per-image human labeling would be prohibitive, either in time

or money. While some work has investigated closing the gap with simulated data [106,

53, 108, 42], our method can scale to these magnitudes with real data.

In this chapter we tackle this problem by developing an open-source pipeline that

vastly reduces the amount of human annotation time needed to produce labeled RGBD

datasets for training image segmentation neural networks. The pipeline produces

ground truth segmentations and ground truth 6DOF poses for multiple objects in

scenes with clutter, occlusions, and varied lighting conditions. The key components of

the pipeline are: leveraging dense RGBD reconstruction to fuse together RGBD images

taken from a variety of viewpoints, labeling with ICP-assisted fitting of object meshes,

39

and automatically rendering labels using projected object meshes. These techniques

allow us to label once per scene, with each scene containing thousands of images,

rather than having to annotate images individually. This reduces human annotation

time by several orders of magnitude over traditional techniques. We optimize our

pipeline to both collect many views of a scene and to collect many scenes with varied

object arrangements. Our goal is to enable manipulation researchers and practitioners

to generate customized datasets, which for example can be used to train any of the

available state-of-the-art image segmentation neural network architectures. Using

this method we have collected over 1,000,000 labeled object instances in multi-object

scenes, with only a few days of data collection and without using any crowd sourcing

platforms for human annotation.

Our primary contribution is the pipeline to rapidly generate labeled data, which

researchers can use to build their own datasets, with the only hardware requirement

being the RGBD sensor itself. We also have made available our own dataset, which is

the largest available RGBD dataset with object-pose labels (352,000 labeled images,

1,000,000+ object instances). Additionally, we contribute a number of empirical

results concerning the use of large datasets for practical deep-learning-based pixelwise

segmentation of manipulation-relevant scenes in clutter – specifically, we empirically

quantify the generalization value of varying aspects of the training data: (i) multi-

object vs single object scenes, (ii) the number of background environments, and (iii)

the number of views per scene.

2.2 Related Work

We review three areas of related work. First, we review pipelines for generating

labeled RGBD data. Second, we review applications of this type of labeled data to

6DOF object pose estimation in the context of robotic manipulation tasks. Third, we

review work related to our empirical evaluations, concerning questions of scale and

generalization for practical learning in robotics-relevant contexts.

40

2.2.1 Methods for Generating Labeled RGBD Datasets

Rather than evaluate RGBD datasets based on the specific dataset they provide, we

evaluate the methods used to generate them, and how well they scale. Firman [29]

provides an extensive overview of over 100 available RGBD datasets. Only a few of

the methods used are capable of generating labels for 6DOF object poses, and none of

these associated datasets also provide per-pixel labeling of objects. One of the most

related methods to ours is that used to create the T-LESS dataset [45], which contains

approximately 49K RGBD images of textureless objects labeled with the 6DOF pose of

each object. Compared to our approach, [45] requires highly calibrated data collection

equipment. They employ fiducials for camera pose tracking which limits the ability of

their method to operate in arbitrary environments. Additionally the alignment of the

object models to the pointcloud is a completely manual process with no algorithmic

assistance. Similarly, [145] describes a high-precision motion-capture-based approach,

which does have the benefit of generating high-fidelity ground-truth pose, but its

ability to scale to large scale data generation is limited by: the confines of the motion

capture studio, motion capture markers on objects interfering with the data collection,

and time-intensive setup for each object.

Although the approach is not capable of generating the 6 DOF poses of objects, a

relevant method for per-pixel labeling is described in [160]. They employ an automated

data collection pipeline in which the key idea is to use background subtraction. Two

images are taken with the camera at the exact same location – in the first, no object

is present, while it is in the second. Background subtraction automatically yields

a pixelwise segmentation of the object. Using this approach they generate 130,000

labeled images for their 39 objects. As a pixelwise labeling method, there are a

few drawbacks to this approach. The first is that in order to apply the background

subtraction method, they only have a single object present in each scene. In particular

there are no training images with occlusions. They could in theory extend their

method to support multi-object scenes by adding objects to the scene one-by-one,

but this presents practical challenges. Secondly the approach requires an accurately

41

calibrated robot arm to move the camera in a repeatable way. A benefit of the method,

however, is that it does enable pixelwise labeling of even deformable objects.

The SceneNN [48] and ScanNet [18] data generation pipelines share some features

with our method. They both use an RGBD sensor to produce a dense 3D reconstruction

and then perform annotations in 3D. However, since SceneNN and ScanNet are focused

on producing datasets for RGDB scene understanding tasks, the type of annotation that

is needed is quite different. In particular their methods provide pixelwise segmenation

into generic object classes (floor, wall, couch etc.). Neither SceneNN or ScanNet

have gometric models for the specific objects in a scene and thus cannot provide

6DOF object poses. Whereas ScanNet and SceneNN focus on producing datasets for

benchmarking scene understanding algorithms, we provide a pipeline to enable rapid

generation labeled data for your particular application and object set.

2.2.2 Object-Specific Pose Estimation in Clutter for Robotic

Manipulation

There have been a wide variety of methods to estimate object poses for manipulation.

A challenge is object specificity. [145] and [160] are both state of the art pipelines for

estimating object poses from RGBD images in clutter – both approaches use RGB

pixelwise segmentation neural networks (trained on their datasets described in the

previous section) to crop point clouds which are then fed into ICP-based algorithms

to estimate object poses by registering against prior known meshes. Another approach

is to directly learn pose estimation [153]. The upcoming SIXD Challenge 2017 [125]

will provide a comparison of state of the art methods for 6DOF pose estimation on

a common dataset. The challenge dataset contains RGBD images annotated with

ground truth 6DOF object poses. This is exactly the type of data produced by our

pipeline and we aim aim to submit our dataset to the 2018 challenge. There is also a

trend in manipulation research to bypass object pose estimation and work directly

with the raw sensor data [64, 38, 71]. Making these methods object-specific in clutter

could be aided by using the pipeline presented here to train segmentation networks.

42

2.2.3 Empirical Evaluations of Data Requirements for Image

Segmentation Generalization

While the research community is more familiar with the scale and variety of data

needed for images in the style of ImageNet [110], the type of visual data that robots

have available is much different than ImageNet-style images. Additionally, higher

object specificity may be desired. In robotics contexts, there has been recent work in

trying to identify data requirements for achieving practical performance for deep visual

models trained on simulation data [106, 53, 108, 42], and specifically augmenting small

datasets of real data with large datasets of simulation data [106, 53, 108, 42]. We do

not know of prior studies that have performed generalization experiments with the

scale of real data used here.

2.3 Data Generation Pipeline

One of the main contributions of this chapter is an efficient pipeline for generating

labeled RGBD training data. The steps of the pipeline are described in the following

sections: RGBD data collection, dense 3D reconstruction, object mesh generation,

human assisted annotation, and rendering of labeled images.

2.3.1 RGBD Data Collection

A feature of our approach is that the RGBD sensor can either be mounted on an

automated arm, as in Figure (2-1), or the the RGBD sensor can simply be hand-carried.

The benefit of the former option is a reduced human workload, while the benefit of

the latter option is that no sophisticated equipment (i.e. motion capture, external

markers, heavy robot arm) is required, enabling data collection in a wide variety

of environments. We captured 112 scenes using the handheld approach. For the

remaining 26 scenes we mounted the sensor on a Kuka IIWA, as shown in Figure

(2-1). The IIWA was programmed to perform a scanning pattern in both orientation

and azimuth. Note that the arm-automated method does not require one to know

43

Input Output
raw RGBD data,
object meshes

per pixel segmentation,
object poses

Dense Reconstruction Aligned Objects

Human Initial Alignment ICP Local Optimization(a)

(b)

(c) (d)

(e)

(f)

Figure 2-1: Overview of the data generation pipeline. (a) Raw data is collected using
an Xtion RGBD sensor. (b) RGBD data processed by ElasticFusion into reconstructed
pointcloud. (c) User annotation tool that allows for easy alignment using 3 clicks. User
clicks are shown as red and blue spheres. The transform mapping the red spheres to the
green spheres is then the user specified guess. (d) Cropped pointcloud coming from user
specified pose estimate is shown in green. The mesh model shown in grey is then finely
aligned using ICP on the cropped pointcloud. ICP is seeded with the user provided
rough alignment. (e) All the aligned objects shown in reconstructed pointcloud. (f)
The aligned meshes are rendered as masks in all RGB images, producing pixelwise
labeled RGBD images for each view.

the transform between the robot and the camera; everything is done in camera frame.

Our typical logs averaged 120 seconds in duration with data captured at 30Hz by the

Asus Xtion Pro.

2.3.2 Dense 3D Reconstruction

The next step is to extract a dense 3D reconstruction of the scene, shown in Figure

(2-1), from the raw RGBD data. For this step we used the open source implementation

of ElasticFusion [143] with the default parameter settings, which runs in realtime on

our desktop with an NVIDIA GTX 1080 GPU. ElasticFusion also provides camera

pose tracking relative to the local reconstruction frame, a fact that we take advantage

of when rendering labeled images. Reconstruction performance can be affected by the

amount of geometric features and RGB texture in the scene. Most natural indoor

44

scenes provide sufficient texture, but large, flat surfaces with no RGB or depth texture

can occasionally incur failure modes. Our pipeline is designed in a modular fashion so

that any 3D reconstruction method that provides camera pose tracking can be used

in place of ElasticFusion.

2.3.3 Object Mesh Generation

A pre-processing step for the pipeline is to obtain meshes for each object. Once

obtained, meshes speed annotation by enabling alignment of the mesh model rather

than manually intensive pixelwise segmentation of the 3D reconstruction. Using

meshes necessitates rigid objects, but imposes no other restrictions on the objects

themselves. We tested several different mesh construction techniques when building

our dataset. In total there are twelve objects. Four object meshes were generated

using an Artec Space Spider handheld scanner. One object was scanned using Next

Engine turntable scanner. For the four objects which are part of the YCB dataset

[12] we used the provided meshes. One of our objects, a tissue box, was modeled

using primitive box geometry. In addition our pipeline provides a volumetric meshing

method using the VTK implementation of [17] that operates directly on the data

already produced by ElasticFusion. Finally, there exist several relatively low cost

all-in-one solutions [49], [116], [126] which use RGBD sensors such as the Asus Xtion,

Intel RealSense R300 and Occipital Structure Sensor, to generate object meshes. The

only requirement is that the mesh be sufficiently high quality to enable the ICP based

alignment (see section 2.3.4). RGB textures of meshes are not necessary.

2.3.4 Human Assisted Annotation

One of the key contributions of the chapter is in reducing the amount of human

annotation time needed to generate labeled per-pixel and pose data of objects in clutter.

We evaluated several global registration methods [164, 149] to try to automatically

align our known objects to the 3D reconstruction but none of them came close to

providing satisfactory results. This is due to a variety of reasons, but a principle one

45

is that many scene points didn’t belong to any of the objects.

To circumvent this problem we developed a novel user interface that utilizes human

input to assist traditional registration techniques. The user interface was developed

using Director [76], a robotics interface and visualization framework. Typically the

objects of interest are on a table or another flat surface – if so, a single click from

the user segments out the table. The user identifies each object in the scene and

then selects the corresponding mesh from the mesh library. They then perform a

3-click-based initialization of the object pose. Our insight for the alignment stage was

that if the user provides a rough initial pose for the object, then traditional ICP-based

techniques can successfully provide the fine alignment. The human provides the

rough initial alignment by clicking three points on the object in the reconstructed

pointcloud, and then clicking roughly the same three points in the object mesh, see

Figure 2-1 (c). The transform that best aligns the 3 model points, shown in red,

with the three scene points, shown in blue, in a least squares sense is found using the

vtkLandmarkTransform function. The resulting transform then specifies an initial

alignment of the object mesh to the scene, and a cropped pointcloud is taken from

the points within 1cm of the roughly aligned model, as shown in green in Figure 2-1

(d). Finally, we perform ICP to align this cropped pointcloud to the model, using the

rough aligment of the model as the initial seed. In practice this results in very good

alignments even for cluttered scenes such as Figure 2-1 (e).

The entire human annotation process takes approximately 30 seconds per object.

This is much faster than aligning the full object meshes by hand without using the

3-click technique which can take several minutes per object and results in less accurate

object poses. We also compared our method with human labeling (polygon-drawing)

each image, and found intersection over union (IoU) above 80%, with approximately

four orders of magnitude less human effort per image (supplementary figures on our

website http://labelfusion.csail.mit.edu/).

46

http://labelfusion.csail.mit.edu/

2.3.5 Rendering of Labeled Images and Object Poses

After the human annotation step of Section 2.3.4, the rest of the pipeline is automated.

Given the previous steps it is easy to generate per-pixel object labels by projecting

the 3D object poses back into the 2D RGB images. Since our reconstruction method,

ElasticFusion, provides camera poses relative to the local reconstruction frame, and

we have already aligned our object models to the reconstructed pointcloud, we also

have object poses in each camera frame, for each image frame in the log. Given object

poses in camera frame it is easy to get the pixelwise labels by projecting the object

meshes into the rendered images. An RGB image with projected object meshes is

displayed in Figure 2-1 (f).

2.3.6 Discussion

As compared to existing methods such as [145, 45, 105] our method requires no

sophisticated calibration, works for arbitrary rigid objects in general environments,

and requires only 30 seconds of human annotation time per object per scene. Since

the human annotation is done on the full 3D reconstruction, one labeling effort

automatically labels thousands of RGBD images of the same scene from different

viewpoints.

2.4 Results

We first analyze the effectiveness of the LabelFusion data generation pipeline (Section

2.4.1). We then use data generated from our pipeline to perform practical empirical

experiments to quantify the generalization value of different aspects of training data

(Section 2.4.2).

2.4.1 Evaluation of Data Generation Pipeline

LabelFusion has the capability to rapidly produce large amounts of labeled data,

with minimal human annotation time. In total we generated over 352,000 labeled

47

(a) (b)

(c) (d) (e)

Figure 2-2: Examples of labeled data generated by our pipeline: (a) heavily cluttered
multi-object, (b) low light conditions, (c) motion blur, (d) distance from object, (e) 25
different environments. All of these scenes were collected by hand-carrying the RGBD
sensor.

objects 12
distinct scenes 105 single/double object

33 with 6+ objects
unique object instances aligned 339
avg duration of single scene 120 seconds, 3600 RGBD frames
labeled RGBD frames 352,000
labeled object instances 1,000,000+

Table 2.1: Dataset Description

RGBD images, of which over 200,000 were generated in approximately one day by

two people. Because many of our images are multi- object, this amounts to over

1,000,000 labeled object instances. Detailed statistics are provided in Table 2.1. The

pipeline is open-source and intended for use. We were able to create training data in

a wide variety of scenarios; examples are provided in Figure 2-2. In particular, we

highlight the wide diversity of environments enabled by hand-carried data collection,

the wide variety of lighting conditions, and the heavy clutter both of backgrounds and

of multi-labeled object scenes.

48

Figure 2-3: Time required for each step of pipeline.

Figure 2-4: Example segmentation performance (alpha-blended with RGB image) of
network (𝑒) on a multi-object test scene.

For scaling to large scale data collection, the time required to generate data is

critical. Our pipeline is highly automated and most components run at approximately

real-time, as shown in Figure 2-3. The amount of human time required is approximately

30 seconds per object per scene, which for a typical single-object scene is less than

real-time. Post-processing runtime is several times greater than real-time, but is easily

parallelizable – in practice, a small cluster of 2-4 modern desktop machines (quad-core

Intel i7 and Nvidia GTX 900 series or higher) can be made to post-process the data

from a single sensor at real-time rates. With a reasonable amount of resources (one

to two people and a handful of computers), it would be possible to keep up with the

real-time rate of the sensor (generating labeled data at 30 Hz).

49

2.4.2 Empirical Evaluations: How Much Data Is Needed For

Practical Object-Specific Segmentation?

With the capability to rapidly generate a vast sum of labeled real RGBD data, questions

of “how much data is needed?” and “which types of data are most valuable?” are

accessible. We explore practical generalization performance while varying three axes

of the training data: (i) whether the training set includes multi-object scenes with

occlusions or only single-object scenes, (ii) the number of background environments,

and (iii) the number of views used per scene. For each, we train a state-of-the-art

ResNet segmentation network [14] with different subsets of training data, and evaluate

each network’s generalization performance on common test sets. Further experimental

details are provided in our supplementary material; due to space constraints we can

only summarize results here.

Figure 2-5: Comparisons of training on single-object vs. multi-object scenes and
testing on single-object (left) and multi-object (right) scenes.

First, we investigate whether there is a benefit of using training data with heavily

occluded and cluttered multi-object scenes, compared to training with only single-

object scenes. Although they encounter difficulties with heavy occlusions in multi-

object scenes, [160] uses purely single-object scenes for training. We trained five

different networks to enable comparison of segmentation performance on novel scenes

(different placements of the objects) for a single background environment. Results of

segmentation performance on novel scenes (measured using the mean IoU, intersection

over union, per object) show an advantage given multi-object occluded scenes (𝑏)

compared to single-object scenes (𝑎) (Figure 2-5, right). In particular, the average IoU

50

(a)
18 single-

object scenes

(b)
3 multi-

object scenes

(c)
(a) + (b)

(d)
18 multi-

object scenes

(e)
(a) + (d)

RGB
image

Figure 2-6: Comparison of segmentation performance on novel multi-object test scenes.
Networks are either trained on (a) single object scenes only, (b,d), multi-object test
scenes only, or a mixture (c,e).

per object increases 190% given training set (𝑏) instead of (𝑎) in Figure 2-5, right, even

though (𝑏) has strictly less labeled pixels than (𝑎), due to occlusions. This implies

that the value of the multi-object training data is more valuable per pixel than the

single-object training data. When the same amount of scenes for the single-object

scenes are used to train a network with multi-object scenes (𝑑), the increase in IoU

performance averaged across objects is 369%. Once the network has been trained

on 18 multi-object scenes (𝑑), an additional 18 single-object training scenes have no

noticeable effect on multi-object generalization (𝑒). For generalization performance on

single-object scenes (Figure 2-5, left), this effect is not observed; single-object training

scenes are sufficient for IoU performance above 60%.

Second, we ask: how does the performance curve grow as more and more training

data is added from different background environments? To test this, we train different

networks respectively on 1, 2, 5, 10, 25, and 50 scenes each labeled with a single

drill object. The smaller datasets are subsets of the larger datasets; this directly

allows us to measure the value of providing more data. The test set is comprised

of 11 background environments which none of the networks have seen. We observe

a steady increase in segmentation performance that is approximately logarithmic

with the number of training scene backgrounds used (Figure 2-7, left). We also took

51

Figure 2-7: (left) Generalization performance as a function of the number of envi-
ronments provided at training time, for a set of six networks trained on 50 different
scenes or some subset ({1, 2, 5, 10, 25}) of those scenes. (right) Performance on the
same test set of unknown scenes, but measured for the 5 training configurations for
the multi-object, single-environment-only setup described previously.

1 2 5 10 25 50 RGB image
training environments

Figure 2-8: Comparison of segmentation performance on novel background environ-
ments. Networks were trained on {1, 2, 5, 10, 25, 50} background environments.

our multi-object networks trained on a single background and tested them on the

11 novel environments with the drill. We observe an advantage of the multi-object

training data with occlusions over the single-object training data in generalizing to

novel background environments (Figure 2-7, right).

Third, we investigate whether 30 Hz data is necessary, or whether significantly less

data suffices (Figure 2-9). We perform experiments with downsampling the effective

sensor rate both for robot-arm-mounted multi-object single-background training set

(𝑒), and the hand-carried many-environments dataset with either 10 or 50 scenes. For

each, we train four different networks, where one has all data available and the others

have downsampled data at respectively 0.03, 0.3, and 3 Hz. We observe a monotonic

52

(36 scenes)

Robot-arm-mounted data (~0.03 m/s avg. velocity)
Tested on same background

Hand-carried data (~0.05 - 0.17 m/s avg. velocity)
Tested on novel backgrounds

Figure 2-9: Pixelwise segmentation performance as a function of the number of views
per scene, reduced by downsampling the native 30 Hz sensor to {0.03, 0.3, 3.0.} Hz.

increase in segmentation performance as the effective sensor rate is increased, but

with heavily diminished returns after 0.3 Hz for the slower robot-arm-mounted data

(∼0.03 m/s camera motion velocity). The hand-carried data (∼0.05 - 0.17 m/s) shows

more gains with higher rates.

2.5 Conclusion

This chapter introduced LabelFusion, our pipeline for efficiently generating RGBD

data annotated with per-pixel labels and ground truth object poses. Specifically only

a few minutes of human time are required for labeling a scene containing thousands of

RGBD images. LabelFusion is open source and available for community use, and we

also supply an example dataset generated by our pipeline [61].

The capability to produce a large, labeled dataset enabled us to answer several

questions related to the type and quantity of training data needed for practical deep

learning segmentation networks in a robotic manipulation context. Specifically we

found that networks trained on multi-object scenes performed significantly better than

those trained on single object scenes, both on novel multi-object scenes with the same

background, and on single-object scenes with new backgrounds. Increasing the variety

of backgrounds in the training data for single-object scenes also improved generalization

performance for new backgrounds, with approximately 50 different backgrounds

breaking into above-50% IoU on entirely novel scenes. Our recommendation is to

53

focus on multi-object data collection in a variety of backgrounds for the most gains in

generalization performance.

We hope that our pipeline lowers the barrier to entry for using deep learning

approaches for perception in support of robotic manipulation tasks by reducing the

amount of human time needed to generate vast quantities of labeled data for your

specific environment and set of objects. It is also our hope that our analysis of

segmentation network performance provides guidance on the type and quantity of

data that needs to be collected to achieve desired levels of generalization performance.

Acknowledgement

The authors thank Matthew O’Kelly for his guidance with segmentation networks

and manuscript feedback. We also thank Allison Fastman and Sammy Creasey of

Toyota Research Institute for their help with hardware, including object scanning and

robot arm automation. David Johnson of Draper Laboratory and Shuran Song of

Princeton University provided valuable input on training. We are grateful we were

able to use the robot arm testing facility from Toyota Research Insitute. This work

was supported by the Air Force/Lincoln Laboratory award no. 7000374874, by the

Defense Advanced Research Projects Agency via Air Force Research Laboratory award

FA8750-12-1-0321, and by NSF Contract IIS-1427050. The views expressed are not

endorsed by the sponsors.

54

Chapter 3

DenseObjectNets

3.1 Introduction

What is the right object representation for manipulation? While task-specific rein-

forcement learning can achieve impressively dexterous skills for a given specific task

[64], it is unclear which is the best route to efficiently achieving many different tasks.

Other recent work [71, 38] can provide very general grasping functionality but does

not address specificity. Achieving specificity, the ability to accomplish specific tasks

with specific objects, may require solving the data association problem. At a coarse

level the task of identifying individual objects to manipulate can be solved by instance

segmentation, as demonstrated in the Amazon Robotics Challenge (ARC) [114, 84] or

[52]. Whole-object-level segmentation, however, does not provide any information on

the rich structure of the objects themselves, and hence may not be an appropriate

representation for solving more complex tasks. While not previously applied to the

robotic manipulation domain, recent work has demonstrated advances in learning

dense pixel level data association [15, 112], including self-supervision from raw RGBD

data [112], which inspired our present work.

In this chapter we propose and demonstrate using dense visual description as a

representation for robotic manipulation. We demonstrate the first autonomous system

that can entirely self-supervise to learn consistent dense visual representations of

Code, data, and video available: github.com/RobotLocomotion/pytorch-dense-correspondence

55

https://github.com/RobotLocomotion/pytorch-dense-correspondence

objects, and the first system we know of that is capable of performing the manipulation

demonstrations we provide. Specifically, with no human supervision during training,

our system can grasp specific locations on deformable objects, grasp semantically

corresponding locations on instances in a class, and grasp specific locations on specific

instances in clutter. Towards this goal, we also provide practical contributions to

dense visual descriptor learning with general computer vision applications outside of

robotic manipulation. We call our visual representations Dense Object Nets, which

are deep neural networks trained to provide dense (pixelwise) description of objects.

Contributions. We believe our largest contribution is that we introduce dense

descriptors as a representation useful for robotic manipulation. We’ve also shown

that self-supervised dense visual descriptor learning can be applied to a wide variety

of potentially non-rigid objects and classes (47 objects so far, including 3 distinct

classes), can be learned quickly (approximately 20 minutes), and can enable new

manipulation tasks. In example tasks we grasp specific points on objects across

potentially deformed configurations, do so with object instance-specificity in clutter, or

transfer specific grasps across objects in a class. We also contribute novel techniques

to enable multi-object distinct dense descriptors, and show that by modifying the loss

function and sampling procedure, we can either acquire descriptors which generalize

across classes of objects, or descriptors that are distinct for each object instance.

Finally, we contribute general training techniques for dense descriptors which we found

to be critical to achieving good performance in practice.

Chapter Organization. In Section 3.2 we describe related work. As preliminary

in Section 3.3.1 we describe the general technique for self-supervising dense visual

descriptor learning, which is from [112] but reproduced here for clarity. We then

describe additional techniques we’ve developed for object-centric visual descriptors

in Section 3.3.2, and Section 3.3.3 describes techniques for distinct multi-object

descriptors. Section 3.4 describes our experimental setup for our autonomous system,

and Section 5 describes our results: our learned visual descriptors for a wide variety

of objects (Section 3.5.1) multi-object descriptors and selective class generalization

(Sections 3.5.2 and 3.5.3), and robotic manipulation demonstrations (Section 3.5.4).

56

3.2 Related Work

We review three main areas of related work: learned descriptors, self-supervised visual

learning for robots, and robot learning for specific tasks. The task of correspondence

estimation from multiple views of the same scene is fundamental in computer vision,

whereas dense semantic correspondence across different scenes was popularized by [66].

Recent advances have been made by introducing a pixel-wise variant of contrastive loss

[39] combined with deep convolutional networks, as in Choy et al. [15] and Schmidt et

al. [112]. For cross-instance semantic correspondence, [15] relies on human annotations,

while [112] learns these unsupervised, as we do here. Other work [133] uses image

warping to learn descriptors, and most require manually annotated labels [131, 120,

11]. Zeng et al. [158] also uses dense 3D reconstruction to provide automated labeling,

but for descriptors of 3D volume patches. Some of these works [112, 133, 11], like

ours, learn descriptors for specific object instances or classes, while others [158] learn

descriptors for establishing correspondence of arbitrary data. None of these prior

works in dense visual learning involve robots.

In the area of self-supervised visual robot learning, while some recent work has

sought to understand ‘how will the world change given the robot’s action?” [24,

93] in this work we instead ask “what is the current visual state of the robot’s

world?”. We address this question with a dense description that is consistent across

viewpoints, object configurations and (if desired) object classes. At the coarse level

of semantic segmentation several works from the Amazon Robotics Challenge used

robots to automate the data collection and annotation process through image-level

background subtraction [156, 84, 114]. In contrast this work uses 3D reconstruction-

based change detection and dense pixelwise correspondences, which provides a much

richer supervisory signal for use during training.

In the area of robot learning for a specific task there have been impressive works

on end-to-end reinforcement learning [64, 159]. In these papers the goal is to learn a

specific task, encoded with a reward function, whereas we learn a general task agnostic

visual representation. There have also been several works focusing on grasping from

57

RGB or depth images [38, 156, 71, 101]. These papers focus on successfully grasping

any item out of a pile, and are effectively looking for graspable features. They have

no consistent object representation or specific location on that object, and thus the

robotic manipulation tasks we demonstrate in Section 3.5.4, e.g. grasping specific

points on an object across potentially deformed object configurations, are out of scope

for these works.

3.3 Methodology

3.3.1 Preliminary: Self-Supervised Pixelwise Contrastive Loss

We use self-supervised pixelwise contrastive loss, as developed in [15, 112]. This learns

a dense visual descriptor mapping which maps a full-resolution RGB image, R𝑊×𝐻×3

to a dense descriptor space, R𝑊×𝐻×𝐷, where for each pixel we have a 𝐷-dimensional

descriptor vector. Training is performed in a Siamese fashion, where a pair of RGB

images, 𝐼𝑎 and 𝐼𝑏 are sampled from one RGBD video, and many pixel matches and

non-matches are generated from the pair of images. A pixel 𝑢𝑎 ∈ R2 from image

𝐼𝑎 is a match with pixel 𝑢𝑏 from image 𝐼𝑏 if they correspond to the same vertex of

the dense 3D reconstruction (Figure 3-1 (c-f)). The dense descriptor mapping is

trained via pixelwise contrastive loss. The loss function aims to minimize the distance

between descriptors corresponding to a match, while descriptors corresponding to a

non-match should be at least a distance 𝑀 apart, where 𝑀 is a margin parameter.

The dense descriptor mapping 𝑓(·) is used to map an image 𝐼 ∈ R𝑊×𝐻×3 to descriptor

space 𝑓(𝐼) ∈ R𝑊×𝐻×𝐷. Given a pixel 𝑢 we use 𝑓(𝐼)(𝑢) to denote the descriptor

corresponding to pixel 𝑢 in image 𝐼. We simply round the real-valued pixel 𝑢 ∈ R2 to

the closest discrete pixel value 𝑢 ∈ N2, but any continuously-differentiable interpolation

can be used for sub-pixel resolution. We denote 𝐷(·) as the 𝐿2 distance between a pair

of pixel descriptors: 𝐷(𝐼𝑎, 𝑢𝑎, 𝐼𝑏, 𝑢𝑏) , ||𝑓(𝐼𝑎)(𝑢𝑎)− 𝑓(𝐼𝑏)(𝑢𝑏)||2. At each iteration of

training, a large number (on the order of 1 million total) of matches 𝑁matches and

non-matches 𝑁non-matches are generated between images 𝐼𝑎 and 𝐼𝑏. The images are

58

mapped to corresponding descriptor images via 𝑓(·) and the loss function is

ℒmatches(𝐼𝑎, 𝐼𝑏) =
1

𝑁matches

∑︁
𝑁matches

𝐷(𝐼𝑎, 𝑢𝑎, 𝐼𝑏, 𝑢𝑏)
2 (3.1)

ℒnon-matches(𝐼𝑎, 𝐼𝑏) =
1

𝑁non-matches

∑︁
𝑁non-matches

max(0,𝑀 −𝐷(𝐼𝑎, 𝑢𝑎, 𝐼𝑏, 𝑢𝑏))
2 (3.2)

ℒ(𝐼𝑎, 𝐼𝑏) = ℒmatches(𝐼𝑎, 𝐼𝑏) + ℒnon-matches(𝐼𝑎, 𝐼𝑏) (3.3)

3.3.2 Training Procedures for Object-Centric Descriptors

Prior work [112] has used dynamic reconstruction [94] of raw RGBD data for only

within-scene data association and remarkably showed that even without cross-scene

data association, descriptors could be learned that were consistent across many

dynamic scenes of the upper body of a human subject. While dynamic reconstruction

is powerful, the challenges of topology changes [34] and difficulties of occlusion make

it difficult to reliably deploy for an autonomous system. Schmidt et al. [112] also used

data associations from static scene reconstructions for the task of relocalization in

the same static environment. In contrast we sought to use only static reconstruction

but seek consistency for dynamic objects. Other work [133] obtains dense descriptor

consistency for a curated dataset of celebrity faces using only image warping for data

association.

