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Abstract— In order for robots to interact safely and intel-
ligently with their environment they must be able to reliably
estimate and localize external contacts. This paper introduces
CPF, the Contact Particle Filter, which is a general algorithm
for detecting and localizing external contacts on rigid body
robots without the need for external sensing. CPF finds external
contact points that best explain the observed external joint
torque, and returns sensible estimates even when the external
torque measurement is corrupted with noise. We demonstrate
the capability of the CPF to track multiple external contacts
on a simulated Atlas robot, and compare our work to existing
approaches.

I. INTRODUCTION

Currently robots are not effective at handling unexpected
contact events with their environment. This was exemplified
by our experience as part of Team MIT at the DARPA
Robotics Challenge Finals in June 2015. During the finals
our robot experienced an unexpected contact with its envi-
ronment which led to a fall. Systems with changing contact
states, such as walking robots, are fundamentally hybrid in
nature. When an external contact occurs it causes a transition
to a new hybrid mode. For control systems used on walking
robots, having an accurate dynamic model is critical for
effectively controlling the robot. If an unexpected contact
event occurs which causes the system to switch hybrid
modes, we need algorithms that can detect this change and
estimate the new hybrid mode so that we can update our
dynamic model.

As humans we have skin covering our entire body which
allows us to easily sense external contacts. However, since
high performance sensing skin is not yet commonplace on
robots our algorithms must rely on proprioceptive sensors.
The main contribution of this paper is an estimation algo-
rithm that is capable of localizing multiple external contacts
using only proprioceptive sensors.

The paper is organized as follows. Section II discusses
related work, section III presents a brief introduction to the
key results of previous work. In Section IV we describe
our approach, the Contact Particle Filter. Section V presents
experimental results, section VI considers limitations and
extensions and section VII concludes.

II. RELATED WORK

One approach to solving the collision detection and lo-
calization problem is to use a sensitive skin [1], [10].
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Unfortunately, most robots do not come equipped with such
sensitive skins, and if they do they are usually only on a
few key locations, such as the hands and feet. Thus we
focus on the problem of collision detection and localization
using only proprioceptive sensors. Initial approaches to this
problem involved monitoring the measured currents in the
robot’s electrical motors and looking for fast transients that
could be caused by a collision [11], [12]. More recently a
collision detection method based on generalized momentum
has been proposed in [3]. An advantage of the this method is
that it doesn’t require acceleration measurements, which are
very noisy in practice. We use the generalized momentum
observer as the starting point for our estimation algorithm,
a brief overview of the method is given in III-A. [2] uses
the method of [3] in a collision detection and safe reaction
framework using a DLR-III lightweight manipulator arm.
In particular, the momentum observer provides sufficient
directional information to allow a manipulator arm to react
safely after a collision. [9] uses the momentum observer of
[3] together with time-varying collision detection thresholds
to provide more accurate collision detection performance in
the presence of model errors.

[7] uses the generalized momentum observer, together
with an external depth camera to estimate the interaction
force between a robot and an external contact. In this work
they use the depth camera to detect the location of the
external contact point, whereas we localize the external
contact without the use of external sensors. The most
related work to ours is the contact point localization method
outlined in Section IV B of [4]. They show how to use the
generalized momentum detector to determine the location
of a single external contact. However, this method doesn’t
extend well to the case of multiple external contacts and is
susceptible to measurement noise. We present a comparison
of our method to that of [4] in section V-B.

III. PRELIMINARIES

We consider a robot with rigid links. Let q ∈ Rnq describe
the positions of the nq joints. For a floating-base robot,
the floating-base degrees of freedom also appear in q. Joint
velocities are denoted by v ∈ Rnv . Note that a floating-base
robot which uses quaternions to represent orientation we will
have nq = nv + 1. The equations of motion are then

H(q)v̇ + C(q, v)v + g(q) = Bτ + τext. (1)

H(q) ∈ Rnv×nv is the inertia matrix, C(q, q̇) ∈ Rnv×nv are
the Corioilis and centrifugal terms, and g(q) ∈ Rnv is the
gravity vector, τ are the motor torques, B maps the motor



torques to the actuated joints, and τext are the external joint
torques acting on the robot. The external joint torques τext
arise from generalized contact forces acting on the robot.
Suppose we have a contact on the surface of the i-th link
whose position is given by rc. Let Jrc be the 6×nv geometric
Jacobian corresponding to contact point rc. An external force
Fc ∈ R3 applied to the contact point rc, and an external
torque Mc ∈ R3 applied to the same point can be combined
into a wrench Γc = [Fc,Mc]

T ∈ R6. Then the contribution
of the generalized contact at point rc to the external joint
torque τext is

Jrc(q)TΓc = Jrc(q)T
[
Fc
Mc

]
. (2)

If there are multiple contacts we have τext =
∑
c Jrc(q)TΓc.

