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Abstract— In this paper, we consider linear programming
(LP) and second order cone programming (SOCP) based
alternatives to sum of squares (SOS) programming and apply
this framework to high-dimensional problems arising in control
applications. Despite the wide acceptance of SOS programming
in the control and optimization communities, scalability has
been a key challenge due to its reliance on semidefinite
programming (SDP) as its main computational engine. While
SDPs have many appealing features, current SDP solvers do
not approach the scalability or numerical maturity of LP and
SOCP solvers. Our approach is based on the recent work
of Ahmadi and Majumdar [1], which replaces the positive
semidefiniteness constraint inherent in the SOS approach with
stronger conditions based on diagonal dominance and scaled
diagonal dominance. This leads to the DSOS and SDSOS cones
of polynomials, which can be optimized over using LP and
SOCP respectively. We demonstrate this approach on four high
dimensional control problems that are currently well beyond the
reach of SOS programming: computing a region of attraction
for a 22 dimensional system, analysis of a 50 node network
of oscillators, searching for degree 3 controllers and degree 8
Lyapunov functions for an Acrobot system (with the resulting
controller validated on a hardware platform), and a balancing
controller for a 30 state and 14 control input model of the
ATLAS humanoid robot. While there is additional conservatism
introduced by our approach, extensive numerical experiments
on smaller instances of our problems demonstrate that this
conservatism can be small compared to SOS programming.

I. INTRODUCTION

Sum of squares (SOS) programming has had a large
impact on the control community since its advent over
a decade ago [2]. These techniques have been used to
tackle a wide variety of problems including feedback control
synthesis, safety verification and computation of regions of
attraction, invariant sets, and reachable sets for a broad
class of nonlinear and hybrid systems [3]–[8]. The key
observation behind the approach is that many questions in
control theory can be posed as checks on nonnegativity of
functions. However, checking nonnegativity is NP-hard even
when the functions are restricted to the set of polynomials
[9]. The SOS relaxation relies on the ability to efficiently
check if a polynomial can be expressed as a sum of squares
of other polynomials. This search for a sum of squares
decomposition can be cast as a semidefinite program (SDP)
and solved using numerical tools from convex optimization.

Despite the wide acceptance of these approaches in the
control and optimization communities, applications of these
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Fig. 1: The methods presented in this paper allow us to
handle problems of dimensionality well beyond the reach of
current SOS programming based approaches. For example, in
Section V-D, we design a balancing controller for a 30 state
and 14 control input model of the ATLAS humanoid robot.
A visualization of the model is shown in this figure, along
with the hardware platform (inset) on which the parameters
of the system are based. (Picture of robot reproduced with
permission from Boston Dynamics.)

methods considered in the literature typically involve systems
of very modest dimension (approximately 5-10 states) This
has limited the use of SOS methods in domains such as
robotics, aircraft control, network control and power systems,
where the dimensionality of systems are typically much
higher. While control systems of higher dimension have been
addressed using SOS programming in certain cases, they
involve exploiting special structure (e.g., symmetry, sparsity)
of the particular problem under consideration [10]–[13]. For
many real-world control applications, we would like to be
able to handle problems of high dimensionality even when
such structure is limited or not available. Further, even for
smaller problems, being able to obtain an answer much
more quickly than we currently can (perhaps at the cost of
conservatism) would be of significant practical utility.

The limited scalability of the SOS approach is due in large
part to the fact that, in general, SDPs are among the most
expensive convex relaxations. At the current state of solver
technology, it is not uncommon for the more practically-
oriented user to want to avoid SDP-based approaches. For
example, in the industry-motivated field of integer program-
ming, the cutting-plane approaches used on real-life prob-
lems are almost exclusively based on linear programming
(LP) or second order cone programming (SOCP) [14], [15].
Even though semidefinite cuts are known to be stronger, they
are too expensive to be used even at the root node of branch-
and-bound techniques for integer programming. In the field



of SOS optimization, however, a sound alternative to SOS
programming that can avoid SDP and take advantage of the
existing mature and high-performance LP/SOCP solvers is
lacking. This is precisely what we are after here.