Using our robot mounted camera we are able to reliably collect high quality dense

reconstructions for static scenes. Initially we applied only static-scene reconstruction to

learn descriptors for specific objects, but we found that the learned object descriptors

were not naturally consistent for challenging datasets with objects in significantly

different configurations. Subsequently we developed techniques that leverage 3D

reconstruction change detection, data augmentation, and loss function balancing

to reliably produce consistent object representations with only static-scene data

association for the wide variety of objects we have tested. These techniques also

improve the precision of correspondences, as is discussed in Section 3.5.1. While we

have tried many other ideas (see Appendix A.4.2), these are the techniques that were

59

empirically found to significantly improve performance.

(a) Robot-Automated Data Collection (b) 3D Reconstruction based
Change Detection and

Masked Sampling

(d) Cross Object Loss (e) Direct Multi Object (f) Synthetic Multi Object (c) Background Randomization

Figure 3-1: Overview of the data collection and training procedure. (a) automated
collection with a robot arm. (b) change detection using the dense 3D reconstruction.
(c)-(f) matches depicted in green, non-matches depicted in red.

Object masking via 3D change detection. Since we are trying to learn

descriptors of objects that take up only a fraction of a full image, we observe significant

improvements if the representational power of the models are focused on the objects

rather than the backgrounds. A 640× 480 image contains 307, 200 pixels but an image

in our dataset may have as few as 1,000 to 10,000 of those pixels, or .3%-3%, that

correspond to the object of interest. Initial testing with human-labeled object masks

[78] showed that if matches for data associations were sampled only on the object (while

non-matches were sampled from the full image) then correspondence performance was

significantly improved. In order to provide autonomous object masking without any

human input, we leverage our 3D reconstructions and results from the literature on

3D change detection [22] to recover the object-only part of the reconstruction (Figure

3-1b). Projecting this geometry into each camera frame yields object masks for each

image. We want to emphasize that automatic object masking enables many other

techniques in this chapter, including: background domain randomization, cross-object

loss, and synthetic multi-object scenes.

Background domain randomization. A strategy to encourage cross-scene

consistency is to enforce that the learned descriptors are not reliant on the background.

Since we have autonomously acquired object masks, we can domain randomize [134]

the background (Figure 3-1c top) to encourage consistency – rather than memorizing

the background (i.e. by describing the object by where it is relative to a table edge),

the descriptors are forced to be representative of only the object.

60

Hard-negative scaling. Although as in [112] we originally normalized ℒmatches

and ℒnon-matches by 𝑁matches and 𝑁non-matches, respectively, we found that what we

call the “hard-negative rate”, i.e. the percentage of sampled non-matches for which

𝑀 −𝐷(𝐼𝑎, 𝑢𝑎, 𝐼𝑏, 𝑢𝑏) > 0 would quickly drop well below 1% during training. While

not precisely hard-negative mining [21], we empirically measure improved performance

if rather than scaling ℒnon-matches by 𝑁non-matches, we adaptively scale by the number

of hard negatives in the non-match sampling, 𝑁hard-negatives, where 1 is the indicator

function:

𝑁hard-negatives =
∑︁

𝑁non-matches

1(𝑀 −𝐷(𝐼𝑎, 𝑢𝑎, 𝐼𝑏, 𝑢𝑏) > 0) (3.4)

ℒnon-matches(𝐼𝑎, 𝐼𝑏) =
1

𝑁hard-negatives

∑︁
𝑁non-matches

𝑚𝑎𝑥(0,𝑀 −𝐷(𝐼𝑎, 𝑢𝑎, 𝐼𝑏, 𝑢𝑏))
2 (3.5)

Data augmentation and normalization. While we collect only a modest number

of scenes (4-10) per object or class, we ensure they are diverse in orientations, crops,

and lighting conditions. We also applied synthetic 180-degree rotations randomly to

our images. Additionally we find gains in performance by projecting all features to the

unit sphere, i.e. 𝑓(𝐼)(𝑢)← 𝑓(𝐼)(𝑢)
||𝑓(𝐼)(𝑢)|| when using high-dimensional descriptors spaces

(i.e., more than 𝐷 = 4). This is explained further in Appendix A.4.1.

3.3.3 Multi-Object Dense Descriptors

We of course would like robots to have dense visual models of more than just one

object. When we began this work it wasn’t obvious to us what scale of changes to our

training procedure or model architecture would be required in order to simultaneously

(a) achieve individual single-object performance comparable to a single-object-only

model, while also (b) learn dense visual descriptors for objects that are globally distinct

– i.e., the bill of a hat would occupy a different place in descriptor space than the

handle of a mug. To achieve distinctness, we introduce three strategies:

i. Cross-object loss. The most direct way to ensure that different objects occupy

different subsets of descriptor space is to directly impose cross-object loss (Figure

61

3-1d). Between two different objects, we know that each and every pair of pixels

between them is a non-match. Accordingly we randomly select two images of two

different objects, randomly sample many pixels from each object (enabled by object

masking), and apply non-match loss (with hard-negative scaling) to all of these pixel

pairs.

ii. Direct training on multi-object scenes. A nice property of pixelwise

contrastive loss, with data associations provided by 3D geometry, is that we can

directly train on multi-object, cluttered scenes without any individual object masks

(Figure 3-1e). This is in contrast with training pixelwise semantic segmentation, which

requires labels for each individual object in clutter that may be difficult to attain, i.e.

through human labeling. With pixel-level data associations provided instead by 3D

geometry, the sampling of matches and the loss function still makes sense, even in

clutter.

iii. Synthetic multi-object scenes. We can also synthetically create multi-

object scenes by layering object masks [114]. To use dense data associations through

synthetic image merging, we prune matches that become occluded during layering

(Figure 3-1f). A benefit of this procedure is that we can create a combinatorial number

of “multi-object” scenes from only single object-scenes, and can cover a wide range of

occlusion types without collecting physical scenes for each.

3.4 Experimental

Data Collection and Pre-Processing. The minimum requirement for raw data is

to collect an RGBD video of an object or objects. Figure 3-1 shows our experimental

setup; we utilize a 7-DOF robot arm (Kuka IIWA LBR) with an RGBD sensor

(Primesense Carmine 1.09) mounted at the end-effector. With the robot arm, data

collection can be highly automated, and we can achieve reliable camera poses by

using forward kinematics along with knowledge of the camera extrinsic calibration.

For dense reconstruction we use TSDF fusion [17] of the depth images with camera

poses provided by forward kinematics. An alternative route to collecting data which

62

does not require a calibrated robot is to use a dense SLAM method (for example, [95,

143]). In between collecting RGBD videos, the object of interest should be moved to a

variety of configurations, and the lighting can be changed if desired. While for many

of our data collections a human moved the object between configurations, we have also

implemented and demonstrated (see our video) the robot autonomously rearranging

the objects, which highly automates the object learning process. We employ a Schunk

two-finger gripper and plan grasps directly on the object point cloud (Appendix A.3).

If multiple different objects are used, currently the human must still switch the objects

for the robot and indicate which scenes correspond to which object, but even this

information could be automated by the robot picking objects from an auxiliary bin.

Training Dense Descriptors. For training, at each iteration we randomly

sample between some subset of specified image comparison types (Single Object

Within Scene, Different Object Across Scene, Multi Object Within Scene, Synthetic

Multi Object), and then sample some set of matches and non-matches for each. In this

work, we use only static-scene reconstructions, so pixel matches between images can

be easily found by raycasting and reprojecting against the dense 3D reconstruction

model, and appropriately checking for occlusions and field-of-view constraints. For the

dense descriptor mapping we train a 34-layer, stride-8 ResNet pretrained on ImageNet,

but we expect any fully-convolutional network (FCN) that has shown effectiveness on

semantic segmentation tasks to work well. Additional training details are contained in

Appendix A.4.

63

3.5 Results

Objects used
•  47 objects total
•  275 scenes
8 hats

15 shoes

15 mugs

9 additional objects

Figure 3-2: Learned object descriptors can be consistent across significant deformation
(a) and, if desired, across object classes (b-d). Shown for each (a) and (b-d) are RGB
frames (top) and corresponding descriptor images (bottom) that are the direct output
of a feed-forward pass through a trained network. (e)-(f) shows that we can learn
descriptors for low texture objects, with the descriptors masked for clear visualization.
Our object set is also summarized (right).

3.5.1 Single-Object Dense Descriptors

We observe that with our training procedures described in Section 3.3.2, for a wide

variety of objects we can acquire dense descriptors that are invariant to viewpoint,

configuration, and deformation. The variety of objects includes moderately deformable

objects such as soft plush toys, shoes, mugs, and hats, and can include very low-

texture objects (Figure 3-2). Many of these objects were just grabbed from around

the lab (including the authors’ and labmates’ shoes and hats), and dense visual

models can be reliably trained with the same network architecture and training

parameters. The techniques in Section 3.3.2 provide significant improvement in both

(a) qualitative consistency over a wide variety of viewpoints, and (b) quantitative

precision in correspondences. As with other works that learn pairwise mappings to

some descriptor space [113], in practice performance can widely vary based on specific

sampling of data associations and non-associations used during training. One way to

quantitatively evaluate correspondence precision is with human-labeled (used only

64

for evaluation; never for training) correspondences across two images of an object in

different configurations. Given two images 𝐼𝑎, 𝐼𝑏 containing the same object and pixel

locations 𝑢*
𝑎 ∈ 𝐼𝑎, 𝑢

*
𝑏 ∈ 𝐼𝑏 corresponding to the same physical point on the object, we

can use our dense descriptors to estimate 𝑢*
𝑏 as �̂�𝑏:

�̂�𝑏 , arg min
𝑢𝑏∈𝐼𝑏

𝐷(𝐼𝑎, 𝑢
*
𝑎, 𝐼𝑏, 𝑢𝑏) (3.6)

Figure 3-3 (b-c) shows a quantitative comparison of ablative experiments, for four

different training procedures described in Figure 3-3a. Our new standard single-object

training procedure (standard-SO) performs significantly better than our implemen-

tation of prior work’s training procedures (Schmidt), and we isolate and measure

significant improvement in correspondence precision for both object-masking and

hard-negative scaling. We also find that for some low-texture objects, orientation

randomization and background domain randomization are critical for attaining consis-

tent object descriptors. Otherwise the model may learn to memorize which side of

the object is closest the table, rather than a consistent object model (Figure 3-4b).

Background domain randomization is most beneficial for smaller datasets, where it

can significantly reduce overfitting and encourage consistency (Figure 3-4a); it is less

critical for high-texture objects and larger datasets.

3.5.2 Multi-Object Dense Descriptors

An early observation during experimentation was that overlap in descriptor space

naturally occurs if the same model is trained simultaneously on different singulated

objects, where sampling of matches and non-matches was only performed within scene.

Since there is no component of the loss function that requires different objects to

occupy different subsets of descriptor space, the model maps them to an overlapping

subset of descriptor space, distinct from the background but not each other (Figure

3-5a). Accordingly we sought to answer the question of whether or not we could

separate these objects into unique parts of descriptor space.

By applying cross-object loss (Section 3.3.3.i, training mode specific in Figure 3-

65

single	or	
mul,	
object	
dataset	

masked		
match	
sampling	

scale	by	
hard	
nega,ves	

cross-
object	
loss	

standard-SO	 single	

no-masking	 single	

no-hard-neg	 single	

Schmidt	 single	

consistent	 mul*	

specific	 mul*	

(a) (b) (c)

Figure 3-3: (a) table describing the network training procedures referenced in exper-
iments. (standard-SO = “standard single object”. standard-SO-P is detailed in
Appendix A.4.1). (b) Plots the cdf of the L2 pixel distance (normalized by image diag-
onal, 800 for a 640 x 480 image) between the best match �̂�𝑏 and the true match 𝑢*

𝑏 , e.g.
for standard-SO in 93% of image pairs the normalized pixel distance between 𝑢*

𝑏 and
�̂�𝑏 is less than 13%. All networks were trained on the same dataset. (c) Plots the cdf
of the fraction of pixels 𝑢𝑏 of the object pixels with 𝐷(𝐼𝑎, 𝑢

*
𝑎, 𝐼𝑏, 𝑢𝑏) < 𝐷(𝐼𝑎, 𝑢

*
𝑎, 𝐼𝑏, 𝑢

*
𝑏),

i.e. they are closer in descriptor space to 𝑢*
𝑎 than the true match 𝑢*

𝑏 .

Image #1 (cropped) (i) Without orientation and
background randomization

Image #2 (cropped)

(ii) standard-SO

inconsistent consistent

(a) (b)

Figure 3-4: (a), with same axes as Figure 3-3b, compares standard-SO with without-
DR, for which the only difference is that without-DR used no background domain
randomization during training. The dataset used for (a) is of three objects, 4 scenes
each. (b) shows that for a dataset containing 10 scenes of a drill, learned descriptors
are inconsistent without background and orientation randomization during training
(middle), but consistent with them (right).

66

without cross-object loss with cross-object loss

(a) (b) (c)

Figure 3-5: Comparison of training without any distinct object loss (a) vs. using cross-
object loss (b). In (b), 50% of training iterations applied cross-object loss and 50%
applied single-object within-scene loss, whereas (a) is 100% single-object within-scene
loss. The plots show a scatter of the descriptors for 10,000 randomly-selected pixels
for each of three distinct objects. Networks were trained with 𝐷 = 2 to allow direct
cluster visualization. (c) Same axes as Figure 3-3 (a). All networks were trained on
the same 3 object dataset. Networks with a number label were trained with cross
object loss and the number denotes the descriptor dimension. no-cross-object is a
network trained without cross object loss.

3a), we can convincingly separate multiple objects such that they each occupy distinct

subsets of descriptor space (Figure 3-5b). Note that cross-object loss is an extension

of sampling across scene as opposed to only within scene. Given that we can separate

objects in descriptor space, we next investigate: does the introduction of object

distinctness significantly limit the ability of the models to achieve correspondence

precision for each individual object? For multi-object datasets, we observe that there

is a measurable decrease in correspondence precision for small-dimensional descriptor

spaces when the cross-object loss is introduced, but we can recover correspondence

precision by training slightly larger-dimensional descriptor spaces (Figure 3-5c). For

the most part, 3-dimensional descriptor spaces were sufficient to achieve saturated

(did not improve with higher-dimension) correspondence precision for single objects,

yet this is often not the case for distinct multi-object networks.

3.5.3 Selective Class Generalization or Instance Specificity

Surprisingly we find that when trained simultaneously on similar items of a class

using training mode consistent, the learned descriptors naturally generalize well

across sufficiently similar instances of the class. This result of converging descriptors

67

across a class is similar to the surprising generalization observed for human datasets

in [112, 133]. Here we show that we can obtain class consistent dense descriptors for

3 different classes of objects (hats, shoes, and mugs) trained with only static-scene

data association. We observe that the descriptors are consistent despite considerable

differences in color, texture, deformation, and even to some extent underlying shape.

The training requirements are reasonably modest – only 6 instances of hats were

used for training yet the descriptors generalize well to unseen hats, including a blue

hat, a color never observed during training. The generalization extends to instances

that a priori we thought would be failure modes: we expected the boot (Figure

3-6h) to be a failure mode but there is still reasonable consistency with other shoes.

Sufficiently different objects are not well generalized, however – for example Baymax

and Starbot (Figure 3-2e,f) are both anthropomorphic toys but we do not attain general

descriptors for them. While initially we proposed research into further encouraging

consistency within classes, for example by training a Dense Object Net to fool an

instance-discriminator, the level of consistency that naturally emerges is remarkable

and was sufficient for our desired levels of precision and applications.

For other applications, however, instance-specificity is desired. For example, what

if you would like your robot to recognize a certain point on hat A as distinct from

the comparable point on hat B? Although we could separate very distinct objects in

multi-object settings as discussed in the previous section, it wasn’t obvious to us if we

could satisfactorily separate objects of the same class. We observe, however, that by

applying the multi-object techniques (specific in Figure 3-3) previously discussed, we

can indeed learn distinct descriptors even for very similar objects in a class (Figure

3-6iv).

3.5.4 Example Applications to Robotic Manipulation: Grasp-

ing Specific Points

Here we demonstrate a variety of manipulation applications in grasping specific points

on objects, where the point of interest is specified in a reference image. We emphasize

68

there could be many other applications, as mentioned in the Conclusion. In our

demonstrations, a user clicks on just one pixel 𝑢*
𝑎 in one reference image. Now the

robot has the ability to autonomously identify the corresponding point in new scenes

via Equation 3.6. Akin to other works with similarity learning in metric spaces [113],

we set a simple threshold to determine whether a valid match exists. If a match is

identified in the new scene we can instruct the robot to autonomously grasp this

point by looking up the corresponding location in the point cloud and using simple

geometric grasping techniques (details in Appendix A.3).

The particular novel components of these manipulation demonstrations are in

grasping the visual corresponding points for arbitrary pixels that are either in different

(potentially deformed) configurations (Fig. 3-6i-ii), general across instances of classes

(Fig. 3-6iii), or instance-specific in clutter (Fig. 3-6iv). Our video1 best displays these

tasks. Note that only a dense (as opposed to sparse) method can easily accommodate

the arbitrary selection of interaction points, and class-generalization is out of scope

for hand-designed descriptors such as SIFT. This is also out of scope for general grasp

planners like [38, 156, 71, 101] which lack any visual object representation, and for

segmentation based methods [156, 84, 114] since the visual representation provided by

segmentation doesn’t capture any information beyond the object mask.

(a) (b) (c)

Grasp Best Descriptor Match
in Different Configurations

Location: Tail
Trained: standard-SO

(d) (e) (f)

Reference Image (ii)

Reference Image (i)

Grasp Best Descriptor Match
in Different Configurations

Location: Right ear
Trained: standard-SO

(g) (h) (i)

Grasp Best Descriptor Match
for Class-General Position

Location: Tongue
Trained: consistent

Reference Image (iii)

(j) (k) (l)

Reference Image (iv) Location: Heel
Trained: specific

Grasp Best Descriptor Match
for Instance-Specific Position

1See video (https://youtu.be/L5UW1VapKNE) for extensive videos of the different types of robot
picking.

69

https://youtu.be/L5UW1VapKNE

Figure 3-6: Depiction of “grasp specific point” demonstrations. For each the user
specifies a pixel in a single reference image, and the robot automatically grasps the
best match in test configurations. For single-object demonstrations, two different
points for the caterpillar object are shown: tail (i) and right ear (ii). Note that the
“right-ear” demonstration is an example of the ability to break symmetry on reasonably
symmetrical objects. For class generalization (iii), trained with consistent, the robot
grasps the class-general point on a variety of instances. This was trained on only
4 shoes and extends to unseen instances of the shoe class, for example (iii-i). For
instance-specificity (iv) trained with specific and augmented with synthetic multi
object scenes (3.3.3.iii), the robot grasps this point on the specific instance even in
clutter.

3.6 Conclusion

This work introduces Dense Object Nets as visual object representations which are

useful for robotic manipulation and can be acquired with only robot self-supervision.

Building on prior work on learning pixel-level data associations we develop new

techniques for object-centricness, multi-object distinct descriptors, and learning dense

descriptors by and for robotic manipulation. Without these object centric techniques

we found that data associations from static-scene reconstructions were not sufficient

to achieve consistent object descriptors. Our approach has enabled automated and

reliable descriptor learning at scale for a wide variety of objects (47 objects, and 3

classes). We also show how learned dense descriptors can be extended to the multi

object setting. With new contrastive techniques we are able to train Dense Object

Nets that map different objects to different parts of descriptor space. Quantitative

experiments show we can train these multi object networks while still retaining the

performance of networks that do not distinguish objects. We also can learn class-

general descriptors which generalize across different object instances, and demonstrated

this result for three classes: shoes, hats, and mugs. Using class-general descriptors we

demonstrate a robot transferring grasps across different instances of a class. Finally

we demonstrate that our distinct-object techniques work even for objects which belong

to the same class. This is demonstrated by the robot grasping a specific point on a

target shoe in a cluttered pile of shoes. We believe Dense Object Nets can enable

70

many new approaches to robotic manipulation, and are a novel object representation

that addresses goals (i-iv) stated in the abstract. In future work we are interested to

explore new approaches to solving manipulation problems that exploit the dense visual

information that learned dense descriptors provide, and how these dense descriptors

can benefit other types of robot learning, e.g. learning how to grasp, manipulate and

place a set of objects of interest.

71

Acknowledgments

The authors thank Duy-Nguyen Ta (calibration), Alex Alspach (hardware), Yunzhu

Li (training techniques), Greg Izatt (robot software), and Pat Marion (perception and

visualization) for their help. We also thank Tanner Schmidt for helpful comments in

preparing the paper. This work was supported by: Army Research Office, Sponsor

Award No. W911NF-15-1-0166; Draper Laboratory Incorporated, Sponsor Award No.

SC001-0000001002; Lincoln Laboratory/Air Force, Sponsor Award No. 7000374874;

Amazon Research Award, 2D-01029900; Lockheed Martin Corporation, Sponsor Award

No. RPP2016-002. Views expressed in the chapter are not endorsed by the sponsors.

72

Chapter 4

kPAM: Keypoint Affordances for

Robotic Manipulation

4.1 Introduction

This chapter focuses on pose-aware robotic pick and place at a category level. Con-

trary to single-instance pick and place, the manipulation policy should generalize to

potentially unknown instances in the category with different shape, size, appearance,

and topology. These tasks can be easily described using natural language, for example

“put the mugs upright on the shelf,” “hang the mugs on the rack by their handle” or

“place the shoes onto the shoe rack.” However, converting these intuitive descriptions

into concrete robot actions remains a significant challenge. Accomplishing these types

of tasks is of significant importance to both industrial applications and interactive

assistant robots.

While a large body of work addresses robotic picking for arbitrary objects [38, 157,

54], existing methods have not demonstrated pick and place with an interpretable

and generalizable approach. One way to achieve generalization at the object category

level, and perhaps the most straightforward approach is to attempt to extend existing

instance-level pick and place pipelines with category-level pose estimators [111, 140].

However, as detailed in Sec. 4.4, representing an object with a parameterized pose

defined on a fixed geometric template, as these works do, may not adequately capture

73

.

Figure 4-1: kPAM is a framework for defining and accomplishing category level
manipulation tasks. The key distinction of kPAM is the use of semantic 3D keypoints
as the object representation (a), which enables flexible specification of manipulation
targets as geometric costs/constraints on keypoints. Using this framework we can
handle wide intra-class shape variation (a) and reliably accomplish category-level
manipulation tasks such as perceiving (b), grasping (c), and (d) placing any mug on a
rack by its handle. A video demo for this task is available on our project page.

large intra-class shape or topology variations, and can lead to physically infeasible

target pose for certain instances in the category. Other recent work has developed dense

correspondence visual models, including at a category level, as a general representation

for robot manipulation [31], but did not formulate how to specify and solve the task

of manipulating objects into specific configurations. As a different route to address

category-level pick and place, without an explicit object representation, [37] trains

end-to-end policies in simulation to generalize across the object category. It is unclear,

however, how to measure the reward function for this type of approach in a fully

general way without an object representation that can adequately capture the human’s

intention for the task.

Contributions. Our main contribution is a novel formulation of the category-level

pick and place task which uses semantic 3D keypoints as the object representation.

This keypoint representation enables a simple and interpretable specification of the

manipulation target as geometric costs and constraints on the keypoints, which

flexibly generalizes existing pose-based manipulation targets. Using this formulation,

74

https://sites.google.com/view/kpam

we contribute a manipulation pipeline that factors the problem into 1) instance

segmentation, 2) 3D keypoint detection, 3) optimization-based robot action planning

4) geometric grasping and action execution. This factorization allows us to leverage

well-established solutions for these submodules and combine them into a general and

effective manipulation pipeline. The keypoint representation ignores task-irrelevant

geometric details of the object, making our method robust to large intra-category

shape and topology variations. We experimentally demonstrate the use of this keypoint

representation with our manipulation pipeline on several category-level pick and place

tasks implemented on real hardware. We show that our approach generalizes to novel

objects in the category, and that this generalization is accurate enough to accomplish

tasks requiring centimeter level precision.

Chapter Organization. In Sec. 4.2 we review related work. Sec. 4.3 describes

our formulation of category-level manipulation tasks. The formulation is introduced in

Sec. 4.3.1 using a concrete example, while Sec. 4.3.2 describes the general formulation.

Sec. 4.4 compares our formulation with pose-based pick and place pipelines, highlighting

the flexibility and generality of our method. Sec. 4.5 describes the results of hardware

experiments on 3 different category-level manipulation tasks, specifically showing

generalization to novel object instances. Sec. 4.6 discusses limitations and future work

and Sec. 4.7 concludes.

4.2 Related Work

4.2.1 Object Representations and Perception for Manipula-

tion

There exist a number of object representations, and methods for perceiving these

representations, that have been demonstrated to be useful for robot manipulation.

For a pick and place task involving a known object the standard solution starts by

estimating the object’s 6DOF pose. This allows the robot to then move the object

from it’s estimated pose to the specified target pose. Pose estimation is an extensively

75

studied topic in computer vision and robotics, and existing methods can be generally

classified into geometry-based algorithms [90, 33] and learning-based approaches [135,

140, 111]. There exist several datasets [140, 146] annotated with aligned geometric

templates, and pose estimators [111, 140] trained on these datasets can produce a

category-level pose estimation. Consequently, a straightforward approach to category-

level pose-aware manipulation is to combine single object pick and place pipelines

with these perception systems. However, pose estimation can be ambiguous under

large intra-category shape variations, and moving the object to the specified target

pose for the geometric template can lead to incorrect or physically infeasible states

for different instances within a category of objects. For example knowing the pose

and size of a coffee mug relative to some canonical mug is not sufficient to successfully

hang it on a rack by its handle. A more technical discussion is presented in Sec. 4.4.

Other work has developed and used representations that may be more generalizable

than object-specific pose estimation. Recent work has demonstrated dense visual

descriptors [112] as a fully self-supervised object representation for manipulation that

can generalize at the category level [31]. In comparison with our present work based on

3D keypoints: (i) it is unclear how to extend dense visual descriptors to represent the

full object configuration due to self-occlusions which would require 𝑁 layers of occluded

descriptors, (ii) the sparse keypoint representation may in practice be more effective

at establishing task-relevant correspondence across significant topology variation, and

(iii) correspondence alone may not fully define a class-general configuration-change

manipulation task, but the addition of human-specified geometric costs and constraints

on 3D keypoints may. Keypoints have also been used in prior works as components

of manipulation pipelines. Several prior works demonstrate the manipulation of

deformable objects, and keypoint detection plays a role in their respective perception

pipelines. The detected keypoints are typically used as grasp points [73, 115] or

building blocks for other shape parameterizations, e.g. the polygons in [136, 86, 85] on

which the manipulation policy is defined. These approaches tackled various challenging

manipulation tasks such as bed making and towel folding. In contrast, we propose

a novel category-level manipulation target specification using costs and constraints

76

defined on 3D keypoints. Additionally the state-machine approach in [73, 115] and

manipulation primitives of [136, 85] are specific to cloth and hence our manipulation

task is out of scope for these approaches.

4.2.2 Grasping Algorithms

In recent years there have been significant advances in grasping algorithms that allow

robots to reliably pick up a wide range of objects, including potentially unseen objects.

Among various approaches for grasping, model-based methods [160, 70] typically rely

on a pre-built grasp database of common 3D object models labeled with sets of feasible

grasps. During execution, these methods associate the sensor input with an object

entry in the database for grasp planning. In contrast, model-free methods [157, 38, 72]

directly evaluate the grasp quality from raw sensor inputs. Many of these approaches

achieved promising robustness and generality in the Amazon Picking Challenge [160,

114, 157]. Several works also incorporate object semantic information using instance

masks [114], or non-rigid registrations [107] to accomplish tasks such as picking up a

specific object or transferring a grasp pose to novel instances.

In this work we focus on category-level manipulation tasks which require placing

novel instances of a category into desired goal states. Although the ability to reliably

grasp an object is an important part of our manipulation pipeline, it doesn’t help with

the problem of deciding what to do with the object after it has been grasped. Thus

the tasks that we consider are out of scope for the aforementioned grasping works.

4.2.3 End-to-End Reinforcement Learning

There have been impressive contributions [37, 5] in end-to-end reinforcement learning

with applications to robotic manipulation. In particular, [37] has demonstrated robotic

pick and place across different instances and is the most related to our work. These

end-to-end methods encode a manipulation task into a reward function and train the

policy using trial-and-error.

However, in order to accomplish the category level pose-aware manipulation task,

77

!"#$%&"

'"#$%&"_#)*+

,#-"*./ ∈ 12(3)
6

7
8

Observed
Mug

!9."".:_-&/"&$

!".;_-&/"&$

<:=%_#)*+

(a) (b)

Figure 4-2: An overview of our manipulation formulation using the “put mugs upright
on the table” task as an example: (a) we train a category level keypoint detector that
produces two keypoints: 𝑝bottom_center and 𝑝top_center. The axis of the mug 𝑣mug_axis

is a unit vector from 𝑝bottom_center to 𝑝top_center. (b) Given an observed mug, its two
keypoints on bottom center and top center are detected. The rigid transform 𝑇action,
which represents the robotic pick-and-place action, is solved to move the bottom
center of the mug to the target location 𝑝target and align the mug axis with the target
direction 𝑣target_axis.

these end-to-end methods lack a general, flexible, and interpretable way to specify

the desired configuration, which is required for the reward function. In [37], the

target configuration is implemented specific to the demonstrated task and object

category. Extending it to other desired configurations, object categories and tasks is

not obvious. In this way, using end-to-end reinforcement learning allows the policy to

be learned from experience without worrying about the details of shape variation, but

only transfers the burden of shape variation to the choice and implementation of the

reward function. We believe that our proposed object representation of 3D keypoints

could be used as a solution to this problem.

4.3 Manipulation Formulation

In this section, we describe our formulation of the category level manipulation problem.

Sec. 4.3.1 describes the approach using a concrete example while Sec. 4.3.2 presents

the general formulation.

