
Noname manuscript No.
(will be inserted by the editor)

Optimization-based Locomotion Planning,
Estimation, and Control Design for the Atlas
Humanoid Robot

Scott Kuindersma · Robin Deits ·
Maurice Fallon · Andrés Valenzuela ·
Hongkai Dai · Frank Permenter · Twan
Koolen · Pat Marion · Russ Tedrake

Received: date / Accepted: date

Abstract This paper describes a collection of optimization algorithms for
achieving dynamic planning, control, and state estimation for a bipedal robot
designed to operate reliably in complex environments. To make challenging
locomotion tasks tractable, we describe several novel applications of convex,
mixed-integer, and sparse nonlinear optimization to problems ranging from
footstep placement to whole-body planning and control. We also present a
state estimator formulation that, when combined with our walking controller,
permits highly precise execution of extended walking plans over non-flat ter-
rain. We describe our complete system integration and experiments carried
out on Atlas, a full-size hydraulic humanoid robot built by Boston Dynamics,
Inc.

Keywords humanoid · legged locomotion · optimization · state estimation

1 Introduction

The dream of legged robotics is to achieve reliable, versatile, and dynamic loco-
motion for a robot capable of doing useful work in a variety of environments.
As participants in the DARPA Robotics Challenge (DRC), we are particu-
larly interested in tasks related to disaster relief, such as walking outdoors
over irregular terrain and maintaining stability while applying forces to the
environment such as when cutting through a wall with a power tool. Disaster
scenarios place a premium on the ability to walk over and around obstacles
and through narrow passages that require reasoning about the full kinematics

S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Permenter, T. Koolen, P.
Marion, R. Tedrake
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge, MA, USA
E-mail: {scottk,rdeits,mfallon,avalenzu,daih,fpermenter,tkoolen,patmarion,russt}@csail.mit.edu

2 Scott Kuindersma et al.

of the robot. Several practical challenges arise in the design of these systems,
such as how to manage the complexity of the robot and environment model
to efficiently do online planning and feedback control and how to achieve suf-
ficiently precise execution given inevitable sensor limitations. In this paper we
describe our approach to addressing these problems with Atlas.

Perhaps the most basic capability our system must have is the ability to
navigate to a desired location despite the presences of obstacles such as steps,
gaps, and debris. Our approach to walking combines an efficient footstep plan-
ner with a simple dynamic model of the robot to efficiently compute desired
walking trajectories. To plan a sequence of safe footsteps, we decompose the
problem into three steps. First, a LIDAR terrain scan is used to identify obsta-
cles in the vicinity of the robot. Given this obstacle map, we solve a sequence
of optimization problems to compute a set of convex safe footstep regions in
the configuration space of the foot. Next, a mixed-integer convex optimiza-
tion problem is solved to find a feasible sequence of footsteps through these
regions. Finally, a desired center of pressure trajectory through these steps is
computed and input to the controller.

For complex dynamic whole-body motions like climbing out of a car or
getting up from the ground, more descriptive kinematic and dynamic models
must be used for planning motions. However, for complex humanoid systems
like Atlas, solving trajectory optimization problems using the full dynamics
can be computationally prohibitive. We describe a direct transcription algo-
rithm (Section 3.2) that computes dynamically-feasible trajectories using the
full kinematics and centroidal dynamics of the robot. This formulation offers a
significant computational advantage over existing full dynamic trajectory op-
timization algorithms while still producing dynamically-feasible whole-body
trajectories for running and jumping with an Atlas model.

We use time-varying linear quadratic regulator (LQR) design to stabilize
trajectories for a simplified dynamic model of the robot (Section 4.2). By
combining the optimal LQR cost-to-go with the instantaneous dynamic, input,
and contact constraints of the full robot inside a quadratic program (QP), we
exploit the stabilizing properties of LQR while maintaining the versatility
afforded by QP-based control formulations in which whole-body motions can
be tracked or constrained in a variety of ways. To implement our controller
on a physical system requires that we be able to efficiently compute solutions
to the QP at each control step. We describe an efficient active-set algorithm
capable of finding solutions in less than 1 millisecond for Atlas (68 states and
28 inputs).

Inputs to the controller are computed by a low-drift state estimator that
fuses kinematic, inertial, and LIDAR information (Section 5). Despite signifi-
cant kinematic sensor limitations due to backlash and actuator deflection, our
experiments demonstrate a measurable improvement in our ability to estimate
the robot’s state in a variety of experimental scenarios. We show that the robot
is capable of walking over nontrivial terrain while maintaining extremely low
drift from the desired footstep trajectory—a critically important capability to
navigate efficiently through obstacle-ridden environments.

Optimization-based Locomotion Planning, Estimation, and Control Design 3

Fig. 1 The Boston Dynamics Atlas humanoid robot and the Carnegie Robotics Multisense
SL sensor head equipped with a rotating LIDAR scanner and a stereo cameras. (photo
credits: Boston Dynamics and CRL).

The paper is organized as follows. In the following section, we give a brief
overview of the Atlas hardware. In Section 3 we describe our footstep planning
and dynamic motion planning algorithms. In Sections 4 and 5 we describe
our control and state estimation formulations, respectively. In Section 6 we
describe several experiments performed on the physical robot evaluating the
state estimation and control algorithms in practice. We also describe recent
simulation results of controlled highly dynamic motions that are currently
being developed for the robot. Finally, we conclude with a discussion of future
work in Section 7.

2 Atlas

Atlas is a full-scale, hydraulically-actuated humanoid robot manufactured by
Boston Dynamics, Inc. The robot stands approximately 188 cm tall with a
total mass of 155 kg (without hands attached). It has 28 actuated degrees of
freedom: 6 in each leg and arm, 3 in the back, and 1 neck joint. A tether
attached to the robot supplies high-voltage 3-phase power for the on-board
electric hydraulic pump, distilled water for cooling, and a 10 Gbps fiber-optic
line to support communication between the robot and a field computer that
runs our planning, estimation, and control software.

Joint position, velocity, and force measurements are generated at 1000 Hz
on the robot computer and transmitted back to a field computer. Joint posi-
tions are measured by linear variable differential transformers (LVDTs) mounted
on the actuators. There are no joint force sensors, but joint forces are inferred

4 Scott Kuindersma et al.

using pressure sensors inside the actuators. In addition to the LVDT sensors,
digital encoders mounted on the neck and arm joints give low-noise position
and velocity measurements (notably these are not available in the legs). A
KVH 1750 inertial measurement unit (IMU) mounted on the pelvis provides
highly accurate 6-DOF angular rate and acceleration data used for state esti-
mation (Section 5). Two 6-axis load cells are mounted to the wrists, and arrays
of four strain gauges, one in each foot, provide 3-axis force-torque sensing.

As illustrated in Figure 1, the robot is equipped with a Multisense SL
sensor head designed by Carnegie Robotics which combines a fixed binocular
stereo camera with a Hokuyo UTM-30LX-EW planar LIDAR sensor mounted
on a spindle that can rotate at up to 30 RPM. The LIDAR captures 40 scan
lines of the environment per second, each containing 1081 range returns out
to a maximum range of 30 meters. The entire head can pitch up and down
but it cannot yaw or roll.