In very recent work [1], Ahmadi and Majumdar provide
new sufficient conditions for polynomial nonnegativity based
on linear programming (LP) and second-order cone pro-
gramming (SOCP) relaxations. The key insight is to replace
the positive semidefiniteness constraint on the Gram matrix
in the SOS approach with stronger conditions: diagonal
dominance and scaled diagonal dominance. Equivalently, the
set of polynomials that is being searched over is restricted to
a subclass of sum of squares polynomials: the Diagonally-
Dominant SOS (DSOS) and Scaled-Diagonally-Dominant
SOS (SDSOS) polynomials (see Definition 3). This results
in significantly cheaper optimization problems, though with
more conservative solutions in general. By leveraging the
scalability of available LP/SOCP solvers, we demonstrate
the efficacy of this approach on several high-dimensional
problems that are currently well beyond the reach of SOS
programming: computing a region of attraction for a 22
dimensional system, network analysis for an oscillator net-
work with 50 nodes, searching for degree 3 controllers and
degree 8 Lyapunov functions for an Acrobot system (with the
resulting controller validated on a hardware platform), and a
balancing controller for a 30 state and 14 input model of the
ATLAS humanoid robot shown in Figure 1. We also perform
numerical experiments on smaller instances of our problems
(where SOS techniques can be implemented) in order to
demonstrate that the additional conservatism introduced by
our methods can be small compared to SOS approaches.

Our work also gives rise to several interesting theoretical
questions related to the “gap” between (S)DSOS and non-
negative polynomials and how this gap may be reduced and
even closed with the help of multiplier polynomials. This is
analogous to the classical Positivstellensatz theorems for the
gap between nonnegative polynomials and SOS polynomials.
Since our goal in this paper is to provide a clear practical
exposition of the approach along with its control applica-
tions, only a highlight of a few theorems in this direction is
presented in Section IV and a more comprehensive treatment
is to be found in [1].

II. RELEVANT WORK

There have been many contributions to improvements in
scalability of SOS programming. One approach has been
to develop systematic techniques for taking advantage of
problem structure, such as sparsity or symmetry of the
underlying polynomials, to reduce the size of the SDPs.
Examples include applications to network problems where
connectivity information is known a priori [11], dynamical
systems that can be decomposed and analyzed using smaller
subsystems [12], and analysis of delayed linear systems with
a low-rank delay coefficient matrix [13].

Another approach which also holds promise has been
to design customized solvers for special classes of SDPs
and avoid resorting to off-the-shelf interior point solvers.

Examples in this direction include the work in [16], which
proposes a method for solving large scale robust stability
problems in a parallel computing environment with a cus-
tomized interior point solver, and in [17], which offers a
customized interior point algorithm for optimizing over the
set of nonnegative trigonometric polynomials.

The approach we take in this paper for enhancing scala-
bility is orthogonal to the ones mentioned above (and can
potentially later be combined with them). We propose to
not work with the SOS decomposition to begin with, but
employ computationally cheaper sufficient conditions for
polynomial nonnegativity that are perhaps stronger than a
SOS decompostion, but still provide useful solutions for
various control applications.

A previous approach that has a similar spirit is the work
in [18], which tackles the specific task of finding a lower
bound on the minimum of a polynomial using geometric
programming (GP). However, these GP-based conditions
seem to be too strong and we show in [1] that this method
is always outperformed by the SDSOS approach.

III. DIAGONAL DOMINANCE AND
SCALED DIAGONAL DOMINANCE

A polynomial p(x) is a sum of squares (sos) if it can be
written as p(x) =

∑m
i=1 q

2
i (x) for some polynomials qi. We

will denote the cone of sos polynomials with degree d in
n variables by SOSn,d. It is well-known (see e.g. [2]) that
the condition p ∈ SOSn,d is equivalent to the existence of
a positive semidefinite symmetric matrix Q that satisfies

p(x) = v(x)TQv(x). (1)

The vector v(x) here is the vector of all monomials that have
degree less than or equal to half the degree of p. The search
for a matrix Q satisfying the linear constraints coming from
(1) can be cast as a semidefinite program and solved using
a variety of techniques (e.g. interior point methods).

Denoting the cone of nonnegative polynomials in n vari-
ables and degree d by POSn,d, it is clear that SOSn,d ⊆
POSn,d. The key insight we exploit in this paper is to
replace the condition that the symmetric matrix Q is positive
semidefinite (psd) with stronger sufficient conditions in order
to obtain inner approximations to the cone SOSn,d. In
particular, we will require Q to be either diagonally dominant
(dd) or scaled diagonally dominant (sdd). We recall these
definitions below.

