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Abstract—Here we present an algorithm which addresses the
need to produce high performance, provably stable feedback
controllers for constrained nonlinear systems with goals and con-
straints that are not fully specified until runtime. Our approach
is to precompute a multi-query directed “roadmap”, with each
segment representing a locally optimal trajectory of the system
and a continuous family of verified finite-time invariant sets, or
“funnels”, associated with an LQR controller computed for the
trajectory. The result is a library of parameterized local feedback
skills which can be efficiently assembled into a provably stable
feedback controller at runtime that takes the system from any
point in a bounded region in state space to any stabilizable goal
state. The paper makes a number of technical contributions,
including formulations for exact algebraic verification using
Sums-of-Squares optimization of Lyapunov stability for sets of
stabilizable goal states - exploiting the state-dependent riccati
equations (SDRE) - and for parameterized finite-time invariance
around a trajectory, as well as a “roadmap” construction al-
gorithm that provides probabilistic feedback coverage for any
runtime goal in the stabilizable set of the system. We demonstrate
our approach with a number of numerical examples.

I. INTRODUCTION

What would it take to say that the control problem was com-
pletely solved for a difficult nonlinear system? In this paper,
we provide an algorithm which takes as input a description of
a smooth nonlinear system and constraints, then compiles and
verifies a parameterized feedback control system which can
take the system from any initial condition to any reachable,
stabilizable goal. For any particular goal state, we provide
a controller which requires only lightweight computation at
runtime, and also provide a Lyapunov certificate proving that
the system is stable for that goal.

This work is inspired by the challenging control problems
presented by model underactuated systems, such as the Cart-
Pole system, the Acrobot, the Furuta Pendulum, and others[13,
11, 5, 14]. For systems of this complexity, the algorithm
provided here can generate probabilistically complete plans
with strong guarantees of success.

Our approach is to generate a sparse “roadmap” of locally
optimal trajectories and stabilizable goals for the system.
Each of these is stabilized with local feedback - in this
paper we focus primarily on feedback design using the linear
quadratic regulator (LQR), but other stabilization techniques
with algebraic solutions could also be used. We then compute

a Lyapunov function which verifies the stability of the local
controller over some finite region of state space surrounding
the nominal trajectory or goal; these functions can be visual-
ized as “funnels” around the nominal trajectories. The result is
a network of funnels which can transport the system through
state space from a wide variety of initial conditions to a wide
variety of final conditions. The randomized roadmap construc-
tion algorithm we provide efficiently covers the state space
with these funnels, reusing existing funnels when possible to
encourage sparsity.

II. BACKGROUND

This work is directly motivated by recent work on the
“LQR-Trees” algorithm for feedback motion planning[15].
Inspired by Burridge, Rizzi, and Koditschek’s picture of feed-
back motion planning as sequential composition of locally
valid feedback policies[3], or funnels, LQR-Trees combines
local feedback controller design and verification with random-
ized trajectory motion planning in order to cover the state
space with a feedback controller for a single goal. In the
motion planning literature, this is related to the concept of a
“single-query” planner[9, 10]. In order to stabilize a different
goal, the algorithm would have to be restarted from scratch
and build a brand new tree.

In the trajectory motion planning literature, a natural exten-
sion to the single-query planning algorithms are the “multi-
query” algorithms, such as the Probabilistic Roadmaps (PRM)
algorithm[7], which build a roadmap of feasible-paths between
collision free configurations. These algorithms reuse feasible
trajectories so that new queries, consisting of a start state and a
goal state, can be performed by simply connecting the start and
goal to the existing roadmap, then performing graph search.
Although the original PRM was for undirected graphs, directed
graphs are also possible[8].

Extending the LQR-Trees algorithm to the multi-query case
is particularly exciting because each branch of an LQR-
Tree is relatively expensive to compute - the verification
step requires solving large convex optimization problems - so
reusing these branches for different goals is very appealing.
However, constructing valid roadmaps is significantly more
challenging, as we must ensure that every path through the
graph results in an verified combination of the local Lyapunov



functions. Accomplishing this requires the development of new
machinery for creating parameterized controllers and funnels,
which we develop in the following sections. As a result of this
work, we can obtain a strong result - a feedback controller
and proof of stability that we can drive the system to any
stabilizable goal in the roadmap.