78

4.3.1 Concrete Motivating Example

Consider the task of “put the mug upright on the table". We want to come up with a

manipulation policy that will accomplish this task for mugs with different size, shape,

texture and topology.

To accomplish this task, we pick 2 semantic keypoints on the mugs: the bottom

center 𝑝bottom_center and the top center 𝑝top_center, as shown in Fig. 4-2 (a). Additionally,

we assume we have a keypoint detector, discussed in Section 4.3.2, that takes as input

raw observations (typically RGBD images or point clouds) and outputs the 3D locations

of the specified keypoints. Note that there is no restriction that the keypoints be

on the object surface, as evidenced by keypoint 𝑝top_center in Fig. 4-2 (a). The 3D

keypoints are usually expressed in the camera frame, but they can be transformed

to an arbitrary frame using the known camera extrinsics. In the following text, we

use p = {𝑝𝑖}𝑁𝑖=1 ∈ 𝑅3×𝑁 to denote the detected keypoint positions in world frame,

where 𝑝𝑖 is the 𝑖th detected keypoint, and 𝑁 is the total number of keypoints. In this

example 𝑁 = 2.

For robotic pick-and-place of mostly rigid objects, we represent the robot action

as a rigid transform 𝑇action on the manipulated object. Thus, the keypoints associated

with the manipulated object will be transformed as 𝑇actionp ∈ 𝑅3×𝑁 using the robot

action. In practice, this action 𝑇action is implemented by first grasping the object using

the algorithm detailed in Sec. 4.3.2 and then planning and executing a trajectory

which ends with the object in the desired target location. This trajectory may require

approaching the target from a specific direction, for example in the “mug upright on

the table” task the mug must approach the table from above.

Given the above analysis, the manipulation task we want to accomplish can be

formulated as finding a rigid transformation 𝑇action such that

1. The transformed mug bottom center keypoint should be placed at some target

location:

||𝑇action𝑝bottom_center − 𝑝target|| = 0 (4.1)

2. The transformed direction from the mug bottom center to the top center should

79

Action Optimization

RGBD image w/ instance
segmentation

3D
Keypoint
Detection
Network

Grasp
Planner

|1�dot(vtarget axis, rot(Taction)vmug axis)|2 (2)

where rot(T) is the rotational component of the rigid transformation T , the target
orientation vtarget axis = [0,0,1]T , and

vmug axis = normalize(ptop center� pbottom center) (3)

An illustration is presented in Fig. 2 (b). The problem above is an inverse kinematic
problem with Taction as the decision variable, a constraint given by Equ. (1) and cost
given by Equ. (2). This inverse kinematic problem can be reliably solved using off-the-
shelf optimization solvers such as [5].

3.2 General Formulation

As illustrated using the mug example in Sec. 3.1, we factor the manipulation policy
into 3 subproblems; 1) category level 3D keypoint detection, 2) an optimization prob-
lem to find the robot action Taction and 3) grasping the object (detailed in Sec. 5.2) and
executing the desired robot action Taction. The manipulation goal is defined as a set of
optimization costs and/or constraints expressed in terms of the keypoints. We empha-
size that there is no explicit pose estimation in our manipulation policy. By completely
avoiding pose estimation we do not need to define a template and align it to obser-
vations, a step which is not easy to accomplish across the large variations seen in a
category of objects. In this way we also circumvent many of the challenges involved
with pose estimation based approaches. For instance the symmetry of the mugs in the
example of Sec. 3.1 is handled naturally without any explicit labelling of the symmetry
axis as in [24].

The optimization used to find the desired robot action T ⇤action can in general be writ-
ten as

minimize:
Taction2SE(3)

f (Taction; p)

subject to:
g(Taction; p) = 0
h(Taction; p) 0

(4)

where f is a scalar cost function, g and h are the equality and inequality constraints, re-
spectively. The robot action Taction is the decision variable of the optimization problem,
and the detected keypoint locations enter the optimization parametrically.

In addition to the constraints used in Sec. 3.1, a wide variety of costs and constraints
can be used in the optimization (4). This allows the user to flexibly specify a wide vari-
ety of manipulation tasks. In practice we found that this specification was rich enough to
cover all of our desired use cases. Although an exhaustive list is infeasible, we present
several costs/constraints used in our experiments:

6

Image 3D �	

Figure 4-3: An overview of the category level pick and place pipeline using our
manipulation formulation. Given a RGBD image with instance segmentation, the
semantic 3D keypoints of the object in question are detected. We then feed these 3D
keypoints into an optimization based planning algorithm to compute the robot pick
and place actions, which is represented by a rigid transformation 𝑇action. Finally, we
use an object-agnostic grasp planner to pick up the object and apply the computed
robot action.

be aligned with the upright direction. This is encoded by adding a cost to the

objective function

||1− ⟨𝑣target_axis, rot(𝑇action)𝑣mug_axis⟩||2 (4.2)

where rot(𝑇) is the rotational component of the rigid transformation 𝑇 , the

target orientation 𝑣target_axis = [0, 0, 1]𝑇 , and

𝑣mug_axis =
𝑝top_center − 𝑝bottom_center

||𝑝top_center − 𝑝bottom_center||
(4.3)

An illustration is presented in Fig. 4-2 (b). The above problem is an inverse kinematics

problem with 𝑇action as the decision variable, a constraint given by Eq. (4.1) and cost

given by Eq. (4.2). This inverse kinematics problem can be reliably solved using

off-the-shelf optimization solvers such as [132]. We then pick up the object using

robotic grasping algorithms [72, 38] and execute a robot trajectory which applies the

manipulation action 𝑇action to the grasped object.

80

4.3.2 General Formulation

Given an arbitrary category-level manipulation task we propose to solve it in the

following manner. First the modeler must specify a set of semantic 3D keypoints

p = {𝑝𝑖}𝑁𝑖=1 for the category, together with a set of geometric costs and constraints

on these keypoints which fully specify the task, e.g. Eq. (4.1)-(4.2). It is up to

the modeler to choose the keypoints, costs and constraints that encode the task.

This step can be seen as analogous to choosing costs and constraints in a trajectory

optimization or planning method, or specifying a reward function in a reinforcement

learning approach. The only restriction on the choice of the 3D keypoints is that

they must be well defined for all instances of the category that might be encountered

at test time. In particular the 3D keypoints need not lie on the object surface, as

demonstrated by 𝑝top_center in Fig. 4-6. The keypoints can also lie in regions of the

object that may be occluded at test time, as exemplified by the 𝑝bottom_center keypoint

in Fig. 4-6 which is subject to self-occlusion when the mug is viewed from the side.

Once we have chosen keypoints together with geometric costs and constraints as

the problem specification there exist natural formulations for each remaining piece of

the manipulation pipeline. This enables us to factor the manipulation policy into 4

subproblems: 1) object instance segmentation 2) category level 3D keypoint detection,

3) a kinematic optimization problem to determine the manipulation action 𝑇action

and 4) grasping the object and executing the desired manipulation action 𝑇action. An

illustration of our complete manipulation pipeline is shown in Fig. 4-3. In the following

sections, we describe each component of our manipulation pipeline in detail.

Instance Segmentation and Keypoint Detection As discussed in Section 4.3.1

the kPAM pipeline requires being able to detect category-level 3D keypoints from

RGBD images of specific object instances. Here we present a specific approach we

used to the keypoint detection problem, but note that any technique that can detect

these 3D keypoints could be used instead.

We use the state-of-the-art integral network [129] for 3D keypoint detection. For

each keypoint, the network produces a probability heatmap and a depth prediction

81

map as the raw outputs. The 2-D image coordinates and depth value are extracted

using the integral operation [129]. The 3-D keypoints are recovered using the calibrated

camera intrinsic parameters. These keypoints are then transformed into world frame

using the camera extrinsics.

We collect the training data for keypoint detection using a pipeline similar to

LabelFusion [75]. Given a scene containing the object of interest we first perform a 3D

reconstruction. Then we manually label the keypoints on the 3D reconstruction. We

note that this does not require pre-built object meshes. Keypoint locations in image

space can be recovered by projecting the 3D keypoint annotations into the camera

image using the known camera calibration. Training dataset statistics are provided

in Fig. 4-7 (c). In total labeling our 117 training scenes took less than four hours of

manual annotation time and resulted in over 100,000 labeled images. Even with this

relatively small amount of human labeling time we were able to achieve centimeter

accurate keypoint detections, enabling us to accomplish challenging tasks requiring

high precision, see Section 4.5. More details on the keypoint detection network are

contained in the supplementary material.

The keypoint detection network [129] requires object instance segmentation as the

input, and we integrate Mask R-CNN [43] into our manipulation pipeline to accomplish

this step. The training data mentioned above for the keypoint detector [129] can

also be used to train the instance segmentation network [43]. Please refer to the

supplemental material for more detail.

kPAM Optimization The optimization used to find the desired robot action 𝑇 *
action

can in general be written as

minimize:
𝑇action∈𝑆𝐸(3)

𝑓(𝑇action;p)

subject to:

𝑔(𝑇action;p) = 0

ℎ(𝑇action;p) ≤ 0

(4.4)

where 𝑓 is a scalar cost function, 𝑔 and ℎ are the equality and inequality constraints,

82

respectively. The robot action 𝑇action is the decision variable of the optimization

problem, and the detected keypoint locations enter the optimization parametrically.

In addition to the constraints used in Sec. 4.3.1, a wide variety of costs and

constraints can be used in the optimization (4.4). This allows the user to flexibly

specify a large variety of manipulation tasks. Below we present several costs/constraints

used in our experiments:

1. L2 distance cost between the transformed keypoint with its nominal target

location:

||𝑇action𝑝𝑖 − 𝑝target_𝑖||2 (4.5)

This is a relaxation of the target position constraint presented in Sec. 4.3.1.

2. Half space constraint on the keypoint:

⟨𝑛plane, 𝑇action𝑝𝑖⟩ ≤ 𝑏plane (4.6)

where 𝑛plane ∈ 𝑅3 and 𝑏plane ∈ 𝑅 defines the separating plane of the half space.

Using the mug in Sec. 4.3.1 as an example, this constraint can be used to ensure

all the keypoints are above the table to avoid penetration.

3. The point-to-plane distance cost of the keypoint

||⟨𝑛plane, 𝑇action𝑝𝑖⟩ − 𝑏plane||2 (4.7)

where 𝑛plane ∈ 𝑅3 and 𝑏plane ∈ 𝑅 defines the plane that the keypoint 𝑝𝑖 should

be in contact with. By using this cost with keypoints that should be placed on

the contact surface, for instance the 𝑝bottom_center of the mug in Sec. 4.3.1, the

optimization (4.4) can prevent the object from floating in the air.

4. The robot action 𝑇action should be within the robot’s workspace and avoid

collisions.

Robot Grasping Robotic grasping algorithms, such as [38, 72], can be used to apply

the abstracted robot action 𝑇action ∈ 𝑆𝐸(3) produced by the kPAM optimization (4.4)

83

to the manipulated object. If the object is rigid and the grasp is tight (no relative

motion between the gripper and object), applying a rigid transformation to the robot

gripper will apply the same transformation to the manipulated object. These grasping

algorithms [38, 70] are object-agnostic and can robustly generalize to novel instances

within a given category.

For the purposes of this work we developed a grasp planner which uses the detected

keypoints, together with local dense geometric information from a pointcloud, to

find high quality grasps. This local geometric information is incorporated with an

algorithm similar to the baseline method of [157]. In general the keypoints used

to specify the manipulation task aren’t sufficient to determine a good grasp on the

object. Thus incorporating local dense geometric information from a depth image or

pointcloud can be advantageous. This geometric information is readily available from

the RGBD image used for keypoint detection, and doesn’t require object meshes. Our

grasp planner leverages the detected keypoints to reduce the search space of grasps,

allowing us to focus our search on, for example, the heel of a shoe or the rim of a mug.

Once we know which aspect of the local geometry to focus on, a high quality grasp

can be found by any variety of geometric or learning-based grasping algorithms [38,

72].

We stress that keypoints are a sparse representation of the object sufficient for

describing the manipulation task. However grasping, which depends on the detailed

local geoemetry, can benefit from denser RGBD and pointcloud data. This doesn’t

detract from keypoints as an object representation for manipulation, but rather shows

the benefits of different representations for different components of the manipulation

pipeline.

4.4 Comparison and Discussions

In this section we compare our approach, as outlined in Sec. 4.3, to existing robotic

pick and place methods that use pose as the object representation.

84

Figure 4-4: A pose representation cannot capture large intra-category variations.
Here we show different alignment results from a shoe template (blue) to a boot
observation (red). (a) and (b) are produced by [33] with variation on the random seed,
and the estimated transformation consists of a rigid pose and a global scale. In (c),
the estimated transformation is a fully non-rigid deformation field in [90]. In these
examples, the shoe template and transformations can not capture the geometry of
the boot observation. Additionally, there may exist multiple suboptimal alignments
which make the pose estimator ambiguous. The subsequent robotic pick and place
action from these estimations are different, despite these alignments being reasonable
geometrically.

4.4.1 Keypoint Representation vs Pose Representation

At the foundation of existing pose-estimation methods is the assumption that the

geometry of the object can be represented as a parameterized transformation defined

on a fixed template. Commonly used parameterized pose families include rigid, affine,

articulated or general deformable. For a given observation (typically an RGBD image

or pointcloud), these pose estimators produce a parameterized transformation that

aligns the geometric template to the observation.

However, the pose representation is not able to capture large intra-category shape

variation. An illustration is presented in Fig. 4-4, where we try to align a shoe template

(blue) to a boot observation (red). The alignments in Fig. 4-4 (a) and (b) are produced

by [33] where the estimated transformation consists of a rigid pose and a global scale.

Fig. 4-4 (c) is produced by [90] and the estimated transformation is a fully non-rigid

deformation field. In these examples, the shoe template and transformations cannot

capture the geometry of the boot observation. Additionally, there may exist multiple

suboptimal alignments which make the pose estimator ambiguous, as shown in Fig. 4-4.

Feeding these ambiguous estimations into a pose-based manipulation pipeline will

produce different pick and place actions and final configurations of the manipulated

85

Reference
(pose and keypoints)

Keypoint-based
transfer

Pose-based
transfer (not “on rack”) (“on rack”)

(a) (b) (c)

(d) (e) (f)

(penetrating) (on table)

Figure 4-5: A comparison of the keypoint based manipulation with pose based
manipulation for two different tasks involving mugs. The first row considers the mug
on rack task, where a mug must be hung on a rack by its handle. (a) Shows a reference
mug in the goal state, (b) and (c) show a scaled down mug instance that could be
encountered at test time. (b) uses keypoint based optimization with a constraint on
the handle keypoint to find the target state for the mug. The optimized goal state
successfully achieves the task of hanging the mug on the rack. In contrast (c) shows
the scaled mug instance at the pose defined by (a), which leads to the handle of the
mug completely missing the rack, a failure of the task. The second row shows the task
of putting a mug on a table. Again (a) shows a reference mug in a goal state, (b) - (c)
show a scaled up mug that could be encountered at test time. (b) uses keypoint based
optimization with costs/constraints on the bottom and top keypoints to place the
mug in a valid goal state. (c) directly uses the pose from (a) on the new mug instance
which leads to an invalid goal state where the mug is penetrating the table.

object.

In contrast, we use semantic 3D keypoints as a sparse but task-specific object

representation for the manipulation task. Many existing works demonstrate accurate

3D keypoint detection that generalizes to novel instances within the category. We

leverage these contributions to build a robust and flexible manipulation pipeline.

Conceptually, a pose representation can also be transformed into keypoint rep-

resentation given keypoint annotations on the template. However, in practice the

transformed keypoints can be inaccurate as the template and the pose cannot fully

capture the geometry of new instances. Using the shoe keypoint annotation in Fig. 4-6

as an example, transforming the keypoints 𝑝5 and 𝑝6 to a boot using the shoe to boot

86

alignment in Fig 4-4 would result in erroneous keypoint detections. A general non-rigid

kinematic model (and the associated estimator) that can handle large variations of

shape and topology, such as in the example of Fig. 4-4, remains an open problem.

Our method avoids this problem by sidestepping the geometric alignment phase and

directly detecting the 3D keypoint locations.

4.4.2 Keypoint Target vs Pose Target

For existing pose-based pick and place pipelines, the manipulation task is defined as a

target pose of the objects. For a given scene where the pose of each object has been

estimated, these pipelines grasp the object in question and use the robot to move the

objects from their current pose to the target pose.

The proposed method can be regarded as a generalization of the pose-based pick

and place algorithms. If we detect 3 or more keypoints and assign their target

positions as the manipulation goal, then this is equivalent to pose-based manipulation.

In addition, our method can specify more flexible manipulation problems with explicit

geometric constraints, such as the bottom of the cup must be on the table and its

orientation must be aligned with the upright direction, see Sec. 4.3.1. The proposed

method also naturally generalizes to other objects within the given category, as the

keypoint representation ignores many task-irrelevant geometric details.

On the contrary a pose target is object-specific and defining a target pose at the

category level can lead to manipulation actions that are physically infeasible. Consider

the mug on table task from Section 4.3.1. Fig. 4-5 (d) shows the target pose for the

reference mug model. Directly applying this pose to the scaled mug instance in Fig.

4-5 (f) leads to physically infeasible state where the mug is penetrating the table. In

contrast, using the optimization formulation of Section 4.3 results in the mug resting

stably on the table, shown in Fig. 4-5 (e).

In addition to leading to states which are physically infeasible, pose-based targets

at a category level can also lead to poses which are physically feasible but fail to

accomplish the manipulation task. Figures 4-5 (a) - (c) show the mug on rack task.

In this task the goal is to hang a mug on a rack by its handle. Fig. 4-5 (a) shows

87

Figure 4-6: An overview of our experiments. (a) and (b) are the semantic keypoints
we used for the manipulation of shoes and mugs. We use three manipulation tasks to
evaluate our pipeline: (c) put shoes on a shelf; (d) put mugs on a mug shelf; (e) hang
mugs on a rack by the mug handles. The video of these experiments are available on
our project page.

the reference model in the goal state. Fig. 4-5 (c) shows the result of applying the

pose based target to the scaled down mug instance. As can be seen even though the

pose unambiguously matches the target pose exactly, this state doesn’t accomplish

the manipulation task since the mug handle completely misses the rack. Fig. 4-5 (b)

shows the result of our kPAM approach. Simply by adding a constraint that handle

center keypoint should be on the rack, a valid goal state is returned by the kPAM

optimization.

4.5 Results

In this section, we demonstrate a variety of pose-aware pick and place tasks using our

keypoint-based manipulation pipeline. The particular novelty of these demonstrations

is that our method is able to handle large intra-category variations without any

instance-wise tuning or specification. We utilize a 7-DOF robot arm (Kuka IIWA

LBR) mounted with a Schunk WSG 50 parallel jaw gripper. An RGBD sensor

(Primesense Carmine 1.09) is also mounted on the end effector. The video demo on

88

https://sites.google.com/view/kpam

test
objects

Trials Placed on shelf Heel Error (cm) Toe Error (cm)

20 100 98% 1.09 ± (1.29) 4.34 ± (3.05)

Initial
Orientation

test objects # Trials Placed upright on
shelf

< 3cm
error

< 5cm
error

Upright 40 80 100% 97.5% 100%

Horizontal 19 38 97.3% 89.4% 94.7%

Mug Size # test objects # Trials Success Rate

Regular 25 100 100%

Small 5 20 50%

(d) Shoes on Rack

(e) Mugs on Shelf

(f) Mugs on Rack

(a) Test Shoes

(b) Test Mugs

Object Type # train objects # scenes # images

Shoe 10 43 39,403

Mug 21 74 70,094

(c) Training dataset statistics

Figure 4-7: Quantitative results from the 3 hardware experiments. (a) and (b) show
some of the test objects for the experiments. (c) statistics of the training data (d)
We report the average heel and toe errors (along the horizontal direction) from their
desired locations as well as the standard deviation. (e) The reported errors for the
mug on shelf task are the distance from the bottom center keypoint to the target
location of that keypoint in the optimization program. (f) reports success rates for the
mug on rack task for different sized mugs. Mugs with handles having either height or
width less than 2cm are classified as “small” (more details in supplementary material).
A trial was deemed successful if the mug ended up hanging on the rack by the mug
handle. Videos of the experiments are available on our project page.

our project page best demonstrates our solution to these tasks. More details about

the experimental setup are included in the supplemental material.

4.5.1 Put shoes on a shoe rack

Task Description

Task Description Our first manipulation task is to put shoes on a shoe rack, as

shown in Fig. 4-6 (c). We use shoes with different appearance and geometry to evaluate

the generality and robustness of our manipulation policy. The six keypoints used in

this manipulation task are illustrated in Fig 4-6 (a), and the costs and constraints in

the optimization (4.4) are

89

https://sites.google.com/view/kpam
https://sites.google.com/view/kpam

1. The L2 distance cost (4.5) between keypoints 𝑝1, 𝑝2, 𝑝3 and 𝑝4 to their nominal

target locations.

2. The sole of the shoe should be in contact with the rack surface. In particular,

the point-to-plane cost (4.7) is used to penalize the deviation of keypoints 𝑝2, 𝑝3

and 𝑝4 from the supporting surface.

3. All the keypoints should be above the supporting surface to avoid penetration.

A half-space constraint (4.6) is used to enforce this condition.

For our experiments we place the shoe rack in a known position, but this constraint

could be easily relaxed by adding a pose-estimation module for the shoe-rack.

Experimental Results The shoe keypoint detection network was trained on a

labeled dataset of 10 shoes, detailed in Figure 4-7 (c). Experiments were conducted

with a held out test set of 20 shoes with large variations in shape, size and visual

appearance (more details in the video and supplemental material). For each shoe

we ran 5 trials of the manipulation task. Each trial consisted of a single shoe being

placed on the table in front of the robot. Using the kPAM pipeline the robot would

pick up the shoe and place it on a shoe rack. The shoe rack was marked so that the

horizontal deviation of the shoe’s toe and heel bottom keypoints (𝑝1 and 𝑝4 respectively

in Fig. 4-6) from their nominal target locations could be determined. Quantitative

results are given in Fig. 4-7 (d). Out of 100 trials only twice did the pipeline fail to

place the shoe on the rack. Both failures were due to inaccurate keypoint detections.

One led to a failed grasp and another to an incorrect 𝑇action. For trials which ended

up with the shoe on the rack average errors for the heel and toe keypoint locations

are given in Fig. 4-7 (d). During the course of our experiments we noticed that the

majority of these errors come from the fact that when the robot grasps the shoe by

the heel the closing of the gripper often results in the object shifting from the position

it was in when the RGBD image used for keypoint detection was captured. This

accounts for the majority of the errors observed in the final heel and toe keypoint

locations. The keypoint detections and resulting 𝑇action would have almost always

results in heel and toe errors of less than 1 cm if we were able to exactly apply 𝑇action

90

to the object. Since our experimental setup relies on a wrist mounted camera we

are not able to re-perceive the object after grasping it. We believe that these errors

could be further reduced by adding an external camera that would allow us to re-run

our keypoint detection after grasping the object to account for any object movement

during the grasp. Overall kPAM approach was very successful at the shoes on rack

task with a greater than 97% success rate.

4.5.2 Put mugs upright on a shelf

Task Description We also perform a real-world demonstration of the “put mugs

upright on a shelf" task described in Sec. 4.3.1, as shown in Fig. 4-6 (d). The keypoints

used in this task are illustrated in Fig. 4-6 (b). The costs and constraints for this task

include the target position constraint (4.1) and the axis alignment constraint (4.2).

This task is very similar to the mugs task in [37]. For this set of experiments we

didn’t place any costs or constraints on the yaw degree of freedom of the mug, but

if a specific yaw orientation was desired this could be incorporated by adding an L2

cost (4.5) between the 𝑝handle_center keypoint with its target location.

Experimental Results The mug keypoint detection network was trained on a

dataset of 21 standard sized mugs, detailed in Fig. 4-7 (c). Experiments for the mug

on shelf task were conducted using a held out test set of 40 mugs with large variations

in shape, size and visual appearance (more details in the video and supplemental

material). All mugs could be grasped when in the upright orientation, but due to the

limited stroke of our gripper (7.5cm when fully open) only 19 of these mugs could

be grasped when lying horizontally. For mugs in that could be grasped horizontally

we ran two trials with the mug starting from a horizontal orientation, and two trials

with the mug in a vertical orientation. For the remaining mugs we ran two trials for

each mug with the mug starting in an upright orientation. Quantitative performance

was evaluated by recording whether the mug ended up upright on the shelf, and the

distance of the mug’s bottom center keypoint to the target location. Results are shown

in Fig. 4-7 (e). Overall our system was very reliable, managing to place the mug on

the shelf within 5cm of the target location in all but 2 trials. In one of these failures

91

the mug was placed upside down. In this case the mug was laying horizontally on the

table and the RGB image used in keypoint detection (see Fig. B-7 in the Appendix)

was taken from a side-on profile where the handle is occluded and it is very difficult to

distinguish the top from the bottom of the mug. This led our keypoint detector to mix

up the top and bottom of the mug, causing it to be placed upside down. The keypoint

detection error is understandable in this case since it is very difficult to distinguish

the top from the bottom of this mug in the single RGBD image. In addition this

particular instance was a small kids sized mug, whereas all the training data for mugs

contained only regular sized mugs. See Section 4.6 for more discussion on this failure.

Overall the accuracy in the mug on shelf task was very high, with 97% of upright

trials, and 88% of horizontal trials resulting in bottom keypoint final location errors of

less than 3cm. Qualitatively the majority of this error arose from the object moving

slightly during the grasping process with the rest attributed to the keypoint detection.

4.5.3 Hang the mugs on the rack by their handles

Task Description To demonstrate the accuracy and robustness of our method we

tasked the robot with autonomously hanging mugs on a rack by their handle. An

illustration of this task is provided in Fig. 4-6 (e). The relatively small mug handles

(2-3 centimeters) challenge the accuracy of our manipulation pipeline. The costs and

constraints in this task are

1. The target location constraint (4.1) between 𝑝handle_center to its target location

on the rack axis.

2. The keypoint L2 distance cost (4.5) from 𝑝top_center and 𝑝bottom_center to their

nominal target locations.

In order to avoid collisions between the mug and an intermediate goal for the mug

was specified. Using the notation of (4.4) this intermediate goal 𝑇approach was gotten

by shifting 𝑇action away from the rack by 10cm along the direction of the target peg.

We then executed the final placement by moving the end effector in a straight line

92

connecting 𝑇approach to 𝑇action. During these experiments the mug-rack was placed in a

fixed known position, but this constraints be easily relaxed by adding a pose-estimation

module for the mug-rack.

Experimental Results For the mug on rack experiments we used the same keypoint

detection network as for the mug on shelf experiments. Experiments were conducted

using a held out test set of 30 mugs with large variation in shape, texture and topology.

Of these 5 were very small mugs whose handles had a minimum dimension (either

height or width) of less than 2cm (see the supplementary material for more details).

We note that the training data did not contain any such “small” mugs. Each trial

consisted of placing a single mug on the table in front of the robot. Then the kPAM

pipeline was run and a trial was recorded as successful if the mug ended up hanging

on the rack by its handle. Five trials were run for each mug and quantitative results

are reported in Fig. 4-7 (e). For regular sized mugs we were able to hang them on

the rack with a 100% success rate. The small mugs were much more challenging but

we still achieved a 50% success rate. The small mugs have very tiny handles, which

stresses the accuracy of the entire system. In particular the total error of the keypoint

detection, grasping and execution needed to successfully complete the task for the

small mugs was on the order of 1-1.5 cm. Two main factors contributed to failures in

the mug on rack task. The first, similar to the case of shoe on rack task, is that during

grasping the closing of the gripper often moves the object from the location at which it

was perceived. Even a small disturbance (i.e. < 1cm) can lead to a failure in the mug

on rack task since the required tolerances are very small. The second contributing

factor to failures is inaccurate keypoint detections. Again an inaccurate detection

of even 0.5-1cm can be sufficient for the mug handle to miss the rack entirely. As

discussed previously, the movement of the object during grasping could be alleviated

by the addition of an external camera that would allow us to re-perceive the object

after grasping.

93

4.6 Limitations and Future Work

Our current data collection pipeline in Sec. 4.3.2 requires human annotation, although

the use of 3D reconstruction somewhat alleviates this manual labor. An interesting

direction for future work is to train our keypoint detector using synthetic data, as

demonstrated in [135, 140].

Representing the robot action with a rigid transformation 𝑇action is valid for robotic

pick-and-place. However, this abstraction does not work for deformable objects or more

dexterous manipulation actions on rigid objects, such as the in-hand manipulation

in [5]. Combining these learning-based or model-based approaches with the keypoint

representation to build a manipulation policy that generalizes to categories of objects

would is a promising direction for future work. In addition to the usage in our pipeline,

we believe that the keypoint representation can potentially contribute to various

learning-based manipulation approaches as 1) a reward function to flexibly specify

the manipulation target or 2) an alternative input to the policy/value neural network,

which is more robust to shape variation and large deformation than the widely-used

pose representation.

4.7 Conclusion

In this chapter we contribute a novel formulation of category-level manipulation which

uses semantic 3D keypoints as the object representation. Using keypoints to represent

the object enables us to simply and interpretably specify the manipulation target as

geometric costs and constraints on the keypoints, which flexibly generalizes existing

pose-based manipulation methods. This formulation naturally allows us to factor

the manipulation policy into the 3D keypoint detection, optimization-based robot

action planning and grasping based action execution. By factoring the problem we

are able to leverage advances in these sub-problems and combine them into a general

and effective perception-to-action manipulation pipeline. Through extensive hardware

experiments, we demonstrate that our pipeline is robust to large intra-category shape

94

variation and can accomplish manipulation tasks requiring centimeter level precision.

Acknowledgements

The authors thank Ethan Weber (instance segmentation training data generation)

and Pat Marion (visualization) for their help. This work was supported by: National

Science Foundation, Award No. IIS-1427050; Draper Laboratory Incorporated, Award

No. SC001-0000001002; Lockheed Martin Corporation, Award No. RPP2016-002;

Amazon Research Award.

95

96

Chapter 5

Self-Supervised Correspondence in

Visuomotor Policy Learning

5.1 Introduction

To achieve general-purpose manipulation skills, robots will need to use vision-based

policies and learn new tasks in a scalable fashion with limited human supervision.

For visual training, prior work has often used methods such as end-to-end training

[64], autoencoding [27], and pose-based losses [64, 162]. These methods, however,

have not benefitted from the rich sources of self-supervision that may be provided

by dense three-dimensional computer vision techniques [69, 100, 112], for example

correspondence learning which robots can automate without human input [31].