Later we will make the simplifying assumption that Mc = 0,
thus for notational convenience let Jrc(q) be the 3 × n
submatrix of Jrc(q) corresponding to the linear velocity.
Then

Jrc(q)T
[
Fc

03×1

]
= Jrc(q)TFc. (3)

A. Residual Obsever

In this section we provide an overview of the momentum
observer method of [3] which provides and estimate of the
external joint torque τext. Following their treatment define
the residual vector γ(t) ∈ Rqv as

γ(t) = KI

(
p−

∫ t

0

(Bτ + CT (q, v)v + γ(s))ds

)
, (4)

where p = H(q)v is the generalized momentum of the robot
and KI > 0 is a diagonal gain matrix. The residual has
dynamics given by

γ̇(t) = KI(τext − γ). (5)

If KI is sufficiently large we can suppose that γ ≈ τext, so
the residual provides an estimate of the external joint torque
that results from contact force/torques applied anywhere on
the robot. If we have some known external torques, such as
the feet of a walking robot, we may want to subtract these
out when computing the residual so that γ estimates only
the external torques resulting from unmeasured contacts. In
particular if we have contacts c1, . . . , cj for which we can
measure the applied wrenches Γci (e.g. if our robot has
6-axis force-torque sensors at the ankles) we can subtract
these out by defining

γ(t) =KI

(
p−

∫ t

0

(Bτ +

j∑
i=1

Jci(q)
TΓci (6)

+ CT (q, v)v + γ(s))ds

)
.

Henceforth we let τext denote the external joint torques
produced by unmeasured external wrenches.

IV. CONTACT DETECTION AND LOCALIZATION

First we formulate the contact localization problem as a
nonlinear optimization. Then we leverage some features of
this optimization problem to approximate it using a tractable
quadratic programming framework, and show how to use this
framework as part of a particle filter.

For simplicity consider the case of a single external
contact at location rc on link i. Following [4] we make the
assumption that only forces, and no torques, are applied
at rc. This is the case for most typical contact situations.
Given a residual γ we want to find the contact location
and contact force Fc which best explain γ. Let Si ⊂ R3 be
the surface manifold of the i-th link. Since contact point rc
must lie on the surface of the robot the allowable contact
locations are S =

⋃
i Si. Let F(rc) denote the friction cone

at contact point rc. Then solving for the contact location
can be formulated as an optimization

min
rc,Fc

(γ − Jrc(q)TFc)
T (γ − Jrc(q)TFc) (7)

subject to rc ∈ S, Fc ∈ F(rc). (8)

The optimization (7) is non-convex since rc and Fc appear
as a cross product in the term Jrc(q)TFc. However, if we
fix the contact location rc then the optimization problem
becomes convex.

min
Fc

(γ − Jrc(q)TFc)
T (γ − Jrc(q)TFc) (9)

subject to Fc ∈ F(rc).

The problem is convex because once we fix rc the Jacobian
Jrc(q) is simply a known fixed matrix, and the friction cone
F(rc) is a convex set. A similar insight was used in [5]
in the context of grasp analysis. One way to approximate
the solution to problem (7) is to sample contact locations
rc ∈ S and then solve the convex problem (9) for each
contact location. By choosing the point rc with the smallest
objective value, we achieve an approximation to the solution
of the full problem (7). In section IV-A each particle in our
particle filter will correspond to a contact location rc and the
measurement update will correspond to solving a version of
(9). In this way we avoid the intractability of problem (7).

Section IV-A describes the Contact Particle Filter for the
case of a single external contact. In section IV-B we extend
the CPF to the general multi-contact case.