There are other methods which attempt to produce strong
guaranteed stability with goals and constraints specified
at runtime. For linear systems with quadratic costs and
affine constraints, model-predictive control (MPC)[4] can pro-
vide guaranteed convergence, even for the case of bounded
uncertainty[2], but these guarantees do not extend to the case
of a nonlinear plant. Similarly, Hofmann and Williams [6]
develops a rich language for specifying and verifying spatial
and temporal plans for linear (or feedback-linearized) systems,
by constructing flow-tubes which are analagous to the funnels
we construct here. Tomlin et al. [17] develop techniques for
safety verification and planning on nonlinear systems using the
concepts of reachability; this verification is based on elegant
solutions to Hamilton-Jacobi equations on a discretization of
the state space. By contrast, our verification is computed
algebraically on the nonlinear system using Sum-of-Squares
(SOS) optimization[12]; while still expensive, these techniques
scale polynomially with the dimension of the state space.

III. APPROACH

In the following sections, we develop the machinery re-
quired to make the multi-query algorithm possible. The par-
ticular design decisions we have made favor extensive precom-
putation in order to achieve efficient runtime performance; as
a rule we say that no complex optimization procedures should
be required at runtime.

In Section IV, rather than try to densely sample individual
goal states, we provide machinery which can produce a con-
tinuous family of feedback controllers and associated regions
of attractions for a volume of the stabilizable goal space. This
construction permits a stronger notion of completeness, and
actually affords a major advantage in planning because, as
we will see in Section IV-D, we can develop large regions of
attraction for connected sets of stabilizable goals.

In Section V-A, we develop tools for computing families of
finite-time positive invariance (i.e. funnels) around trajectories,
by requiring a particular form of exponential stability from the
trajectory stabilization. This formulation allows us to rescale
the size of funnels, as is required in order to adapt funnels to
runtime constraints, and to reuse funnels for driving the system
to different goals (each of which might have a different size
verified region of attraction).

Finally, in Section VI, we develop the algorithm for com-
bining these locally stabilized and verified solutions into a
roadmap of controllers which can drive the system from any
initial condition to any stabilizable final condition.

IV. SIMULTANEOUS STABILIZATION OF GOAL SETS

Standard region-of-attraction analysis using SOS verifies
stability to a single goal[18]. In this Section, we develop

a method for computing controllers and the corresponding
regions of attraction for a continuously parameterized set of
goal states using a single SOS program, and the solution of a
small number of Lyapunov equations.

We are given a controlled nonlinear system:

ẋ = f(x, u) (1)

with x ∈ Rn and u ∈ Rm. We assume we are given a set of
stabilizable goals, parameterized by δ ∈ P ⊂ Rp. These goals
are given by continuous function xg : P 7→ Rn and another
function ug : P 7→ Rm is given such that f(xg(δ), ug(δ)) = 0
for all δ ∈ P . Finally, for simplicity, we assume 0 ∈ P .
More detail as to the admissible parameterizations is given in
the next section. Below we design a linear feedback gain Kδ

such that xg(δ) is a exponentially stable equilibrium of (1)
with u = πδ(x) := ug(δ)−Kδ(x− xg(δ)).

To design our controller we exploit linearized control.
Recall that the solution to the problem of stabilizing a linear
system, ˙̄x = Ax̄+Bū, about the origin, subject to the quadratic
cost

J(x̄) =
∫ ∞

0

[x̄T (t)Qx̄(t) + uT (t)Ru(t)] dt

Q = QT ≥ 0, R = RT > 0.

is given by the cost-to-go J? = x̄T Sx̄, where S is the positive
definite solution to the Algebraic Riccati Equation:

0 = Q− SBR−1BT S + SA + AT S. (2)

The corresponding optimal feedback policy for the linear
system is given by ū? = −R−1BT Sx̄ = −Kx̄.