Correspondence is fundamental in computer vision, and we believe it has funda-

mental usefulness for robots learning complex tasks requiring visual feedback. In this

chapter we introduce using self-supervised correspondence for visuomotor policies,

and our results suggest this enables policy learning that is surprisingly capable. Our

evaluations pair correspondence training with a simple imitation learning objective,

and extensive hardware validation shows that learned policies can address challenging

scenarios: manipulating deformable objects, generalizing across a class of objects, and

visual challenges such as textureless objects, clutter, moderate occlusion, and lighting

variation (Fig 5-1). Additionally our simulation-based comparisons empirically suggest

97

that our method offers significant generalization and sample complexity advantages

compared to existing methods for training visuomotor policies, while requiring no

additional human supervision. To bound our method’s scope: while spatial corre-

spondence alone cannot suffice for all tasks (for example, it cannot discriminate when

to be finished cooking eggs), there is a wide set of tasks for which dense spatial

correspondence may be useful: essentially any spatial manipulation task.

5.1.1 Contributions

Our primary contribution is (i) a novel formulation of visuomotor policy learning

using self-supervised correspondence. Through simulation experiments (ii) we measure

that this approach offers sample complexity and generalization benefits compared to a

variety of baselines, and (iii) we validate our method in real world experiments. We

believe that compared to the existing state of the art in robotic manipulation, the

abilities of our learned policies represent exciting levels of performance, especially the

generalization across challenging scenarios (category-level manipulation, deformable

objects, visually challenging scenes) and with limited data (between 50 and 150 demon-

strations). We also (iv) introduce a novel data augmentation technique for behavior

cloning, and (v) demonstrate a new technique for multi-camera time-synchronized

dense spatial correspondence learning.

5.2 Related Work

We focus our related work review around two topics: visual training methods for

visuomotor policies, and approaches for providing the policy learning signal. An

overview of the broader topic of robot learning in manipulation is provided in [58]. For

more related work in self-supervised robotic visual learning, including correspondence

learning, we refer to the reader to [31].

98

Time Finish

Different configurations

TimeDifferent novel (unseen) instances

Time

Time

Time

(a)

(b)

(c)

(d)

(e)

(b)

Disturbances

DisturbancesDeformable object

Extrinsic dexterity

Figure 5-1: Examples of autonomous policies, including a variety of non-prehensile,
class-general, and deformable manipulation. Table 5.3 details hardware results.

99

5.2.1 Visual Training Methods for Visuomotor Policies

There have been three primary methods used in the robot learning literature to train

the visual portion of visuomotor policies. Often these methods are used together –

for example [64, 162] use pose-based losses together with end-to-end training. (1)

End-to-End training. This approach can be applied to any learning signal that is

formed as a consequence of a robot’s actions, for example through imitation learning

or reinforcement learning. While often end-to-end training is complemented with other

learning signals, other works use purely end-to-end training. (2) Autoencoders.

Autoencoding can be applied to any data with no supervision and is commonly used

to aid visuomotor policy learning [27, 150, 25, 35, 137, 103]. Sometimes polices are

learned with a frozen encoder [27, 150, 25], other times in conjunction with end-to-end

training [103]. (3) Pose-based losses. In [64], for example, a separate dataset is

collected of the robot holding objects, and assuming that the objects are rigid and

graspable, then using the robot’s encoders and forward kinematics the visual model

can be trained to predict the object pose. In [162], pose-based auxiliary losses are used

regardless of whether or not objects are held – we wouldn’t expect this to learn how to

predict object configurations unless they are also rigid and grasped. Simulation-based

works [51] have also used auxiliary losses for object and gripper positions.

In our comparison experimentation, we include end-to-end training and autoen-

coding, but not pose-based losses, since they are not applicable to deformable or

un-graspable objects. While the above are three of the most popular, other vi-

sual training methods include: training observation dynamics models [2, 20], using

time-contrastive learning [119], or using no visual training and instead using only

generic pre-trained visual features [117]. Relevant concurrent works include [59] which

proposes autoencoder-style visual training but with a reference image and novel archi-

tecture, and [121] which proposes a graph-based reward function using a fixed set of

correspondences.

100

5.2.2 Methods for Learning Vision-Based Closed-Loop Poli-

cies

While the previous section discussed visual training methods, to acquire policies

they must be paired with a policy learning signal. We are particularly interested

in approaches that can (i) scalably address a wide variety of tasks with potentially

deformable and unknown objects, (ii) use a small incremental amount of human effort

(on the order of 1 human-hour) per each new object or task, and (iii) produce real-time

vision-based closed-loop policies.

One source of policy learning signal may be from reinforcement learning, which

has demonstrated many compelling results. A primary challenge, however, is the

difficulty of measuring rewards in the real world. Some tasks such as grasping can

be self-supervised [101], and other tasks can leverage assumptions that objects are

grasped and rigid in order to compute rewards [64], but this only applies to a subset

of tasks. A more generalizable direction may be offered by unsupervised methods of

obtaining reward signals [27, 117, 119]. Another direction which has shown promising

results is using sim-to-real transfer [51, 165, 82, 5], but our interest in a small amount

of incremental human effort per new task is challenging for these methods, since they

currently require significant engineering effort for each new simulation scenario.

Another powerful source of signal may come from imitation learning from demon-

stration, which several recent works have shown promise in using to produce real-time

vision-based closed-loop policies [150, 25, 117, 28, 103, 162, 154, 119]. We point the

reader to a number of existing reviews of learning from demonstration [6, 8]. Another

direction may be to learn models from observations and specify goals via observations

[27, 2, 20], but these may be limited to tasks for which autonomous exploration has a

reasonable chance of success. In terms of limitations of these prior works, one primary

challenge relates to reliability and sample complexity – it is not clear how much

data and training would be required in order to achieve any given level of reliability.

Relatedly, a second limitation is that little work has characterized the distributions

over which these methods should be trained and subsequently expected to generalize.

101

(b)(a)

W

H

C

+

W

H

C
W

H

D

Correspondence
function

Descriptor setInitialization

Dense descriptor image

Corresponded
descriptors

Visuomotor policy model
(common architecture factorization)

+

Our model

oimage

orobot

z

a

z

a

{di}P
i=1

fC(·)

RD

4
Experim

ental

D
ata

C
ollection

and
Pre-Processing.The

m
inim

um
requirem

entforraw
data

is
to

collectan
R

G
B

D
video

ofan
objectorobjects.Figure

1
show

sourexperim
entalsetup;w

e
utilize

a
7-D

O
F

robotarm
(K

uka
IIW

A
LB

R
)w

ith
an

R
G

B
D

sensor(Prim
esense

C
arm

ine
1.09)m

ounted
atthe

end-effector.W
ith

the
robot

arm
,data

collection
can

be
highly

autom
ated,and

w
e

can
achieve

reliable
cam

era
posesby

using
forw

ard
kinem

atics
along

w
ith

know
ledge

ofthe
cam

era
extrinsic

calibration.
Fordense

reconstruction
w

e
use

TSD
F

fusion
[27]ofthe

depth
im

agesw
ith

cam
era

posesprovided
by

forw
ard

kinem
atics.A

n
alternative

route
to

collecting
data

w
hich

does
notrequire

a
calibrated

robotis
to

use
a

dense
SLA

M
m

ethod
(for

exam
ple,[28,29]).In

betw
een

collecting
RG

BD
videos,the

objectofinterestshould
be

m
oved

to
a

variety
ofconfigurations,and

the
lighting

can
be

changed
ifdesired.W

hile
form

any
ofourdata

collections
a

hum
an

m
oved

the
objectbetw

een
configurations,w

e
have

also
im

plem
ented

and
dem

onstrated
(see

our
video)the

robotautonom
ously

rearranging
the

objects,w
hich

highly
autom

atesthe
objectlearning

process.
W

e
em

ploy
a

Schunk
tw

o-fingergripperand
plan

grasps
directly

on
the

objectpointcloud
(A

ppendix
C

).Ifm
ultiple

differentobjectsare
used,currently

the
hum

an
m

uststillsw
itch

the
objectsforthe

robot
and

indicate
w

hich
scenescorrespond

to
w

hich
object,buteven

thisinform
ation

could
be

autom
ated

by
the

robotpicking
objectsfrom

an
auxiliary

bin.

Training
D

enseD
escriptors.Fortraining,ateach

iteration
w

e
random

ly
sam

ple
betw

een
som

e
subsetof

specified
im

age
com

parison
types(Single

O
bjectW

ithin
Scene,D

ifferentO
bjectA

crossScene,M
ultiO

b-
jectW

ithin
Scene,Synthetic

M
ultiO

bject),and
then

sam
ple

som
e

setofm
atchesand

non-m
atchesforeach.

In
thisw

ork,w
e

use
only

static-scene
reconstructions,so

pixelm
atchesbetw

een
im

agescan
be

easily
found

by
raycasting

and
reprojecting

againstthedense3D
reconstruction

m
odel,and

appropriately
checking

foroc-
clusionsand

field-of-view
constraints.Forthedensedescriptorm

apping
w

etrain
a34-layer,stride-8

ResN
et

pretrained
on

Im
ageN

et,butw
e

expectany
fully-convolutionalnetw

ork
(FCN

)thathasshow
n

effectiveness
on

sem
antic

segm
entation

tasksto
w

ork
w

ell.A
dditionaltraining

detailsare
contained

in
A

ppendix
D

.

5
R

esults

O
bjects used

• 
47 objects total

• 
275 scenes

8 hats
 15 shoes
 15 m

ugs
 9 additional objects

Figure2:Learned
objectdescriptorscan

be
consistentacrosssignificantdeform

ation
(a)and,ifdesired,acrossobject

classes(b-d).Show
n

foreach
(a)and

(b-d)are
R

G
B

fram
es(top)and

corresponding
descriptorim

ages(bottom
)that

are
the

directoutputofa
feed-forw

ard
passthrough

a
trained

netw
ork.(e)-(f)show

sthatw
e

can
learn

descriptorsfor
low

texture
objects,w

ith
the

descriptorsm
asked

forclearvisualization.O
urobjectsetisalso

sum
m

arized
(right).

5.1
Single-O

bjectD
enseD

escriptors

W
e

observe
thatw

ith
ourtraining

procedures
described

in
Section

3.2,fora
w

ide
variety

ofobjects
w

e
can

acquire
dense

descriptorsthatare
invariantto

view
point,configuration,and

deform
ation.The

variety
ofobjectsincludesm

oderately
deform

able
objectssuch

assoftplush
toys,shoes,m

ugs,and
hats,and

can
include

very
low

-texture
objects(Figure

2).M
any

ofthese
objectsw

ere
justgrabbed

from
around

the
lab

(including
the

authors’and
labm

ates’shoesand
hats),and

dense
visualm

odelscan
be

reliably
trained

w
ith

5

W

H

D

f✓v
(·)

⇡✓p
(·)

⇡✓p
(·)

fdense
✓v

(·)

Figure 5-2: Diagram of common visuomotor policy factorization (a), and our proposed
model (b) using visual models trained on correspondence.

Third, like in many areas of robotics it is difficult to reproduce results and compare

approaches on a common set of metrics. While we believe hardware validation is

critical, we also believe that increased effort should be put into simulation-based

results that compare methods and can be reproduced.

5.3 Visuomotor Formulation

First as preliminary we identify some primary attributes of existing approaches in

visuomotor policy learning (Sec. 5.3.1). We then present our approach based on self-

supervised correspondence (Sec. 5.3.2). The discussion of visuomotor policy learning

in this section is agnostic to the specific learning algorithm, i.e. reinforcement learning,

imitation learning, etc., and focuses on the model structure and sets of trainable

parameters. Sec. 5.4 discusses the application of our approach to a specific case of

imitation learning.

5.3.1 Preliminary: Visuomotor Policies

We would like to have a policy 𝑎𝑡 = 𝜋𝜃(𝑜0:𝑡), where 𝑜0:𝑡 = (𝑜0,𝑜1, . . .𝑜𝑡) is the full

sequence of the robot’s observations during some episode up until time 𝑡, with each

𝑜𝑖 ∈ 𝒪, the robot’s observation space. This sequence of observations is mapped by

𝜋𝜃(·), the robot’s policy parameterized by 𝜃, to the robot’s actions 𝑎, each ∈ 𝒜. In

particular, we are interested in visuomotor policies in which the observation space

contains high-dimensional images 𝒪image ⊂ 𝒪, for example 𝒪image = R𝑊×𝐻×𝐶 for a

102

𝐶-channel, width 𝑊 , and height 𝐻 image. The visual data is perhaps complemented

with additional lower-dimensional measurements 𝒪robot, such as produced from sensors

like the robot’s encoders, such that 𝒪robot ×𝒪image = 𝒪.

It is common for a visuomotor policy to have an architecture that can factored as

displayed in Fig. 5-2(a),

𝑧 = 𝑓𝜃𝑣(𝑜image) : 𝑜image ∈ 𝒪image, 𝑧 ∈ R𝑍 (5.1)

𝑎 = 𝜋𝜃𝑝(𝑧,𝑜robot) : 𝑜robot ∈ 𝒪robot, 𝑧 ∈ R𝑍 , 𝑎 ∈ 𝒜 (5.2)

in which a visual model 𝑓𝜃𝑣(·), parameterized by 𝜃𝑣, processes the high-dimensional

𝑜image into a much smaller 𝑍-dimensional representation 𝑧. The policy model 𝜋𝜃𝑝(·)
then combines the output of the visual model with other observations 𝑜robot. This is a

practical modeling choice – images are extremely high dimensional, i.e. in this work we

use images in R640×480×3 = R921,600, whereas our 𝒪robot is at most R13. A wide variety

of works have employed a similar architecture to [64], consisting of convolutional

networks extracting features from raw images into an approximately 𝑍 = 32 to 100

bottleneck representation of features, e.g. [27, 103, 28, 147, 35, 162]

5.3.2 Visual Correspondence Models for Visuomotor Policy

Learning

The objective of the visual model is to produce a feature vector 𝑧 which serves as

a suitable input for policy learning. In particular, we are interested in deploying

policies that can operate directly on RGB images. Given the role that pose estimation

has played in traditional manipulation pipelines it seems valuable to encode the

configuration of objects of interest in the vector 𝑧. Pose estimation, however, doesn’t

extend to the cases of deformable or unknown objects. Some of the prior works

discussed in Sec. 5.2.1, for example [64, 27], have interpreted their learned feature

points 𝑧 as encoding useful spatial information for the objects and task. These

feature points are learned via the supervisory signals of end-to-end, pose-based, or

103

autoencoding losses, and don’t explicitly train for spatial correspondence. In contrast

our approach is to directly employ visual correspondence training, building off the

approach of [31] which can in a self-supervised manner, learn pixel descriptors of

objects that are effective in finding correspondences between RGB images.

We introduce four different methods for how to employ dense correspondence

models as the visual basis of visuomotor policy learning. The first three are based on

the idea of a set of points on the object(s) that are localized either in image-space or 3D

space. We represent these points as a set {𝑑𝑖}𝑃𝑖=1 of 𝑃 descriptors, with each 𝑑𝑖 ∈ R𝐷

representing some vector in the 𝐷-dimensional descriptor space produced by a dense

descriptor model 𝑓dense
𝜃𝑣

(·). This 𝑓dense
𝜃𝑣

(·), a deep CNN, maps a full-resolution RGB

image, R𝑊×𝐻×3, to a full-resolution descriptor image, R𝑊×𝐻×𝐷. Let us term 𝑓𝐶(·) to

be the non-parametric correspondence function that, given one or more descriptors

and a dense descriptor image 𝑓dense
𝜃𝑣

(𝑜image), provides the predicted location of the

descriptor(s):

𝑧 = 𝑓𝐶
(︀
𝑓dense
𝜃𝑣 (𝑜image), {𝑑𝑖}𝑃𝑖=1

)︀
(5.3)

Specifically 𝑓𝐶 : R𝑊×𝐻×𝐷 × R𝑃×𝐷 → R𝑃×𝐾 , where 𝐾 = 2 corresponds to: 𝑧 is

the predicted corresponding (𝑢, 𝑣) pixel coordinates of each descriptor in the image,

while 𝐾 = 3 is their predicted 3D coordinates. All four methods optimize a generic

policy-based loss function, shown in Eq. (5.4), and vary only in the set of learnable

parameters Θ and how 𝑧 is acquired (the first three use Eq. 5.3). This loss function ℒ is

generic and could represent any approach for learning the parameters of a visuomotor

policy.

𝑚𝑖𝑛
Θ
ℒ
(︂
𝜋𝜃𝑝

(︀
𝑧,𝑜robot

)︀)︂
(5.4)

Fixed Descriptor Set. This method only optimizes the policy parameters,

The specific form of 𝑓𝐶(·) is defined by how the correspondence model was trained. In our
preferred model we compute a spatial-expectation using a correspondence kernel, either in image-space
or 3D. See [30], Chapter 4, for details.

104

Θ = {𝜃𝑝}. In this case both the set of descriptors {𝑑𝑖}𝑃𝑖=1 and visual model 𝑓dense
𝜃𝑣

(·)
are fixed. We use a simple initialization scheme of sampling {𝑑𝑖} from a single masked

reference descriptor image. While we have found this method to be surprisingly

effective, it is unsatisfying that the visual model’s representation is not optimized

after the random initialization process.

Descriptor Set Optimization. This method optimizes the descriptor set {𝑑𝑖}𝑃𝑖=1

along with the policy parameters 𝜃𝑝 while keeping the dense descriptor mapping 𝑓𝑑𝑒𝑛𝑠𝑒
𝜃𝑣

fixed. Intuitively 𝑓𝑑𝑒𝑛𝑠𝑒
𝜃𝑣

has already been trained to perform correspondence, and we

are simply allowing the policy optimization to choose what to correspond. We have

observed that Descriptor Set Optimization can improve validation error in some cases

over a Fixed Descriptor Set, and adds minimal computational cost and parameters.

End-to-End Dense Optimization. The third option is to train the full model

architecture end-to-end by including 𝜃𝑣 in the optimization. While we may have

expected this approach to allow the visual model to more precisely focus its modeling

ability on task-critical parts of images, we so far have not observed a performance

advantage of this approach over Descriptor Set Optimization.

End-to-End with Correspondence Pretraining. The fourth option is to

directly apply a differentiable operation to a model which was previously trained on

dense correspondence. We can apply any differentiable operation 𝑔(·) on top of 𝑓dense
𝜃𝑣

directly to produce a representation 𝑧 = 𝑔
(︀
𝑓𝑑𝑒𝑛𝑠𝑒
𝜃𝑣

(𝑜image)
)︀
. For example, we can apply

non-parametric channel-wise spatial expectations to each of the 𝐷 channels of the

dense descriptor images. The optimization variables in this case are Θ = {𝜃𝑝, 𝜃𝑣}.

For our 𝑓dense
𝜃𝑣

we use a 34-layer ResNet, as in [31], which is a powerful vision back-

bone. Accordingly, using either a fixed- or optimized- descriptor set will significantly

increase policy training speed, since it does not require forward-backward optimizing

through a very deep convolutional network in each step of policy training, which in

our case is 1 to 2 orders of magnitude faster.

105

5.4 Visual Imitation Formulation

We now propose how to use the general approach of Sec. 5.3.2 for a specific type of

imitation learning for robot manipulation.

5.4.1 Robot Observation and Action Spaces

At the lowest level our controller sends joint velocity commands to the robot. For

ease of providing demonstrations via teleoperation, the operator commands relative-

to-current desired end-effector poses 𝑇Δ,cmd. A low-level Jacobian based controller

then tracks these end-effector pose setpoints. Our learned policies also output 𝑇Δ,cmd.

The teleoperator also commands a gripper width setpoint which again is tracked by a

low-level controller. Thus the action space is 𝑎 = (𝑇Δ,cmd, 𝑤gripper) ∈ 𝒜 = 𝑆𝐸(3)×R+.

Our 𝑜robot ∈ R13 is (i) three 3D points on the hand as in [64], (ii) an axis-angle

rotation relative to the task’s starting pose, and (iii) the gripper width. As noted

previously, 𝑜image ∈ R921,600.

5.4.2 Imitation Learning Visuomotor Policies

To evaluate visual learning strategies for enabling visuomotor policy learning, we

use imitation learning via a simple behavioral cloning [102] strategy, which a few

recent works have demonstrated to be viable for learning visuomotor manipulation

policies [103, 162]. Optimizing a policy with parameters Θ on the behavioral cloning

objective, given a dataset of 𝑁train trajectories of observation-sequence-to-action pairs

{(𝑜𝑡,𝑎
*
𝑡)}𝑇𝑖

𝑡=0 can be written as:

𝑚𝑖𝑛
Θ

1

𝑁train

𝑁train∑︁
𝑖=1

𝑇𝑖∑︁
𝑡=0

ℒBC
(︀
𝑎*
𝑡 , 𝜋Θ(𝑜𝑡)

)︀
(5.5)

For our loss function we use a simple weighted sum of 𝑙1 and 𝑙2 loss, ℒBC(·) =

||𝑎* − 𝜋(·)||22 + 𝜆||𝑎* − 𝜋(·)||1 where we use 𝜆 = 0.1. We scale 𝑎* to equalize 1.0m

end-effector translation, 0.1 radians end-effector rotation, and 1.0m gripper translation.

106

5.4.3 Training for Feedback through Data Augmentation

We introduce a simple technique which we have found to be effective in at least

partially addressing a primary issue in imitation learning: the issue of cascading errors

[109]. While other works have shown that injecting noise into the dynamics either

during imitation learning [63] or sim-to-real transfer [99] can alleviate cascading errors,

we provide a simple method based only on data augmentation. This method does not

address recovering from discrete changes in the environment, but can address local

feedback stabilization.

Consider the output of our policy in a global frame, 𝑎 = (𝑇cmd, 𝑤gripper), which we

can acquire from 𝑇Δ,cmd since we know the end-effector pose. As previously mentioned

a low-level controller tracks these setpoints, thus our learned policies can stabilize

a trajectory by commanding the same global-frame setpoint 𝑎 in the face of small

disturbances to the robot state. If we want our policy to command the same setpoint in

the face of a slightly perturbed robot state 𝑜robot we can simply use ((𝑜image,𝑜robot),𝑎)

as an observation-action pair. These noise-augmented observation-action pairs are

generated on-the-fly during training. A remaining question, of course, is what scale of

noise is appropriate. In practice given our robot’s scale and typical speeds we find

𝑜robot ∼ 𝒩 (𝑜robot, 𝐼𝜎) with 𝜎𝑖 of 1mm, 1 degree, and 1cm works well respectively for

translational, rotational, and gripper components.

5.4.4 Multi-View Time-Synchronized Correspondence Train-

ing

Unlike in previous work which trained robotic-supervised correspondence models

only for static environments [31], we now would like to train correspondence models

with dynamic environments. Other prior work [112] has used dynamic non-rigid

reconstruction [94] to address dynamic scenes. The approach we demonstrate here

instead is to correspond pixels between two camera views with images that are

approximately synchronized in time, similar to the full-image-embedding training in

[119], but here for pixel-to-pixel correspondence.

107

For training, like the static-scene case, finding pixel correspondences between images

requires only depth images, camera poses, and camera intrinsics. Autonomous object

masking can, similar to [31], be performed using 3D-based background subtraction,

using only the live depth sensors’ point clouds. Since both (a) the time-synchronized

technique can only correspond between time-synchronized images rather than many dif-

ferent static-scene views ([31] used approximately 400]), and (b) the time-synchronized

technique does not have access to highly accurate many-view-fused 3D geometry as

used in [31], it was unclear that our time-synchronized training would provide as

compelling results as shown in Sec. 5.5.4. To encourage generalization despite having

using only two static views, we add rotation, scale, and shear image augmentations,

and to help alleviate incorrect correspondences due to noisy depth images, we add

photometric-error-based rejection of correspondences.

5.4.5 Policy Models

We use two standard classes of policy models, Multi-Layer Perceptrons (MLP) and

Long Short-Term Memory (LSTM) recurrent networks, which are familiar model

classes to many different types of machine learning problems and in particular have

been demonstrated to be viable for real-world visuomotor control [64, 162, 103]. In our

evaluations the MLPs are only provided current observations, 𝜋(𝑜𝑡), whereas through

recurrence the LSTMs use the full observation sequence. The Appendix provides more

model details.

5.5 Results

Our experimentation sought to answer these primary questions: (1) Is it possible to

use self-supervised descriptors as successful input to learned visuomotor policies? (2)

How does visual correspondence learning compare to the benchmarked methods in

terms of enabling effective policy learning, as measured by generalization performance

and sample complexity? We also evaluate (3) the effect of noise augmentation,

and (4) whether our dynamic-scene visual training technique is capable of effective

108

correspondence learning. Simulation setup and results are detailed in Sec. 5.5.1, 5.5.2,

hardware setup and results are in Sec. 5.5.3, 5.5.4.

5.5.1 Simulation Experimental Setup

We use simulated imitation learning tasks (Fig. 5-3) to compare the generalization

performance of behavior-cloned policies where the only difference is how the “visual

representation” 𝑧 is acquired. The first two tasks involve reaching to an object whose

configuration varies between trials either in translation only, or rotation as well. The

additional two tasks are both pushing tasks, which require feedback due to simulated

external disturbances. Expert demonstrations use simple hand-designed policies using

ground truth object state information. The compared methods are:

1. Ground truth 3D points (GT-3D): 𝑧 is ground truth world-frame 3D locations

of points on the object.

2. Ground truth 2D image coordinates (GT-2D): 𝑧 is similar to the previous

baseline, but the points are projected into the camera using the ground truth

camera parameters.

3. Autoencoder (AE): 𝑧 is the encoding of a pre-trained autoencoder, similar to

the visual training in [27, 35].

4. End-to-End (E2E): 𝑧 is the intermediate representation from end-to-end training.

This closely resembles the visual training and models in [64, 162], but we do not

also add pose-based losses, in order to investigate end-to-end learning without

these auxiliary losses.

5. Ours, Dense descriptors (DD): 𝑧 is the expected image-space locations (DD-2D)

or 3D-space locations (DD-3D) of the descriptor set {𝑑}𝑖, where the visual model

was trained on dense correspondence.

Note that the two vision-based baselines AE and E2E share an identical model

architecture for producing 𝑧, and differ only in the method used to train the parameters.

109

Ti
m

e

Reach T only Reach T + R Push box Push plate

Figure 5-3: RGB images used for visuomotor control in each of the simulation tasks.
T=translation, R=rotation, see Appendix for task descriptions.

The model is close to [64, 27, 162] with the key architectural traits of having a few

convolutional layers followed by a channel-wise spatial expectation operation, which

has been widely used [28, 25, 13, 147, 155, 124, 35]. Most methods we compare

(AE, E2E, DD-2D) use only one RGB camera stream as input to learned policies;

DD-3D additionally uses the depth image. DD methods use descriptor set optimization

(Sec. 5.3.2) and use both views for the correspondence training, before policy training.

See the Appendix for additional model and task details.

5.5.2 Simulation Results

Table 5.1 contains the results of the simulation experiments. Interestingly we find

that our method’s visual representation is capable of enabling policy learning that is

remarkably close in performance to what can be achieved if the policy has access to

ground truth world state information. In contrast the performances of the end-to-end

(E2E) and autoencoder (AE) methods vary much more across the different tasks.

Since our method benefits from object mask information during visual training, we

also experimented with letting the autoencoder use this information by applying the

reconstruction loss on only the masked image. Additionally we tried training the

autoencoder end-to-end during behavior cloning. Both of these yield mixed results,

110

Reach Reach Push Push
Method / Task T only T + R box plate
Ground truth 3D points 100.0 100.0 100.0 90.5
Ground truth 2D image coord. 94.1 95.6 100.0 92.0
RGB policy input
Autoencoder, frozen 8.1 61.1 31.0 53.0
Autoencoder w/ mask, frozen 16.3 10.0 73.0 67.0
Autoencoder, then End-to-End 40.7 38.9 – 16.0
End-to-End 43.0 32.2 100.0 5.5
End-to-End (34-layer ResNet) – 3.3 – –
DD 2D image coord. (ours) 94.1 97.8 100.0 87.0
RGBD policy input
DD 3D coord. (ours) 100.0 100.0 – 98.0

Table 5.1: Summary of simulation results (success rate, as %). DD = Dense Descriptor.
See Appendix for task success criteria and additional details.

depending on the task.

Since the vision network in our method is a 34-layer ResNet, we wanted to see if

the end-to-end method would benefit from using the same, deeper vision backbone.

The deeper network did not improve closed-loop performance (Table 5.1) although

it did reduce behavior-cloning validation error. This suggests the advantage of our

method comes from the correspondence training rather than the model capacity.

The binary success metrics of Table 5.1, however, do not fully convey the methods’

performances. We also experiment with varying the number of demonstrations, and

characterize the performance distributions. By plotting the performance for the

“Reach, T + R” task over a projection of the sampled object configurations (Figure

5-4), we learn that the few failures of our method occur when the box position lies

outside the convex hull of the training data. Interestingly the GT-2D baseline also

struggles with similar failure modes, while the GT-3D method succeeds in more cases

outside the convex hull. This suggests that policies that consume 3D information are

better able to extrapolate outside the training distribution; our DD-3D method also

provides better generalization than DD-2D. The baseline vision-based methods do not

generalize as well; for example, the E2E performance distribution is shown in Figure

5-4. On this task we find that with just 30 demonstrations our method outperforms

111

30 demonstrations 200 demonstrations
Noise / Method GT-2D DD-2D GT-2D DD-2D
No noise 5.6 1.1 5.6 3.4
With noise 73.3 73.3 95.6 97.8

Table 5.2: Comparison of using our feedback-training noise augmentation technique
or not (success rate, as %) on the “Reach, T + R” task. No noise uses 𝜎𝑖 = 0.0,
whereas With noise uses 𝜎translation = 1mm, 𝜎rotation = 1 degree. See Section 5.5.1 for
descriptions of GT-2D (ground truth) and DD-2D (our method).

both AE and E2E with 200 demonstrations.

The pushing tasks are of particular interest since they demand closed-loop visual

feedback. Disturbances are applied to the object both while collecting demonstrations

and deploying the learned policies. Since the “Push box” task used a dynamic state

feedback controller to provide demonstrations, we find that we need the sequence

model (LSTM) for the policy network to achieve the task, even when the policy

has access to ground truth object state. On the other hand, the “Push plate” task

employed a static feedback controller to provide demonstrations, and so MLP models

that consume only the current observation, 𝜋𝜃𝑝(𝑜𝑡), are sufficient.