We received the robot on August 12, 2013 and implemented a software sys-
tem (originally developed in simulation) to compete successfully in the DRC
Trials on December 20, 2013. Our related paper describes the many pieces of
our software system used in the competition [24]. The vast majority of the plan-
ning, estimation, and control implementation work described in this paper was
done after this event between January and October 2014. In February 2015,
Boston Dynamics completed a major upgrade to Atlas that included multiple
actuator redesigns, reconfiguration of the arms, 2 additional arm DOFs, ap-
proximately 25 kg in additional mass, and capability to operate wirelessly with
battery power and onboard computers for perception and control. For simplic-
ity we describe our approach in terms of the earlier system, but we note that
the same algorithms have successfully been applied to the most recent version
of the robot.

3 Motion Planning

Motion planning for legged systems is a fundamentally mixed discrete and
continuous optimization problem. Planning algorithms must decide where and
when contacts with the environment are initiated or broken and, during pe-
riods of unchanging contact, the system must typically move smoothly while
maintaining balance and achieving a desired motion or interaction with the
environment. For typical walking tasks, we decompose the discrete phase into
two parts. We first analyze the environment and compute a set of convex re-
gions where contacts are allowed. Then we solve an optimization problem that
assigns contacts to these regions in a way that minimizes cost while respecting
kinematic and dynamic constraints.

We will discuss two distinct approaches for assigning contacts to convex
regions. The first is for the case of footstep planning, where kinematic con-
straints on footstep poses are defined with respect to the previous step using
approximate reachable regions. This formulation is suitable for the majority of
the locomotion scenarios we are interesting in exploring. The second method

Optimization-based Locomotion Planning, Estimation, and Control Design 5

goes one step further by including the full kinematics and centroidal dynamics
of the robot in the optimization to guarantee reachability and support a wider
variety of motions and environmental interactions (such as planning to grab
handrails or transition from prone to standing), at the expense of increased
computation time. We discuss our approach to footstep planning in the follow-
ing section and our whole-body dynamic planning algorithm in Section 3.2.

3.1 Footstep Planning as a Mixed-Integer Convex Problem

We identify the footstep planning problem as a matter of choosing footstep
placements on a given terrain from a start state to a goal while ensuring
that the sequence of steps can be safely executed by Atlas. We represent this
problem as single mixed-integer convex optimization, in which the number of
footsteps and their positions and orientations are simultaneously optimized
with respect to some cost function, while ensuring that each footstep is on
safe terrain.

Existing footstep planning methods, broadly speaking, fall into two cat-
egories: discrete searches and continuous optimizations. We retain some ele-
ments from both categories, performing a simultaneous optimization of the
discrete assignment of footsteps to convex regions and the continuous position
of the footsteps within those regions.

Discrete search approaches have typically made use of a successor set, a
list of possible poses for one foot relative to the position of the other foot.
From the set of successors, a tree of possible footstep plans can be built and
explored to find a path from start to goal. Obstacle avoidance is easily handled
by pruning the tree of successors whenever a foot would intersect an obstacle.
This approach has been used successfully by Kuffner [42,43], Chestnutt [15],
Michel [50], and Baudoin [6]. Later work by Chestnutt introduced an adaptive
successor set, in which a small continuous search is performed to adjust a
step that would result in collision with an obstacle [16]. That approach was
demonstrated with online re-planning over rough terrain [54]. Shkolnik also
used a fixed successor set to represent dynamically feasible bounding motions
for a quadruped [61]. Implementation of these discrete searches requires very
careful selection of the successor set: a small set severely restricts the possible
motions that can be made, while a large set results in a rapidly branching tree
of possible plans. Discrete search techniques such as A∗ can be challenging
to apply to footstep planning due to the difficulty of finding an informative,
admissible heuristic [28].

Continuous optimizations avoid the challenges of choosing a particular suc-
cessor set by allowing the position of each footstep to vary subject to some
constraints. The reachability of the robot’s legs can be represented with con-
straints on the relative positions of each footstep, and costs or constraints can
be added to ensure that the footstep plan reaches its goal position. If the ob-
jective function and constraints are convex, then such an optimization can be
solved extremely efficiently [13]. Herdt performs a convex optimization to plan

6 Scott Kuindersma et al.

footstep positions and a center-of-mass trajectory, using linear constraints on
the distance from one foot to the next to represent the robot’s reachable set
[31]. However, the need for convex constraints prevents this optimization from
considering the yaw of the robot or its feet and prevents it from handling
obstacle avoidance. Our prior work used a non-convex optimization to find lo-
cally optimal footstep plans and was able to include yaw as a decision variable,
but could still not effectively avoid obstacles [24].

Prior to planning any walking motion, we classify the area around Atlas as
safe or unsafe for footstep placement. In the environments used for the DRC,
we found it sufficient to simply exclude areas of the terrain that are steeper
than a predefined threshold. To plan footstep contacts, we must ensure that
each footstep lies in the safe terrain set. Unfortunately, the set of safe terrain
is unlikely to be convex or even connected: in an environment as simple as
a staircase, the safe terrain consists of the top surface of every step, a non-
convex and disconnected set. In order to perform an optimization of footstep
placements, we must constrain the footsteps to lie in this non-convex set. In
general, when an optimization has non-convex constraints, it can be difficult
or impossible to find a globally optimal solution or to prove that none exists
[13].

Instead, we choose to explicitly represent the combinatorial aspect of foot-
step planning by decomposing the non-convex set of safe terrain into a set
of convex planar safe regions. The approximate decomposition we use is de-
scribed in Section 3.1.1. This transforms the problem of avoiding obstacles
into a discrete problem of assigning each footstep to some convex region that
is known to be obstacle-free. In principle, the exponential number of possible
assignments of footsteps to convex regions may appear to be intractable, but
if we restrict our optimization to an objective function that is convex, then
it is straightforward to represent the problem of assigning footstep poses to
convex regions as a mixed-integer convex problem. In the worst case, this does
not eliminate the exponential search through the discrete assignments, but
in practice the convex objective can provide an informative heuristic for the
search process and dramatically reduce the time needed to find the optimal
solution. Excellent tools have been developed in the past decade to solve a
variety of mixed-integer convex problems, and the solvers can provide globally
optimal solutions or proofs of infeasibility where appropriate [30,52,35].

The general form of mixed-integer convex programming is

minimize
x,y

f(x,y)

subject to g(x,y) ≤ 0

y ∈ Zm,

where f and g are convex functions and the elements of the vector y ∈ Zm take
on integer values. A special case of this is mixed-(0,1) convex programming,

Optimization-based Locomotion Planning, Estimation, and Control Design 7

in which the y are restricted to values of only 0 or 1:

minimize
x,y

f(x,y)

subject to g(x,y) ≤ 0

y ∈ {0, 1}m.