Setting A = Aδ and B = Bδ with:

Aδ =
∂f

∂x
(xg(δ), ug(δ)), Bδ =

∂f

∂u
(xg(δ), ug(δ)).

and taking Kδ to be the resulting feedback gain, K, already
provides a continuous family of controllers which stabilize
each {xg(δ)}δ∈P . However, to allow for simultaneous verifi-
cation of all of the controllers, we seek a suboptimal, algebraic
parameterization of the controllers.

We address this task using a variant of the state-dependent
Riccati equation (SDRE) [1]. We look to approximately satisfy
the Riccati equation (2) for the perturbed linear system with

A = A0 + ∆A, B = B0 + ∆B,

recovering a controller for (Aδ, Bδ) with ∆A = Aδ −
A0, ∆B = Bδ − B0. We expand ∆A and ∆B in some
basis:

∆A =
n2∑
i=1

aiEi, ∆B =
nm∑
j=1

bjFj

where Ei and Fj are linearly independent matricies spanning
Rn×n and Rn×m respectively.

We now write the Riccati solution and optimal controllers
as a Taylor expansion in the vectors a and b:

S(a, b) = S0 +
∑

i

aiS
(a)
i +

∑
j

bjS
(b)
j + . . . ,



K(a, b) = R−1(B0 + ∆B)T S(a, b).

Substituting A, B and S(a, b) into (2) determines the terms of
the expansion (e.g. S

(a)
i and S

(b)
j ) as solutions of independent

Lyapunov equations.
Let Kδ and Sδ be the truncations of K(a, b) and S(a, b)

where a and b are determined by Aδ and Bδ . This feedback
law and quadratic form are polynomials in Aδ and Bδ .

A. Simultaneous Verification

We now provide conservative esimates of the region of
attraction for each xg(δ) using techniques from robust ver-
ification with Sum-of-Squares optimization [18]. We use the
approximate Riccati solution Sδ to provide a parameterized
candiate Lyapunov function:

V (δ, x) = (x− xg(δ))T Sδ(x− xg(δ)).

with the derivative along solutions given by:

d

dt
V (δ, x) = 2(x− xg(δ))T Sδf(x, πδ(x)).

For each δ ∈ P , we aim to find a maximal ρ : P 7→ R+ such
that:

V (δ, x) ≤ ρ(δ) =⇒ d

dt
V (δ, x) ≤ −cV (δ, x)

which verifies exponential stability (here c > 0 is a fixed
positive constant.

By construction Sδ and Kδ are polynomials in δ. When
f, xg, and ug are polynomials and P is semialgebraic set,
defined by polynomial equations and inequalities:

P = {δ | max
i

gi(δ) ≤ 0, h(δ) = 0},

with g : Rp 7→ Rpg and h : Rp 7→ Rph , we can directly
address this problem using Sum-of-Squares programming. The
next section gives an example from a broader class of systems
which can still be addressed using SOS programming.

We parameterize ρ(δ) as a fixed degree polynomial in δ.
We additionlly search over a “multiplier” polynomial ν : Rn×
Rp 7→ R of fixed degree. The ideal form of the SOS program
is:

maximize
ρ,ν

∫
P

ρ(δ) dδ

subject to ‖x− xg(δ)‖2(V (δ, x)− ρ(δ))

+ ν(x, δ)
(

d

dt
V (δ, x) + cV (δ, x)

)
≥ 0

ρ(δ) ≥ 0 ∀δ ∈ P, x ∈ Rn

Enforcing these constraints only for δ ∈ P is handled by intro-
ducing further multipliers [12]. Depending on the complexity
of P , the integral may need to be approximated.

One can verify that any feasible solution of the above
satisfies that for δ ∈ P we have ρ(δ) ≥ 0 and V (x, δ) ≥ ρ(δ)
whenever d

dtV (δ, x)+cV (δ, x) = 0 and x 6= xg(δ). Combined
with the knowledge that the Hessian of d

dtV (δ, x)+cV (δ, x) is
negative definite in a neighborhood about xg(δ), this certifies

the exponential stability of the closed loop system.. A similar
SOS program can be used to verify this second condition. If
the program is infeasible, P must be reduced in size.