Interestingly a variety of methods performed well on the “Push box” task while

large differences were evident in the “Push plate” task. We speculate that this is

because higher precision is required to accurately push the plate as compared to the

box. Since the rectangular robot finger experiences a patch contact with the box,

while only a point contact with the plate, there is more open loop stability in pushing

the box. On the harder “Push plate” task we found that our DD-2D method performed

almost as well as the GT-2D baseline and significantly outperformed both the AE and

E2E approaches, and that DD-3D improved performance even further.

Additionally we find (Table 5.2) our noise augmentation technique (Sec. 5.4.3) has

a marked effect on task success for behavior-cloned policies. This applies to ground

truth methods and our method, with as few as 30 demonstrations or as many as 200.

112

task success m
etric (higher is better)

demonstrations

30

50

200

= success
Explanation
Axes are box configuration
(2D projection)

y

✓

Color is task success
on test configurations

Gray ‘s
are train
configurations

convex hull
of training
examples

Ground truth 3D
points

Ground truth 2D
image coordinates End-To-End

DD-2D
image coord.

= far from target

y,
 b

ox
 p

os
itio

n
y,

 b
ox

 p
os

itio
n

y,
 b

ox
 p

os
itio

n

✓, box position

Figure 5-4: Task success distribution plotted over the 2D projection of the varied box
configurations for the “Reach, T + R” task. The color of each point represents the
result of deploying the learned policy with the object at that 𝜃, 𝑦. Specifically the color
encodes the distance to target threshold: min(0,−(∆translation + ∆rotation) + 𝜖),
where 𝜖 is the success threshold. The 𝑥 coordinate is not shown in order to plot in
2D. Dark blue corresponds to perfect performance on the task with the object in that
configuration, red is poor performance. Note that the color scale cuts off at -2 in order
to highlight differences in the range [-2,0]. Each gray “x” in each subplot represents the
configurations of the box in the training set, for either (from top to bottom) 30, 50,
or 200 demonstrations. The dashed gray line shows the convex hull of the respective
training sets. 113

Trained Without disturbances With disturbances Demonstration data
Success with manual # # # # # time

Task criterion disturbances attempts success % attempts success % total (min.)
Push sugar box is < 3 cm yes 6 6 100.0 70 68 97.1 51 13.9
box from finish line
Flip shoe, shoe is no 43 42 97.7 40 35 87.5 50 6.5
single instance upright
Flip shoe,
class-general
previously seen shoe is no 43 38 88.4 – – – 146 17.5
shoes (14) upright
novel shoe is no 22 17 77.3 – – – 146 17.5
shoes (12) upright
Pick-then-hang hat is yes 50 42 84.0 41 28 68.3 52 11.5
hat on rack on the rack
Push-then- plate is yes 22 21 95.5 27 22 81.5 94 27.4
grab plate off the table
Total 186 178

Table 5.3: Summary of task attempts and success rates for hardware validation
experiments. Autonomous re-tries are counted as successes.

5.5.3 Hardware Experimental Setup

We used a Kuka IIWA LBR robot with a Schunk WSG 50 parallel jaw gripper to

perform imitation learning for the five tasks detailed in Figure 5-1. RGBD sensing was

provided by RealSense D415 cameras rigidly mounted offboard the robot and calibrated

to the robot’s coordinate frame. Note that for effective correspondence learning between

views, it is ideal to have views with some overlap such that correspondences exist,

but still maintain different-enough views. All shown hardware results use only RGB

input for the trained policies (DD-2D, Sec. 5.5.1) and use descriptor set optimization

(Sec. 5.3.2). Human demonstrations were provided by teleoperating the robot with a

mouse and keyboard.

5.5.4 Hardware Results

We validate both our visual learning method and its use in imitation learning in the

real world. As in simulation, we only use demonstration data for both visual training

and policy learning; no additional data collection is needed. While the simulation

results provide a controlled environment for comparisons, there are a number of

additional challenges in our real world experiments: (i) visual complexity (textures,

lighting, backgrounds, clutter), (ii) use of human demonstrations rather than expert

114

Source Targets (overlaid with correspondence heatmap)

Figure 5-5: Learned correspondences from demonstration data, depicted as correspon-
dence heatmaps between a source pixel (left, with the green reticle) and target scenes
(right, with red reticle as best predicted correspondence).

Source Target (heatmap) (image)

Train

Test

Figure 5-6: Learned correspondences (left) between a standard-sized shoe and an
extra-tall boot. A small amount of movement near the top of the ankle on the shoe
(far left) corresponds to a “stretched-out” movement on the boot (right). Images
cropped for visualization. Also shown are shoe train and test instances (far right).

simulation controllers, (iii) real physical contact, and (iv) imperfect correspondence

learning due to noisy depth sensors and calibration. Our hardware experiments test

all of these aspects. All real hardware experiments use LSTM policy networks, since

we suspect our human demonstrators use dynamic internal state.

Learned Correspondences from Dynamic Scenes

Fig. 5-5 displays visualizations of learned correspondences from demonstration data.

The results show that the learned visual models, despite imperfect depth sensor

noise, calibration, and only time-synchronized image pairs, are capable of identifying

correspondences across a class of objects, for an object in different deformable configu-

115

rations, and for objects in a diversity of backgrounds. Figure 5-6 displays class-general

correspondences for a particularly challenging instance with large shape variation.

Real-World Visuomotor Policies

Figure 5-1 displays examples of autonomous hardware results, and Table 5.3 provides a

quantitative overview. To highlight a few results, several of the tasks achieve over 95%

reliability, including the “Push sugar box” task with and without disturbances, and

the “Flip shoe, single instance” and “Push-then-grab plate” tasks without disturbances.

Each of the different tasks present significant challenges, best appreciated in our video.

Several of the tasks include non-prehensile manipulation, including pushing the box

and plate, and flipping the shoes. In the “Pick-then-hang hat on rack” task, the robot

autonomously reacts to the deformable configuration of the hat after disturbances.

The “Push-then-grab plate” task as well is highly challenging given the visual clutter,

the symmetry and lack of visual texture for the object, and requires using “extrinsic

dexterity” [91] via the wood block to enable sliding the gripper into position to grasp

the plate.

5.6 Conclusion

Our experiments have shown self-supervised correspondence training to enable efficient

policy learning in the real world, and our simulated imitation learning comparisons

empirically suggest that our method outperforms two vision-based baselines in terms

of generalization and sample complexity. While different hyperparameters, model

architectures, and other changes to the baselines may increase their performance,

our method is already near the upper bound of what can be expected in the used

experimental setting: it achieves results comparable to baselines using ground truth

information. One reason our approach may outperform the vision-based baselines

is that it additionally uses a fundamentally different source of supervision, provided

by visual correspondence training. Since our approach is self-supervised, it does not

entail additional human supervision.

116

https://sites.google.com/view/visuomotor-correspondence

Dense descriptor learning has shown to be an exciting route for improving visuo-

motor policy learning. While this has enabled the variety of tasks shown, there are

many that are out of scope. One current limitation is that our visual representation

does not explicitly address simultaneously viewing multiple object instances of the

same class. Future work could, similar to the visual pipeline in [74], combine both

instance-level segmentation with intra-instance visual representations. Additionally,

returning to the cooking eggs example in the Introduction, it is interesting to consider

using spatial correspondence as part, but not the entirety, of the visual representation

of the world.

Acknowledgements

This work was supported by National Science Foundation Award No. IIS-1427050,

Lockheed Martin Corporation Award No. RPP2016-002, and an Amazon Research

Award grant. The views expressed are not endorsed by our funding sponsors.

117

118

Chapter 6

Keypoints into the Future:

Self-Supervised Correspondence with

Model-Based Reinforcement Learning

6.1 Introduction

It has been argued that one of the hallmarks of human-level learning is the ability to

construct and leverage causal models of the world [62]. In the area of manipulation,

this manifests itself in the ability to approximately predict how an object will move

if we grasp or push it. Traditional model-based robotics has successfully leveraged

such predictive models, oftentimes derived from first principles, to solve challenging

planning and control problems [87, 83]. In the area of practical vision-based robotic

manipulation, however, it has been particularly hard to leverage such predictive models,

due to varied and novel objects and the high-dimensional observation spaces involved

(e.g., RGB or RGBD images). Alternative approaches, such as imitation learning or

model-free reinforcement learning, sidestep the task of building a predictive model and

directly learn a policy. Although this can be appealing, model-based techniques offer

several benefits. They can be sample efficient compared to model-free methods and, in

contrast to behavior cloning techniques, can leverage off-policy non-expert data. Once

119

a model has been acquired, it can be used together with a planner to achieve a wide

variety of tasks and goals. One of the main challenges for model learning applied to

robotic manipulation is determining the state representation on which the dynamics

model should be learned. Prior work has used approaches ranging from full image

space dynamics [23, 19, 152, 128] to a variety of autoencoder formulations [1, 40].

In this paper we propose to use object keypoints, which are tracked over time,

as the latent state in which to learn the dynamics. These keypoints anchor our

model-based predictions, and provide various advantages over alternatives such as

abstract latent states: (i) the output is interpretable, which enables the ability to

analyze the performance of the visual model separately from the predictive model. (ii)

The representation is 3D and hence can naturally handle changing general off-axis 3D

camera positions. (iii) As demonstrated in [31, 32] the visual models we use, Dense

Object Nets, have demonstrated reliable performance in a variety of real-world settings

and are able to generalize at the category level. We found that autoencoder approaches

particularly struggled with category-level generalization. And as discussed in prior

works [31, 74], keypoints and dense correspondences provide advantages over using

6D object poses: they can apply to deformable objects and represent category-level

generalization.

We show that this formulation enables reliable, sample-efficient learning capable

of precise visual-feedback-based manipulation in the real world – and is trained with

nothing other than a small amount of interaction data (10 minutes) and a single

demonstration for goal specification. In our approach to acquiring keypoints, we

extract them as descriptors which are tracked from a dense descriptor model – while

multiple approaches could be used to acquire keypoints, this route can be entirely

self-supervised. As opposed to [32] which uses keypoints from a dense-correspondence

model in an imitation learning framework, the use of keypoints as input to a model-

based RL system presents several unique challenges. In particular the keypoints need

to be both informative for the task at hand and be able to be tracked accurately. In

this paper we explore these challenges and propose solutions.

Contributions: Our primary contribution is (i) a novel formulation of predictive

120

Time

(b) (c) (d)

(e) (g)

(a)

(f)

(e) (f) (g) (h)

Demonstration

Figure 6-1: (a) Shows the initial pose (blue keypoints) and goal pose (green keypoints)
along with the demonstration trajectory. (b) - (d) show the MPC at different points
along the episode. Current keypoints are in blue, white lines and purple keypoints
show the optimized trajectory from the MPC algorithm, using the learned dynamics
model. Goal keypoints are still shown in green. (e) shows the demonstration trajectory
in a 3D visualizer. (f) Illustrates a dynamics model on a category level task. The
actual keypoint trajectory is shown in green; the predicted trajectory using the learned
model shown in blue. (g) Overview of our hardware setup. (h) Example of visual
clutter.

model-learning using learned dense visual descriptors as the state representation. We

use this approach to perform closed-loop visual feedback control via model-predictive-

control (MPC). (ii) Using simulated manipulation experiments we demonstrate that

this approach offers performance benefits over a variety of baselines, and (iii) we

validate our approach in real-world robot experiments.

6.2 Related Work

We focus our related work on methods that target robotic manipulation with learned

predictive models. The Introduction discussed alternative approaches to synthesizing

closed-loop feedback controllers without predictive models, via imitation learning or

model-free reinforcement learning.

Model-based RL in Robotic Manipulation. These methods can be classified

by whether they use first-principles-based or data-driven models, and whether they

consume raw visual inputs (such as RGBD images) or they consume ground truth state

121

information (from a simulator or an external perception system). First-principles-based

models, e.g., [47, 163], rely on known object models and thus don’t generalize to novel

or unknown objects, and also rely on external vision systems. Given this, the tasks

we consider are out of scope for these approaches. In the area of methods that use

external vision systems but learn data-driven models, [46] learns a dynamics model

for a closed-loop-controlled planar pushing task, however, the approach is tailored to

the specifics of the pusher-slider task and doesn’t readily generalize to other tasks, or

to novel objects within the same task. [92] learns deep dynamics models for a variety

of different simulated dexterous manipulation tasks, using ground truth object states,

and one task on real hardware, using an external camera-based 3D object position

tracker. Although [46, 92] achieve impressive results, their reliance on ground truth

object state and/or specialized visual trackers limits their general applicability in more

diversified real-world manipulation tasks.

There also exists a large literature on model-based RL for robotic manipulation

that operates in the more challenging problem class of directly consuming image

observations. Methods can be broadly categorized into whether they predict the

image-space dynamics of the entire image [23, 20, 19, 152, 128], or predict the

dynamics of a low-dimensional latent state [148, 141, 1, 2, 40]. Although image-space

dynamics approaches are general, they require large training datasets. For latent-space

dynamics approaches, to avoid a trivial solution where all observations get mapped to a

constant vector, a regularization strategy is needed for the latent state 𝑧. [141, 40] use

an autoencoder architecture and regularize the latent state 𝑧 using a reconstruction

loss. [1, 2] regularize the latent space by simultaneously training both forward and

inverse dynamics models while [148] uses a contrastive loss on the latent state. In

contrast to these approaches we use visual-correspondence pretraining to produce a

latent state which is physically grounded and interpretable as the 3D locations of

keypoints on the object(s).

Visual Representation LearningFor more related-work in self-supervised visual

learning for robotics, we refer the reader to [31]. Approaches that use autoencoders

[141, 40] or full image-space dynamics [23, 20, 19, 152] rely on image reconstruction

122

as their source of visual supervision. [59] is perhaps most related to ours, in that

they first learn a visual model which is then used for a downstream task, and they

show that freezing the visual model and using a keypoint-type representation as an

input to model-free RL algorithms improves performance on Atari ALE [7]. Our

approach is distinct in that (i) we use a predictive model-based method rather than a

model-free method, (ii) we use a correspondence-based training loss, while [59] uses an

image-reconstruction-based loss with a specialized pixel-space transport mechanism,

and (iii) we demonstrate results with real-world hardware. As a baseline, we try using

their vision model as an input to the same model-based RL algorithm used by our

own method.

6.3 Formulation: Self-Supervised Correspondence in

Model-Based RL

This section describes our approach to model-based RL using visual observations. The

goal is to learn a dynamics model that can then be used to perform online planning

for closed-loop control.

6.3.1 Model-Based Reinforcement Learning

Our setting consists of an environment with states 𝑥 ∈ 𝒳 , observations 𝑜 ∈ 𝒪, actions

𝑎 ∈ 𝒜 and transition dynamics 𝑥′ = 𝑓state(𝑥,𝑎). The task is specified by a reward

function 𝑟(𝑥, 𝑎) and the goal is to choose actions to maximize the expected reward over

a trajectory. We approach this problem by first learning an approximate dynamics

model 𝑓𝜃dyn , which is trained to minize the dynamics prediction error on the observed

data 𝒟. The learned model is then used to perform online planning to obtain a

feedback controller.

Typical example environments are depicted in Figures 6-1, 6-3. The state 𝑥

contains information about the underlying pose and physical properties of the object,

but we only have access to the observation 𝑜. The observation typically consists of

123

both the robot’s proprioceptive information 𝒪robot (such as joint angles, end-effector

poses, etc.) and high-dimensional images 𝒪image ∈ R𝑊×𝐻×𝐶 for a 𝐶-channel image of

height 𝐻 and width 𝑊 . Hence the full observation space is 𝒪 = 𝒪robot ×𝒪image. For

the purposes of our approach we will assume that 𝑥 is fully observable from 𝑜 (or a

short history of 𝑜 in order to infer velocity information). Note that this still allows

for the object to undergo significant partial occlusion as long as it is not completely

occluded, see Figure 6-3 (c) for an example. While our work focuses on addressing

partial occlusion, future work may address full occlusion via models with longer time

horizons or higher-level planning.

Rather than learn the dynamics directly in the observation space, as in [23, 20], we

instead learn a mapping 𝑔 : 𝒪 → 𝒵 from the high-dimensional observation space 𝒪 to a

low-dimensional latent space 𝒵 together with a dynamics model 𝑧𝑡+1 = 𝑓𝜃𝑑𝑦𝑛(𝑧𝑡−𝑙:𝑡,𝑎𝑡)

in this latent space, where 𝑧𝑡−𝑙:𝑡 = (𝑧𝑡, 𝑧𝑡−1, . . . ,𝑧𝑡−𝑙) encodes a short history (we use

𝑙 = 1 in all experiments). This latent state should capture sufficient information about

the true state 𝑥 such that driving 𝑧 → 𝑧* sufficiently well achieves the goal of driving

𝑥 to 𝑥* (where 𝑧* is the latent state corresponding to 𝑥*). Given the current latent

state and a sequence of actions {𝑎𝑡,𝑎𝑡+1, . . .} we can predict future latent states 𝑧 by

repeatedly applying our learned dynamics model. The forward model is then trained

to minimize the dynamics prediction error (also know as simulation error) over a

horizon 𝐻

ℒdynamics =
𝐻∑︁

ℎ=1

||𝑧𝑡+ℎ − 𝑧𝑡+ℎ||22, 𝑧𝑡+ℎ+1 = 𝑓𝜃dyn(𝑧𝑡−𝑙:𝑡,𝑎𝑡+ℎ), 𝑧𝑡 = 𝑧𝑡 (6.1)

6.3.2 Learning a Visual Representation

The objective of the visual model 𝑔 : 𝒪 → 𝒵 is to produce a low-dimensional feature

vector 𝑧 which serves as a suitable latent state in which to learn the dynamics. For

the types of tasks and environments that we are interested in, spatial information

about object locations is a critical piece of information. Pose estimation has played

a critical role in classical manipulation pipelines, and was also used in dynamics

learning approaches such as [46, 92]. In general producing pose information from

124

high-dimensional observations (such as RGBD images) requires a dedicated perception

system. Although pose can be a powerful state representation when dealing with a

single known object, as noted in [31, 74, 32] it has several drawbacks that limit its

usefulness in more general manipulation scenarios. In particular it doesn’t readily (i)

extend to the case of deformable objects, (ii) generalize to novel objects or (iii) extend

to category-level tasks.

Our strategy is to leverage visual-correspondence pre-training to track points on

the object of interest. The locations of these tracked points can then serve as the

latent state on which we learn the dynamics. Similar to the approach taken in [31, 32],

we use visual-correspondence learning, which is trained in a completely self-supervised

fashion, to train a visual model which that can be used to find correspondences across

RGB images. We then propose several approaches to produce a low-dimensional latent

𝑧 using the pre-trained dense-correspondence model.

First we give a bit of background on dense correspondence models (see [30, 31] for

more details). Given an image observation 𝑜image ∈ R𝑊×𝐻×𝐶 (where 𝐶 denotes the

number of channels), the dense-correspondence model 𝑔𝜃dc outputs a full-resolution

descriptor image ℐ𝐷 ∈ R𝑊×𝐻×𝐷. Since we want to learn a dynamics model on

a low-dimensional state, we need a way to construct 𝑧 from the descriptor image

ℐ𝐷. The idea, similar to [32], is for 𝑧 to be a set of points on the object(s) that

are localized in either image-space or 3D space. These points are represented as

a set {𝑑𝑖}𝐾𝑖=1 of K descriptors, where each 𝑑𝑖 ∈ R𝐷 is a vector in the underlying

descriptor space. A parameterless correspondence function 𝑔𝑐(ℐ𝐷, 𝑑𝑖) 1 extracts the

location of the keypoint 𝑦𝑖 ∈ R𝐵 from the current observation. Combining our learned

correspondences together with the reference descriptors, we have a function that maps

image observations 𝑜image to keypoint locations 𝑦 = {𝑦𝑖}𝐾𝑖=1. We propose four methods

for constructing the latent state 𝑧 = 𝑔𝜃𝑧(𝑦) from 𝑦, where 𝜃𝑧 denotes the (potentially

empty) set of trainable parameters in this mapping.

Descriptor Set (DS): In our simplest variant the latent state 𝑧 is simply made up

of keypoint locations 𝑦𝑖 for a set of descriptor keypoints randomly sampled from the

1see Appendix D.1.2 for more details on the visual-correspondence model

125

object. Specifically, we sample 𝐾 (we use 𝐾 = 50 in all experiments) descriptors

{𝑑𝑖}𝐾𝑖=1 corresponding to pixels from a masked reference descriptor image in our

training set. Thus

𝑧 = (𝑧object,𝑜robot) = (𝑦,𝑜robot) = ({𝑦𝑖}𝐾𝑖=1,𝑜robot) (6.2)

Spatial Descriptor Set (SDS): Rather than randomly sampling descriptors, as

in (DS), this method attempts to choose descriptors 𝑑 = {𝑑𝑖}𝐾𝑖=1 having specific

properties. In particular we would like the descriptors {𝑑𝑖}𝐾𝑖=1 to be (i) reliable, and

(ii) spatially separated. By reliable we mean that they can be localized with high

accuracy and don’t become occluded during the typical operating conditions, see

Figure 6-2 for an example. Spatially separated means that the chosen descriptors

aren’t all clustered around the same physical location on the object(s) of interest,

but rather are sufficiently spread out (either in 3D space or pixel space) to provide

meaningful information about both object position and orientation. Our dense

descriptor model can provide a confidence score associated with descriptors and their

associated correspondences.1 Figure 6-2 shows a clear example of high confidence

for a valid match and low-confidence when no valid correspondence exists due to an

occlusion. We use this feature of our visual model to compute a confidence score 𝑐𝑖

for each each descriptor 𝑑𝑖 according to what fraction of images in the training set 𝒟
contain a high probability correspondence for 𝑑𝑖. The intuition is that descriptors 𝑑𝑖

corresponding to points on the object that are easy to localize and remain unoccluded

will have a high confidence score. As in the DS method we initially select a large

number of descriptors (𝐾 = 100) corresponding to points on the object. We then

select the 𝐾* descriptors with the highest average confidence on the training set and

which additionally satisfy a threshold on minimum separation distance (typically 25

pixels in a 640× 480 image). In the experiments we use 𝐾* = 4 or 𝐾* = 5.

Weighted Descriptor Set (WDS): One problem that can arise when learning the

dynamics of a latent state 𝑧 is that some component of 𝑧 may be noisy or unreliable,

1see Appendix for more details

126

(a)

0.02
0.97

(b)

Source Target

Figure 6-2: Visualization of the learned visual-correspondence model on a reference
image (left) and target image (right). Colored numbers in the target image represent
the probability that the detected correspondence is valid. Green reticle shows a
valid correspondence with a high confidence score, red reticle shows a case where no
correspondence exists in the target image due to occlusion, hence the low confidence
probability. Confidence heatmap shown in bottom right.

which can make it difficult or impossible to learn a dynamics model 𝑧′ = 𝑓(𝑧,𝑎).

This problem doesn’t arise in the imitation learning setting of [32] which performs

supervised learning from 𝑧𝑡 → 𝑎expert
𝑡 , and thus can learn to ignore components of the

latent state 𝑧𝑡 that aren’t useful for predicting the action 𝑎expert
𝑡 . The fundamental

difference of our dynamics learning formulation compared to the imitation learning

setup of [32] is that the latent 𝑧𝑡 appears directly in the cost function (6.1). There are

a variety of reasons that one or more of the tracked descriptors could be unreliable (e.g.

occlusions, regions of the object where the correspondence model has less accurate)

and thus we would like our dynamics learning framework to be robust to this. We

achieve this by defining a learnable mapping 𝜑 : 𝑦 → 𝑧 which maps the keypoint

locations 𝑦 to the latent state 𝑧, where the keypoints 𝑦 are as in our DS method. A

regularization strategy is needed to ensure that 𝜑 doesn’t collapse to the trivial solution

𝜑 ≡ 0. We introduce learnable weights 𝛼 ∈ R𝐾×𝐾 and define 𝑤𝑘,𝑖 =
exp(𝛼𝑘,𝑖)∑︀𝐾

𝑗=1 exp(𝛼𝑘,𝑗)
. Let

𝑊 ∈ R𝐾×𝐾 be the matrix with entries 𝑤𝑘,𝑖, where the parameterization guarantees

127

that 𝑤𝑘,𝑖 ≥ 0 and
∑︀𝐾

𝑖=1𝑤𝑘,𝑖 = 1. 𝜑 is defined as

𝑦𝑘 =
𝐾∑︁
𝑖=1

𝑤𝑘,𝑖𝑦𝑖, 𝜑(𝑦;𝛼) = 𝑦 = {𝑦𝑘}𝐾𝑘=1 (6.3)

Note that each 𝑦𝑖 is a keypoint location in R𝐵. Thus 𝑦 is simply a convex combination

of the keypoints in 𝑦. The latent state 𝑧 is then defined as

𝑧 = (𝑧object,𝑜robot) = (𝑦,𝑜robot) = (𝜑(𝑦, 𝛼),𝑜robot) (6.4)

The learnable weights 𝛼 are trained jointly with the parameters 𝜃dyn of the dynamics

model, and are fixed at test time. The fact that 𝑧object is gotten from 𝑦 by taking a

weighted linear combination preserves the interpretation of 𝑧 as tracking keypoints on

the object, while allowing some flexibility to ignore unreliable keypoints.

Weighted Spatial Descriptor Set (WSDS): This method is simply the combina-

tion of (SDS) and (WDS).

6.3.3 Learning the Dynamics

We adopt a standard dynamics learning framework where we aim to predict the

evolution of the latent state 𝑧. We train our dynamics model to minimize the

prediction error in Equation (6.1) where 𝑧𝑡 = 𝑔𝜃𝑧(𝑜𝑡). Our proposed methods differ

in the structure of the mapping 𝑔 : 𝒪 → 𝒵 and the set of trainable parameters Θ.1

For all of our methods we keep the weights of the visual-correspondence network, 𝜃𝑑𝑐,

fixed.

6.3.4 Online Planning for Closed-Loop Control

Once we have learned a dynamics model 𝑧′ = 𝑓(𝑧,𝑎), we use online planning with

MPC to select an action. Given a goal latent state 𝑧*, we want to find an action

sequence {𝑎𝑡′}𝑡+𝐻−1
𝑡′=𝑡 that maximizes the reward 𝑅 =

∑︀𝑡+𝐻−1
𝑡′=𝑡 𝑟(𝑧𝑡′ ,𝑎𝑡′). Our dynamics

learning approach is agnostic to the type of optimizer used to solve the MPC problem
1 see Appendix D.2.2 for details

128

and the focus of our work is on the visual and dynamics learning, rather than the

specifics of the MPC. Many model-based RL approaches [152, 19, 92, 40, 23] use a

random-sampling based planner (e.g. cross-entropy method) to solve the underlying

MPC problem. We experimented with random shooting, gradient based shooting,

cross-entropy and model-predictive path integral (MPPI) planners and found that

MPPI worked best in our scenarios.1

6.4 Results

We perform experiments aimed at answering the following questions: (1) Is it possible

to successfully use self-supervised descriptors as the latent state for a model-based RL

system? (2) What is the effect of various design decisions in our algorithm? (3) How

does visual-correspondence learning compare to several benchmark methods in terms

of enabling effective model-based RL policies? (4) Can we apply the method on real

hardware?

Our main contribution is on the formulation of the visual model and dynamics

learning problem rather than the specifics of the MPC. However, to accurately compare

our approach to various baselines, we need to perform experiments in which the

dynamics model is used in closed-loop to solve a manipulation task. Our formulation

of dynamics learning is very general, and in principle can handle a wide variety of

manipulation scenarios. However, even with an accurate model (whether it comes

from first principles or is learned), using this model to perform closed-loop feedback

control remains a challenging problem. Thus, for our closed-loop experiments, we limit

ourselves to pushing tasks that can adequately be solved by the planners outlined in

Section 6.3.4.

Tasks: Extended experimental details are provided in the Appendix but we provide a

brief overview of the tasks here. We perform experiments with four simulated tasks

(depicted in Figure 6-3) and one hardware task. All tasks involve pushing an object

to a desired goal state. The first three simulation tasks, denoted as top-down, angled,

1See Appendix D.3 for more details.

129

(a) (b) (c) (d) (e)
top-down camera angled camera occlusions mugs (category) mugs (category)

Figure 6-3: This figure shows reference descriptors {𝑑𝑖}𝐾𝑖=1 of the Spatial Descriptor
Set variant for our different simulation environments. In particular in (c) the sides of
the object undergo occlusions as the box rotates about the vertical axis. (d)-(e) show
two different mugs from the category-level mugs (category) task.

occlusions involve pushing a single object. top-down has cameras in a top-down

orientation while they are angled at 45 degrees in angled. Task occlusions keeps

the angled camera positions but the box is resting on a different face, resulting in

significant self-occlusions. Task mugs involves pushing many different objects from a

category, in this case mugs with different size, shape and textures. The hardware task

is essentially identical to the angled sim task.

6.4.1 Visual-correspondence Performance

Figures 6-1, 6-2 show the performance of our dense visual-correspondence model.

In particular Figure 6-1 shows the localization performance on real data along a

trajectory while Figure 6-2 shows an example of the confidence scores used as in

the SDS method. Figure 6-3 shows the descriptors used in the SDS method for

each of our simulation tasks. In particular Figure 6-3 (d)-(e) shows the ability of the

descriptors to accurately find correspondences across different object instances within

a category, despite differences in color and shape.

6.4.2 Ablations on visual-correspondence for dynamics learn-

ing

Ablation studies show that the choice of what to track can have a substantial impact

on model performance, especially in the case of partial occlusions. Quantitative

results are detailed in Table 6.1. On tasks top-down and angled camera all methods

perform reasonably well, almost matching the performance of the GT 3D baseline

130

Task top-down camera angled camera occlusions mugs (category)

Method / task
data

pos, cm angle, ∘ pos, cm angle, ∘ pos, cm angle, ∘ pos, cm angle, ∘

Avg. trajectory 11.32 32.05 11.32 32.05 10.36 31.81 11.28 56.25

GT 3D 1.14 4.01 1.14 4.01 1.29 5.45 – –
SDS 1.19 3.88 1.10 3.97 1.46 6.77 1.20 15.03
WDS 1.16 4.43 1.30 5.12 1.49 8.64 1.00 13.29
DS 1.12 4.07 1.45 5.50 3.66 12.27 1.19 11.73
WSDS 1.19 4.00 1.18 4.86 1.28 5.59 1.39 18.18

Table 6.1: Ablations and comparison with ground-truth – quantitative results for
various ablations of our method on four simulated tasks. Each method was evaluated
on the same set of 200 different initial and goal states. The pos and angle columns
denote the translational (in cm) and rotational (in degrees) deviations of the object
from the goal position, averaged across all trials for a specific method and task. Avg.
trajectory denotes the average translation and rotation between the initial and goal
poses for each task.

that uses ground truth state information. Intuitively this is because there are minimal

occlusions in these settings, and so almost all keypoints can be tracked reliably using

dense-visual-correspondence. In contrast the occlusions introduces the potential for

significant occlusions. Given the camera angle as shown in Figure 6-3 (c) and the

fact that the object rotates through the full 360 degrees of yaw during the task, only

the top face of the box remains unoccluded while the 4 side faces are alternately

occluded and visible. This task exposes significant differences in performance among

our various ablations. In particular SDS, WDS and WSDS perform significantly

better than DS. We believe that this is due to the fact that some of the descriptors

{𝑑𝑖}𝐾𝑖=1 that are tracked in DS correspond to locations on the object that become

occluded during an episode. The dense visual-correspondence model is not able to

track keypoints through occlusions, and when trying to localize an occluded point our

dense-correspondence model maps it to the closest point in descriptor space, which is

not the location of the true correpondence. Hence the keypoint locations that makeup

the latent state 𝑧object for DS suffer reduced accuracy, leading to a less accurate

dynamics model and ultimately lower performance when used for closed-loop MPC.