We use binary variables of this form to indicate the assignment of footsteps to
regions. Let p1,p2, . . . ,pN be the poses of the footsteps, expressed as position
and yaw with pj = (xj , yj , zj , θj), and let G1, G2, . . . , GR be the regions of safe
terrain, represented as convex polytopes. We create a matrix Y ∈ {0, 1}R×N
to represent the assignment of footsteps to safe regions. Our optimization
problem is

minimize
p1,...,pN ,Y

f(p1, . . . ,pN)

subject to g(p1, . . . ,pN) ≤ 0

Yi,j =⇒ pj ∈ Gi
Yi,j ∈ {0, 1}
R∑

i=1

Yi,j = 1 ∀j ∈ {1, . . . N}.

The conditional constraint that Yi,j =⇒ pj ∈ Gi can be represented ex-
actly using a standard big-M formulation, provided that we have some bounds
on the possible values of the pj [7]. Such bounds are easy to provide, since
no footstep can be farther from the start pose than the robot’s maximum
stride length multiplied by the number of footsteps. The additional convex
constraints g(p1, . . . ,pN) ≤ 0 represent an approximation of the reachable set
of footsteps for Atlas, discussed further in Section 3.1.2.

3.1.1 Convex Decomposition

To simplify the combinatorial problem of assigning footsteps to convex safe
regions, we would like to minimize the number of convex pieces into which
the safe terrain set is decomposed. This presents a number of challenges. First
of all, even for a two-dimensional environment with polygonal obstacles, com-
puting the minimum set of convex obstacle-free pieces that cover the entire
environment is computationally very difficult and is known to be NP-hard
[47]. Secondly, even a truly minimal convex decomposition may result in a
very large number of small convex pieces in order to fill in all of the crevices in
a cluttered environment [46]. Here we sacrifice the notion of covering the entire
obstacle-free space and instead focus on creating a few large convex regions.
This choice allows us to cover a large fraction of the feasible terrain without
creating an unmanageable number of regions.

In order to compute these regions, we have developed IRIS, an algorithm
for greedily computing a single large obstacle-free convex region [21]. IRIS
begins with a seed point that is known to be obstacle-free, provided by our

8 Scott Kuindersma et al.

Starting	point

Separating	
planes

Polytope	intersection Inscribed	ellipsoid

Fig. 2 A demonstration of the IRIS algorithm in a planar environment consisting of 20
uniformly randomly placed convex obstacles and a square boundary. Each row above shows
one complete iteration of the algorithm: on the left, the hyperplanes are generated, and their
polytope intersection is computed. On the right, the ellipse is inflated inside the polytope.
Figure reproduced from [21].

human operator or by a higher-level planner. That seed point forms the center
of a very small obstacle-free ellipsoid. The IRIS algorithm alternates between
two convex optimizations. In the first step, a series of small quadratic pro-
grams are solved to find a set of hyperplanes that separate the ellipsoid from
the set of obstacles. Each hyperplane defines an obstacle-free half-space, and
the intersection of those half-spaces is a (convex) polytope. In the second step,
a single semidefinite program is solved to find the maximum-volume ellipsoid
inscribed in that polytope. These two steps can be repeated to grow the el-
lipsoid until a local fixed point is found. Two complete iterations of the IRIS
algorithm are shown in Figure 2.

The result of IRIS is the final polytope or ellipsoid, either of which can be
used as a convex representation of obstacle-free space. We use the polytope
representation in our planner, since it is always of larger volume than the
(inscribed) ellipsoid and can be represented as a set of linear constraints.

When operating Atlas, our human pilot provides the seed points at which
the IRIS algorithm begins. This allows the operator to provide high-level input

Optimization-based Locomotion Planning, Estimation, and Control Design 9

about which surfaces are appropriate for walking, a task that is well-suited
to the pilot’s expertise but difficult to perform autonomously. We are also
currently investigating methods to automate the selection of seed points, and
have demonstrated autonomous seeding of regions using a simple heuristic in
a 3D environment [20].

3.1.2 Representing Reachability

When planning footstep placements, we must somehow represent the kine-
matic reachability of the robot, that is, the set of foot placements that can
be achieved given the constraints imposed by the dimensions of the limbs and
the limits of the joints. Directly reasoning about this reachable set using the
full kinematic model of the robot would be ideal, but such reasoning intro-
duces polynomials of trigonometric functions of the robot’s joint angles and
is not compatible with our convex formulation. Instead, we use a simplified
inner approximation of the reachable set for Atlas that can be represented
with mixed-integer convex quadratic constraints.

o1

o2

d1

d2

p1 p2

x
y

Fig. 3 An approximation of the reachable set of positions for the center of the right foot
given the position of the left foot (p1). The view is from above. The two circles have radii
d1 and d2 and are located at displacements of o1 and o2 from p1, respectively. The shaded
region shows the set of reachable poses for the center of the right foot in the xy plane. A
single feasible pose for the right foot is shown as p2.

We represent the approximate reachable set of footstep positions as the
intersection of circles fixed in the frame of reference of the prior footstep.
Each circle has radius dk and is located at some fixed offset ok in the frame
of the prior footstep. The reachable region defined by these circles is shown in

10 Scott Kuindersma et al.

Figure 3. For each footstep j, we require that
∥∥∥∥
[
xj+1

yj+1

]
−
([
xj
yj

]
+

[
cos θj − sin θj
sin θj cos θj

]
o1

)∥∥∥∥ ≤ d1 (1)

∥∥∥∥
[
xj+1

yj+1

]
−
([
xj
yj

]
+

[
cos θj − sin θj
sin θj cos θj

]
o2

)∥∥∥∥ ≤ d2. (2)

This is not yet a convex constraint, since cos and sin are non-convex functions.
To mitigate this, we replace sin θj and cos θj with additional decision variables,
which we label sj and cj , respectively. Equation 1 becomes

∥∥∥∥
[
xj+1

yj+1

]
−
([
xj
yj

]
+

[
cj −sj
sj cj

]
o1

)∥∥∥∥ ≤ d1, (3)

which is a convex quadratic constraint. Of course, we still must ensure that sj
and cj behave like sin and cos. To do this, we create piecewise linear approx-
imations of sin and cos and use additional integer variables to indicate the
active linear approximation for a given value of θj . By choosing the number
of piecewise linear segments that we use in our approximation, we can trade
off between accuracy and computational speed. The particular approximation
used in our planner is discussed in more detail in [22].

Alternatively, we can avoid the non-convexity introduced by sin and cos
by fixing the yaw angle of each footstep beforehand, then running the mixed-
integer optimization to determine the position and assignment to safe terrain
for each footstep. Doing so removes the additional integer variables which were
required for our piecewise linear approximation of the unit circle, but requires
us to run a second, nonlinear optimization to solve for the yaw angles them-
selves. We can alternate between the two steps to further refine the footstep
plan: using a nonlinear optimization to choose the footstep orientations, then
running the mixed-integer convex optimization to choose the optimal position
and assignment of those footsteps at the given orientations. The addition of
the nonlinear program removes any guarantees of global optimality, but may
still produce acceptable footstep plans. We have observed that the nonlinear
planner works comparatively well for long footstep plans with few or no ob-
stacles, since it does not require the explicit enumeration of each possible yaw
bin for each footstep. When the environment is cluttered, however, the full
mixed-integer convex optimization discussed above is required in order to find
feasible solutions.