Note that although the feedback and Lyapunov candidates
are approximations of the local optimal control solutions,
the verification procedure here is exact. Thus, issues such
as convergence of the Taylor series used to represent the
Lyapunov functions do not affect the validity of the guarantees
obtained from the SOS program.

B. Numerical Examples

The procedure described above for designing and verifying
controllers for regions in the stabilizable space of a nonlinear
system was tested on the Van der Pol oscillator, ẍ = ẋ(1 −
x2)+x+u. We took P = [−0.5, 0.5] (i.e. g(δ) = (δ−0.5)(δ+
0.5)) and xg(δ) = [δ; 0].

Figure 1 compares regions of attraction estimated for sample
goal states via Sum-of-Squares verification with the LQR
solution against the approximate controllers proposed above.
For δ = 0 the approximations are poor due to the restriction
of ρ being polynomial. Higher-order expansion of Sδ and Kδ

result in improved performance, and low-order approximations
perform well.

Fig. 1. Volumes of regions of attraction for the Van der Pol oscillator for
various order expansions of the control. All verifications are exact.

C. Stabilizable Manifolds

In the Van der Pol example considered above, the set of
stabilizable points lie along the x-axis in state space. However,
in general, the set of stabilizable points is a complicated,
disconnected manifold in the configuration space (derivative
variables are always zero at a stabilizable point), defined by
0 = f(x, u), plus any input and state constraints. In many
cases, this constraint can be simplified to a tractable form.
For (potentially over- or under- actuated) robots defined by
the manipulator equations:

H(q)q̈ + C(q, q̇)q̇ + G(q) = Bu,

the constraint reduces to

Bu = G(q), q̇ = 0.



These can be folded into the robust verification by adding
equality constraints via Lagrange multipliers.

Consider, for example, the Acrobot as described in Tedrake
[14] with torque limits umin ≤ u ≤ umax. The constraint
reduces to

m1lc1s1+m2(l1s1+lc2s1+2) = 0, umin ≤ m2glc2s1+2 ≤ umax,

which corresponds to two disconnected stabilizable sets - with
the center of mass directly above or below the shoulder. These
can be converted to SOS constraints by changing coordinates
(of the entire problem) to polynomial, using for instance a
stereographic projection: sin(θi) = 1−q2

i

1+q2
i
, cos(θi) = 2q2

i

1+q2
i
.

D. Control for Path-Connected Goal Sets

Fig. 2. Illustration of a path of stabilizable goals and the associated region
of attraction. Each goal has a quadratic Lyapunov function (three pictured).
By switching control laws along the path the system can be moved from any
one point’s basin of attraction to any other basin in finite time.

Verifying continuous families of goals allows a simple, but
very important observation: we can produce a simple controller
for which the region of attraction of any goal in the family is
the union of the LQR regions of attraction for every goal in
the family. Figure 2 provides an illustration.

The previous design and verification technique provides us
with a family of goals G = xg(P ) such that:

1) Each xg(δ) with δ ∈ P is stabilized by the feedback
policy u = πδ(x).

2) There exists a continuous functions V : P × Rn 7→ R+

and ρ : P 7→ R+ such that V (δ, xg(δ)) = 0 and V (δ, ·)
is a Lyapunov function verifying trajectories in:

Ωδ = {x | V (δ, xg) ≤ ρ(δ)},

converge exponentially to xg(δ) when the policy πδ(·)
is applied.

We have the following Lemma.
Lemma 4.1: Let V (·, ·) and π·(·) be functions satsifying

the conditons above. If there exists a continuous path p :
[0, 1] 7→ P such that p(0) = δ and p(1) = δ′ then there
exists a controller which can take any initial conditon from
Ωδ to Ωδ′ in finite time.
The proof is omitted due to space constraints, but involves
finitely many switches between control laws πp(ti)(·) for
increasing ti ∈ [0, 1].

Hence, this “switching controller” allows us to traverse a
path-connected set in the stabilizable region of the system, an
important ability that allows us to achieve the goal of reaching
any stabilizable point.