A. Single External Contact

For simplicity, we first describe a version of our contact
particle filter in the case of a single external contact. Let
γ(t) be the residual observer from section III. Our goal
is to estimate the location of the external contact point. In
order to take advantage of the convex formulation (9) we
use a particle filter. Each particle r[m]

t ∈ R3 corresponds to
a particular location of the external contact on the surface
of the robot. A particle filter requires us to specify both
a measurement model, described in section IV-A.1, and a
motion model, detailed in section IV-A.2.
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Fig. 1: Polyhedral approximation to the friction cone

1) Measurement Model: Our measurement will be the
residual γ(t), also abbreviated as γ. The measurement update
p(γ|r[m]

t ) captures how well a force applied at point r[m]
t can

explain the residual γ(t). To find a probability for p(γ|r[m]
t )

we suppose that the residual is the true external joint torque
plus noise,

γ = τext + η, where η ∼ N (0,Σmeas). (10)

Now define

ε = min
Fc

(γ − JT
r
[m]
t

Fc)
TΣ−1(γ − JT

r
[m]
t

Fc) (11)

subject to Fc ∈ F(r
[m]
t ).

Following the approach in [6] we replace the friction cone
with a polyhedral approximation shown in Figure 1. This
polyhedral approximation to the friction cone allows us to
approximate (11) using a quadratic program.

QP (γ|r[m]
t ) = min

αi,Fc

(γ − JT
r
[m]
t

Fc)
TΣ−1meas(γ − JTr[m]

t

Fc)

(12)

subject to αi ≥ 0, Fc =

4∑
i=1

αiFc,i.

Then ε ≈ QP (γ|r[m]
t ). We can recover a likelihood using

the fact that γ = τext + η. Namely

p(γ|r[m]
t ) ∝ exp

(
−1

2
QP (γ|r[m]

t )

)
, (13)

where we have ommitted the normalizing constant. The
key insight is that once we specify a contact location,
the measurement update can be formulated as a quadratic
program, abbreviated as QP.

2) Motion Model: The other half of a particle filter is the
motion model. In particular we must specify p(rt|rt−1, ut)
where ut are the control inputs at time t, in this case the
torques applied to the robot. Our motion model won’t depend
on the control inputs so we define

p(rt|rt−1) ∝ N (rt; rt−1,Σmotion). (14)

Particles must correspond to contact locations on the surface
of the link, so in order to sample from this distribution
we first generate r̃ ∼ N (rt−1,Σmotion) and then project
r̃ back to the closest point rt on the robot’s surface. Given

a set of particles X let Motion-Model(X ) be the result of
applying the motion model to each particle. This motion
model corresponds to a zero velocity assumption of the
contact location in the link frame. In other words the contact
point moves around randomly on the surface of the link.
Other motion models, such as zero velocity of the contact
point in the world frame are also possible. We believe that
the specific choice of motion model does not have a large
impact on filter performance.

3) Contact Particle Filter: Now we combine the measure-
ment and motion models to form the single contact particle
filter (Single-CPF). As in [2] and [4] we must specify a
threshold for determining when there is an external contact.
Define ε(t) = γ(t)TΣ−1measγ(t). We say that there is an
external contact if ε(t) is greater than some threshold ε.
Let Xt denote the current set of particles {r[1]t , . . . , r

[m]
t },

and Xinit be fixed set of particles which are evenly sampled
from the surface of the robot. The Single-CPF is described
in Algorithm 1. The Importance-Resample function simply
performs the standard particle filter importance resampling
using the importance weights w[m]

t .

Algorithm 1 Single-CPF(Xt−1, γ(t))

1: if ε(t) = γ(t)TΣ−1measγ(t) < ε then
2: Xt = ∅
3: return Xt
4: end if
5: if Xt−1 = ∅ then
6: X ′t = Xinit
7: else
8: X ′t = Motion-Model(Xt−1)
9: end if

10: X t = ∅
11: for r[m]

t in X ′t do
12: w

[m]
t = p(γ(t)|r[m]

t )

13: X t = X t + 〈r[m]
t , w

[m]
t 〉

14: end for
15: Xt = Importance-Resample(X t)
16: return Xt

The final step is to recover the most likely contact location
given a particle set Xt. This is done by averaging the contact
locations r[m]

t for r[m]
t ∈ Xt and projecting this point back to

the surface of the robot. Label this procedure Get-Contact-
Location(Xt).