Definition 1: A symmetric matrix A is diagonally domi-
nant (dd) if aii ≥

∑
j 6=i |aij | for all i.

We will refer to the set of n× n dd matrices as DDn.
Remark 3.1: It is clear from Definition 1 that the set DDn

has a polytopic description and can thus be optimized over
using LP.

Definition 2: A symmetric matrix A is scaled diagonally
dominant (sdd) if there exists an element-wise positive vector
y such that:

aiiyi ≥
∑
j 6=i

|aij |yj ,∀i.



Equivalently, A is sdd if there exists a positive diagonal
matrix D such that AD (or equivalently, DAD) is dd.

The set of n×n sdd matrices will be denoted by SDDn.
We note that sdd matrices are sometimes referred to as
generalized diagonally dominant matrices [19].

Remark 3.2: The fact that diagonal dominance is a suffi-
cient condition for positive semidefiniteness follows directly
from Gershgorin’s circle theorem. This also implies that sdd
matrices are psd since the eigenvalues of DAD have the
same sign as those of A when D is a diagonal matrix with
positive entries. Hence, denoting the set of n×n symmetric
positive semidefinite matrices (psd) as S+

n , we have from the
definitions above that:

DDn ⊆ SDDn ⊆ S+
n .

The next theorem, which is proved in [1], provides an
important characterization of the set SDDn.

Theorem 3.1 ( [1]): Denote the set of n × n symmetric
matrices as Sn. Let M ij

2×2 ∈ Sn denote the symmetric matrix
with all entries zero except the elements Mii,Mij ,Mji,Mjj .
Then, we have the following description of SDDn:

SDDn =

A ∈ Sn : A =

i=n∑
i,j 6=i

M ij
2×2,

[
Mii Mij

Mji Mjj

]
� 0

 .

Theorem 3.1 provides us a method to optimize over the
set SDDn using second order cone programming (SOCP),
as the following theorem demonstrates.

Theorem 3.2: The set of matrices SDDn can be opti-
mized over using second order cone programming (SOCP).

Proof: Positive semidefiniteness of the 2 × 2 matri-
ces in Theorem 3.1 is equivalent to the diagonal elements
Mii,Mjj , along with the determinant MiiMjj −M2

ij , being
nonnegative. This is a rotated quadratic cone constraint and
can be imposed using SOCP [20].

IV. DSOS AND SDSOS POLYNOMIALS

We now introduce naturally motivated cones that are inner
approximations of POSn,d and that lend themselves to LP
and SOCP.

Definition 3 ( [1]):
• A polynomial p is diagonally-dominant-sum-of-squares

(dsos) if it can be written as

p =
∑
i

αim
2
i +

∑
i,j

β+
ij(mi +mj)

2 + β−ij(mi −mj)
2,

for some monomials mi,mj and some constants
αi, β

+
ij , β

−
ij ≥ 0.

• A polynomial p is scaled-diagonally-dominant-sum-of-
squares (sdsos) if it can be written as

p =
∑
i

αim
2
i+
∑
i,j

(β+
i mi+γ

+
j mj)

2+(β−i mi−γ−j mj)
2,

for some monomials mi,mj and some constants
αi, β

+
i , γ

+
j , β

−
i , γ

−
j ≥ 0.

We denote the set of polynomials in n variables and degree
d that are dsos and sdsos by DSOSn,d and SDSOSn,d
respectively. The following inclusions are straightforward:

DSOSn,d ⊆ SDSOSn,d ⊆ SOSn,d ⊆ POSn,d.

Our terminology in Definition 3 comes from the following
relationship between dsos and sdsos polynomials to the cones
of dd and sdd matrices introduced in Section III.

Theorem 4.1 ( [1]):
• A polynomial p of degree 2d is dsos if and only if it

admits a representation as p(x) = zT (x)Qz(x), where
z(x) is the standard monomial vector of degree d, and
Q is a dd matrix.

• A polynomial p of degree 2d is sdsos if and only if it
admits a representation as p(x) = zT (x)Qz(x), where
z(x) is the standard monomial vector of degree d, and
Q is a sdd matrix.