3.1.3 Determining the Number of Footsteps

In general, we cannot expect to know a priori how many footsteps will be
needed to reach a target position, so the footstep planner must be responsible
for determining this number. Since the entire set of footsteps is simultaneously
optimized, changing the number of footsteps alters the size of the optimization
problem. We can, of course, simply try a variety of numbers of footsteps,

Optimization-based Locomotion Planning, Estimation, and Control Design 11

performing a separate optimization each time, but this results in a great deal
of wasted computation. Instead, we add a binary flag to each footstep to
indicate that the particular step is unused. We label this flag ρj and require
that if ρj is true, then footstep j be fixed to the starting pose of that foot

ρj =⇒ pj =

{
p1 if j is odd

p2 if j is even,
(4)

where p1 and p2 are the fixed initial poses of the feet. Adding a negative
cost on each ρj to the objective in our optimization allows us to reward the
planner for taking fewer footsteps without knowing beforehand how many will
be required. After the optimization is complete, any footstep with ρj equal to
1 can be removed from the plan.

To complete the formulation, we add linear constraints on the change in
z and yaw values from one footstep to the next, which prevents the robot
from turning or climbing too far in a single step. We also add a quadratic cost
on the displacement between adjacent footsteps, to penalize very large steps
that may be more likely to cause a fall. The result is a single mixed-integer
quadratically-constrained quadratic program (MIQCQP) that, when solved to
optimality, chooses the position and orientation of each footstep, the total
number of footsteps to take, and the assignment of those footsteps to convex
safe regions of terrain. Figure 4 illustrates the use of this planner in practice.

We formulate the entire footstep planning optimization as follows:

minimize
p1,...,pN ,S,C,Y,ρ1,...,ρN

(pN − pg)
>Qg(pN − pg) +

N∑

j=1

qρρj

+

N−1∑

j=1

(pj+1 − pj)
>Qr(pj+1 − pj))

subject to, for j = 1, . . . , N

safe terrain regions:

Yr,j =⇒ Arpj ≤ br r = 1, . . . , R

piecewise linear sin θ:

S`,j =⇒

{
φ` ≤ θj ≤ φ`+1

sj = gs,`θj + hs,`
` = 1, . . . , L

piecewise linear cos θ:

C`,j =⇒

{
φ` ≤ θj ≤ φ`+1

cj = gc,`θj + hc,`
` = 1, . . . , L

12 Scott Kuindersma et al.

Fig. 4 Illustration of the footstep planner being used to climb cinder blocks. Top: The robot
approaches cinder block steps, the user selects clicks regions of interest on the terrain map,
and convex regions are optimized using IRIS. Bottom: the robot plans footsteps through
the convex regions using mixed-integer optimization and the robot executes the desired
footsteps.

approximate reachability:∥∥∥∥
[
xj+1

yj+1

]
−
([
xj
yj

]
+

[
cj −sj
sj cj

]
oi

)∥∥∥∥ ≤ di i = 1, 2

fix extra steps to initial pose:

ρj =⇒ pj =

{
p1 if j is odd

p2 if j is even.

R∑

r=1

Yr,j =

L∑

`=1

S`,j =

L∑

`=1

C`,j = 1

Yr,j , S`,j , C`,j , ρj ∈ {0, 1}
bounds on step positions and differences:

pmin ≤ pj ≤ pmax

∆pmin ≤ (pj − pj−1) ≤ ∆pmax

where pg ∈ R4 is the x, y, z, θ goal pose, Qg ∈ S4
+ and Qr ∈ S4

+ are objective
weights on the distance to the goal and between steps, qt ∈ R is an objective
weight on trimming unused steps, and pmin,pmax, ∆pmin, ∆pmax ∈ R4 are

Optimization-based Locomotion Planning, Estimation, and Control Design 13

bounds on the absolute footstep positions and their differences, respectively.
We also fix p1 and p2 to the initial poses of the robot’s feet. The gs,`, hs,` and
gc,`, hc,` terms represent a pre-selected piecewise linearization of the sine and
cosine functions, described in more detail in [22].

Despite the very large number of discrete decisions involved in solving the
footstep planning problem to optimality, the mixed-integer convex formulation
leads to extremely efficient solutions in typical cases. For a footstep plan of
N = 12 steps, in which each step must be assigned to one of R = 10 safe
regions, L = 8 piecewise linearizations of sin and cos, and 2 values of each ρj ,
there are, naively, 1012 × 812 × 212 ≈ 3 × 1026 possible discrete combinations
to explore. However, the convex objective and constraints allow the solver
to avoid exploring the vast majority of that search space without sacrificing
optimality. In [22] we demonstrate typical solve times of 1 to 10 seconds for
problems of such a size. When the entire terrain is flat and no safe region
assignments are needed, solve times are typically less than 1 second for plans
of up to 16 footsteps.

Given a desired footstep trajectory, a dynamic walking motion can be de-
fined using a piecewise polynomial center of pressure (COP) trajectory through
the footsteps (this idea is described further in Section 4). However, for more
complex, whole-body motions like running or getting up from the ground, we
require the richer planning formulation described next.

3.2 Dynamic Motion Planning

For humanoid robot performing complex motions in nontrivial environments,
kinematic and dynamic constraints often appear together. For example, a robot
jumping down off a ledge must reason about the contact forces being applied
during launch, its center of mass (COM) velocity at the point of takeoff, the
position of its foot with respect to the ledge during flight, and the kinematic
reachability of its legs during landing.

The descriptiveness of the dynamic model used for planning strongly affects
the range of possible motions. At one end of the spectrum are optimizations
that reason about the full hybrid dynamics of the legged system. Such ap-
proaches have been shown to produce beautiful results in model systems [51,
57], but they remain computationally expensive for high-dimensional systems
like Atlas. At the other end are methods based on reduced dynamical models,
where assumptions about the local flatness of terrain and absence of angu-
lar momentum greatly simplify the dynamics. To produce a larger variety of
dynamic multi-contact motions, we have developed an approach that strikes
a balance between these extremes and plans using the full kinematics of the
robot to enforce geometric contact conditions and a dynamic model that en-
codes the relationship between the contact force on the robot and the robot’s
total linear and angular momenta.

For all mechanical systems, the rate of the total linear and angular mo-
mentum of the system must equal the net external wrench (force/torque) on

14 Scott Kuindersma et al.

the system. The instantaneous momenta are functions of the generalized po-
sition, q, and velocity, v. In our implementation we represent the floating
base positions and velocities using Euler angles and their derivatives, although
singularity-free representations can also be used. The centroidal momentum
is the total momentum defined in a coordinate frame at the instantaneous
center of mass (COM) position and aligned with the world frame. Orin and
Goswami [55] showed that it can be computed easily using the centroidal mo-
mentum matrix, AG:

hG = AG(q)v ≡
[

k
l

]
, (5)

where k and l are the centroidal angular and linear momenta, respectively.
The rate of the centroidal momentum can be expressed by differentiat-

ing (5) or by writing it as a function of external forces [45,18]:

k̇ =

Nc∑

j=1

(cj − r)× λj

l̇ = mr̈ = mg +

Nc∑

j=1

λj ,

(6)

where r is the COM of the robot, m is the total mass, g is the acceleration
due to gravity, and cj , λj , are the contact position and force, respectively, at
point j. Nc is the number of active contact points. As will be discussed below,
we use a redundant multiple-force description of the total wrench acting on a
rigid body because it permits the use of simple linear friction constraints in
our optimization. There has been compelling recent work in controlling the
momenta of humanoids for balance and locomotion [40,45,32,38], including
the resolved momentum control framework proposed by Kajita et al. [37,53].
Inspired by this work, we design our planning algorithm using the concept of
centroidal momentum.