Figure 2 shows 4 iterations of the Single-CPF algorithm
while localizing a contact on the torso. The particles are
drawn in red just after importance resampling, line 15 of
Algorithm 1. The true contact location is shown in green.
Initially there is no external force and the filter has Xt = ∅.
Then an external force of 10 newtons is continuously applied
at a location on the torso, shown in green. The filter detects
this and enters the if statement at line 6 and sets X ′t =
Xinit. This is visualized in Figure 2a. Subsequent filter steps
shown in Figure 2b-2d show the particles converging to the
true contact location.
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Fig. 2: Four iterations of the Single-CPF algorithm. Particles
are shown in red just after importance resampling. The length
of the arrow is proportional to the number of particles at that
location. The green arrow is the true contact location.

B. Multiple External Contacts

In this section we extend the Single-CPF algorithm to han-
dle multiple external contacts. First we consider a naive gen-
eralization and show why it is not computationally tractable.
Then we propose a computationally tractable alternative.

Suppose we have l external contacts. Now the state space
is the location of all l contact points, thus a particle rt
in our filter encodes the locations of all l contact points,
rt = (rt,1, . . . , rt,l), where rt,j is the location of the j-th
contact point. There is a simple extension of the measure-
ment update from section IV-B.1 to the multi-contact case.
Let F [k]

c,1 , . . . , F
[k]
c,4 be the polyhedral approximation to the

friction cone of the k-th contact point rt,k. Then define

QP (γ|(rt,1, . . . , rt,l)) = min
αi,k,τ̂ext

(γ − τ̂ext)TΣ−1meas(γ − τ̂ext)

(15)

s.t. αi,k ≥ 0, F [k]
c =

4∑
i=1

αi,kF
[k]
c,i , τ̂ext =

l∑
k=1

JTrt,kF
[k]
c .

This a quadratic program with 4∗ l decision variables. As in
the single contact case the likelihood is

p(γ|(rt,1, . . . , rt,l)) ∝ exp

(
−1

2
QP (γ|(rt,1, . . . , rt,l))

)
.

(16)
Thus our measurement model extends naturally to multiple
contact points. However the complexity of this algorithm
will grow exponentially in the number of contact points.
If we have l contact points, then the particle representing
all the contact locations belongs to a space of dimension
l. The number of particles needed in a particle filter grows
exponentially with the dimension of the state space, and so
as the number of contact points increases we would need to

increase the number of particles exponentially. Clearly this
is not tractable so we propose an approximate scheme.

Instead of having a single particle encode the location
of all the external contacts, each particle will encode the
location of a single external contact, as in the single-CPF
algorithm. If there are l actual external contacts, labeled
c1, . . . , cl, then we will have l particle sets Xt,1, . . . ,Xt,l,
one for each contact point. Let Xt = {Xt,1, . . . ,Xt,l} denote
the set of particle sets. The particles in particle set Xt,k will
estimate the location of the k-th contact. As in section IV-
A we must define the measurement model and the motion
model.

1) Measurement Model: To get around the computa-
tional problems mentioned in the previous section we
make an independence assumption when computing the
measurement update for particle xt,j ∈ Xt,j . Specifically
we take the location of the other contacts as given. The
Get-Contact-Location(Xt,k) method described in section IV-
A.3 naturally provides an estimate of the location of contact
ck, given by r∗c,k = Get-Contact-Location(Xt,k). If we define
r = {r∗c,k}k 6=j then the measurement update for a particle
r
[m]
t,j ∈ Xt,j is defined as

p(γ|r[m]
t,j ,X ) ∝ exp

(
−1

2
QP (γ|(r[m]

t,j , r))

)
. (17)

where QP (γ|(r[m]
t,j , r)) refers to (15). The full measurement

update is detailed in Algorithm 2.

Algorithm 2 Multi-Measurement-Update(γ,Xt)

X t = ∅
for Xt,j ∈X do
X t,j = ∅
r = {r∗t,k}k 6=j
for r[m]

t,j in Xt,j do
w

[m]
t,j = exp

(
− 1

2QP (γ|(r[m]
t,j , r))

)
X t,j = X t,j + 〈r[m]

t,j , w
[m]
t,j 〉

end for
end for
return X t

2) Motion Model and Importance Resampling: The mo-
tion model for a single particle is the same as in the single
contact case with the sampling density p(rt,j |rt−1,j) defined
as in section IV-A.2. Then we simply apply the motion model
to each particle set independently.