V. EXPONENTIAL STABILITY ALONG TRAJECTORIES

Building a multi-query feedback motion plan efficiently
requires reusing partial plans to arrive at different goal states.
To do this effectively requires different stability constraints
than those proposed in [15]. Figure 6a illustrates the new
situation which must be accounted for. In this figure “Funnel
1” has already been planned, and belongs to the roadmap.
“Funnel 2” is being added to the roadmap. We see the initial
(larger) outlet of Funnel 1 does not fit inside the inlet of Funnel
2 (here due to centering, but more commonly due to shape or
size). The stability constraints described below will allows us
to certify that every rescaling of Funnel 1 is also finite-time
invariant, so that once Funnel 2 is computed we can associate
with it the shrunken funnel. Note that this rescaling can be
different for every funnel Funnel 1 flows into, and is trivial to
compute.

A. Controller Design

This section describes the computation of regions of sta-
bility for LQR-stabilized trajectories of the system. For each
nominal trajectory x0 : [t0, tf ] 7→ Rn we design a time-
varying controller using LQR. We linearize the dynamics of
the system about the trajectory:

A(t) =
∂f

∂x
(x0(t), u0(t)), B(t) =

∂f

∂u
(x0(t), u0(t))

The control law is obtained by solving a Riccati differential
equation:

−Ṡ(t) = Q− S(t)B(t)R−1BT S(t) + S(t)A(t) + A(t)T S(t)

with final value conditions S(t) = S0. The quadratic func-
tional:

V0(t, x) = (x− x0(t))T S(t)(x− x0(t))

is our locally valid Lyapunov candidate. In particular S0

provides flexibility in choosing the geometry of the “outlet”
of a funnel. It can, for example, be chosen to be contained in
the basin of attraction of a stabilized equilibirum.

B. Controller Verification

For each nominal trajectory x0 : [t0, tf ] 7→ Rn we want to
verify solutions which begin nearby remain nearby. To do so,
we construct a Lyapunov function V : [t0, tf ] × Rn 7→ R+

with V (t, x0(t)) = 0 such that:

∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x) < 0 (3)

for all (t, x) with:

x 6= 0, and V (t, x) ≤ 1 and t ∈ [t0, tf ].

In the region (3) is valid the function V (t, x(t)) decreases
with time whenever x(t) is a trajectory of the system. For any
c ∈ (0, 1] we see that V (t, x(t)) < c for a given t ∈ [t0, tf ]
implies that V (τ, x(τ)) < c for all τ ∈ [t, tf ]. We can imagine
the surfaces where V (t, x) = c as a “funnel” which will not
be piereced by trajectories.



Below we describe an optimization approach similar to [15]
and [16] for finding such Lyapunov functions around tra-
jectories of nonlinear systems exploiting the Sum-of-Squares
technique [12].

Design procedures for time-varying linear feedback laws,
like the LQR controller described above, generally provide
a quadratic “cost-to-go” or Lyapunov function, say V0(t, x).
When examining the fully nonlinear dynamics, this function
is only guaranteed to be valid for infinitesimal regions around
a trajectory. We exploit V0(t, x) as a candiate Lyapunov
function, but make use of an additional time-varying rescaling
of this function as follows:

V (t, x) =
V0(t, x)

ρ(t)

where ρ : [t0, tf ] 7→ R is a differentiable, strictly positive
function to be determined. An equivalent condition to (3) is:

ρ(t)
(

∂V0

∂t
(t, x) +

∂V0

∂x
(t, x)f(t, x)

)
<

dρ

dt
(t)V0(t, x) (4)

for all (t, x) with:

V0(t, x) ≤ ρ(t) and t ∈ [t0, tf ].

Our objective is to maximize ρ(t) while ensuring (4) holds.
We choose a piecewise polynomial basis for ρ(t) and

approximate f(t, x) on locally by its Taylor expansion f̂(t, x).
This allows us to formulate the condition above as a Sum-
of-Squares program using the polynomial S-procedure. For a
piecewise-linear ρ(t) the optimization can be done one knot
point at a time via binary search by using Sum-of-Squares
optimization to verify the condition (4) holds, as in [15]. For
more complicated ρ(t) a bilinear alternation technique similar
to [16] applies. In the cited works only a single invariant set
is guaranteed, i.e. it is only determined that solutions do not
exit V (t, x) ≤ 1.