Theorem 4.2: The set DSOSn,d is polyhedral and the set
SDSOSn,d has a second order cone representation. For any
fixed d, optimization over DSOSn,d (resp. SDSOSn,d) can
be done with linear programming (resp. second order cone
programming), of size polynomial in n.

Proof: This follows directly from Remark 3.1 and
Theorem 3.2, along with Theorem 4.1. The size of these
programs is polynomial in n since the size of the Gram
matrix is

(
n+d
d

)
×
(
n+d
d

)
, which scales as nd.

We will refer to optimization problems with a linear
objective posed over the cones DSOSn,d and SDSOSn,d
as DSOS programs and SDSOS programs respectively.

A. Asymptotic Guarantees

Next, we briefly discuss how the “gap” between the cones
DSOSn,d, SDSOSn,d and POSn,d can be reduced and
in some cases closed. In particular, we consider the use
of “multipliers” similar to the Positivstellensatz multipliers
employed in SOS programming.

Definition 4:
• For a positive integer r, a polynomial p is r-diagonally-

dominant-sum-of-squares (r-dsos) if p·
(∑

i x
2
i

)r
is dsos.

• For a positive integer r, a polynomial p is r-scaled-
diagonally-dominant-sum-of-squares (r-sdsos) if
p ·

(∑
i x

2
i

)r
is sdsos.

We denote the set of polynomials in n variables and
degree d that are r-dsos and r-sdsos by r-DSOSn,d and
r-SDSOSn,d, respectively.

Note that the sets r-DSOSn,d and r-SDSOSn,d can
also be optimized over using LP and SOCP respectively.
The purpose of the multiplier (

∑
x2i )

r is to have a knob
for trading off speed with accuracy of approximation. By
increasing r, we obtain increasingly accurate inner approxi-
mations to the set of nonnegative polynomials. The following
example shows that the LPs obtained from even small r can
outperform the semidefinite programs resulting from SOS.



Example 4.1: Consider the polynomial, p(x) = x41x
2
2 +

x42x
2
3 + x43x

2
1 − 3x21x

2
2x

2
3. This polynomial is nonnegative

but not a sum of squares [21]. However, there is an LP-
based nonnegativity certificate since one can show that p ∈
1-DSOS. Hence, 1-DSOS * SOS.

The following two theorems provide asymptotic guaran-
tees on r-dsos (and hence r-sdsos) hierarchies. Their proofs
rely on Positivstellensatz results from real algebraic geome-
try.

Theorem 4.3 ( [1]): Let p be an even form (i.e., a form
where individual variables are raised to even degrees), with
p(x) > 0 for all x 6= 0, then there exists an integer r such
that p ∈ r-DSOS.

If we allow the use of general multipliers (in contrast to∑
x2i ), we can relax the assumption of evenness.
Theorem 4.4 ( [1]): For any positive definite form p,

there exists a form q such that q and pq are both dsos.
Note that given p, the search for such a q (of a given

degree) is a LP. Moreover, a feasible solution to this LP
certifies nonnegativity of p.

V. EXAMPLES

This section demonstrates the scalability of our approach
on four examples relevant to control and verification of
dynamical systems. We compare runtimes and optimality of
our approach with the SOS approach in cases where this
is possible (i.e., smaller instances of problems). A software
package written using the Systems Polynomial Optimization
Toolbox (SPOT) [22] includes a complete implementation of
the presented methods and is available online1. The toolbox
features very efficient polynomial algebra and allows us
to setup the large-scale LPs and SOCPs arising from our
examples.

We use MOSEK as our LP and SOCP solver. Runtimes
for SDPs are reported for both the recently released MOSEK
SDP solver and the very widely used SeDuMi solver. All
code was run on a machine with four Intel i7 processors
with a clock speed of 3.4 GHz and 16 GB RAM.

A. Regions of Attraction

In our first example, we consider the computation of
regions of attraction (ROA), which is known to be a NP-
hard problem [23]. The system we examine is the N -link
pendulum depicted in Figure 2. This system has 2N states
x = [θ1, . . . , θN , θ̇1, . . . , θ̇N ] composed of the joint angles
and their derivatives. There are N − 1 control inputs (the
joint closest to the base is not actuated). Each link of the
pendulum is assumed to be a uniformly dense cylindrical
rod of radius 5 cm with mass m = 1 kg and length l = 1 m.
We take the unstable “upright” position of the system to be
the origin of our state space and design a LQR controller
in order to stabilize this equilibrium. The cost matrix Q
and the action matrix R for the LQR controller are both
diagonal, with Qii = 10 for i = 1, . . . , N , Qjj = 1 for
j = N + 1, . . . , 2N , and Rii = 1 for i = 1, . . . , N − 1.