Importance resampling just consists of independently re-
sampling each particle set using the importance weights w[m]

t,j

computed in the measurement update step.
3) Adding and Removing Particle Sets: Since each parti-

cle set X represents a single external contact, we keep track
of the number of external contacts and update the number
of particle sets accordingly. Given X = {Xt,1, . . . ,Xt,l}
let r∗(X ) = {r∗t,1, . . . , r∗t,l}, where r∗t,k is the most likely
contact location for Xt,k. Define

ε(Xt, γ) = QP (γ|r∗(Xt)). (18)



If Xt is empty then let

QP (γ|r∗(Xt)) = γTΣ−1measγ. (19)

If ε(Xt, γ) > ε then it means that with our current estimate
of the locations of the external contacts we are not able to
explain the residual γ. This means that there is likely another
contact point that is not accounted for by one of the current
particle sets, so we add a new particle set to Xt to represent
this new external contact point. Since we don’t know where
this new contact point is we initialize the new particle set to
Xinit.

When should we remove a particle set? If the residual is
well explained without using a force at a particular contact
location then it is likely that there is no force at this
contact location. In this situation we remove the particle
set corresponding to that contact point. Formally if X is
such that ε(γ,Xt\{Xt,k}) < ε, then we should eliminate
the particle set Xt,k from Xt. The full procedure is outlined
in Algorithm 3

Algorithm 3 Manage-Particle-Sets(γ,Xt−1)

Xt = Xt−1
if ε(γ,Xt−1) > ε then

add Xinit to Xt

return Xt

end if
for Xt,k in Xt do

if ε(γ,Xt\{Xt,k}) < ε then
remove Xt,k from Xt

return Xt

end if
end for
return Xt

4) Multi-Contact-Particle-Filter: For the multi-contact
particle filter we simply combine the motion model, the
Multi-Contact-Measurement-Update, and the Manage-
Particle-Sets algorithms. The details are given in Algorithm
4.

Algorithm 4 Multi-CPF(γ,Xt−1)

Xmotion = Motion-Model(Xt−1)
Xmeas = Multi-Measurement-Update(γ,Xmotion)
Xresample = Importance-Resample(Xmeas)
Xt = Manage-Particle-Sets(γ,Xresample)
return Xt

To recover the best estimate of the contact locations
we simply apply Get-Contact-Location to each particle set
Xt,k ∈Xt.

V. SIMULATION RESULTS

We perform experiments using a simulated model of the
Atlas robot. The Atlas robot has 36 degrees of freedom
and 30 actuated joints. To properly formulate the residual
detector we need joint position and velocity measurements

q, v, in addition to torque measurements τ for the actuated
joints, i.e. excluding the floating base. Although the Atlas
hardware only has 3-axis force-torque sensors at the feet
we simulate full 6-axis force-torque sensors. As discussed
in section III-A these 6-axis force-torque measurements are
necessary in order to properly “subtract out” the known
contact wrenches at the feet when computing the residual
γ. Other humanoids such as NASA’s Valkyrie [8] have these
6-axis force-torque sensors. To test our algorithm we also
augment the simulator in order to be able to apply arbitrary
contact forces along the surface of the robot. This allows
us to simulate many different potential contact situations
without constructing complex environments that the robot
can collide with.

To speed up development the CPF was implemented in
a single thread Python process. The quadratic programs in
the measurement update step were solved using FORCES
Pro. The CPF must be passed a complete surface mesh of
the robot at initialization, but the only required realtime
information are the joint positions q and the residual γ.

Section V-A gives quantitative results on the localization
performance of the CPF. Section V-B provides a comparison
of the performance of the CPF and the method of [4]. Section
V-C discusses the computational speed of the CPF. A video
of the CPF is available at http://youtu.be/ckvsMK0QhB0.

A. Localization Performance

In all the experiments the filter used particle sets of size
50. During the simulations the robot was moving but not
walking around. We considered situations with either 1,2
or 3 external contacts with a 10 Newton force applied at
each contact point. We tested 7, 4 and 3 different contact
locations for the 1,2 and 3 contact scenarios, respectively. In
addition we artificially injected noise into the residual γ to
test the performance of the filter under non-ideal conditions.
The results are summarized in Figure 3.