VI. LQR-ROADMAPS

A. The Algorithm

The mechanics of designing feedback controllers and asso-
ciated funnels developed in the preceding sections can now
be assembled into a roadmap with directed edges using the
algorithm outlined in Algorithm 1. For each iteration of the
algorithm, a random start state, xs, and a random goal, xg , are
selected. If the goal is not yet stabilized by an existing time-
invariant funnel, then a new family of funnels is constructed
around this sample point using the procedure described in
Section IV. The algorithm immediately attempts to connect
the new funnels to the existing roadmap by optimizing a
trajectory from the current roadmap to xg . The algorithm
then checks whether xs is currently a region of state space
covered by the branches of the roadmap which connect to
xg; we call this covered region C(xg). If it is outside the
region, then the algorithm uses trajectory optimization to
attempt to connect xs up to the current roadmap. If this
trajectory optimization is successful, a TV-LQR controller
and its associated region of stability is computed using the

verification procedure described in Section V-A. Although
individual trajectory optimization steps are never guaranteed
to succeed (since they use only a local method), the algorithm
is designed so that failed connection attempts will be retried
again later, if necessary, with a different random seed for the
trajectory optimization and with an ever expanding roadmap
to potentially connect to.

Algorithm 1 LQR-Roadmap
1: M is empty roadmap
2: G is empty goal region
3: for k = 1 to K do
4: (xs, (xg, ug)) ⇐ random start state, goal state pair
5: if xg /∈ G then
6: [δ,K(δ), S(δ), ρ(δ)] from time-invariant LQR, §IV
7: [tf , x0(t), u0(t)] from trajectory optimization with

x0(0) ∈M and x0(tf ) = xg

8: M.addNode(xg, ug, δ,K(δ),S(δ), ρ(δ))
9: G ⇐ G ∪ {x : xg + δ}

10: if trajectory optimizer succeeds then
11: [K(t), S(t), ρ(t)] from time-varying LQR, §V-A
12: Compute funnel scaling, c; 0 ≤ c ≤ 1, §??
13: M.addTrajectory(tf , x0(t), u0(t),K(t), S(t), ρ(t), c)
14: end if
15: end if
16: Compute T (xg) := subset of M connected to xg , §??
17: C(xg) := space covered by trimmed funnels on T (xg)
18: if xs /∈ C(xg) then
19: [tf , x0(t), u0(t)] from trajectory optimization with

x0(0) = xs and x0(tf ) ∈ T (xg)
20: if trajectory optimizer succeeds then
21: [K(t), S(t), ρ(t)] from time-varying LQR, §V-A
22: M.addTrajectory(tf , x0(t), u0(t),K(t), S(t), ρ(t))
23: end if
24: end if
25: end for

Note that Algorithm 1 produces a roadmap, M with ex-
ploitable structure. In particular, it contains no loops: con-
nections are made from a random xs to M and from M
to a random xg , but never from M to itself. This makes it
particularly simple to quickly determine for any particular
goal, xg , which edges of M contain a path which can
reach that goal. Furthermore, with only one exception, all
of the time-varying feedback and funnels are described via
the solution to a smooth continuous Riccati equation from a
random start state, through branches of the roadmap, all of
the way to the goal; e.g. along these trajectories there are no
discontinuities in K(t) or S(t). The exception is at the point
where a new goal state is connected to an existing roadmap -
we affectionately call these trajectories “off-ramps” from the
roadmap. For these off-ramps, there is no reason to expect
the Riccati solution generated from the new goal state back
along the trajectory to the roadmap to match with the solution
S(t) of the existing map. At this point, we must compute
a scaling factor, c, by which all preceeding funnels must be



shrunk in order to have the funnels on the roadmap land inside
the funnels of the new off-ramp.

Exploiting this structure, and the form of stability verified
in the time-varying trajectories, we can quickly compute the
subset of M which connects to any stabilized xg and the
trimmed set of funnels which provide guarantees for driving
the system to this goal. In fact, this subset is an LQR-Tree[15],
which we denote T (xg). Note that, if a branch of this tree
passes through an intermediate time-invariant verified region
on its path to xg , that the funnel for this time-invariant region
does not have to be trimmed, regardless of how small the inlet
to the next branch is, because the system can get arbitrarily
close to the nominal node before continuing on down the tree.