Our approach is to plan trajectories using the full kinematics while rea-
soning about external forces and moments and using the centroidal dynamics
to ensure dynamic feasibility. In doing so, we are making a fundamental as-
sumption that the robot’s n−6 internal degrees of freedom are fully actuated,
and that the dynamic constraints can therefore be defined in terms of the 6
floating base DOFs. This results in an optimization problem with far fewer
decision variables and constraints compared to an optimization that includes
the full dynamics. In addition, the gradients of the constraints (which are re-
quired by most nonlinear optimization problem solvers) are significantly easier
to compute. The price for this reduced computation is the inability to reason
about internal torques. However, in practice this is not a tremendous limitation
given the considerable strength of Atlas’ actuators. Even for robots with very
restrictive actuator limits, there may be some computational benefit to using
the output of this optimization as an initial seed for a trajectory optimization
problem that reasons about the full dynamics.

Optimization-based Locomotion Planning, Estimation, and Control Design 15

r

mg

c

�c

r

mg
⌧n

�j

w1j

w2j

w3j

w4j

Fig. 5 Left: A conservative friction polyhedron with Nd = 4. The force vector, λj , at
contact j is a positive combination of the generating vectors, wij , i = 1, . . . , 4. Center:
external forces acting at a set of contact points (6). Right: external forces and torques
acting on the robot summarized at the COP (20).

To generate reasonable dynamic motions, friction constraints on the con-
tact forces must be satisfied. We use a standard, conservative polyhedral ap-
proximation of the friction cone for each active contact point, cj , and require
that

λj =

Nd∑

i=1

βijwij , βij ≥ 0. (7)

The generating vectors, wij , are computed as wij = nj +µjdij , where nj and
dij are the contact-surface normal and ith tangent vector for the jth contact
point, respectively, µj is the Coulomb friction coefficient, and Nd is the number
of tangent vectors used in the approximation [56]. Figure 5 illustrates this idea
graphically.

Trajectory optimization algorithms fall into two general classes: shooting
methods and transcription methods [10]. Shooting methods involve only the
control inputs as decision variables and must simulate the system forward
in order to evaluate the cost function. Transcription methods, on the other
hand, include a finite set of states along the trajectory as decision variables
and incorporate the dynamics of the system as constraints on the state and
input variables. By simultaneously optimizing the states and inputs along the
trajectory, transcription methods avoid numerical issues that can be present in
shooting methods (in which small changes in inputs early in the trajectory can

16 Scott Kuindersma et al.

lead to large changes in cost and final state) and avoid the need to simulate
the system dynamics during optimization.

We formulate a direct transcription problem by representing the differential
constraints as algebraic equations at k = 1, . . . ,M points, with h[k] denoting
the time interval between knot point k and k + 1:

minimize
Γ

M∑

k=1

L(q[k],v[k], r̈[k],λ[k], h[k])

subject to mr̈[k] = mg +
∑

j

λj [k] (linear momentum)

k[k] = Ak
G(q[k])v[k] (angular momentum)

k̇[k] =
∑

j

(cj [k]− r[k])× λj (angular momentum rate)

∀j λj [k] =

Nd∑

i=1

βij [k]wij (friction)

∀i,j βij [k] ≥ 0

r[k] = COM(q[k]) (COM location)

Kinematic constraints

Time integration constraints

where the set of decision variables, Γ , is

Γ = {q[k],v[k], h[k], r[k], ṙ[k], r̈[k], cj [k],λ[k],β[k],k[k], k̇[k] | k = 1, . . . ,M},
(8)

and the cost function, L(q[k],v[k], r̈[k],λ[k], h[k]), is equal to

h[k]


‖q[k]− qnom[k]‖2Qq

+ ‖v[k]‖2Qv
+ ‖r̈[k]‖2 +

∑

j

‖λj‖2Qλ


 , (9)

where ‖x‖2Q is shorthand for the quadratic cost, xTQx, Q � 0, and Ak
G is a

matrix formed by taking the top three rows of AG. The cost term (‖q[k] −
qnom[k]‖2Qq

regularizes the configuration of the robot to a nominal pose (e.g.,

a typical standing posture).
The time integration constraints include backward-Euler integration of the

generalized velocities, rate of angular momentum and COM acceleration, and
mid-point integration on COM velocity.

h[k]v[k] = q[k]− q[k − 1] (10)

h[k]k̇[k] = k[k]− k[k − 1] (11)

h[k]r̈[k] = ṙ[k]− ṙ[k − 1] (12)

h[k]

2
(ṙ[k] + ṙ[k − 1]) = r[k]− r[k − 1], (13)

Optimization-based Locomotion Planning, Estimation, and Control Design 17

The kinematic constraints typically include unilateral joint limits, contact
location, and collision-free constraints. Similar constraint sets have been em-
ployed to control whole-body humanoid motions previously [59,19]. Dalibard
et al. [19] separately solve the kinematic planning problem using full body
model and a point mass dynamic model. Our approach combines these two
problems together with a more descriptive dynamic model, and is able to gen-
erate motions that cannot be handled by this kind of two-stage planner (such
as the running and jumping examples in Section 6.4).

The gradients of this optimization problem are sparse, since most of the
constraints only depend on decision variables at one or two knot points. Non-
linear programs with sparse gradients can be solved efficiently using powerful
sequential quadratic program (SQP) solvers like SNOPT [29]. Solution times
vary with the particular planning problem; for the examples shown in Sec-
tion 6.4 our un-optimized implementation took between 1 min and 10 min to
find solutions on machines with 3.1-3.3 GHz Intel i7 CPUs. More detail in-
cluding examples of this approach being applied to plan quadruped gaits and
complex humanoid trajectories like traversing monkey bars is available [18].

4 Controller Design

Our approach to feedback control can be summarized in the following way.
Given a planned trajectory for a reduced model of the dynamics (e.g., cen-
troidal dynamics), we compute a time-varying linearization around the tra-
jectory and derive a stabilizing controller using time-varying linear-quadratic
regulator (TV-LQR) design. But rather than using the closed-form optimal
controller from LQR, we formulate and solve a quadratic program (QP) that
additionally captures the instantaneous dynamics, input, and contact con-
straints of the full walking system. In the following sections, we write the
problem in a general form first, then describe particular implementations used
in conjunction with the planners described previously.