The CPF was able to localize contacts to within 3 centime-
ters in most cases. In general filter performance deteriorates
as the amount of noise increases, however the localization
accuracy remained fairly constant as the number of external
contacts increased.

Since the experiments were performed in simulation the
residual observer (4) had the correct inertial parameters of
the robot. In addition the simulation doesn’t include friction
in the robot’s joints. This ultimately implies that the residual
observer was using a very accurate dynamic model of the
robot, an assumption that may or may not be satisfied in
real world operation. However, the addition of noise in the
experiments shows that the filter performs fairly well even
if the residual contains errors.

B. Comparison to Two-Step Method

In this section we compare the performance of the CPF
to the contact localization method of [4]. The method of
[4] breaks the problem into two parts. First they note that
a contact force Fc applied at a point rc on link i can be
transformed to an equivalent wrench Γi = [Fi,Mi]

T at a



Fig. 3: This chart shows the localization performance of the
CPF across experiments with different numbers of external
contacts and different noise properties. We added noise with
the standard deviations listed above to the residual before it
was used in CPF. For each noise setting we tested 7, 4 and 3
different contact locations for the 1,2 and 3 contact scenarios,
respectively. We report the average localization performance
across the multiple trials.

known frame attached to link i. The method in [4] first solves
for Γi, and then attempts to back out the contact location rc
and force Fc that generated this link wrench. They achieve
this by finding a line Li, called the line of force action, on
which rc must lie. Namely the force Fc applied at any point
rc ∈ Li would generate the wrench Γi. The point where Li
intersects the link surface then gives the contact location rc.

A typical situation is shown in Figure 4. As we can see the
CPF does a good job estimating the location of both contact
points, while the method of [4] doesn’t provide accurate
estimates. 1 In particular the line of force action for the arm
faisl to intersect the robot surface. The reason that the method
of [4] does poorly in this scenario is because when solving
for the link wrenches Γi (in this case one for the arm and one
for the torso) in the first stage, it allows arbitrary wrenches
Γi ∈ R6. If A(rc) denotes the force moment transformation
which converts a force applied at rc to a wrench at the
known link frame then the set of wrenches that can be
generated by point forces applied to the robot is given by

Wi = {Γ : Γ = A(rc)Fc for rc ∈ Si, Fc ∈ F(rc)}. (20)

By allowing Γi ∈ R6 rather than restricting Γi ∈ Wi in the
first stage, the method of [4] doesn’t take advantage of all
the information in the residual γ. In the situation of Figure
4 the external joint torque is given by

1For the purposes of this experiment we gave the method of [4] the
identity of the two links where contact was occurring. In general this is
something that would need to be deduced from the residual. This is relatively
easy in the case of a single contact, or multiple contacts on distinct kinematic
chains, but it is not generally possible for mutliple contacts on the same
kinematic chain. However, for the sake of comparing the two methods we
allow the method of [4] this additional information.

Fig. 4: There are two external contacts on the robot, shown
in green. Each contact is applying a 10 Newton force. The
estimated contact locations from the CPF are shown in cyan.
The lines of force-action for the method of [4] are the long
yellow rays.

γ ≈ τext = J1(q)TΓ1 + J2(q)TΓ2, (21)

where the i = 1, 2 subscripts denote quantities for the arm
and torso, respectively. The method of [4] fails because if
we allow Γ1,Γ2 ∈ R6, then equation (21) admits multiple
solutions. [4] uses the pseudo-inverse to choose a particular
solution Γ̂1, Γ̂2, but if Γ̂1 6∈ W1 then there does not exist a
contact location r on the arm and force F which generate
this link wrench Γ̂1. This is manifested in Figure 4 as the
line of force action for the arm failing to intersect the robot
surface. Ultimately not imposing the restriction that Γi ∈ Wi

in the first stage causes the failure of the method of [4] to
localize the contact points. On the other hand the CPF does
impose that Γi ∈ Wi as can be seen in (7). This additional
restriction eliminates the multiplicity of solutions to (21) that
plagued the method of [4] and allows the CPF to accurately
localize the external contacts.