B. Probabilistic Feedback Coverage

The LQR-Roadmap algorithm achieves a unique notion of
completeness. We are given a bounded sampling region of
stabilizable goals, XG, and a bounded sampling region of
potential initial conditions, XS . Let Gk be the the goal region
of stabilized goals at iteration k and G∞ =

⋃∞
k=1 Gk. First,

we demonstrate that cl(G∞) = cl(XG) w.p.1., where cl(·)
denotes closure. We show a similar coverage of the points
which can reach each xg in G∞ by the points the roadmap
can stabilize to xg . Using the terminology of [15], we say
the algorithm achieves probabilistic feedback coverage. Due
to space limitations, we only provide a sketch the proof here;
it builds directly on the proof provided in [15].

Any open set in XG which is not in Gk has a non-zero
probability of being sampled from, stabilized, and added to
the roadmap. Due to the robust verification over goals, a
neighborhood of the sampled point will be added to Gk with
each addition. Therefore, w.p.1, cl(G∞) = cl(XG) as k →∞.

As every xg ∈ Gk shares a region of attraction and LQR-
Tree, T (xg) with every other point in the non-zero measure δ-
region of time-invariant verification, the tree T (xg) has a non-
zero probability of being evaluated on every iteration of the
algorithm. Denote Ck(xg) as the region of state space covered
by the (trimmed) T (xg) after the kth iteration of the algorithm.
Denote R(xg) as the set of states from which xg is reachable,
and RS(xg) as the subset of R(xg) contained in XS .

To arrive at the further claim we assume that a trajectory
optimizer with suitably randomized initial seed will have a
lower bounded probability of connecting an initial condition
in RS(xg) to T (xg) at any iteration. Every open subset in
R(xg) which is not in Ck(xg) has a non-zero probability of
being sampled. By our assumption on the trajectory optimizer
there is a non-zero probability this point will be reconnected
to the tree.

C. Numerical Example

Numerical simulations on a torque-limited pendulum help to
illustrate the dynamics of the LQR-Roadmaps algorithm. The
dynamics of the pendulum are given by Iθ̈+bθ̇+mglsin(θ) =
τ , where m = 1, l = 0.5, b = 0.1, I = 0.25, g = 9.8
and τmax = 3. Figures 3(a) through 3(c) show the algorithm
covering the region [0, 2π]× [−5, 5] in the 2-dimensional state

space of the system with trajectories that grab points and
distribute them to the stabilizable region in state space. Note
that the torque limits imposed on the system limit the set of
stabilizable points to two disconnected intervals along the x-
axis. These two intervals are marked in black in the figure.

Figure 3(a) shows the first branch of the roadmap connect-
ing a randomly chosen point in state space to a point in the sta-
bilizable region. Once the two points have been connected, the
algorithm proceeds by performing time-invariant verification
for an interval of length 0.8 centered around the nominal goal
point. This interval is shaded in red in the figure. Figure 3(b)
shows another randomly chosen goal state being connected
back up to the existing roadmap. This process continues till
the space has been probabilistically covered.

Figure 4(a) through 4(c) show an LQR-Roadmap being con-
structed for the Cart-Pole system. This system is underactuated
and has a 4-dimensional state space. Figure 4(a) shows three
initial branches in the roadmap with trajectories and funnels
projected in the ẋ - x space. Figure 4(b) and 4(c) show the
roadmap on the cartpole when it is close to filling up the space.

An important step in the LQR-Roadmaps algorithm is the
“pruning” of funnels that follows the addition of a goal
state that connects back up to the roadmap. This process
is illustrated in Figures 5(b) and 5(c). Figure 5(b) shows
a new “off-ramp” that has just been added to the roadmap
and its corresponding funnel. Since the inlet of the funnel
corresponding to this trajectory is smaller than the funnel of
the trajectory to which it connects, pruning of trajectories
must be carried out. Thus, the algorithm shrinks the funnel
of the branch that the new trajectory connected up to along
with every trajectory “upstream” from that branch. Figure 5(c)
demonstrates this shrinking procedure.