4.1 General Formulation

Given the dynamics, ẋ = f(x,u), and a desired trajectory, xd(t),ud(t) for
t ∈ [0, tf], we linearize along the trajectory,

˙̄x(t) = A(t)x̄(t) + B(t)ū(t), (14)

using the relative coordinates, x̄(t) = x(t) − xd(t) and ū(t) = u(t) − ud(t).
Next we define a quadratic cost function,

g(x(t),u(t), t) = x̄T (t)Qx̄(t) + ūT (t)Rū(t), (15)

18 Scott Kuindersma et al.

and solve the constrained minimization problem,

minimize
u(t)

∫ tf

0

g(x(t),u(t), t)dt

subject to ˙̄x(t) = A(t)x̄(t) + B(t)ū(t)

Q = QT � 0

R = RT � 0.

The solution to this problem is given by solving the continuous Riccati differ-
ential equation, which yields the optimal cost-to-go [65],

J(x, t) = x̄T (t)S(t)x̄(t) + x̄T (t)s1(t) + s2(t). (16)

By the Hamilton-Jacobi-Bellman (HJB) equation [8], we know that the optimal
controller satisfies

ū∗(t) = arg min
ū
`(x̄, ū, t), (17)

`(x̄, ū, t) ≡ ūT (t)Rū(t) +
(
2x̄T (t)S(t) + sT1 (t)

)
Bū(t), (18)

for all x̄, where we have dropped constant terms from the minimization. It is
easy to show that (17) can be written as a time-varying linear policy simply
by taking the derivative of `(x̄, ū, t) with respect to ū, setting it equal to zero,
and then solving for ū.

The key point here is that for physical systems we typically have inequality
constraints that cannot be ignored, such as torque limits or constraints on
ground reaction forces. As long as these constraints can instantaneously be
expressed as linear inequalities, we can formulate and solve a convex1 QP to
compute inputs at each control step given x̄,

minimize
ū

`(x̄, ū, t) subject to Mū ≤ b. (19)

In other words, this optimization finds the steepest descent direction of the
cost-to-go subject to the constraints of the system. Note that inputs computed
by solving this QP are, in general, not equal to those computed by thresholding
the output of the closed-form LQR policy. In addition, as we will see below,
using this framework allows for additional constraints to be added to the QP
with little additional computational cost.

4.2 COM and COP Stabilization

Consider the case where our walking plan is in the form of a piecewise polyno-
mial center of pressure (COP) trajectory, cd(t), t ∈ [0, tf], derived based on a
desired footstep plan. In our current implementation, cd(t) is a piecewise lin-
ear trajectory that interpolates between the planned footstep centroids with

1 Note that `(x̄, ū, t) is convex since R � 0.

Optimization-based Locomotion Planning, Estimation, and Control Design 19

timing governed by high-level walking parameters such as swing speed and
double-support time.

For a legged system on locally flat terrain, the centroidal dynamics (6) can
be rewritten in terms of the COP [45], c, as

k̇ = (c− r)× λc + τn,

l̇ = mg + λc,
(20)

where c is the COP, λc is the net external force at the COP, and τn is the
normal contact moment. This is illustrated on the right side of Figure 5. If
we assume that the centroidal angular momentum of the robot, k̇ = 0, k = 0,
and the normal moment, τn = 0, the centroidal dynamics simplify to

ẋCM = AxCM + BuCM ≡
[

02×2 I2×2

02×2 02×2

]
xCM +

[
02×2

I2×2

]
uCM, (21)

c =
[
I2×2 02×4

]
xCM −

rz
r̈z + g

I2×2uCM, (22)

where xCM = [rx, ry, ṙx, ṙy]T is the ground projection of the COM, and uCM =
[r̈x, r̈y]T .

The outputs (22) are nonlinear in general, but they are linear time-varying
given a twice differentiable COM height trajectory, or linear time-invariant if
we assume the COM height remains constant (resulting in the well-studied
linear inverted pendulum dynamics). In practice, this is often a reasonable
assumption to make despite violations that inevitably occur during execution.
In our implementation, we fix the COM height and use the linear form of the
outputs (22).

We formulate the LQR problem,

minimize
uCM(t)

∫ ∞

0

g(xCM(t),uCM(t), t)dt

subject to ˙̄xCM(t) = Ax̄CM(t) + BūCM(t)

c(t) =
[
I2×2 02×4

]
xCM(t)− rz

g
IuCM(t)

cd(t) = cd(tf), ∀t ≥ tf
Q = QT � 0

R = RT � 0.

where x̄CM = xCM(t)− [cTd (tf), 0, 0]T and ūCM(t) = uCM(t). Here the cost is
defined in terms of outputs c̄(t) = c(t)− cd(t),

g(xCM(t),uCM(t), t) = c̄T (t)Qcc̄(t) + ūTCM(t)RūCM(t), (23)

where the right hand side can be written in terms of xCM(t), ūCM(t), and cd(t)
by substituting in the linear output equation. Deriving the Riccati equation
for this problem reveals that S has no time-dependent terms (amounting to
the continuous algebraic Riccati equation). The linear and affine cost-to-go

20 Scott Kuindersma et al.

coefficients then become linear differential equations that we can solve with a
single backward pass along the trajectory (i.e. without having to numerically
integrate). This means that in practice `(x̄CM, ūCM, t) can be computed very
efficiently on time scales appropriate for receding-horizon footstep planning. A
paper containing a full description of this algorithm is currently in preparation.

4.3 Stabilizing whole-body plans

The planning algorithm described in Section 3.2 provides richer inputs to the
controller in the form of full kinematic, centroidal momentum, and external
force trajectories. We therefore have more flexibility in how we design our LQR
problem. However, in keeping with the simplicity of the COP LQR formulation,
we stabilize the 3D COM trajectory using simple linear COM dynamics. Given
the COM trajectory rdes(t), ṙdes(t), r̈des(t), we define a quadratic cost,

g(xCM(t),uCM(t), t) = x̄TCM(t)Qx̄CM(t) + ūTCM(t)RūCM(t), (24)

where x̄CM(t) = xCM(t) − [rTdes(t), ṙ
T
des(t)]

T , ūCM(t) = uCM(t) − r̈des(t), and
the dynamics are taken to be the the 3D analog of (21). We found empiri-
cally in simulation experiments that adding terms to explicitly control angu-
lar momentum in addition to the COM trajectory did not noticeably improve
stability.

If the motion of the robot involves a flight phase, then we must modify the
LQR problem to account for the fact that the robot COM motion is completely
determined by gravity. To track a desired motion in flight the robot must
achieve the desired COM state at the time of take off. Thus the robot COM
dynamics becomes hybrid: it has the smooth double integrator dynamics above
in the support phases, and a discrete transition from takeoff to landing state
in the flight phase. We compute the cost-to-go for this hybrid system using
the jump Riccati equation [49]. Intuitively, this hybrid LQR approach simply
encodes the goal of tracking the the COM trajectory up to the point of takeoff
and after landing.

4.4 Additional costs and constraints

In practice, the QP formulation (19) must be augmented with additional cost
terms and linear constraints to achieve satisfactory performance. To begin
with, since the LQR dynamics we derived above are not the full robot dy-
namics, we must add additional constraints to our QP to compute feasible
inputs to the robot. Given the current robot state, q,v, we can compute the
equations of motion,

H(q)v̇ + C(q,v) = Bτ + JTλ, (25)[
Hf

Ha

]
v̇ +

[
Cf

Ca

]
=

[
0

Ba

]
τ +

[
JTf
JTa

]
λ, (26)

Optimization-based Locomotion Planning, Estimation, and Control Design 21

where H(q) is the mass matrix, the vector C(q,v) captures the gravitational
and Coriolis terms, B is the control input map, and JT transforms external
forces, λ, into generalized forces. We have explicitly partitioned the dynamics
into unactuated and actuated DOFs. For typical humanoids like Atlas, the
only unactuated DOFs are the floating base and Ba is full rank.