1Link to spotless isos software package:
https://github.com/anirudhamajumdar/spotless/tree/spotless isos

Fig. 2: An illustra-
tion of the N-link
pendulum system
(with N = 6).
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Fig. 3: Comparisons of projections
of the ROAs computed for the 6-
link pendulum system using DSOS,
SDSOS and SOS programming.

A polynomial approximation of the dynamics of the closed
loop system is obtained by a Taylor expansion of degree 3.
Denoting the resulting dynamics by ẋ = f(x), if we can find
a positive definite polynomial V (x) such that the following
condition holds:

V (x) ≤ ρ =⇒ V̇ (x) < 0, (2)

then the ρ sublevel set of V (x) is an inner approximation
of the ROA. We choose our Lyapunov function to be the
cost-to-go function V (x) = xTSx of the LQR controller
and attempt to maximize ρ. As described in [2], under the
assumption that the Hessian of V̇ (x) is positive definite at
the origin, the following is a sufficient condition for (2):

(xTx)(V (x)− ρ) + L(x)V̇ (x) ≥ 0. (3)

Here, L(x) is a “multiplier” polynomial. By replacing the
nonnegativity condition in (3) with a DSOS constraint, we
obtain a LP:

max
ρ,L(x)

ρ (4)

s.t. (xTx)(V (x)− ρ) + L(x)V̇ (x) ∈ DSOS2N,6

Similarly, a SDSOS/SOS constraint yields a SOCP/SDP. The
optimization in (4) is over ρ and L(x) (degree 2).

We note that while there are different SOS programming
based formulations for approximating the ROA that allow
one to search over Lyapunov functions in addition to the
scaling ρ (see, e.g., [3]), these typically lead to non-convex
optimization problems. Algorithms for these formulations
generally do not have convergence guarantees, thus making

https://github.com/anirudhamajumdar/spotless/tree/spotless_isos


2N (# states) 4 6 8 10 12 14 16 18 20 22
DSOS < 1 0.44 2.04 3.08 9.67 25.1 74.2 200.5 492.0 823.2
SDSOS < 1 0.72 6.72 7.78 25.9 92.4 189.0 424.74 846.9 1275.6
SOS (SeDuMi) < 1 3.97 156.9 1697.5 23676.5 ∞ ∞ ∞ ∞ ∞
SOS (MOSEK) < 1 0.84 16.2 149.1 1526.5 ∞ ∞ ∞ ∞ ∞

TABLE I: Runtime comparisons (in seconds) for ROA computations on N-link system.

it difficult to distinguish between conservatism caused by
the algorithm and conservatism inherent in the (S)DSOS
condition. Hence, in order to facilitate a direct comparison
of the DSOS, SDSOS and SOS approaches, we use the
formulation presented above in (3), which involves solving
a single convex optimization problem for each approach.

An important observation is that unlike the sets POSn,d
and SOSn,d, the sets DSOSn,d and SDSOSn,d are not
invariant to coordinate transformations, i.e., a polynomial
p(A(x)) is not necessarily DSOS (resp. SDSOS) even if p(x)
is DSOS (resp. SDSOS). Thus, performing coordinate trans-
formations on the problem data (e.g., on the state variables
of a dynamical system) can sometimes have an important
effect. We explore this issue in this example by performing
a preprocessing step that is intuitive and straightforward to
implement. It can be used for problems involving the search
for Lyapunov functions, and can potentially be extended to
other problems as well. In particular, we find an invertible
affine transformation that simultaneously diagonalizes the
Hessians of V (x) and −V̇ (x) evaluated at the origin (this
is always possible for two positive definite matrices). The
intuition behind the coordinate change is that the functions
V (x) and −V̇ (x) locally resemble functions of the form
xTDx (with D diagonal), which are DSOS polynomials
that are “far away” from the boundary of the DSOS cone.
We solve the optimization problem (3) after performing this
coordinate transformation. The transformation is then be
inverted to obtain ROAs in the original coordinate frame.