As illustrated in Figure 4 one of the failure modes of the
method of [4] is that the line of force action fails to intersect
the link surface. This is a result of the first stage estimate
Γ̂i not being in Wi. If the residual γ is a sufficiently noisy
estimate of τext then the first stage of the method of [4],
which attempts to solve γ = Ji(q)

T Γ̂i can return Γ̂i 6∈ Wi.
Since the resulting line of force action fails to intersect
the link, the method of [4] doesn’t return an estimate. On
the other hand since the CPF samples particles on the link
surface it never suffers this problem. The estimates may be
degraded by a noisy γ but by construction they always lie
on the link surface.

C. Computational Complexity

Table I shows the runtime performance of the CPF for
different numbers of external contacts. Currently the code
is not optimized for performance and is implemented in a
single threaded Python process. We use the Python interface
of FORCES Pro to solve the QP’s. Interestingly the QP
solves account for a relatively small portion of the total
time, less than 13%. The majority of the time is spent in the
motion model sampling points and projecting them back to



# Contacts Total (ms) QP Solves (ms) Num QP Solves
1 161 18 51
2 244 25 102
3 395 50 153

TABLE I: Total is the total time for a single step of the
filter. QP Solves is the total time spent solving quadratic
programs. Num QP Solves is how many distinct QP’s were
solved. There were 50 particles in each particle set for this
example. All computations were run on a single thread Intel
Core i7 @ 3.30 GHz

the robot’s surface. This portion of the code is not optimised,
but with some care a substantial speedup could be achieved.

VI. LIMITATIONS AND EXTENSIONS

In this section we discuss some of the main limitations
of the CPF and highlight areas where the algorithm can be
extended.

A. Model Error

Probably the most important limitation of CPF is that it
relies on having an accurate dynamic model of the robot.
Model inaccuracies can result from unmodeled actuator
dynamics, friction, link compliance, incorrect link masses
and/or inertias, etc. Having an accurate model is essential
since the residual detector is effectively estimating the model
error given by

H(q)v̇ + C(q, v)v + g(q)−Bτ. (22)

Model error affects the first three terms in the above equation,
but the last term Bτ depends on joint torque measure-
ments. So the accuracy of our joint torque measurements
also affects the quality of the residual estimate. When the
observed dynamics don’t match the model dynamics, this
difference is captured by the residual γ. If our model and
torque measurements are accurate then these discrepancies
correspond exactly to the external torques τext =

∑
c J

T
c Fc

we want to measure. If our model or torque measurements
aren’t accurate then our residual will be contaminated by
these errors. In short, the fidelity of our model affects the
accuracy of the relation γ ≈ τext. Since the CPF takes
γ as an input, the worse the approximation γ ≈ τext the
worse the performance of the CPF will be. On the other
hand this limitation is not specific to the CPF, but rather
is a fundamental limitation of any approach that relies on
proprioceptive sensors. As an example of this limitation
consider a pendulum with a single degree of freedom q ∈ R.
Suppose a control torque τ is applied which according to our
model should cause the robot to move. If the robot doesn’t
move then there are at least two possibilities. One is that
there is unmodeled friction in the joint, correspding to the
case of an inaccurate model. The second possibility is that the
pendulum is pushing against a wall and the wall is applying a
contact force which exactly opposes the commanded torque.
If all we have is proprioceptive sensors, in this case joint
position and joint torque sensors, then there is no way to tell
the difference between these two possibilities.

B. Identifiability

In section V-B we showed an example situation where
the method of [4] couldn’t accurately estimate the contact
locations but the CPF could. Identifiability of the CPF
depends on there being a unique set of contact points
that can generate the current residual. In general suppose
there are contact points c1, . . . , ck on the surface of the
robot with associated contact forces Fc1 , . . . , Fck . Then we
say the contact situation is “identifiable” if there does not
exist another set of contact points c̃1, . . . , c̃k with associated
contact forces F̃c1 , . . . , F̃ck which obey the friction cone and
have

k∑
j=1

JTcjFcj = τext =

k∑
j=1

J̃Tcj F̃cj (23)

If we are in a contact situation that is not identifiable, then
there are multiple sets of contacts that could all produce
the observed residual. In this case there two sets of contact
locations are equally likely and thus the CPF could converge
to c̃1, . . . , c̃k rather than the true contact locations c1, . . . , ck.
In practice if contact ck is the last contact to become active,
and the filter was correctly estimating the location of contacts
c1, . . . , ck−1 then it is likely that when contact ck is added
the filter will converge to the correct set of contact locations
c1, . . . , ck. In several of the experiments with two and three
contact points the contact locations were not identifiable,
however, the filter was still able to converge.