We can use this decomposition to eliminate the input torques, τ , as a deci-
sion variable and represent torque constraints as linear inequality constraints
on λ and v̇. For the case of robot walking, the vector λ = [λT1 . . . λTNc]T

contains ground contact forces acting at Nc contact points. We use the same
polyhedral approximation described in Section 3.2 (with Nd = 4) to ensure
the contact forces remain inside the friction cone.

In addition to respecting friction constraints, the controller must detect
when it can assign nonzero values to external force variables. For example,
during or when entering a swing phase, the QP should not assign positive
ground reaction forces to that foot. For this we used a simple logic to deter-
mine what contact force variables should be included in the optimization: if
the robot expects to be in contact (based on the footstep plan) or foot strain
gages are reporting significant values on the foot, the force variables for that
foot can be assigned positive values. The exception to this is when the foot is
breaking contact during walking, where the plan is used exclusively to deter-
mine whether a foot is in contact or not. In practice, if the planned contact
state is active but no force is measured, we set the friction coefficient to be a
small constant value (effectively only allowing normal contact forces on that
body). This helps to reduce unwanted tangental motions of the foot prior to
contact.

Since the LQR solutions do not capture the whole-body motion of the
robot, we specify additional motion goals as desired accelerations of a set of
frames attached to bodies on the robot, such as the feet and pelvis. Desired
accelerations of a body frame, p̈(t), at time t are computed using a PD rule,

p̈ref(t) = Kp(pd(t)− p(t)) + Kd(ṗd(t)− ṗ(t)) + p̈d(t), (27)

where pd(t) is a smooth twice-differentiable desired trajectory for the frame.
For typical walking, smooth foot trajectories are computed by the footstep
planner and desired pelvis motion is computed from the footstep plan. In our
implementation, the desired pelvis yaw is equal to the average foot yaw, and
the pelvis height is maintained at a constant height above the feet. For whole-
body dynamic motions, we track the smooth foot, pelvis, torso, and hand
trajectories specified by the plan.

In addition to or in place of body accelerations, desired generalized accel-
erations, v̇d, can be input and incorporated as costs or constraints in the QP.
For example, generalized acceleration constraints can be useful for maintain-
ing a fixed upper body configuration while walking and carrying an object.
In practice we found it extremely helpful to quickly be able to try different
combinations of constraints and change constraints to costs (and vice versa).
Our freely-available implementation in Drake [64] supports a variety of options
for making these changes with minimal effort.

22 Scott Kuindersma et al.

The complete QP used in our experiments described in Section 6 is de-
scribed in Quadratic Program 1.

Quadratic Program 1.

minimize
v̇,λ,β,ε

`(x̄CM, ūCM, t) +
∑

i 6∈C

wi‖p̈i(v̇)− p̈i,ref(t)‖2 + wε‖ε‖2

subject to Hf v̇ − JTf λ = −Cf (dynamics)

∀i∈C p̈i(v̇) = −ηṗ(t) + ε (no slip)

|ε| ≤ εmax

∀j={1...Nc} λj =

Nd∑

i=1

βijwij (friction)

∀i,j βij ≥ 0

B−1
a (Hav̇ + Ca − JTaλ) ∈ [τmin, τmax] (input)

Here the set C contains the indices of bodies that are in contact with the
environment. For bodies in contact, we apply a “no slip” constraint that, for
example, can require that the acceleration of contact points be 0 or some
nonzero value in the direction opposite their velocity. To avoid infeasibility,
we incorporate slack variables, ε, that permit bounded violations of these
constraints (subject to additional cost). For Atlas balancing in double support,
the QP has 90 decision variables, 30 equality constraints, and 112 inequality
constraints. Note that x̄CM and ūCM can be expressed as affine functions of
the decision variables given the state of the robot, (q,v):

x̄CM =

[
COM(q)
JCM(q)v

]
− x̄CM,des (28)

ūCM = J̇CM(q)v + JCM(q)v̇ − ūCM,des, (29)

where JCM(q) is the COM Jacobian.
Several researchers have recently explored using QPs to control bipedal sys-

tems both in simulation [1,17,48,41,39,26] and in hardware [2,32,60,36]. As
in our formulation, these optimizations typically employ low-dimensional dy-
namic quantities such as center of mass (COM) acceleration [1], rate of change
of linear and angular momenta [48,32,39], zero moment point (ZMP) [60], or
canonical walking functions [2], where the QP cost consists of a weighted dis-
tance from a reference value computed using a simple PD control rule [1,48,
32].

Johnson et al. [36] implemented a QP-based momentum controller to achieve
balancing and walking with an Atlas robot and compete successfully in the
2013 DRC Trials. Herzog et al. [32,33] used a QP controller for balance con-
trol in a hydraulic humanoid lower-body. Our approach shares several features
with these approaches, particularly in the definition of constraints, but it dif-
fers in the use of time-varying LQR to stabilize trajectories and construct QP
objectives.

Optimization-based Locomotion Planning, Estimation, and Control Design 23

Our use of the optimal cost-to-go as an objective creates a connection
with control Lyapunov techniques. Ames et al. [4,3] used control Lyapunov
functions for walking by solving QPs that minimize the input norm, ||u||,
while satisfying constraints on the negativity of `(x,u, t). In the discrete time
setting, Wang and Boyd [66] describe an approach to quickly evaluating control
Lyapunov policies using explicit enumeration of active sets in cases where the
number of states is roughly equal to the square of the number of inputs.

4.5 Efficient QP Solver

Implementation on hardware demands that sufficiently high control rates be
achieved. In our case, that means that we must be able to formulate and solve
Quadratic Program 1 in a short amount of time. A key observation is that,
during typically operation, the active set of inequality constraints changes
very infrequently between consecutive control steps. We can exploit this by
using an efficient active-set solver. We describe the algorithm briefly below,
for more information including timing results against several general-purpose
QP solvers, please see our previous paper [44].

Quadratic Program 1 can be written in the standard form,

minimize
z

1

2
zTWz + gT z

subject to Az = b

Mz ≤ f

(30)

where the inequalities are defined by M = (m1, . . . ,mn)T and f = (f1, . . . , fn)T .
To solve this problem, it is assumed that mT

i z = fi at optimality for each i in
a subset A ⊆ {1 . . . n} called the active set. For time step k > 0, this subset
equals the indices of the active inequalities from time step k − 1. With this
assumption, the KKT conditions for the QP can be written in terms of z, γ,
and α:

−g = Wz + ATα+
∑

i∈A
γimi

Az = b

mT
i z = fi ∀i ∈ A
γi = 0 ∀i 6= A

(31)

Mz ≤ f

γi ≥ 0 ∀i ∈ A.
(32)

Our method solves the linear equations (31) and checks if the solution
(z,γ,α) satisfies the inequalities (32). If the inequalities are satisfied, z solves
the QP and the algorithm terminates. Otherwise, the algorithm adds index
i to A if mT

i z > fi or removes index i if γi < 0 and resolves (31). The
algorithm repeats this process until the inequalities (32) are satisfied or a

24 Scott Kuindersma et al.

until a specified maximum number of iterations is reached. The method is
outlined in Algorithm 1.