VII. DISCUSSION

In this section, we discuss some possible extensions to the
LQR-Roadmaps algorithm, along with some of its limitations.

One exciting possible extension that could be easily added
to the LQR-Roadmap algorithm in its current form would be
to allow for the handling of runtime geometric constraints. The
ability to “prune” funnels in a quick and easy way allows us to
adjust the roadmap in order to avoid collisions with obstacles
that were unknown at the roadmap construction phase. In
addition, it may be possible to verify continuous families of
trajectories contained in tubes around the nominal branches of
the roadmap. Given a set of geometric constraints at runtime,
a suitable trajectory from the tube around the nominal branch
could be chosen in order to avoid collisions. It may also be
possible to explicitly consider the space of possible constraints
during the roadmap construction phase, especially for domain
specific applications where one has a good idea of the kinds
of constraints that may be encountered.

The algorithm presented here provides a strong notion
of completeness: probabilistic feedback coverage. For high-
dimensional state spaces where it is impractical to compile
these plans for every starting and goal state, the algorithm can
either cover a low-dimensional subset of the state space or



(a) 1 branch (b) 2 branches (c) 9 branches

Fig. 3. LQR-Roadmap construction for the pendulum. The two black intervals along the θ axis represent the stabilizable points of the torque-limited pendulum.
The red intervals represent the stabilizable goal states for which regions of attraction have been computed. The gray regions around the blue trajectories are
the regions of stability for the LQR controllers corresponding to the trajectories.

(a) (b) (c)

Fig. 4. LQR-Roadmaps on the underactuated Cart-Pole system, (a) with 3 initial branches and (b-c) close to filling the space. Note that the funnels depicted
in the figure are slices of the funnels in 4-d projected down to the 2-dimensional subspaces, which appears artificially dense in the 2-d plot.

provide a verified partial plan for the high-dimensional system.
Whenever a runtime goal is outside of the verified region, one
can quickly solve for and apply LQR controller, then perform
the verification and addition to the map offline.

The major limitation of the LQR-Roadmaps algorithm is the
computational cost associated with the roadmap construction
phase. The verification of LQR controllers via Sum-of-Squares
optimization techniques is the major contributing factor to this
computational cost. There have been results computing funnels
for trajectories up to six state variables[16], and others report
time-invariant regions-of-attraction using quadratic Lyapunov
functions with considerably more dimensions[18].

Finally, a practical limitation of the LQR-Roadmaps al-
gorithm is its reliance on a good plant model. One way
to tackle the problem may be to compute robust feedback
controllers and certificates for systems whose descriptions
include bounded model parameter uncertainties. This robust
verification fits directly into the Sum-of-Squares formulations
presented here[18].

VIII. CONCLUSION

In this paper, we have presented the LQR-Roadmaps al-
gorithm, which combines Sums-of-Squares techniques for
computing regions of attraction for LQR controllers with
randomized motion planning algorithms in order to create a
multi-query “roadmap” that can take a non-linear system from
any point in a bounded region in state space to any stabilzable
point of the system. The technical contributions made in this
paper include the exact algebraic verification using Sum-of-
Squares optimization of Lyapunov stability around a parame-
terized goal and a scheme for verifying exponential stability
around trajectories. We demonstrate our roadmap construction
algorithm along with probabilistic feedback coverage on a two-
dimensional system.

Our future work will include exploring the dynamics of
the LQR-Roadmap algorithm on systems of higher dimension
and with more complicated stabilizable manifolds. Further,
we plan to extend our current framework to handle geometric
constraints that become available only at runtime.
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(a) (b) (c)

Fig. 5. Pruning of funnels. (b) Before pruning: The inlet of Funnel 2 lies inside Funnel 1; trajectories in Funnel 1 will not necessarily end up in Funnel 2.
Hence, Funnel 2 (and all other funnels that connect up to it) needs to be pruned. (c) After pruning: The inlet of Funnel 2 fits snugly around Funnel 1.
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