Table I compares the runtimes of the programs obtained
using our approach with SOS programming for different
values of 2N (number of states). The SOS programs ob-
tained for 2N > 12 are too large to run (due to memory
constraints). In contrast, our approach allows us to handle
almost twice as many states. Further, for cases where the
SOS programs do run, the DSOS and SDSOS programs
are significantly faster. In particular for the 12 state system,
DSOS is approximately 2500 times faster than SOS using
SeDuMi and 150 times faster than SOS using MOSEK, while
SDSOS is 900 times faster in comparison to SeDuMi and 60
times faster than MOSEK for SOS.

Table II compares the optimal values of ρ obtained using
the different methods. The values obtained using SDSOS
programming are within approximately 80 to 90 percent
of the values from SOS programming. Note that since the
Lyapunov function is fixed in our case and we are only
optimizing ρ, the ratio of optimal values of ρ is equal to the
ratio of (Volume)

1
2N of the ROAs. While the result using

DSOS are more conservative, they could still be useful in
practice. Figure 3 compares projections of the ROAs obtained

2N (states) 4 6 8 10 12
ρdsos/ρsos 0.38 0.45 0.13 0.12 0.09
ρsdsos/ρsos 0.88 0.84 0.81 0.79 0.79

TABLE II: Comparison of optimal values for ROA problem
on N -link pendulum.

using the different methods for the 6-link pendulum.

B. Network Analysis

In this example, we consider Example 3 from [11]. The
goal is to analyze the domain on which the Hamiltonian
function V for a network of Duffing oscillators is positive
definite:

V =

N∑
i=1

ai(
1

2
y2i −

1

4
y4i ) +

1

2

N∑
i=1

N∑
k=1

bik
1

4
(yk − yi)4. (5)

Here, N is the number of nodes in the network. The follow-
ing condition can be used to establish an inner approximation
of the domain on which V is positive definite:

p(y1, . . . , yN ) = V −
N∑
i=1

λiy
2
i (g − y2i ) ≥ 0, (6)

where λi > 0 are scalar multipliers. These conditions imply
that V is positive definite when y2i < g.

In [11], the authors propose an approach that exploits
network structure to eliminate monomials from the SOS
program that results from replacing the inequality in (6)
with a SOS condition. This makes the SOS program smaller
(potentially at the cost of conservatism) and allows them to
handle large network sizes.

By replacing the nonnegativity in (6) by a (S)DSOS
condition, we can apply the techniques presented in this
paper. For the comparisons presented below, we do not
preprocess the programs using the method presented in
[11]. We demonstrate that we are able to handle network
sizes considered in [11] without explicitly exploiting network
structure. Of course, we would expect to scale even better
by using the approach in [11] as a preprocessing step.

As in [11], we randomly set 0.5
N ≤ bik ≤

1.5
N , correspond-

ing to a globally coupled network of Duffing oscillators. We
also find the largest value of g for which the condition (6) is
feasible by performing a bisection search in an outer loop.
These results and runtimes are compared for (S)DSOS and
SOS programming in Tables IV and III respectively.

We find that our approach works with runtimes compa-
rable to [11], even though we do not exploit the network
structure. In contrast, the SDP solvers MOSEK and SeDuMi
are significantly slower even for networks with N = 20. For



N (nodes) 10 20 30 40 50
DSOS 0.24 0.76 2.86 8.74 21.35
SDSOS 0.26 1.07 5.02 17.81 46.64
SOS (SeDuMi) 3.91 16050.26 ∞ ∞ ∞
SOS (MOSEK) 0.53 173.75 ∞ ∞ ∞

TABLE III: Runtimes (in seconds) for network problem.

N (nodes) 10 20 30 40 50
DSOS 0.94 0.74 0.71 0.69 0.66
SDSOS 1.58 1.49 1.48 1.48 1.48
SOS (SeDuMi) 2.00 2.00 NA NA NA
SOS (MOSEK) 2.00 2.00 NA NA NA

TABLE IV: Optimal values (g) for network problem.

N larger than 25, memory (RAM) constraints prevent the
SDP from running.

In [11], the value of g is 1.8 for all network sizes. Thus,
the optimal values we obtain using SDSOS programming are
only slightly more conservative.