On the category-level task mugs the camera is in a top-down position and thus

occlusions are no longer an issue. However because the task involves different objects

from a category there is shape variation among the different objects. Thus the methods

131

Task top-down camera angled camera occlusions mugs (category)

Method pos, cm angle, ∘ pos, cm angle, ∘ pos, cm angle, ∘ pos, cm angle, ∘

SDS (ours) 1.19 3.88 1.10 3.97 1.46 6.77 1.20 15.03
WDS (ours) 1.16 4.43 1.30 5.12 1.49 8.64 1.00 13.29
Transporter 3D 2.01 15.95 4.36 25.14 3.72 20.65 2.81 61.22
Transporter 2D 2.08 13.59 3.60 23.60 2.74 18.86 2.33 60.18
Autoencoder 2.18 14.79 2.85 13.79 3.08 14.20 9.05 56.84

Table 6.2: Comparisons with baselines – quantitative results of our method compared
to various baselines on our four simulated tasks. Each method was evaluated on the
same set of 200 different initial and goal states. pos and angle denote the translational
(in cm) and rotational (in degrees) deviations of the object from the goal position,
averaged across all trials for a specific method and task.

that use 𝐾 = 50 keypoints, namely DS and WDS, perform better than the sparser

variants SDS, WSDS that use only 𝐾 = 4, 5 keypoints. We believe that this is due to

the fact that having a larger number of keypoints better captures the shape variation

across object instances and allows for a more accurate dynamics model.

6.4.3 Comparison of visual-correspondence pretraining with

baselines

In our comparisons against baselines, our model outperforms alternatives on all

experimental tasks. The largest differences are apparent in tasks occlusions and mugs

which involve partial occlusions and category-level generalization, respectively. The

transporter baseline uses the keypoint locations from [60] as the latent state 𝑧 , while

the autoencoder baseline jointly trains an autoencoder with a forward dynamics

model. For a detailed discussion of the baselines see Appendix D.4.3. Quantitative

results are detailed in Table 6.2.

On task top-down camera, the transporter[59] model was able to achieve perfor-

mance that was only slightly worse than WDS and SDS, while the autoencoder

performed significantly worse. The top-down setting is ideally suited for the feature

transport approach of the transporter model.

On tasks angled camera and occlusions, which have angled camera positions as

opposed to the top-down task, the performance of our methods remained consistent

while transporter suffered. This is potentially due to the fact that the feature

132

transport mechanism of transporter is not well-suited to off-axis camera positions

in 3D worlds. The performance of the autoencoder baseline remainded consistent,

but worse than our approach, across tasks without category-level generalization.

Task mugs contains a variety of different mug shapes with varied visual appearances

and hence tests category-level generalization of both the perception and dynamics

models. As discussed in Section 6.4.1, our dense-correspondence model is able to

find correspondences across these variations in appearance using only self-supervision,

which allows us to learn a dynamics model that is effective for completing the task.

This task is significantly harder than the other tasks not only because of the presence

of novel objects, but because the goal states involve much larger rotations, as detailed

in the first row of Table 6.1. Both the transporter and autoencoder baselines

perform poorly in this task. We hypothesize that this is due to the fact that there

is much more variance in the visual appearance of the objects as compared to the

other tasks and thus the latent state 𝑧 produced by these baselines is not amenable

to dynamics learning.

6.4.4 Hardware

Experimental Setup: We used a Kuka IIWA LBR robot with a custom cylindrical

pusher attached to the end-effector to perform our hardware experiments, see Figure

6-1. RGBD sensing was provided by two RealSense D415 cameras rigidly mounted

offboard the robot and calibrated to the robot’s coordinate frame. To enable effective

correspondence learning between views, it is ideal to have views with some overlap

such that correspondences exist, but still maintain different-enough views. At test

time only a single camera is used to localize the dense-descriptor keypoints. The robot

is controlled by commanding end-effector velocity in the 𝑥𝑦 plane at 5Hz.

Hardware Results: For visual learning we collected a small dataset of the object in

different positions to provide a diverse set of views for training the dense-correspondence

model. For dynamics learning, we collected a dataset of the robot randomly pushing

the object around. This amounted to approximately 10 minutes of interaction time

and was used to train the dynamics model. All hardware experiments used the SDS

133

method. To enable our MPC controller to accomplish long-horizon tasks, we supplied

the controller with a reference trajectory for the object keypoints that came from a

single demonstration, see Figure 6-1 (a),(d). The MPC controller then tracked this

reference trajectory using a 2 second MPC horizon, which corresponds to 𝐻 = 10 since

we are commanding actions at 5 Hz. We collected 4 different reference trajectories1

and ran multiple rollouts for each trajectory, varying the initial condition of the object

pose during each run to test the region of attraction of our controller. In all cases our

controller showed the ability to stabilize the system to the reference trajectory in spite

of perturbations to the initial condition. Quantitative results are detailed in Figure 6-4.

In particular, we see that the ability of the controller to stabilize the trajectory in the

face of disturbances in the initial condition depends on the trajectory. For trajectory

(1) the controller is able to stabilize disturbances of up to 60 degrees, while trajectory

(4) has a much smaller region of attraction. As can be seen in Appendix D.5, trajectory

(1) is a relatively simple trajectory with minimal orientation change between start

and goal, while trajectory (4) involves a challenging 180-degree orientation change

and requires the robot to operate at the edge of its kinematic workspace, reducing

its control authority. Overall, our system exhibits impressive feedback and is able to

track a trajectory in the keypoint latent space, enabling one-shot imitation learning.

We encourage the reader to watch the videos on our project page to see the system in

action.

6.5 Conclusion

We presented a method for using self-supervised visual-correspondence learning as

input to a predictive dynamics model. Our approach produces interpretable latent

states that outperform competing baselines on a variety of simulated manipulation

tasks. Additionally, we demonstrated how the category-level generalization of our

visual-correspondence model enables learning of a category-level dynamics model,

resulting in large performance gains over baselines. Finally, we demonstrated our

1see Appendix D.5 for details on the reference trajectories

134

https://sites.google.com/view/keypointsintothefuture

x y

z

Traj 4

Figure 6-4: Left image shows demonstration for trajectory 4. Scatter plots show
results of our approach on the four different reference trajectory tracking tasks. The
axes of the plots show the deviation of the object starting pose from the initial pose
of the demonstration. Color indicates the distance between final and goal poses, lower
cost is better. The various reference trajectories are of different difficulties, as reflected
by the different regions of attraction of the MPC controller. More details can be found
in Appendix D.5 and videos are on our project page

.

approach on a real hardware system, and showed its ability to stabilize complex

long-horizon plans by tracking the latent state trajectory from a single demonstration.

Acknowledgements

This work was supported by Amazon.com Services LLC Award No. CC MISC 00272683

2020 TR and an Amazon Research Award. The views expressed are not endorsed by

our funding sponsors.

135

https://sites.google.com/view/keypointsintothefuture

136

Chapter 7

Conclusion

This thesis has studied various questions surrounding robotic manipulation, from how

to develop and perceive relevant object representations to how to synthesize feedback

controllers. In this chapter we summarize what we have learned and explain how the

work in the preceding chapters fits together to address the overarching questions of

the thesis. Finally we close by proposing some directions for future work.

7.1 Summary of Contributions

Our first step into the world of robotic manipulation was LabelFusion (Chapter 2),

which proposed a pipeline for efficiently collecting the type of labeled data needed to

train learning based perception systems on tasks relevant to manipulation (e.g. instance

segmentation, pose estimation, etc.). This pipeline allowed us to very efficiently collect

a large dataset of RGBD images with high-quality object-pose annotations. Although

this approach represented a significant advance in efficiency over existing data-labelling

approaches it suffers some drawbacks almost by construction. LabelFusion has three

primary limitations. (1) We can only handle known objects for which we have complete

mesh models, thus we cannot generalize to novel objects. (2) The method doesn’t

extend to deformable objects. (3) It requires human initialization of 3D object poses.

The first two limitations arise directly from the fact that we have chosen to use 6DOF

pose as our object representation. This is a major factor that led to us moving away

137

from 6DOF pose as our object representation in subsequent chapters.

The aforementioned limitations of LabelFusion directly inspired the work of Chapter

3, DenseObjectNets. In particular, at the start of the DenseObjectNets project we

set ourselves three requirements for the object representation: (i) The representation

should be able to handle both rigid and deformable objects, (ii) it shouldn’t rely on

having pre-built 3D mesh models, (iii) should be learned in an entirely self-supervised

manner. This led to our development of dense-descriptors as an object representation

for manipulation, which can be viewed as the primary contribution of this work. This

representation satisfies requirements (i) - (iii) outlined above and took advantage of

multi-view consistency as the source of supervision. In terms of how this work fits

into the broader theme of the thesis, it offers an answer to the first question posed

in 1.1, namely “what is an appropriate state-space and/or object representation for

performing manipulation.”

We believe that DenseObjectNets was particularly successful because it combines

the supervision from multi-view consistency with a dense pixelwise representation.

This dense pixelwise representation implies that there are thousands of matches

between image pairs which provides a copious amount of supervision for the learning

process. We were also pleasantly surprised that the dense-descriptor representation

shows generalization across a category of objects, i.e. we can use the dense-descriptors

to find correspondences across different shoes. We showed the usefulness of dense-

descriptor in simple manipulation tasks that required grasping an object at a specific

location, e.g. “grab the shoe by the tongue” and showed that we could accomplish

this across a category of objects (e.g. many different shoes). Circling back to the

broader questions of the thesis posed in Section 1.1 DenseObjectNets tackles question

1 concerning how to represent objects.

An important fact to note is that while LabelFusion uses an explicit object repre-

sentation, namely 6-DOF pose, DenseObjectNets is an implicit object representation.

In this case implicit means that the individual values of the descriptors don’t have

meaning by themselves, but rather are useful when used to solve the correspondence

problem. In general when one moves from supervised learning to self-supervised or

138

unsupervised learning you generally tradeoff an explicit representation for an implicit

representation.

The success of DenseObjectNets in generalization at the category level directly

inspired kPAM (Chapter 4). In particular we were motivated by the challenge of

performing a non-trivial manipulation task, e.g. hang a mug on a rack by the handle,

for many different objects in a category. This type of task is a step more difficult than

the tasks considered in DenseObjectNets, e.g. grasping an object by a specific point.

The main contribution of this Chapter is a novel formulation of the category-level

pick and place problem that uses semantic 3D keypoints as the object representation.

We also contribute a manipulation pipeline that factors the problem into 1) instance

segmentation, 2) 3D keypoint detection, 3) optimization-based robot action planning

4) geometric grasping and action execution. The kPAM pipline addresses questions 1

and 2 in Section 1.1, namely how to represent objects and how to specify tasks.

At the start of the kPAM project we planned to use dense-descriptors as our object

representation however we ran into a few challenges that eventually led us to represent

objects using semantic 3D keypoints instead. Because the task was more involved we

needed to integrate with our object representation with a downstream task planner.

Since the physical world is 3D moving objects around in space also fundamentally

requires a 3D object representation. Although it is very powerful DenseObjectNets

is a fundamentally 2D representation, since it lives in pixel space. It can be lifted

into 3D using a depth image, but this doesn’t alleviate the problem of occlusions,

particularly self-occlusion. The second challenge is that because the category-level

generalization in DenseObjectNets emerges naturally without any supervision it is

difficult to ensure that the representation generalizes sufficiently well across the set

of objects you are interested in. In particular we noticed that for the shoe category,

the descriptors generalized well across different sneakers. However, when faced with

a high heel, which visually looks very different even thought it is part of the shoe

category, the descriptors didn’t generalize as well. For these reasons we chose to

return to a more explicit object representation, namely semantic 3D keypoints. This

representation solved the aforementioned problems of being in 3D and generalizing

139

across objects in the category, but comes at the cost of requiring human supervision.

One advantage of having human supervision is that if you are failing to accurately

detect the keypoints on an object of interest there is a straightforward procedure for

improving the performance of the vision system. One can simply collect and label

more data for that object (or similar objects, e.g. high heels) and add it to the training

set. One final point to note is that kPAM is a sparse representation rather than

the dense representation of DenseObjectNets. This is an important distinction since

downstream modules (e.g. planners, controllers) that consume visual representations

typically consume a sparse representation (e.g. keypoints, 6DOF pose) rather than

dense representations (e.g. descriptor images, segmentation maps, etc.). The move to

a sparse representation is also a theme of Chapters 5 and 6.

So far Chapters 3 and 4 have tackled questions 1 and 2 posed in Section 1.1 but

have not considered the third question, namely “how to enable robots to perform

closed-loop feedback control for manipulation.” Achieving closed-loop visual feedback

for manipulation was the goal of the work in Chapter 5. The main contribution was a

novel formulation of visuomotor policy learning using self-supervised correspondence.

We used this novel formulation in an imitation learning framework to perform closed-

loop feedback for manipulation tasks. By taking advantage of visual-correspondence

learning to pre-train the visual system we were able to perform very sample efficient

imitation learning, achieving generalization across challenging scenarios (category-level

manipulation, deformable objects, visually challenging scenes) and with limited data

(between 50 and 150 demonstrations).

Chapter 6 also focuses on the question of “how to enable robots to perform closed-

loop feedback control for manipulation?”, but takes a different approach to the one

of Chapter 5. In particular Chapter 5 relied on imitation learning to get a feedback

controller, thus reducing the challenge of closed-loop control to a supervised learning

problem. Although this approach can be very powerful and has several desirable

properties, it still suffers from all the limitations imitation learning. In particular

it requires expert demonstrations and cannot be used to achieve goals other than

the ones it was trained on. Instead Chapter 6 uses self-supervised correspondence

140

as visual input to a learned predictive model. By learning a predictive model of

the environment dynamics we are able to leverage online model-predictive-control to

synthesize a feedback controller. We demonstrate the effectiveness of this approach

against competing baselines in a variety of simulated experiments and show that the

learned predictive models also extend to real-world manipulation tasks.

7.2 Future Directions

Although the work in this thesis has made progress towards answering the questions

posed at the outset in Section 1.1, much more remains to be done. The endeavor

of robotic manipulation has the goal of building robots that can accomplish useful

manipulation tasks in the wild. Getting there will require advances in several areas.

Scaling up visual learning: If we want to deploy robotic manipulation systems

in the wild we will need perception systems that can handle all the variability and

challenge that this entails. Self-supervised approaches such as DenseObjectNets are

promising in this regard since they don’t require human annotations. On the other

hand human understandable representations (e.g. semantic keypoints of kPAM, 6DOF

object pose) are useful in communicating tasks to the robot. I believe that finding

ways to combine self-supervision with small amounts of explicit annotations provides

a promising way forward.

Communicating tasks to robots: A challenge that is often overlooked in

manipulation is how to specify the task the robot. Whether using classical model

based approaches, such as task and motion planning (TAMP), or reinforcement learning

approaches we must still specify the task to the robot. For a TAMP it could be a set

of costs and constraints on geometric primitives and for reinforcement learning it is

encapsulated in the reward function. In general specifying a complex long-horizon

task such as "make dinner and clean up the kitchen" remains a challenge, independent

of which approach (model-based or RL) is taken. How a task is specified is intimately

related to how one represents the world and the objects in it. As shown in Chapter

5 human demonstrations can be an effective way to demonstrate a task, but more

141

work is needed to scale up such approaches to longer horizon tasks in a flexible and

composable manner.

Longer horizon tasks: In order to accomplish longer horizon tasks such as “make

dinner and clean up the kitchen” I believe that we will need to combine the learning

based approaches developed in this thesis with planners, such as task and motion

planners, that can reason over longer horizons. The kPAM approach of Chapter 4 is a

small step in this direction, and shows how to connect learning-based and classical

approaches, but more work is needed in this area.

142

Appendices

143

144

Appendix A

Dense Object Nets

A.1 Experimental Hardware

All of our data was collected using an RGBD camera mounted on the end effector of a

7 DOF robot arm (see Figure A-1). We used a Kuka IIWA LBR robot with a Schunk

WSG 50 parallel jaw gripper. A Primesense Carmine 1.09 RGBD sensor was mounted

to the Schunk gripper and precisely calibrated for both intrinsics and extrinsics.

A.2 Experimental Setup: Data Collection and Pre-

Processing

As discussed in the paper all of our data consists of 3D dense reconstructions of a static

scene. To collect data for a single scene we place an object (or set of objects) on a table

in front of the robot. We then perform a scanning pattern with the robot which allows

the camera to capture many different viewpoints of the static scene. This procedure

takes about 70 seconds during which approximately 2100 RGBD frames are captured

(the sensor outputs at 30Hz). Using the forward kinematics of the robot, together with

our camera extrinsic calibration, we also record the precise camera pose corresponding

to each image. Since we have the camera poses corresponding to each depth image we

use TSDF fusion [17] to obtain a dense 3D reconstruction. Although we use our robot’s

145

(a) (b)

Figure A-1: (a) Kuka IIWA LRB robot arm. (b) Schunk WSG 50 gripper with
Primesense Carmine 1.09 attached

forward kinematics to produce the dense 3D reconstruction together with camera pose

tracking, any dense SLAM method (such as [95]) could be used instead. In practice

we found that using the robot’s forward kinematics to obtain camera pose estimates

produces very reliable 3D reconstructions which are robust to lack of geometric or

RGB texture, varying lighting conditions, etc. Next we obtain new depth images for

each recorded camera frame by rendering against the 3D reconstruction using our

camera pose estimates. This step produces depth images which are globally consistent

and free of artifacts (i.e. missing depth values, noise etc.). This keeps the process of

finding correspondences across RGB images as a simple operation between poses and

depth images. To enable the specific training techniques discussed in the paper we

also need to know which parts of the scene correspond to the objects of interest. To

do this we implemented the change detection technique of [22]. In practice since all of

our data was collected on a tabletop, and our reconstructions can be easily globally

aligned (due to the fact that we know the global camera poses from the robot’s forward

kinematics) we can simply crop the reconstruction to the area above the table. Once

we have isolated the part of the reconstruction corresponding to the objects of interest,

we can easily render binary masks via the same procedure as was used to generate the

depth images.

Our RGBD sensor captures images at 30Hz, so we downsample the images to avoid

having images which are too visually similar. Specifically we downsample images so

146

that the camera poses are sufficiently different (at least 5cm of translation, or 10

degrees of rotation). After downsampling we are left with approximately 315 images

per scene.

In between collecting RGBD videos, the object of interest should be moved to a

variety of configurations, and the lighting can be changed if desired. While for many

of our data collections a human moved the object between configurations, we have also

implemented and demonstrated (see our video) the robot autonomously rearranging

the objects, which highly automates the object learning process. We employ a Schunk

two-finger gripper and plan grasps directly on the object point cloud (see Appendix

A.3). If multiple different objects are used, currently the human must still switch the

objects for the robot and indicate which scenes correspond to which object, but even

this information could be automated by the robot picking objects from an auxiliary

bin and use continuity to simply identify which logs are of the same object.

A.3 Grasping Pipeline

While our learned visual descriptors can help us determine where to grasp, they can’t

be used during the bootstrapping phase before visual learning has occurred, and they

don’t constrain the 6DOF orientation of the gripper. Accordingly to choose grasps our

pipeline employs simple geometric point cloud based techniques. There are two types

of grasping that are performed in the paper. The first is performed while grasping the

object to automatically reorient it during data collection, during the visual learning

process. To achieve this we first use the depth images and camera poses to fuse a

point cloud of the scene. We then randomly sample many grasps on the point cloud

and prune those that are in collision. The remaining collision free grasps are then

scored by a simple geometric criterion that evaluates the grasps for antipodality. The

highest scoring grasp is then chosen for execution. The second type of grasping is,

as in Section 5.4 of the paper, when we are attempting to grasp a specific point. In

this case the robot moves to a handful of pre-specified poses and records those RGBD

images. The RGB images are used to look up the best descriptor match and determine

147

a pixel space location to grasp in one image, and the corresponding depth image and

camera pose are used to determine the 3D location of this point. The handful of depth

images are also fused into a point cloud, and the grasping procedure is almost the

same as the first type, with the slight modification that all the randomly sampled

grasps are centered around the target grasp point. Although there are a variety of

learning based grasping algorithms [38, 71] that could have been used, we found that

our simple geometric based grasp planning was sufficient for the tasks at hand.

A.4 Network Architecture and Training Details

For our network we use 34-layer, stride-8 ResNet (pretrained on ImageNet), and then

bilinearly upsample to produce a full resolution 640𝑥480 image.

For training, at each iteration we randomly sample between some specified subset

of specified image comparison types (Single Object Within Scene, Different Object

Across Scene, Multi Object Within Scene, Synthetic Multi Object). The weighting

between how often each type is chosen is done via specifying their probabilities of

being selected. Once the type has been sampled we then sample some set of matches

and non-matches for each (around 1 million in total). Each step of the optimizer uses

a single pair of images.

All the networks were trained with the same optimizer settings. Networks were

trained for 3500 steps using an Adam optimizer with a weight decay of 1𝑒−4. Training

was performed on a single Nvidia 1080 Ti or Titan Xp, a single step takes approximately

0.22 seconds, i.e. approximately 13 minutes, and so together with collecting a handful

of scenes the entire training for a new object can take 20 minutes. The learning rate

was set to 1𝑒− 4 and dropped by 0.9 every 250 iterations. The networks trained with

procedure specific used a 50-50 split of within scene image pairs and across scene

image pairs 50% of the time. For the network used to grasp the heel of the red/brown

shoe in Section 5.4 we sampled equally the three data types (Single Object Within

Scene, Different Object Across Scene, Synthetic Multi Object).

148

A.4.1 Descriptor Projection to Unit Sphere

There is one additional small feature we discovered prior to camera-ready submission

that gives substantial quantitative performance gains, although it was not used

nor needed for most of the experiments including all hardware experiments. As is

standard in many metric learning works, for example [113], we can add a simple

parameterless normalization layer in which we project all features to the unit sphere,

𝑓(𝐼)(𝑢) ← 𝑓(𝐼)(𝑢)
||𝑓(𝐼)(𝑢)|| . This is contrast to channel-wise normalization mentioned in

[15]. Given that there is a projection to the unit-sphere manifold, higher dimensions

are needed in order to see improvements. While without unit-sphere projection, we

see saturation of performance at around 𝐷 = 3 for single-object descriptors, with

unit-sphere projection we see significant gains in going from 𝐷 = 4 to 𝐷 = 8 even

for single-object descriptors. Further work could investigate the effect of unit-sphere

projection on descriptor consistency across classes. The network marked as standard-

SO-P in Figures 3b and 3c was trained identically to standard-SO, but with the

unit sphere projection, and with 𝐷 = 16.

A.4.2 Additional Approaches Which Did not Improve Perfor-

mance

During the course of our experimentation we found that the network architecture and

training procedure outlined in Section 3.3 gave the best performance. However we

also tried a variety of other network architectures and loss functions which did not

improve performance. We discuss a few of them here.

Triplet loss [113] uses a triplet loss instead of the contrastive loss. We implemented

a pixelwise version of this triplet loss, but found that it actually reduced performance

on our dataset.

Scaling loss by pixel distance Our loss function tries to ensure that non-matches

have descriptors that are at least a margin 𝑀 apart. It can be hard, however, for the

network to take two pixels that are next to each other, and assign them significantly

different descriptors. In an effort to try to less heavily penalize non-matches that are

149

close to the true match, we introduced an additional scaling term using the L2 pixel

distance. Following the notation from Section 3.3 let 𝑢𝑎 ∈ 𝐼𝑎, 𝑢𝑏 ∈ 𝐼𝑏 correspond to a

non-match. Additionally, using the notation of Equation 3.6 let 𝑢*
𝑏 ∈ 𝐼𝑏 correspond to

the true match for 𝑢𝑎. Define ∆(𝑢𝑏, 𝑢
*
𝑏) ∈ R to be the L2 distance, measured in pixels,

between 𝑢𝑏 and 𝑢*
𝑏 . The scaled non-match loss is now defined as

ℒnon-matches(𝐼𝑎, 𝐼𝑏) =
1

𝑁non-matches

∑︁
𝑁non-matches

1

𝑀𝑝

min(∆(𝑢𝑏, 𝑢
*
𝑏),𝑀𝑝)·max(0,𝑀−𝐷(𝐼𝑎, 𝑢𝑎, 𝐼𝑏, 𝑢𝑏))

2

(A.1)

where 𝑀𝑝 is the pixel distance at which this additional loss component saturates.

Parameter sweeps on 𝑀𝑝, where 𝑀𝑝 = 1 is the original un-scaled loss function, did not

show significant differences in performance. A potentially useful extension for future

work would be to try scaling by the geodesic distance in the 3D reconstructios.

Convolutional spatial transformer: We implemented a convolutional spatial

transformer, as described in [15]. The convolutional spatial transformer is meant to

help the network achieve scale and rotation invariance for each feature. We did not

find any significant performance gains with our implementation of such a convolutional

spatial transformer. A hypothesis for why we did not see performance gains is that

our used network architecture (34-layer ResNet) was significantly deeper than the

architecture used in [15], and our data collection and augmentation provided significant

variety in scale and rotation – accordingly, our network must approximate scale and

rotation invariance in order to fit the training data.

Ratios for sampling non-matches: Given a pixel 𝑢𝑎 corresponding to a point

on an object, non-matches 𝑢𝑏 can either be on the object, or on the background. Let

𝐼𝑏,𝑜𝑏𝑗𝑒𝑐𝑡 denote object pixels in image 𝐼𝑏, and 𝐼𝑏,𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 denote background pixels.

During training we experimented with varying the fraction of non-matches 𝑢𝑏 which

lie in 𝐼𝑏,𝑜𝑏𝑗𝑒𝑐𝑡 vs. 𝐼𝑏,𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑. In general we found performance was insensitive to this

ratio as long as the fraction of non-matches in 𝐼𝑏,𝑜𝑏𝑗𝑒𝑐𝑡 was between 25% to 75%.

150

Appendix B

kPAM

B.1 Robot Hardware

Our experimental setup consists of a robot arm, an end-effector mounted RGBD

camera and a parallel jaw gripper. Our robot is a 7-DOF Kuka IIWA LBR. Mounted

on the end-effector is a Schunk WSG 50 parallel jaw gripper. Additionally we mount

a Primesense Carmine 1.09 RGBD sensor to the gripper body.

B.2 Dataset Generation and Annotation

In order to reduce the human annotation time required for neural network training

we use a data collection pipeline similar to that used in [31]. The main idea is to

collect many RGBD images of a static scene and perform a dense 3D reconstruction.

Then, similarly to [75], we can label the 3D reconstruction and propagate these labels

back to the individual RGBD frames. This 3D to 2D labelling approach allows us

to generate over 100,000 labelled images with only a few hours of human annotation

time.

151

B.2.1 3D Reconstruction and Masking

Here we give a brief overview of the approach used to generate the 3D reconstruction,

more details can be found in [31]. Our data is made up of 3D reconstructions of a

static scene containing a single object of interest. Using our the wrist mounted camera

on the robot, we move the robot’s end-effector to capture a variety of RGBD images

of the static scene. From the robot’s forward kinematics, we know the camera pose

corresponding to each image which allows us to use TSDF fusion [17] to obtain a

dense 3D reconstruction. After discarding images that were taken from very similar

poses, we are left with approximately 400 RGBD images per scene.

The next step is to detect which parts of the 3D reconstruction correspond to the

object of interest. This is done using the change detection method described in [22].

In our particular setup all the reconstructions were of a tabletop scene in front of

the robot. Since our reconstructions are globally aligned (due to the fact that we use

the robot’s forward kinematics to compute camera poses), we can simply crop the

3D reconstruction to the area above the table. At this point we have the portion of

the 3D reconstruction that corresponds to the object of interest. This, together with

the fact that we have camera poses, allows us to easily render binary masks (which

segments the object from the background) for each RGBD image.

B.2.2 Instance Segmentation

The instance segmentation network requires training images with pixelwise semantic

labels. Using the background subtraction technique detailed in Section B.2.1, we

have pixelwise labels for all the images in our 3D reconstructions. However, these

images contain only a single object, while we need the instance segmentation network

to handle multiple instances at the test time. Thus, we augment the training data

by creating multi-object composite images from our single object annotated images

using a method similar to [114]. We crop the object from one image (using the binary

mask described in Section B.2.1) and paste this cropped section on top of an existing

background. This process can be repeated to generate composite images with arbitrary

152

(a) Mugs composite image (b) Shoes composite image

Figure B-1: Multi object composite images used in instance segmentation training

Figure B-2: A screenshot from our custom keypoint annotation tool.

numbers of object. Examples of such images are shown in Figure B-1.

B.2.3 Keypoint Detection

The keypoint detection network requires training images annotated with pixel coor-

dinates and depth for each keypoint. As mentioned in Section 4.3.2, we annotate

3D keypoints on the reconstructed mesh, transform the keypoints into the camera

frame and project the keypoints into each image. To annotate the 3D keypoints on

the reconstructed mesh, we developed a custom labelling tool based on the Director

[77] user interface, shown in Figure B-2. We labelled a total of 117 scenes, 43 of which

were shoes and 74 of which were mugs. Annotating these scenes took only a few hours

and resulted in over 100,000 labelled images for keypoint network training.

153

(a) RGB image used for keypoint detections with Mask
R-CNN annotations overlaid

(b) Keypoint detections

Figure B-3: 3D visualization of pointcloud and keypoint detections for the image from
(a). The keypoints are colored as in Figure 4-6. The top center keypoint is green, the
bottom center keypoint is red, and the handle center keypoint is purple.