C. Point Contacts

Another restriction of the CPF is that it only considers
point contacts. For many real world contact situations this is
a reasonable assumption for a rigid robot. There are however
situations in which we have multiple or continuous contact.
For example if the robot is sitting then it is possible to have
many multiple contacts. Ultimately if the wrench exerted
on link i by these contacts can be well approximated by
the wrench exerted by a point force then the CPF will
return a reasonable estimate. The estimated contact point will
likely be a weighted average of the true contact points. An
example of Atlas sitting on a box is shown in Figure 5. In
this simulation there are two contacts on the pelvis, but the
CPF particles still return reasonable estimates located on the
bottom of the pelvis.

D. Filter Divergence

For computational efficiency we perform the measurement
update for particle set Xt,j ∈ X taking the locations of
the other contacts as given. Consider a situation where the
estimate r∗t,k of the location of the k-th contact point given by
Xt,k is not accurate. Then when performing the measurement
update for a particle r[m]

t,j ∈ Xt,j the force Fc applied at r[m]
t,j

will have to match the contribution of the j-th contact point
cj to τext but also the contribution of contact point ck that
cannot be explained by the poor estimate r∗t,k. This can lead
to incorrect importance weights for particles in Xt. If r∗t,k is
a sufficiently bad estimate of ck then the filter can diverge.



Fig. 5: The CPF particles are shown in orange as Atlas sits
on a box

However the filter never diverged during the 42 simulation
runs used in Figure 3.

E. Sequential Arrival of External Contacts

The CPF maintains as many particle sets as there are
external contacts. Algorithm 3, Manage-Particle-Sets, adds
a particle set if the current residual is not well explained by
the existing particles. This relies on the assumption that new
contacts arrive sequentially, not simultaneously. We think
that this is not an unreasonable assumption in practice. If two
point contacts arrived at once the the filter would add a single
particle set to try to localize one new contact. Since there are
two new contacts, the particles in this new particle set are
would move towards a location that could best explain the
two new contact forces with a single contact force. This can
lead to filter divergence as described in the previous section.

F. Additional Proprioceptive Sensors

A nice feature of the CPF is that additional proprioceptive
sensors can easily be incorporated into the algorithm
without increasing the complexity. If we had an additional
force-torque sensor somewhere on the robot, for example at
the wrist or the shoulder, then we could augment the state
of the robot to incorporate this as a fixed joint. All this
does is increase the dimension of q, say from n to n + 6.
Denote quantities that use this augmented state with tildes,
e.g. q̃. The effect of this is that external forces are projected
into a higher dimensional external torque space. Namely
τ̃ext = J̃c(q̃)

TFc ∈ Rn+6 as opposed to τext = Jc(q)
TFc ∈

Rn. This means that there is effectively more information
encoded in τ̃ext, which increases the likelihood that the
quadratic program in the measurement update step has a
unique optimum. There is almost no additional computation
cost to this, as the only changes are computing Jacobians
in the new space q̃ instead of q. Thus the CPF can easily
incorporate additional proprioceptive information.

VII. CONCLUSION

This paper introduces CPF, the Contact Particle Filter, a
general algorithm for detection and localization of external
contacts on rigid body robots using only proprioceptive
sensing. CPF finds external contact points that best explain
the estimated external joint torque. It takes advantage of the
fact that once we specify a set of potential contact locations,
computing how well they explain the observed residual can
be formulated as quadratic program. The CPF leverages this
insight to tractably formulate the problem in the framework
of a particle filter.

We demonstrate successfull localization of up to 3 external
contacts in a simulated environment on a complex humanoid
robot with 36 degrees of freedom. Each application of CPF
requires only a dynamic model of the robot and a description
of the surface manifold of each link, no underlying algorith-
mic changes are necessary.

We believe that the being able to reliably estimate and
localize external contacts, both expected and unexpected, is
a necessary first step in developing robots that can interact
safely and intelligently with their environment. The CPF
presents an approach to solving this problem.
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