C. Hardware Experiments on Acrobot

The utility of our method is not restricted to high-
dimensional systems. As we show in this example, we can
design high degree polynomial feedback controllers using
high degree Lyapunov functions for smaller systems with
benefits in terms of running time as compared to SOS
programming. We consider the Acrobot [24], which is a
benchmark for control of underactuated systems. The system
is a special case of the N -link pendulum examined in Section
V-A (with N = 2) and is actuated only at the joint between
the two links of the robot (θ2). The task is to design
a polynomial feedback controller in order to stabilize the
system about the unstable “upright” position. The hardware
platform on which experiments are conducted is shown in
Figure 4 balancing in this configuration using the controller
designed with SDSOS programming (as described below).

System identification for the hardware platform was per-
formed using the prediction error minimization method in
MATLAB’s System Identification Toolbox [25] in order to
identify parameters of the model presented in [24]. The
dynamics were then Taylor expanded around the equilibrium
to degree 3 in order to obtain a polynomial vector field.

We use the method presented in [26] to design a balancing
controller for the system. In particular, we search for a
degree 8 Lyapunov function V (x) and a degree 3 feedback
controller u(x) in order to maximize the size of the region
of attraction (ROA) of the resulting closed-loop system. The
DSOS version of the optimization problem is:

max
ρ,L(x),V (x),u(x)

ρ (7)

s.t. V (x) ∈ DSOS4,8

−V̇ (x) + L(x)(V (x)− ρ) ∈ DSOS4,10

L(x) ∈ DSOS4,4∑
j

V (ej) = 1.

Here, L(x) is a non-negative multiplier term and ej is the
j-th standard basis vector for the state space Rn. It is easy to

see that the above conditions are sufficient for establishing
Bρ = {x ∈ R4 | V (x) ≤ ρ} as an inner estimate of the
region of attraction for the system. When x ∈ Bρ, the second
constraint implies that V̇ (x) < 0 (since L(x) is constrained
to be non-negative). The last constraint normalizes V (x).

The optimization problem (7) is not convex in general
since it involves conditions that are bilinear in the decision
variables. However, problems of this nature are common
in the SOS programming literature (see e.g. [4]) and are
typically solved by iteratively optimizing groups of decision
variables. Each step in the iteration is then a DSOS program
(or a SDSOS/SOS program if the constraints in (7) are
replaced by DSOS/SOS constraints). This iterative procedure
is described in more detail in [26] and can be initialized with
the Lyapunov function from a LQR controller and a small
enough value of ρ. The LQR Lyapunov function can also
be used to perform a coordinate transformation in a manner
identical to the one described in Section V-A. Finally, we
note that in order to use the approach described above on
the Acrobot hardware platform, it is also important to take
into account the torque limit of the system.The optimization
problem (7) can be modified in a straightforward manner to
account for torque limits as described in [26, Section IV A].

Figure 5 presents two-dimensional slices of the ROA
resulting from the approach described above using SDSOS
and SOS programming (DSOS programming yields very
conservative results on this example and we do not present
the results here). The ROA from SDSOS programming is
only slightly conservative on the θ1 − θ2 slice and is in
fact slightly larger than the SOS ROA on the θ2 − θ̇2
slice2 Each iteration of the algorithm takes approximately 40
seconds with SDSOS, while SOS takes 1825 seconds with
SeDuMi and 148 seconds with MOSEK. Convergence of the
algorithm is observed between 5 and 10 iterations for SDSOS
and SOS. Thus, we obtain significant gains in running times
with very little loss in quality of the solution.

We validated the performance of the balancing con-
troller from SDSOS programming by implementing it on
the hardware platform shown in Figure 4. An open-loop
controller that swings up the system from the downright
configuration to the upright one was designed using the
direction collocation trajectory optimization approach [27].
A time-varying LQR controller was then designed to cor-
rect for deviations from this nominal trajectory. At the
end of the trajectory, the robot switches to our balancing
controller. We performed 30 consecutive experimental trials
of the robot swinging up and balancing. The balancing
controller had a success rate of 100% on these trials. A
video of the controller in action is available online at
https://www.youtube.com/watch?v=FeCwtvrD76I.