B.3 Neural Network Architecture and Training

B.3.1 Instance Segmentation

For the instance segmentation, we used an open source Mask R-CNN implementation

[81]. We used a R-101-FPN backbone that was pretrained on the COCO dataset

[65]. We then fine-tuned on a dataset of 10,000 images generated using the procedure

outlined in Section B.2.2. The network was trained for 40,000 iterations using the

default training schedule of [81].

154

B.3.2 Keypoint Detection

We modify the integral network [129] for 3D keypoint detection. The network takes

images cropped by the bounding box from MaskRCNN as the input. The network

produces the probability distribution map 𝑔𝑖(𝑢, 𝑣) that represents how likely keypoint

𝑖 is to occur at pixel (𝑢, 𝑣), with
∑︀

𝑢,𝑣 𝑔𝑖(𝑢, 𝑣) = 1. We then compute the expected

values of these spatial distributions to recover a pixel coordinate of the keypoint 𝑖:

[𝑢𝑖, 𝑣𝑖]
𝑇 =

∑︁
𝑢,𝑣

[𝑢 · 𝑔𝑖(𝑢, 𝑣), 𝑣 · 𝑔𝑖(𝑢, 𝑣)]𝑇 (B.1)

For the 𝑧 coordinates (depth) of the keypoint, we also predict a depth value at

every pixel denoted as 𝑑𝑖(𝑢, 𝑣). The depth of the keypoint 𝑖 can be computed as

𝑧𝑖 =
∑︁
𝑢,𝑣

𝑑𝑖(𝑢, 𝑣) · 𝑔𝑖(𝑢, 𝑣) (B.2)

Given the training images with annotated pixel coordinate and depth for each

keypoint, we use the integral loss and heatmap regression loss (see Section 2 of [129]

for details) to train the network. We use a network with a 34 layers Resnet as the

backbone. The network is trained on a dataset generated using the procedure described

in Section B.2.3.

B.4 Experiments

Figures B-4, B-5, B-6 illustrate the results of experiments. These figures containing

tiled images showing thee initial RGB image used for keypoint detection, along with

an image of the object after running the kPAM pipeline. In the following sections we

discuss more details related to the mug on shelf and mug on rack experiments.

B.4.1 Mugs Upright on Shelf

Results for the mug on shelf experiment are detailed in Figure 4-7. A trial was

classified as a sucess if the mug ended up upright on the shelf with it’s bottom center

155

(a) RGB images used for keypoint detection in shoe on rack experiments

(b) Image of the shoe rack after running the kPAM pipeline. Red images indicate trials where
no image of the final placement was captured due to an upstream failure of the pipeline
causing the trial to be aborted.

Figure B-4: Before and after images of the shoe on rack experiment for all 100 trials.

156

(a) RGB images used for keypoint detection in mug on rack experiments

(b) Image of the mug rack after running the kPAM pipeline. Red images indicate trials where
no image of the final placement was captured due to an upstream failure of the pipeline
causing the trial to be aborted.

Figure B-5: Before and after images of the mug on rack experiments for all 120 trials.

157

(a) RGB images used for keypoint detection in mug on shelf experiments

(b) Image of the mug shelf after running the kPAM pipeline. Red images indicate trials where
no image of the final placement was captured due to an upstream failure of the pipeline
causing the trial to be aborted.

Figure B-6: Before and after images of the mug on shelf experiments for all 118 trials.

158

(a) (b)

Figure B-7: (a) The RGB image for the single failure trial of the mug on shelf task
that led to the mug being put in an incorrect orientation. In this case the keypoint
detection confused the top and bottom of the mug and it was placed upside down. (b)
The resulting upside down placement of the mug.

keypoint within 5cm of the target location. Out of 118 trials we experienced 2 failures.

One failure was due to a combination of inaccurate keypoint detections together with

the mug being torqued as it was grasped. Since we only have a wrist mounted camera

we cannot re-perceive the object to compensate for the fact that the object moves

during the grasping process. As discussed in Section 4.6 this could be alleviated by

adding an externally mounted camera.

The other failure was resulted from the mug being placed upside down. Figure

B-7 shows the RGB image used for keypoint detection, along with the final position

of the mug. As discussed in Section 4.5.2 this failure occurred because the keypoint

detection confused the top and bottom of the mug. Given that the image was taken

from a side view where the handle is occluded and it is difficult to distinguish top

from bottom is understandable that the keypoint detection failed in this case. There

are several ways to deal with this type of issue in the future. One approach would

be to additionally predict a confidence value for each keypoint detection. This would

allow us to detect that we were uncertain about the keypoint detections in Figure B-7

(a). We could then move the robot and collect another image that would allow us to

unambiguously detect the keypoints.

159

Figure B-8: The 5 mugs on the left are the test mugs used in experiment that were
characterized as small. For comparison the four mugs on the right are part of the
regular category.

B.4.2 Hang mug on rack by its handle

As discussed in Section 4.5.3 mugs were divided into two groups, regular and small,

based on their size. A mug was characterized as small if the handle had a minimum

dimension (either height or width) of less than 2cm. Examples of mugs from each

category are shown in Figure B-8. Mugs with such small handle sizes presented

a challenge for our manipulation pipeline since hanging them on the rack requires

increased precision.

160

Appendix C

Self-Supervised Correspondence in

Visuomotor Policy Learning

C.1 Simulation Tasks

Our simulation environment was configured to closely match our real hardware

experimentation. Using Drake [132], we simulate the 7-DOF robot arm, gripper,

objects, and multi-view RGBD sensing. “Reach T only” : goal is to move the end-

effector to a target position relative to the sugar box object; success is within 1.2cm

of target. The box pose only varies in translation, not rotation; training positions

drawn from a truncated Gaussian (𝜎𝑥 = 5cm,𝜎𝑦 = 10cm), centered on the table,

truncated to a 40cm×10cm region. Test distribution drawn from uniform over same

region. “Reach T + R” : same as “Reach T only” but now the box pose varies in

rotation as well, drawn from a uniform [-30,30] degrees; success is within 1.2cm and 2

degrees. “Push box” : goal is to push the box object across the table, and the box

is subject to random external disturbances; success if translated across table and

final box orientation is within 2 degrees of target. “Push plate” : goal is to push a

plate across a table to a specific goal location, and the plate is subject to external

disturbances; success if plate center is within 1cm of target position.

161

C.2 Policy Networks

All experiments using an “MLP" had a two-layer network with 128 hidden units,

20% dropout, in each layer and ReLU nonlinearities. Training was 75,000 steps with

RMSProp, 𝛼 = 0.9, with a batch size of 16, and lr starting at 1𝑒−4, and decaying by a

factor of 0.5 every 10,000 steps. All experiments using an “LSTM" had a single LSTM

layer with 100 units preprocessed by two MLP layers of 100 units, 10% dropout, and

layer-normalized prior to the LSTM layer. Training was 200,000 steps with RMSProp,

𝛼 = 0.9, with lr starting at 2𝑒− 3, decaying 0.75 every 40,000 steps, with truncated

backpropagation of maximum 50 steps, and gradient clipping of maximum magnitude

1.0. As recommended in [103] we train LSTMs on downsampled trajectories, we use 5

Hz.

C.3 Vision Networks

Both “AE” and “E2E” methods used an identical architecture, with the only difference

being the additional decoder used for the AE method during autoencoding. The

network is almost exactly as in [64] and [27], but we provided a full-width image,

320 × 240. We used 16 2D feature points. “DD” architecture is identical to [31].

DD-2D computes image-space spatial expectation, DD-3D computes 3D-space spatial

expectation using the depth image, see [30] for details; both used 16 descriptors. The

“E2E (34-layer)” network is exactly the DD architecture but with 𝐷 = 16 and

channel-wise 2D spatial softmax to obtain 𝑧.

162

Appendix D

Keypoints into the Future:

Self-Supervised Correspondence with

Model-Based Reinforcement Learning

D.1 Dense Correspondence

Here we give a brief overview of the dense correspondence model formulation [112, 31]

with spatial distribution losses [32, 30]. We briefly explain the loss functions and how

the descriptors {𝑑𝑖} are localized.

D.1.1 Network Architecture

We use an architecture that produces a full resolution descriptor image. Namely it

maps

𝑊 ×𝐻 × 3→ 𝑊 ×𝐻 ×𝐷 (D.1)

We use a FCN (fully-convolutional network architecture) [67] with a ResNet-50 or

ResNet-101 with the number of classes set to the descriptor dimension. Note that the

FCN used in this work does not use striding and upsampling as in the architecture

originally used in [31].

163

D.1.2 Loss Function

For all shown experiments we use the spatially-distributed loss formulation with

a combination of heatmap and 3D spatial expectation losses, as described in [32],

Chapter 4.

Heatmap Loss

Let 𝑝* be the pixel space location of a ground truth match. Then we can define the

ground-truth heatmap as

𝐻*
𝑝*(𝑝) = exp

(︂
−||𝑝− 𝑝*||22

𝜎2

)︂
(D.2)

𝑝 represents a pixel location. A predicted heatmap can be obtained from the descriptor

image ℐ𝐷 together with a reference descriptor 𝑑*. Then the predicted heatmap is

gotten by

�̂�(𝑝; 𝑑*, ℐ𝐷, 𝜂) = exp

(︂
−||ℐ𝐷(𝑝)− 𝑑*||22

𝜂2

)︂
(D.3)

The heatmap can also be normalized to sum to one, in which case it represents a

probability distribution over the image.

�̃�(𝑝) =
�̂�(𝑝)∑︀

𝑝′∈Ω �̂�(𝑝′)
(D.4)

The heatmap loss is simply the MSE between 𝐻* and �̂� with mean reduction.

𝐿heatmap =
1

|Ω|
∑︁
𝑝∈Ω

||�̂�(𝑝)−𝐻*(𝑝)||22 (D.5)

Spatial Expectation Loss

Given a descriptor 𝑑* together with a descriptor image ℐ𝐷 we can compute the 2D

spatial expectation as

𝐽pixel(𝑑
*, 𝐼𝐷, 𝜂) =

∑︁
𝑝∈Ω

𝑝 · �̃�(𝑝; 𝑑*, 𝐼𝐷, 𝜂) (D.6)

164

If we also have a depth image Z then we can define the spatial expectation over the

depth channel as

𝐽𝑧(𝑑
*, 𝐼𝐷,𝒵, 𝜂) =

∑︁
𝑝∈Ω

Z(𝑝) · �̃�(𝑝; 𝑑*, 𝐼𝐷, 𝜂) (D.7)

The spatial expectation loss is simply the L1 loss between the ground truth and

estimated correspondence using

𝐿spatial pixel = ||𝑝* − 𝐽pixel(𝑑
*)||1 (D.8)

We can also use our 3D spatial expectation 𝐽𝑧 to compute a 3D spatial expectation

loss. In particular given a depth image Z let the depth value corresponding to pixel 𝑝

be denoted by Z(𝑝). The spatial expectation loss is simply

𝐿spatial z = ||𝒵(𝑝*)− 𝐽𝑧(𝑑
*, 𝐼𝐷,𝒵, 𝜂)||1 (D.9)

being careful to only take the expectation over pixels with valid depth values 𝒵(𝑝).

Total Loss

The total loss is a combination of the heatmap loss and the spatial loss

𝐿 = 𝑤heatmap𝐿heatmap + 𝑤spatial(𝐿spatial pixel + 𝐿spatial z) (D.10)

where the 𝑤 are weights.

D.1.3 Correspondence Function

The correspondence function 𝑔𝑐(ℐ𝐷, 𝑑𝑖) in Section 6.3.2 is defined using the spatial

expectations 𝐽pixel, 𝐽𝑧 defined above to localize the descriptor 𝑑𝑖 in either pixel space

or 3D space. If in 3D we additionally use the known camera extrinsics to express the

localized point in world frame.

165

D.2 Training Details

This section provides details on the simulation and hardware experiments.

D.2.1 Trajectory Data Augmentation

Many physical systems exhibit invariances in their dynamics. For example, in the

environments we consider the dynamics are invariant to translation in the 𝑥𝑦 plane

and rotation about the 𝑧 axis. In other words, if we translate or rotate our frame

of reference the dynamics don’t change. Encoding this invariance into our dynamics

model has the potential to greatly simplify the learning problem. [46] achieves this

by parameterizing the dynamics relative to the object frame, however this approach

requires having access to the ground truth object frame and assumes you are dealing

with a single rigid object. Another approach, taken by [159, 161, 128], is to rotate

the observation into a frame defined by the action. While this can work well in the

setting of simple manipulation primitives (e.g. push along a straight line for 5𝑐𝑚) it

doesn’t naturally extend to the realtime feedback setting where you are commanding

actions continuously at 5− 10 Hz without returning the robot to a reference position.

Since in our approach the latent-state 𝑧 is a physically grounded 3D quantity we are

able to encode some of this invariance by using an alternative approach based on data

augmentation. Given a latent-state action trajectory {(𝑦𝑡,𝑎𝑡)} then transforming this

trajectory using a homogeneous transform 𝑇 , which consists of 𝑥𝑦 translation and

𝑧 rotation, yields another valid trajectory {(𝑦𝑡, �̃�𝑡)} = {(𝑇 · 𝑦𝑡, 𝑇 · 𝑎𝑡)}. At training

time we augment the training trajectories by sampling such random homogeneous

transforms 𝑇 .

D.2.2 Training Details

All methods used the same architecture for the dynamics model 𝑓𝜃𝑑𝑦𝑛 , an MLP with

two hidden layers of 500 units. All of our variants, along with the transporter

baselines, use visual pre-training. The visual models are trained for 100 epochs and

the model with the best test error is used. The dense-correspondence model uses both

166

Method Learnable Parameters Θ

DS {𝜃𝑑𝑦𝑛}
SDS {𝜃𝑑𝑦𝑛}
WDS {𝜃𝑑𝑦𝑛, 𝛼}
WSDS {𝜃𝑑𝑦𝑛, 𝛼}

Transporter {𝜃𝑑𝑦𝑛}
Autoencoder {𝜃𝑑𝑦𝑛, 𝜃autoencoder}

Table D.1: The set of learnable parameters for the different methods during the
dynamics learning phase. For our methods and transporter, these parameters don’t
include the weights of the visual model which remain fixed during the dynamics
learning phase.

camera views for visual pretraining, while the transporter model uses only the images

from the camera used at test time. For the dynamics learning all methods are trained

for 1000 epochs using an Adam optimizer [55] with a learning rate of 10−4. For each

method the model with the best test error was used for evaluation. Table D.1 details

the set of learnable parameters for each method.

D.3 Online Model-Predictive Control

Following [92] we use the model-predictive path integral (MPPI) approach derived in

[144]. Here we provide a brief overview but refer the reader to [144] for more details.

MPPI is a gradient-free optimizer that considers coordination between timesteps when

sampling action trajectories. The algorithm proceeds by sampling 𝑁 trajectories,

rolling them out using the learned model, computing the reward/cost for each trajectory,

and then re-weighting the trajectories in order to sample a new set of trajectories.

Let 𝐻 be look-ahead horizon of the MPC, then a single trajectory consists of state-

action pairs {(𝑥(𝑘)
𝑡 , 𝑎

(𝑘)
𝑡 }𝐻−1

𝑡=0 . Let 𝑅𝑘 =
∑︀𝑡+𝐻−1

𝑡′=𝑡 𝑟(𝑥
(𝑘)
𝑡 , 𝑎

(𝑘)
𝑡) be the reward of the 𝑘-th

trajectory. Define

𝜇𝑡 =

∑︀𝑁
𝑘=0

(︀
𝑒𝛾𝑅𝑘

)︀
𝑎
(𝑘)
𝑡∑︀𝑁

𝑘=0 𝑒
𝛾𝑅𝑘

167

A filtering technique is then used to sample new trajectories from the previously

computed mean 𝜇𝑡. Specifically

𝑎𝑖𝑡 = 𝑛𝑖
𝑡 + 𝜇𝑡 (D.11)

where the noise 𝑛𝑖
𝑡 is sampled via

𝑢𝑖
𝑡 ∼ 𝒩 (0,Σ), ∀𝑖 ∈ 0, . . . , 𝑁 − 1, ∀𝑡 ∈ 0, . . . , 𝐻 − 1 (D.12)

𝑛𝑖
𝑡 = 𝛽𝑢𝑖

𝑡 + (1− 𝛽)𝑛𝑖
𝑡−1 where 𝑛𝑡<0 = 0 (D.13)

This procedure is repeated for 𝑀 iterations at which point the best action sequence

is selected. All of our experiments we used 𝑁 = 1000,𝑀 = 3, 𝐻 = 10, 𝛽 = 0.7. The

cost/reward in the MPC objective varied slightly between the hardware and simulation

experiments, more details are provided below.

D.4 Simulation Experiments

To evaluate our method we consider four manipulation tasks in simulation. We use

the Drake simulation environment [132] which provides both the underlying physics

simulation and rendering of RGBD images at VGA resolution 640× 480× 3. Figure

6-3 shows image from the four simulation tasks that we consider.

∙ top down camera: This environment, depicted in Figure 6-3 (a), consists of

the sugar-box object from the YCB dataset [12] laying flat on a table. The

robot is represented as cylindrical pusher (shown in green) and the action 𝑎

is the 𝑥− 𝑦 velocity of the pusher in the plane. The environment timestep is

𝑑𝑡 = 0.1, so the agent must command actions at 10Hz. Two cameras are placed

directly above the table, facing downwards. The camera positions are offset by

90 degrees about their z-axis. Our methods use both camera feeds for training

the visual correspondence model, but only one camera feed at test time. An

image from this camera is shown in Figure 6-3 (a). All other methods use only

a single camera feed at both train and test time.

168

∙ angled camera: This environment is identical to top down camera but has

different camera positions. Instead of being top down the two cameras are located

on adjacent sides of the table and angled at 45 degrees, see figure 6-3 (b). The

setting of angled cameras is more similar to our hardware experimental setup and

is useful for comparing approaches that use pixel space vs. 3D representations.

∙ occlusions: This environment uses the same setup of task angled camera the

only difference being that the object is now laying on its side, see Figure 6-3 (c).

This, together with the angled camera position, means that occlusions become a

significant factor. In particular as the box rotates through the full 360 degrees

in yaw, the sides of the box become alternately occluded or visible. The top face

of the box is the only one that remains unoccluded for all poses of the object.

∙ mugs (category): This environment has the same top-down camera placements

and cylindrical pusher as task angled camera. Instead of a single object however,

we use a collection of 10 different mug models and vary the color and texture

on each episode. This environment tests category-level vision and dynamics

generalization. Two mug instances are shown in Figures 6-3 (d) and (e).

D.4.1 Data Collection

For each environment we collect a static dataset that is then used to learn the visual

dynamics model. All methods have access to exactly the same dataset and the visual

pretraining for our method and the transporter baseline is done using this same

dataset. For each task the dataset is generated by collecting 500 trajectories of length

40 using a scripted random policy. The simulator timestep is 0.1 seconds so a trajectory

of length 40 equates to 4 seconds.

D.4.2 Evaluating closed-Loop MPC performance

For each environment we evaluate the different methods by planning to a desired

goal-state image and computing the pose error (both translation and rotation) using

169

the ground truth simulator state. Goal states are generated sampling a random control

input and applying it to the environment for 15 time steps. We further require that

goal states are sufficiently far from initial states (in both translation and rotation).

This generates a diverse set of initial and goal state pairs for evaluation. The simulator

state is then reset to the initial state and we use closed-loop MPC to control the

system to the goal state. The MPC cost function is simply the L2 distance between

the latent state and the goal state. Ground truth state information is used to compute

the error between the final and goal poses for the object.

D.4.3 Baselines

To demonstrate the benefits of our approach over prior methods we compare against

several baselines.

∙ Ground Truth 3D points (GT_3D): This baseline is used for tasks top

down camera, angled camera, occlusions since those environment use just a single

object. 𝑧object contains ground truth world-frame 3D locations of 4 points on

the object. Knowing the location of 4 points is equivalent to knowing the object

pose for a rigid object. We believe that this is a strong baseline that provides

an upper bound on what is achievable with our descriptor-based methods that

attempt to track points on the object.

∙ Transporter: We use the Transporter autoencoder formulation from [59] to

pre-train a visual model. Following the original paper we use 6 keypoints and

freeze the visual model while training the dynamics model. We investigate two

variants using the transporter approach. In transporter 2D 𝑧object are the

pixel-space locations of the keypoints. In transporter 3D 𝑧object are the 3D

world frame locations of the keypoints, computed from the pixel space by using

the depth image together with the camera intrinsics and extrinsics.

∙ Autoencoder: This method jointly learns the visual model and the dynamics

model. Specifically we jointly train a convolutional autoencoder together with

170

a forward dynamics model. The loss is a combination of the dynamics loss,

Equation (6.1), and an image reconstruction loss, which penalizes the L2 distance

between the reconstructed and actual images. Note that this is exactly the

autoencoder baseline from [148]. Following [148] images are downsampled to

64× 64 before being passed into the network. The encoder architecture contains

6 2D convolutions with kernel sizes [3, 4, 3, 4, 4, 4], strides [1, 2, 1, 2, 2, 2] and

filter sizes [64, 64, 64, 128, 256, 256]. Leaky ReLU activations are added between

the convolutional layers. The final output is flattened and passed through a

fully-connected layer to form the latent-state 𝑧object. We experimented with

different dimensions for 𝑧 from 16 to 64 and found that 64 worked best. Hence a

64 dimensional latent state is used for all experiments. The decoder follows the

one in [40] and consists of a dense layer followed by 4 transposed convolutions

with kernels size 4 and stride 2 which upscales the output image to 64× 64.

D.5 Hardware Experiments

D.5.1 Hardware Setup

We used a Kuka IIWA LBR robot with a custom cylindrical pusher attached to the

end-effector to perform our hardware experiments, see Figure D-1. RGBD sensing

was provided by two RealSense D415 cameras rigidly mounted offboard the robot and

calibrated to the robot’s coordinate frame. To enable effective correspondence learning

between views, it is ideal to have views with some overlap such that correspondences

exist, but still maintain different-enough viewpoints from each camera. At test time

only a single camera is used to localize the dense-descriptor keypoints. The robot is

controlled by commanding end-effector velocity in the 𝑥𝑦 plane at 5Hz. A high-rate

Jacobian space controller consumes these 5Hz end-effector velocity commands and

closes the loop to command the robot’s joint positions at 200Hz.

171

Figure D-1: Overview of our experimental setup, including the two external Realsense
D415 cameras. Images from both cameras are used to train the dense-descriptor model,
while only the right camera is used at runtime to localize the keypoints on the object.

172

D.5.2 One-Shot Imitation Learning

Although our learned dynamics model together with online MPC is able to plan over

short to medium horizons, we can track much longer horizon plans by providing a

single demonstration and using a trajectory tracking cost in our MPC formulation.

This demonstration can in principle come from any source, in our case we used a

human teleoperating the robot. We capture observations throughout the trajectory

at 5𝐻𝑧 resulting in a trajectory of observations {𝑜*
𝑡}𝑇𝑡=0. Using our visual model we

convert these observations into keypoints {𝑦*
𝑡 }𝑇𝑡=0 and latent state {𝑧*

𝑡 }𝑇𝑡=0 trajectories.

These trajectories are used to guide the MPC. In particular the cost/reward function

in the MPC is

𝑟(𝑧𝑡, 𝑎𝑡) = −||𝑧𝑡 − 𝑧*𝑡 ||22 (D.14)

This trajectory cost allows us to accurately track long horizon plans (where the

demonstrations are as long as 15 seconds) using an MPC horizon of 2 seconds. The

four demonstrations trajectories used in the hardware experiments are illustrated in

Figure D-2.

D.5.3 Results

In this section we provide more details on the hardware experiments from Section

6.4.4. Figure D-3 expands on Figure 6-4 showing the region of attraction of our MPC

controller when attempting to stabilize the four different trajectories shown in Figure

D-2. We define a trajectory as a success if the final object position is within 3 cm

and 30 degrees of the goal position. Given that during trials we explicitly chose initial

conditions to test the region of attraction of the MPC controller, success rates are not

particularly meaningful, as the success rate depends on the initial condition. Table

D.2 shows the average translational and angular errors among successful trajectories.

173

GoalStart Time

(1)

(2)

(3)

(4)

Figure D-2: The 4 demonstration trajectories used for the hardware experiments.
The left image of each row shows the starting position blended with the goal position.
The SDS keypoints are shown in teal for each frame. The green lines show the paths
followed by the keypoints moving from the starting position to the final position. The
right image of each row shows the final/goal position.

174

4 2 0 2 4
x (cm)

60

40

20

0

20

40

60

ya
w

(d
eg

re
es

)

Traj 1

7.5 5.0 2.5 0.0 2.5 5.0
x (cm)

20

0

20

40

Traj 2

4 2 0 2
x (cm)

30

20

10

0

10

20

Traj 3

2 0 2 4
x (cm)

10

5

0

5

10

15

20

25
Traj 4

8 6 4 2 0
y (cm)

60

40

20

0

20

40

60

ya
w

(d
eg

re
es

)

8 6 4 2 0
y (cm)

20

0

20

40

6 4 2 0 2
y (cm)

30

20

10

0

10

20

2 0 2
y (cm)

10

5

0

5

10

15

20

25

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure D-3: Scatter plots show results of our approach on the four different reference
trajectory tracking tasks. The axes of the plots show the deviation of the object
starting pose from the initial pose of the demonstration. The top row shows the
deviation in the 𝑥 and 𝑦𝑎𝑤 axes, while the bottom shows the deviation in the 𝑦
and 𝑦𝑎𝑤 axes. Axes are illustrated in Figure 6-4. The color indicates the distance
between final and goal poses, lower cost is better. The numerical value is computed
as cost = Δpos

3
+ Δangle

30
where ∆pos,∆angle are the translational (in centimeters) and

angular (in degrees) errors between the object’s final position and the goal position.
The costs are rescaled and plotted in the range [0, 1]. The various reference trajectories,
shown in Figure D-2, are of different difficulties, as reflected by the different regions
of attraction of the MPC controller. Videos of the closed-loop rollouts can be found
at project page.

175

https://sites.google.com/view/keypointsintothefuture

Trajectory pos (cm) angle ∘ success rate num trials

1 1.23± 0.55 5.25± 3.99 87.5% 40
2 1.10± 0.319 7.32± 4.08 89% 36
3 1.16± 0.58 3.80± 2.54 73% 33
4 1.44± 0.30 9.73± 5.48 65% 29

Table D.2: Quantitative results of hardware experiments. A trial is considered a
success rate if the final object position was within 3 cm and 30 degrees of the goal pose.
Note that, as shown in Figure D-3 the initial conditions were intentionally chosen to
test the region of attraction of our controller, thus the success rates are not meaningful
in and of themselves and are included only for completeness. The pos (cm) and angle
columns show the deviation of the final object position from the target. Note that
the mean and standard deviation are only calculated over the successful trials. This
serves to give a sense of the accuracy that can be achieved by using our closed-loop
MPC controller.

176

Bibliography

[1] Pulkit Agrawal, Joao Carreira, and Jitendra Malik. “Learning to see by moving”.
In: Proceedings of the IEEE International Conference on Computer Vision.
2015, pp. 37–45.

[2] Pulkit Agrawal et al. “Learning to poke by poking: Experiential learning of
intuitive physics”. In: Advances in Neural Information Processing Systems. 2016,
pp. 5074–5082.

[3] Ilge Akkaya et al. “Solving Rubik’s Cube with a Robot Hand”. In: arXiv preprint
arXiv:1910.07113 (2019).

[4] Rıza Alp Güler, Natalia Neverova, and Iasonas Kokkinos. “Densepose: Dense
human pose estimation in the wild”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2018, pp. 7297–7306.

[5] Marcin Andrychowicz et al. “Learning dexterous in-hand manipulation”. In:
arXiv preprint arXiv:1808.00177 (2018).

[6] Brenna D Argall et al. “A survey of robot learning from demonstration”. In:
Robotics and autonomous systems 57.5 (2009), pp. 469–483.

[7] Marc G Bellemare et al. “The arcade learning environment: An evaluation
platform for general agents”. In: Journal of Artificial Intelligence Research 47
(2013), pp. 253–279.

[8] Aude Billard et al. “Robot programming by demonstration”. In: Springer
handbook of robotics (2008), pp. 1371–1394.

[9] Aude Billard et al. “Survey: Robot programming by demonstration”. In: Hand-
book of robotics 59.BOOK_CHAP (2008).

[10] Boston Dynamics Atlas. url: https : / / www . youtube . com / watch ? v =
_sBBaNYex3E.

[11] Eric Brachmann et al. “Learning 6d object pose estimation using 3d object
coordinates”. In: European conference on computer vision. Springer. 2014,
pp. 536–551.

[12] Berk Calli et al. “Yale-CMU-Berkeley dataset for robotic manipulation research”.
In: The International Journal of Robotics Research 36.3 (2017), pp. 261–
268. doi: 10.1177/0278364917700714. url: https://doi.org/10.1177/
0278364917700714.

177

https://www.youtube.com/watch?v=_sBBaNYex3E
https://www.youtube.com/watch?v=_sBBaNYex3E
https://doi.org/10.1177/0278364917700714
https://doi.org/10.1177/0278364917700714
https://doi.org/10.1177/0278364917700714

[13] Yevgen Chebotar et al. “Path integral guided policy search”. In: 2017 IEEE
international conference on robotics and automation (ICRA). IEEE. 2017,
pp. 3381–3388.

[14] Liang-Chieh Chen et al. “DeepLab: Semantic Image Segmentation with Deep
Convolutional Nets, Atrous Convolution, and Fully Connected CRFs”. In:
arXiv:1606.00915 (2016).

[15] Christopher B Choy et al. “Universal correspondence network”. In: Advances in
Neural Information Processing Systems. 2016, pp. 2414–2422.

[16] Nikolaus Correll et al. “Analysis and observations from the first amazon picking
challenge”. In: IEEE Transactions on Automation Science and Engineering
15.1 (2016), pp. 172–188.

[17] Brian Curless and Marc Levoy. “A volumetric method for building complex
models from range images”. In: (1996).

[18] Angela Dai et al. “Scannet: Richly-annotated 3d reconstructions of indoor
scenes”. In: arXiv preprint arXiv:1702.04405 (2017).

[19] Frederik Ebert et al. “Self-supervised visual planning with temporal skip con-
nections”. In: arXiv preprint arXiv:1710.05268 (2017).

[20] Frederik Ebert et al. “Visual foresight: Model-based deep reinforcement learning
for vision-based robotic control”. In: arXiv preprint arXiv:1812.00568 (2018).

[21] Pedro F Felzenszwalb et al. “Object detection with discriminatively trained
part-based models”. In: IEEE transactions on pattern analysis and machine
intelligence 32.9 (2010), pp. 1627–1645.