We end this example by noting that attempting to use SOS
programming to search for a higher degree controller (e.g.,
degree 5) resulted in numerical errors from the SDP solvers.
This prevented us from running more than 2 or 3 iterations of

2Note that the iterative algorithm we employ here is not guaranteed to
converge to the global optimum of the problem. Hence, the ROA from
SDSOS will not necessarily be a subset of the SOS ROA.

https://www.youtube.com/watch?v=FeCwtvrD76I


Fig. 4: Picture of the Acrobot balancing in the upright
configuration using the controller designed with SDSOS
programming. A video of the controller in action is available
online at https://www.youtube.com/watch?v=FeCwtvrD76I.

the algorithm. In contrast, we did not run into such numerical
issues with SDSOS programming. This highlights another
benefit of our approach; in addition to smaller optimization
problems, we also obtain programs that seem to be better
conditioned numerically and are easier to work with due to
the maturity of existing LP and SOCP solvers.

D. Control Synthesis for Humanoid Robot

In our final example, we consider an application in
robotics. Control of humanoid robots is an important problem
in robotics and presents a significant challenge due to the
nonlinear dynamics of the system and high dimensionality
of the state space. Here we use the approach described in
this paper to design a balancing controller for a model of the
ATLAS robot shown in Figure 1. This robot was designed
and built by Boston Dynamics Inc. and was used for the
2013 DARPA Robotics Challenge.

Our model of the robot is based on physical parameters of
the hardware platform and has 30 states and 14 inputs. The
task considered here is to balance the robot on its right toe.
In order to do this, we make a few simplifying assumptions.
First, we assume that the interface of the right foot and the
ground is mediated by a pin joint at the toe. This joint is not
actuated and its axis is parallel to the ground, constraining
the foot to pitch up and down relative to the ground. Next,
we ignore collisions between the different links of the robot.
Finally, we do not take into account input saturations (which
is a reasonable assumption given the very high torque output
capabilities of the robot’s hydraulic actuators).

The balancing controller is constructed using the approach
described in Section V-C with SDSOS programming. We
Taylor expand the dynamics about the equilibrium to degree
3 in order to obtain polynomial dynamics and search for a
linear controller using a degree 2 Lyapunov function. Each
iteration takes approximately 4.5 minutes and convergence
occurs in 4-5 iterations. We also used DSOS program-
ming to design a controller, but we do not present these
results here due to space constraints. We note that SOS
programming is unable to handle this system due to memory

(a) Nominal pose (fixed
point)

(b) Stabilized pose 1

(c) Stabilized pose 2 (d) Stabilized pose 3

(e) Stabilized pose 4 (f) Stabilized pose 5

Fig. 6: Nominal position of the robot, i.e., the fixed point
being stabilized (subplot (a)), and configurations of the robot
that are stabilized by the controller designed using SDSOS
programing (subplots (b)-(f)). A video of simulations of the
controller started from different initial conditions is available
online at http://youtu.be/lmAT556Ar5c.

(RAM) constraints. Figure 6 demonstrates the performance
of the resulting controller from SDSOS programming by
plotting initial configurations of the robot that are stabilized
to the fixed point. As the plot illustrates, the controller
is able to stabilize a very wide range of initial condi-
tions. A video of simulations of the closed loop system
started from different initial conditions is available online
at http://youtu.be/lmAT556Ar5c.

VI. CONCLUSION

In this paper, we have considered LP and SOCP based
alternatives to SOS programming and demonstrated the util-
ity of our approach on several high dimensional control
applications that are currently beyond the capabilities of SOS
programing. The key idea is to replace the positive semidef-
initeness constraint in SOS programming with stronger con-
ditions based on diagonal dominance and scaled diagonal
dominance. We refer to the resulting inner approximations
of the SOS cone as the DSOS and SDSOS cones, which can

https://www.youtube.com/watch?v=FeCwtvrD76I
http://youtu.be/lmAT556Ar5c
http://youtu.be/lmAT556Ar5c
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Fig. 5: Comparisons of slices of ROAs computed for the Acrobot system using SDSOS and SOS programming.

be optimized over using LP and SOCP. We believe that the
ability to exploit the scalability and maturity of LP and SOCP
solvers in contexts where SOS programming has previously
been applied could have a large impact on applications.

In future work, we will consider other inner approxima-
tions of the SOS cone that are inexpensive to optimize over.
In particular, the set of factor width k matrices [19] may
provide a natural extension to DSOS and SDSOS.
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