[22] Ross Finman et al. “Toward lifelong object segmentation from change detection
in dense rgb-d maps”. In: Mobile Robots (ECMR), 2013 European Conference
on. IEEE. 2013, pp. 178–185.

[23] Chelsea Finn, Ian Goodfellow, and Sergey Levine. “Unsupervised learning
for physical interaction through video prediction”. In: Advances in neural
information processing systems. 2016, pp. 64–72.

[24] Chelsea Finn and Sergey Levine. “Deep visual foresight for planning robot
motion”. In: 2017 IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2017, pp. 2786–2793.

[25] Chelsea Finn, Sergey Levine, and Pieter Abbeel. “Guided cost learning: Deep
inverse optimal control via policy optimization”. In: International Conference
on Machine Learning. 2016, pp. 49–58.

[26] Chelsea Finn et al. “Deep spatial autoencoders for visuomotor learning”. In:
arXiv preprint arXiv:1509.06113 (2015).

[27] Chelsea Finn et al. “Deep spatial autoencoders for visuomotor learning”. In:
2016 IEEE International Conference on Robotics and Automation (ICRA).
IEEE. 2016, pp. 512–519.

178

[28] Chelsea Finn et al. “One-shot visual imitation learning via meta-learning”. In:
arXiv preprint arXiv:1709.04905 (2017).

[29] Michael Firman. “RGBD Datasets: Past, Present and Future”. In: CVPR
Workshop on Large Scale 3D Data: Acquisition, Modelling and Analysis. 2016.

[30] Peter R. Florence. “Dense Visual Learning for Robot Manipulation”. PhD thesis.
Massachusetts Institute of Technology, 2019.

[31] Peter R Florence, Lucas Manuelli, and Russ Tedrake. “Dense object nets:
Learning dense visual object descriptors by and for robotic manipulation”. In:
Conference on Robot Learning (CoRL) (2018).

[32] Peter Florence, Lucas Manuelli, and Russ Tedrake. “Self-Supervised Corre-
spondence in Visuomotor Policy Learning”. In: IEEE Robotics and Automation
Letters (2019).

[33] Wei Gao and Russ Tedrake. “FilterReg: Robust and Efficient Probabilistic
Point-Set Registration using Gaussian Filter and Twist Parameterization”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2019, pp. 11095–11104.

[34] Wei Gao and Russ Tedrake. “SurfelWarp: Efficient Non-Volumetric Single View
Dynamic Reconstruction”. In: Robotics: Science and Systems. 2018.

[35] Ali Ghadirzadeh et al. “Deep predictive policy training using reinforcement
learning”. In: 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE. 2017, pp. 2351–2358.

[36] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. 2016.

[37] Marcus Gualtieri, Andreas ten Pas, and Robert Platt. “Pick and place without
geometric object models”. In: 2018 IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2018, pp. 7433–7440.

[38] Marcus Gualtieri et al. “High precision grasp pose detection in dense clutter”. In:
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE. 2016, pp. 598–605.

[39] Raia Hadsell, Sumit Chopra, and Yann LeCun. “Dimensionality reduction by
learning an invariant mapping”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE. 2006, pp. 1735–1742.

[40] Danijar Hafner et al. “Learning latent dynamics for planning from pixels”. In:
arXiv preprint arXiv:1811.04551 (2018).

[41] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer
vision. Cambridge university press, 2003.

[42] Hironori Hattori et al. “Learning scene-specific pedestrian detectors without
real data”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2015, pp. 3819–3827.

[43] Kaiming He et al. “Mask r-cnn”. In: Computer Vision (ICCV), 2017 IEEE
International Conference on. IEEE. 2017, pp. 2980–2988.

179

[44] Carlos Hernandez et al. “Team delft’s robot winner of the amazon picking
challenge 2016”. In: Robot World Cup. Springer. 2016, pp. 613–624.

[45] Tomas Hodan et al. “T-LESS: An RGB-D Dataset for 6D Pose Estimation of
Texture-less Objects”. In: arXiv preprint arXiv:1701.05498 (2017).

[46] Francois R Hogan, Maria Bauza, and Alberto Rodriguez. “A Data-Efficient Ap-
proach to Precise and Controlled Pushing”. In: arXiv preprint arXiv:1807.09904
(2018).

[47] François Robert Hogan and Alberto Rodriguez. “Feedback control of the pusher-
slider system: A story of hybrid and underactuated contact dynamics”. In: arXiv
preprint arXiv:1611.08268 (2016).

[48] Binh-Son Hua et al. “Scenenn: A scene meshes dataset with annotations”.
In: 3D Vision (3DV), 2016 Fourth International Conference on. IEEE. 2016,
pp. 92–101.

[49] itSeez3D. url: https://itseez3d.com.
[50] Stephen James, Michael Bloesch, and Andrew J Davison. “Task-Embedded Con-

trol Networks for Few-Shot Imitation Learning”. In: arXiv preprint arXiv:1810.03237
(2018).

[51] Stephen James, Andrew J Davison, and Edward Johns. “Transferring end-to-
end visuomotor control from simulation to real world for a multi-stage task”.
In: Conference on Robot Learning (CoRL) (2017).

[52] Eric Jang et al. “End-to-End Learning of Semantic Grasping”. In: arXiv preprint
arXiv:1707.01932 (2017).

[53] M. Johnson-Roberson et al. “Driving in the Matrix: Can Virtual Worlds Replace
Human-Generated Annotations for Real World Tasks?” In: IEEE International
Conference on Robotics and Automation. 2017, pp. 1–8.

[54] Dmitry Kalashnikov et al. “Scalable Deep Reinforcement Learning for Vision-
Based Robotic Manipulation”. In: Proceedings of The 2nd Conference on Robot
Learning. Ed. by Aude Billard et al. Vol. 87. Proceedings of Machine Learning
Research. PMLR, 29–31 Oct 2018, pp. 651–673. url: http://proceedings.
mlr.press/v87/kalashnikov18a.html.

[55] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion”. In: arXiv preprint arXiv:1412.6980 (2014).

[56] Michael Krainin, Brian Curless, and Dieter Fox. “Autonomous generation of
complete 3D object models using next best view manipulation planning”. In:
Robotics and Automation (ICRA), 2011 IEEE International Conference on.
IEEE. 2011, pp. 5031–5037.

[57] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification
with deep convolutional neural networks”. In: NIPS. 2012, pp. 1097–1105.

[58] Oliver Kroemer, Scott Niekum, and George Konidaris. “A Review of Robot
Learning for Manipulation: Challenges, Representations, and Algorithms”. In:
arXiv preprint arXiv:1907.03146 (2019).

180

https://itseez3d.com
http://proceedings.mlr.press/v87/kalashnikov18a.html
http://proceedings.mlr.press/v87/kalashnikov18a.html

[59] Tejas Kulkarni et al. “Unsupervised Learning of Object Keypoints for Perception
and Control”. In: arXiv preprint arXiv:1906.11883 (2019).

[60] Tejas Kulkarni et al. “Unsupervised learning of object keypoints for perception
and control”. In: arXiv preprint arXiv:1906.11883 (2019).

[61] LabelFusion. http://labelfusion.csail.mit.edu.

[62] Brenden M Lake et al. “Building machines that learn and think like people”.
In: Behavioral and brain sciences 40 (2017).

[63] Michael Laskey et al. “Dart: Noise injection for robust imitation learning”. In:
arXiv preprint arXiv:1703.09327 (2017).

[64] Sergey Levine et al. “End-to-end training of deep visuomotor policies”. In: The
Journal of Machine Learning Research 17.1 (2016), pp. 1334–1373.

[65] Tsung-Yi Lin et al. “Microsoft coco: Common objects in context”. In: European
conference on computer vision. Springer. 2014, pp. 740–755.

[66] Ce Liu, Jenny Yuen, and Antonio Torralba. “Sift flow: Dense correspondence
across scenes and its applications”. In: IEEE transactions on pattern analysis
and machine intelligence 33.5 (2011), pp. 978–994.

[67] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully convolutional
networks for semantic segmentation”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2015, pp. 3431–3440.

[68] Tomas Lozano-Perez, Matthew T Mason, and Russell H Taylor. “Automatic
synthesis of fine-motion strategies for robots”. In: The International Journal of
Robotics Research 3.1 (1984), pp. 3–24.

[69] Reza Mahjourian, Martin Wicke, and Anelia Angelova. “Unsupervised learning
of depth and ego-motion from monocular video using 3d geometric constraints”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2018, pp. 5667–5675.

[70] Jeffrey Mahler et al. “Dex-net 1.0: A cloud-based network of 3d objects for robust
grasp planning using a multi-armed bandit model with correlated rewards”.
In: 2016 IEEE International Conference on Robotics and Automation (ICRA).
IEEE. 2016, pp. 1957–1964.

[71] Jeffrey Mahler et al. “Dex-net 2.0: Deep learning to plan robust grasps with syn-
thetic point clouds and analytic grasp metrics”. In: arXiv preprint arXiv:1703.09312
(2017).

[72] Jeffrey Mahler et al. “Learning ambidextrous robot grasping policies”. In: Science
Robotics 4.26 (2019), eaau4984.

[73] Jeremy Maitin-Shepard et al. “Cloth grasp point detection based on multiple-
view geometric cues with application to robotic towel folding”. In: 2010 IEEE
International Conference on Robotics and Automation. IEEE. 2010, pp. 2308–
2315.

181

http://labelfusion.csail.mit.edu

[74] Lucas Manuelli et al. “kpam: Keypoint affordances for category-level robotic
manipulation”. In: arXiv preprint arXiv:1903.06684 (2019).

[75] P. Marion et al. “Label Fusion: A Pipeline for Generating Ground Truth
Labels for Real RGBD Data of Cluttered Scenes”. In: 2018 IEEE International
Conference on Robotics and Automation (ICRA). May 2018, pp. 3235–3242.
doi: 10.1109/ICRA.2018.8460950.

[76] Pat Marion. Director: A robotics interface and visualization framework. 2015.
url: http://github.com/RobotLocomotion/director.

[77] Pat Marion. Director: A robotics interface and visualization framework. 2015.
url: http://github.com/RobotLocomotion/director.

[78] Pat Marion et al. “LabelFusion: A pipeline for generating ground truth labels
for real rgbd data of cluttered scenes”. In: IEEE International Conference on
Robotics and Automation (ICRA). 2018.

[79] Matthew T Mason. “Toward Robotic Manipulation”. In: Annual Review of
Control, Robotics, and Autonomous Systems 1 (2018), pp. 1–28.

[80] Matthew T Mason and J Kenneth Salisbury Jr. “Robot hands and the mechanics
of manipulation”. In: (1985).

[81] Francisco Massa and Ross Girshick. maskrcnn-benchmark: Fast, modular refer-
ence implementation of Instance Segmentation and Object Detection algorithms
in PyTorch. https://github.com/facebookresearch/maskrcnn-benchmark.
Accessed: [Insert date here]. 2018.

[82] Jan Matas, Stephen James, and Andrew J Davison. “Sim-to-real reinforcement
learning for deformable object manipulation”. In: Conference on Robot Learning
(CoRL) (2018).

[83] Daniel Mellinger, Nathan Michael, and Vijay Kumar. “Trajectory generation and
control for precise aggressive maneuvers with quadrotors”. In: The International
Journal of Robotics Research 31.5 (2012), pp. 664–674.

[84] A Milan et al. “Semantic segmentation from limited training data”. In: arXiv
preprint arXiv:1709.07665 (2017).

[85] Stephen Miller et al. “A geometric approach to robotic laundry folding”. In:
The International Journal of Robotics Research 31.2 (2012), pp. 249–267.

[86] Stephen Miller et al. “Parametrized shape models for clothing”. In: 2011 IEEE
International Conference on Robotics and Automation. IEEE. 2011, pp. 4861–
4868.

[87] Joseph Moore, Rick Cory, and Russ Tedrake. “Robust post-stall perching with
a simple fixed-wing glider using LQR-Trees”. In: Bioinspiration & biomimetics
9.2 (2014), p. 025013.

[88] Douglas Morrison et al. “Cartman: The low-cost cartesian manipulator that
won the amazon robotics challenge”. In: 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE. 2018, pp. 7757–7764.

182

https://doi.org/10.1109/ICRA.2018.8460950
http://github.com/RobotLocomotion/director
http://github.com/RobotLocomotion/director
https://github.com/facebookresearch/maskrcnn-benchmark

[89] Douglas Morrison, Peter Corke, and Jürgen Leitner. “Closing the Loop for
Robotic Grasping: A Real-time, Generative Grasp Synthesis Approach”. In:
arXiv preprint arXiv:1804.05172 (2018).

[90] Andriy Myronenko and Xubo Song. “Point set registration: Coherent point
drift”. In: IEEE transactions on pattern analysis and machine intelligence 32.12
(2010), pp. 2262–2275.

[91] R. Holladay N. Chavan-Dafle and A. Rodriguez. “Planar In-Hand Manipulation
via Motion Cones”. In: IJRR (2019).

[92] Anusha Nagabandi et al. “Deep Dynamics Models for Learning Dexterous
Manipulation”. In: arXiv preprint arXiv:1909.11652 (2019).

[93] Ashvin Nair et al. “Combining self-supervised learning and imitation for vision-
based rope manipulation”. In: 2017 IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2017, pp. 2146–2153.

[94] Richard A. Newcombe, Dieter Fox, and Steven M. Seitz. “DynamicFusion:
Reconstruction and Tracking of Non-Rigid Scenes in Real-Time”. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). June 2015,
pp. 343–352.

[95] Richard A Newcombe et al. “Kinectfusion: Real-time dense surface mapping
and tracking.” In: ISMAR. Vol. 11. 2011. IEEE. 2011, pp. 127–136.

[96] Van-Duc Nguyen. “Constructing force-closure grasps”. In: The International
Journal of Robotics Research 7.3 (1988), pp. 3–16.

[97] Takayuki Osa et al. “An algorithmic perspective on imitation learning”. In:
Foundations and Trends R○ in Robotics 7.1-2 (2018), pp. 1–179.

[98] Deepak Pathak et al. “Zero-shot visual imitation”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops. 2018,
pp. 2050–2053.

[99] Xue Bin Peng et al. “Sim-to-real transfer of robotic control with dynamics ran-
domization”. In: 2018 IEEE international conference on robotics and automation
(ICRA). IEEE. 2018, pp. 1–8.

[100] Sudeep Pillai, Rareş Ambruş, and Adrien Gaidon. “Superdepth: Self-supervised,
super-resolved monocular depth estimation”. In: 2019 International Conference
on Robotics and Automation (ICRA). IEEE. 2019, pp. 9250–9256.

[101] Lerrel Pinto and Abhinav Gupta. “Supersizing self-supervision: Learning to
grasp from 50k tries and 700 robot hours”. In: Robotics and Automation (ICRA),
2016 IEEE International Conference on. IEEE. 2016, pp. 3406–3413.

[102] Dean A Pomerleau. “Alvinn: An autonomous land vehicle in a neural network”.
In: Advances in neural information processing systems. 1989, pp. 305–313.

[103] Rouhollah Rahmatizadeh et al. “Vision-based multi-task manipulation for
inexpensive robots using end-to-end learning from demonstration”. In: 2018
IEEE International Conference on Robotics and Automation (ICRA). IEEE.
2018, pp. 3758–3765.

183

[104] Joseph Redmon et al. “You only look once: Unified, real-time object detec-
tion”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016, pp. 779–788.

[105] Colin Rennie et al. “A Dataset for Improved RGBD-based Object Detection
and Pose Estimation for Warehouse Pick-and-Place”. In: CoRR abs/1509.01277
(2015). url: http://arxiv.org/abs/1509.01277.

[106] Stephan R Richter et al. “Playing for data: Ground truth from computer games”.
In: European Conference on Computer Vision. Springer. 2016, pp. 102–118.

[107] Diego Rodriguez et al. “Transferring grasping skills to novel instances by latent
space non-rigid registration”. In: IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2018, pp. 1–8.

[108] German Ros et al. “The SYNTHIA Dataset: A Large Collection of Synthetic
Images for Semantic Segmentation of Urban Scenes”. In: 2016.

[109] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. “A reduction of imitation
learning and structured prediction to no-regret online learning”. In: Proceedings
of the fourteenth international conference on artificial intelligence and statistics.
2011, pp. 627–635.

[110] Olga Russakovsky et al. “Imagenet large scale visual recognition challenge”. In:
International Journal of Computer Vision 115.3 (2015), pp. 211–252.

[111] Caner Sahin and Tae-Kyun Kim. “Category-level 6D Object Pose Recovery in
Depth Images”. In: arXiv preprint arXiv:1808.00255 (2018).

[112] Tanner Schmidt, Richard Newcombe, and Dieter Fox. “Self-supervised visual de-
scriptor learning for dense correspondence”. In: IEEE Robotics and Automation
Letters 2.2 (2017), pp. 420–427.

[113] Florian Schroff, Dmitry Kalenichenko, and James Philbin. “Facenet: A unified
embedding for face recognition and clustering”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2015, pp. 815–823.

[114] Max Schwarz et al. “Fast object learning and dual-arm coordination for cluttered
stowing, picking, and packing”. In: 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2018, pp. 3347–3354.

[115] Daniel Seita et al. “Robot bed-making: Deep transfer learning using depth
sensing of deformable fabric”. In: arXiv preprint arXiv:1809.09810 (2018).

[116] Sense for RealSense. url: https://www.3dsystems.com/shop/realsense/
sense.

[117] Pierre Sermanet, Kelvin Xu, and Sergey Levine. “Unsupervised perceptual
rewards for imitation learning”. In: Robotics: Science and Systems (RSS) (2017).

[118] Pierre Sermanet et al. “Time-Contrastive Networks: Self-Supervised Learning
from Video”. In: arXiv preprint arXiv:1704.06888 (2017).

184

http://arxiv.org/abs/1509.01277
https://www.3dsystems.com/shop/realsense/sense
https://www.3dsystems.com/shop/realsense/sense

[119] Pierre Sermanet et al. “Time-contrastive networks: Self-supervised learning from
video”. In: 2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2018, pp. 1134–1141.

[120] Jamie Shotton et al. “Scene coordinate regression forests for camera relocaliza-
tion in RGB-D images”. In: Computer Vision and Pattern Recognition (CVPR),
2013 IEEE Conference on. IEEE. 2013, pp. 2930–2937.

[121] Maximilian Sieb et al. “Graph-Structured Visual Imitation”. In: arXiv preprint
arXiv:1907.05518 (2019).

[122] David Silver et al. “A general reinforcement learning algorithm that masters
chess, shogi, and Go through self-play”. In: Science 362.6419 (2018), pp. 1140–
1144.

[123] David Silver et al. “Mastering the game of Go with deep neural networks and
tree search”. In: nature 529.7587 (2016), p. 484.

[124] Avi Singh, Larry Yang, and Sergey Levine. “GPLAC: Generalizing Vision-Based
Robotic Skills using Weakly Labeled Images”. In: ICCV. 2017.

[125] SIXD Challenge. url: http://cmp.felk.cvut.cz/sixd/challenge_2017/.

[126] Skanect. url: http://skanect.occipital.com/.

[127] Skydio. url: https://www.skydio.com/.

[128] HJ Suh and Russ Tedrake. “The Surprising Effectiveness of Linear Mod-
els for Visual Foresight in Object Pile Manipulation”. In: arXiv preprint
arXiv:2002.09093 (2020).

[129] Xiao Sun et al. “Integral human pose regression”. In: Proceedings of the European
Conference on Computer Vision (ECCV). 2018, pp. 529–545.

[130] Richard Szeliski. Computer vision: algorithms and applications. Springer Science
& Business Media, 2010.

[131] Jonathan Taylor et al. “The vitruvian manifold: Inferring dense correspon-
dences for one-shot human pose estimation”. In: Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on. IEEE. 2012, pp. 103–110.

[132] Russ Tedrake and the Drake Development Team. Drake: A planning, control,
and analysis toolbox for nonlinear dynamical systems. 2016. url: https://
drake.mit.edu.

[133] James Thewlis, Hakan Bilen, and Andrea Vedaldi. “Unsupervised learning of
object landmarks by factorized spatial embeddings”. In: Proc. ICCV. Vol. 1. 2.
2017, p. 5.

[134] Josh Tobin et al. “Domain randomization for transferring deep neural networks
from simulation to the real world”. In: Intelligent Robots and Systems (IROS),
2017 IEEE/RSJ International Conference on. IEEE. 2017, pp. 23–30.

[135] Jonathan Tremblay et al. “Deep object pose estimation for semantic robotic
grasping of household objects”. In: Conference on Robot Learning (CoRL)
(2018).

185

http://cmp.felk.cvut.cz/sixd/challenge_2017/
http://skanect.occipital.com/
https://www.skydio.com/
https://drake.mit.edu
https://drake.mit.edu

[136] Jur Van Den Berg et al. “Gravity-based robotic cloth folding”. In: Algorithmic
Foundations of Robotics IX. Springer, 2010, pp. 409–424.

[137] Herke Van Hoof et al. “Stable reinforcement learning with autoencoders for
tactile and visual data”. In: 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE. 2016, pp. 3928–3934.

[138] Mel Vecerik et al. “A practical approach to insertion with variable socket
position using deep reinforcement learning”. In: 2019 International Conference
on Robotics and Automation (ICRA). IEEE. 2019, pp. 754–760.

[139] Vicon Motion Capture System. https://www.vicon.com/.

[140] He Wang et al. “Normalized Object Coordinate Space for Category-Level 6D
Object Pose and Size Estimation”. In: arXiv preprint arXiv:1901.02970 (2019).

[141] Manuel Watter et al. “Embed to control: A locally linear latent dynamics model
for control from raw images”. In: Advances in neural information processing
systems. 2015, pp. 2746–2754.

[142] Waymo Driver. url: https://waymo.com/.

[143] Thomas Whelan et al. “ElasticFusion: Dense SLAM without a pose graph”. In:
Robotics: Science and Systems. 2015.

[144] Grady Williams, Andrew Aldrich, and Evangelos Theodorou. “Model predictive
path integral control using covariance variable importance sampling”. In: arXiv
preprint arXiv:1509.01149 (2015).

[145] J. M. Wong et al. “SegICP: Integrated Deep Semantic Segmentation and Pose
Estimation”. In: ArXiv e-prints (Mar. 2017). arXiv: 1703.01661 [cs.RO].

[146] Yu Xiang, Roozbeh Mottaghi, and Silvio Savarese. “Beyond pascal: A benchmark
for 3d object detection in the wild”. In: IEEE Winter Conference on Applications
of Computer Vision. IEEE. 2014, pp. 75–82.

[147] Ali Yahya et al. “Collective robot reinforcement learning with distributed
asynchronous guided policy search”. In: Intelligent Robots and Systems (IROS),
2017 IEEE/RSJ International Conference on. IEEE. 2017, pp. 79–86.

[148] Wilson Yan et al. “Learning Predictive Representations for Deformable Objects
Using Contrastive Estimation”. In: arXiv preprint arXiv:2003.05436 (2020).

[149] Jiaolong Yang et al. “Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set
Registration”. In: IEEE Trans. Pattern Anal. Mach. Intell. 38.11 (Nov. 2016),
pp. 2241–2254. issn: 0162-8828. doi: 10.1109/TPAMI.2015.2513405. url:
https://doi.org/10.1109/TPAMI.2015.2513405.

[150] Pin-Chu Yang et al. “Repeatable folding task by humanoid robot worker using
deep learning”. In: IEEE Robotics and Automation Letters 2.2 (2016), pp. 397–
403.

[151] Yufei Ye et al. “Object-centric Forward Modeling for Model Predictive Control”.
In: arXiv preprint arXiv:1910.03568 (2019).

186

https://waymo.com/
https://arxiv.org/abs/1703.01661
https://doi.org/10.1109/TPAMI.2015.2513405
https://doi.org/10.1109/TPAMI.2015.2513405

[152] Lin Yen-Chen, Maria Bauza, and Phillip Isola. “Experience-Embedded Visual
Foresight”. In: arXiv preprint arXiv:1911.05071 (2019).

[153] Jincheng Yu et al. “A vision-based robotic grasping system using deep learning
for 3D object recognition and pose estimation”. In: Robotics and Biomimetics
(ROBIO), 2013 IEEE International Conference on. IEEE. 2013, pp. 1175–1180.

[154] Tianhe Yu et al. “One-Shot Imitation from Observing Humans via Domain-
Adaptive Meta-Learning”. In: arXiv preprint arXiv:1802.01557 (2018).

[155] Tianhe Yu et al. “Unsupervised Visuomotor Control through Distributional
Planning Networks”. In: arXiv preprint arXiv:1902.05542 (2019).

[156] Andy Zeng et al. “Robotic pick-and-place of novel objects in clutter with multi-
affordance grasping and cross-domain image matching”. In: arXiv preprint
arXiv:1710.01330 (2017).

[157] Andy Zeng et al. “Robotic pick-and-place of novel objects in clutter with
multi-affordance grasping and cross-domain image matching”. In: 2018 IEEE
International Conference on Robotics and Automation (ICRA). IEEE. 2018,
pp. 1–8.

[158] Andy Zeng et al. “3dmatch: Learning local geometric descriptors from rgb-d
reconstructions”. In: Computer Vision and Pattern Recognition (CVPR), 2017
IEEE Conference on. IEEE. 2017, pp. 199–208.

[159] Andy Zeng et al. “Learning Synergies between Pushing and Grasping with Self-
supervised Deep Reinforcement Learning”. In: arXiv preprint arXiv:1803.09956
(2018).

[160] Andy Zeng et al. “Multi-view self-supervised deep learning for 6d pose estimation
in the amazon picking challenge”. In: 2017 IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2017, pp. 1386–1383.

[161] Andy Zeng et al. “TossingBot: Learning to Throw Arbitrary Objects with
Residual Physics”. In: arXiv preprint arXiv:1903.11239 (2019).

[162] Tianhao Zhang et al. “Deep imitation learning for complex manipulation tasks
from virtual reality teleoperation”. In: 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2018, pp. 1–8.

[163] Jiaji Zhou, Yifan Hou, and Matthew T Mason. “Pushing revisited: Differential
flatness, trajectory planning, and stabilization”. In: The International Journal
of Robotics Research 38.12-13 (2019), pp. 1477–1489.

[164] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. “Fast Global Registration”.
In: European Conference on Computer Vision. Springer. 2016, pp. 766–782.

[165] Yuke Zhu et al. “Reinforcement and imitation learning for diverse visuomotor
skills”. In: arXiv preprint arXiv:1802.09564 (2018).

187

	Introduction
	Problem Statement
	Contributions
	Thesis Questions
	State Space and Object Representations
	Task Specification
	Closed-Loop Feedback Control

	Related Work

	LabelFusion
	Introduction
	Related Work
	Methods for Generating Labeled RGBD Datasets
	Object-Specific Pose Estimation in Clutter for Robotic Manipulation
	Empirical Evaluations of Data Requirements for Image Segmentation Generalization

	Data Generation Pipeline
	RGBD Data Collection
	Dense 3D Reconstruction
	Object Mesh Generation
	Human Assisted Annotation
	Rendering of Labeled Images and Object Poses
	Discussion

	Results
	Evaluation of Data Generation Pipeline
	Empirical Evaluations: How Much Data Is Needed For Practical Object-Specific Segmentation?

	Conclusion

	DenseObjectNets
	Introduction
	Related Work
	Methodology
	Preliminary: Self-Supervised Pixelwise Contrastive Loss
	Training Procedures for Object-Centric Descriptors
	Multi-Object Dense Descriptors

	Experimental
	Results
	Single-Object Dense Descriptors
	Multi-Object Dense Descriptors
	Selective Class Generalization or Instance Specificity
	Example Applications to Robotic Manipulation: Grasping Specific Points

	Conclusion

	kPAM: Keypoint Affordances for Robotic Manipulation
	Introduction
	Related Work
	Object Representations and Perception for Manipulation
	Grasping Algorithms
	End-to-End Reinforcement Learning

	Manipulation Formulation
	Concrete Motivating Example
	General Formulation

	Comparison and Discussions
	Keypoint Representation vs Pose Representation
	Keypoint Target vs Pose Target

	Results
	Put shoes on a shoe rack
	Put mugs upright on a shelf
	Hang the mugs on the rack by their handles

	Limitations and Future Work
	Conclusion

	Self-Supervised Correspondence in Visuomotor Policy Learning
	Introduction
	Contributions

	Related Work
	Visual Training Methods for Visuomotor Policies
	Methods for Learning Vision-Based Closed-Loop Policies

	Visuomotor Formulation
	Preliminary: Visuomotor Policies
	Visual Correspondence Models for Visuomotor Policy Learning

	Visual Imitation Formulation
	Robot Observation and Action Spaces
	Imitation Learning Visuomotor Policies
	Training for Feedback through Data Augmentation
	Multi-View Time-Synchronized Correspondence Training
	Policy Models

	Results
	Simulation Experimental Setup
	Simulation Results
	Hardware Experimental Setup
	Hardware Results

	Conclusion

	Keypoints into the Future: Self-Supervised Correspondence with Model-Based Reinforcement Learning
	Introduction
	Related Work
	Formulation: Self-Supervised Correspondence in Model-Based RL
	Model-Based Reinforcement Learning
	Learning a Visual Representation
	Learning the Dynamics
	Online Planning for Closed-Loop Control

	Results
	Visual-correspondence Performance
	Ablations on visual-correspondence for dynamics learning
	Comparison of visual-correspondence pretraining with baselines
	Hardware

	Conclusion

	Conclusion
	Summary of Contributions
	Future Directions

	Appendices
	Appendix Dense Object Nets
	Experimental Hardware
	Experimental Setup: Data Collection and Pre-Processing
	Grasping Pipeline
	Network Architecture and Training Details
	Descriptor Projection to Unit Sphere
	Additional Approaches Which Did not Improve Performance

	Appendix kPAM
	Robot Hardware
	Dataset Generation and Annotation
	3D Reconstruction and Masking
	Instance Segmentation
	Keypoint Detection

	Neural Network Architecture and Training
	Instance Segmentation
	Keypoint Detection

	Experiments
	Mugs Upright on Shelf
	Hang mug on rack by its handle

	Appendix Self-Supervised Correspondence in Visuomotor Policy Learning
	Simulation Tasks
	Policy Networks
	Vision Networks

	Appendix Keypoints into the Future: Self-Supervised Correspondence with Model-Based Reinforcement Learning
	Dense Correspondence
	Network Architecture
	Loss Function
	Correspondence Function

	Training Details
	Trajectory Data Augmentation
	Training Details

	Online Model-Predictive Control
	Simulation Experiments
	Data Collection
	Evaluating closed-Loop MPC performance
	Baselines

	Hardware Experiments
	Hardware Setup
	One-Shot Imitation Learning
	Results