On rare occasions when no solution is found, the algorithm fails over to a
more reliable (but on average slower) interior point solver. This contingency is
required since finite termination cannot be guaranteed for this algorithm. In
practice, instances of QP 1 are almost always solved in one iteration. Solving
the QP for Atlas during typical walking takes approximately 0.2 ms (1 ms
including QP setup time) [44]. Including all additional controller software
components, such as those that evaluate the footstep trajectories, determine
whether a body is in contact, handle messages to and from the robot etc., the
controller runs at a rate of approximately 800 Hz.

Data: QP of the form (30), active set A
Result: Optimal solution z with active set A or Failure.

1 iter ← 0
2 repeat
3 Compute candidate solution z, γ,α from (31)

4 if mT
i z > fi then

5 add i to A
6 end
7 if γi < 0 then
8 remove i from A
9 end

10 iter ← iter + 1
11 if iter > iterMAX then
12 return Failure
13 end

14 until z and γ satisfy (32)
15 return A and z

Algorithm 1: Active-set method for solving convex QPs. The set A passed
to the algorithm at time step k equals the set of constraints active at opti-
mality for time k − 1.

Other uses of active-set methods for model-predictive control (MPC) have
exploited the temporal relationship between the QPs arising in MPC. Bartlett
et al. compared active-set and interior-point strategies for MPC [5]. The de-
scribed an active-set approach based on Schur complements for efficiently re-
solving KKT conditions after changes are made to the active set. Ferreau et
al. [27] consider the MPC problems where the cost function and dynamic con-
straints are the same at each time step; i.e., the QPs solved at iteration differ
only by a single constraint that enforces initial conditions. By smoothly vary-
ing the initial conditions from the previous to the current state, they were able
to track a piecewise linear path traced by the optimal solution, where knot
points in the path correspond to changes in the active set. Since the controller
we considered had changing cost and constraint structure, this method would
have been difficult to apply.

Optimization-based Locomotion Planning, Estimation, and Control Design 25

4.6 Joint-level control

Transitioning from simulation to hardware requires good low-level control that
tracks references from the QP by commanding the robot’s hydraulic actuators.
The joint-level loop on the robot runs at 1000 Hz and computes servo valve
commands, m ∈ [−10, 10] mA. For lower-body control, we have two approaches
that we selectively implement based on the operating situation and state of
the robot. The first uses torque-only feedback and the second combines torque
and velocity feedback.

When compliant interaction with the terrain is desired, we do torque-only
control in the two ankle joints. For example when the slope of the ground can-
not be accurately estimated, or in the presence of small obstacles like boards
or rocks, we exploit the natural compliance of the ankles to conform to the
terrain under the foot. For torque-only control, we combined feedback gains on
the sensed torque at the joint (computed via actuator pressure measurements
mapped through a fixed transmission curve) with feedforward velocity gains
to cancel the actuator dynamics. We found that, with the addition of simple
piecewise-linear friction models fit from data, compliant control was possible,
but the ability to precisely position limbs was limited due to model errors and
sensor limitations (e.g., the lack of joint torque sensors).

Alternatively, by using combined torque and velocity feedback, we were
able to get very good position tracking results when used with inverse-dynamics-
based controllers, but at the expense of reducing natural compliance of the
joint. For this mode, the valve servo command has the form,

m = Kτ
p (τref − τ) +Kv

p (vref − v). (33)

To compute vref , we output the generalized accelerations in addition to the
joint torques solved for by the QP block and integrate them over time:

vref(T) =

∫ T

tc

v̇ref(t)dt, (34)

where tc is the last time the contact state changed (i.e. integrated velocities
are reset when feet make and break contact with the terrain).

5 State Estimation

The controller requires a high-rate, low-latency estimate of the full state of the
robot at every control step. This section presents a state estimator which fulfills
this need, has low drift, and satisfies the computation constraints required to
run on-line. Figure 6 illustrates the flow of signals from planners and the state
estimator to the controller. The core filtering approach was presented in our
previous paper [25] and was adapted from the estimator introduced by Bry et
al. [14].

26 Scott Kuindersma et al.

Body Motion
Control Blocks

Quadratic
Program

Z

Left Foot
Control

Right Foot
Control

Pelvis
Control

x

...

State
Estimator Robot Joint

servo

sensor
data

valve
cmds

p̈left, ref

p̈right, ref

p̈pelvis, ref
v̇ref

vref

⌧ref

Footstep planner
or

Whole-body planner
Planning

Control

Body, COM, COP trajs

LQR

Optimal
cost-to-go

Fig. 6 Block diagram illustrating the flow of signals through the system. The footstep
planner (Section 3.1) or the whole-body motion planner (Section 3.2) provide input desired
trajectories to the control system. The controller (Section 4) runs in a closed loop with
the state estimator (Section 5) at approximately 800 Hz. LQR solutions can be recomputed
online (typically in a separate thread) using the current state of the robot to reduce the
systems sensitivity to deviations from the nominal walking trajectory.

5.1 Requirements and approach

The sensors that are available for use in state estimation comprise an accurate
inertial measurement unit (IMU) attached to the pelvis, joint position sensors
at each joint, as well as exteroceptive sensors: LIDAR and vision, the latter of
which is currently not used.

The state estimator uses these sensors to produce estimates of the position
and velocity of the revolute joints, as well as the pose and twist of the ‘float-
ing base’ (i.e. the pelvis link). Since the robot has no joint velocity sensors,
velocity estimates must be derived from position differencing and filtering.
Moreover, while high-quality measurement of the floating base orientation can
be readily achieved with an IMU, achieving high-precision positioning with
low drift remains a significant challenge. To allow traversal of the uneven ter-
rain described in Section 3.1, a drift rate below 1 cm per step is required. The

Optimization-based Locomotion Planning, Estimation, and Control Design 27

proposed state estimator runs at 333 Hz with a latency of 0.5 msec for the
floating base state estimate.

Rather than estimating the full state of the robot using a single process
model, we factor the problem by estimating the joint states separately from
the floating base. We filter the leg joint positions and velocities using a simple
first-order Kalman filter for each joint. The filtered leg joint positions are
subsequently used to estimate the state of the floating base. We estimate the
floating-base state using an extended Kalman filter (EKF).

To support longer duration plan execution, we remove global drift by local-
izing to the robot’s environment. In Section 5.5.2 we discuss how this can be
achieved by using the LIDAR sensor to localize against a map of the robot’s
environment.

5.2 Related work

There are several notable examples of state estimators being developed for
legged systems in the literature. Stephens [63] demonstrated state estimation
of a humanoid using a dynamics model and the planned state trajectories.
Xinjilefu et al. [68] extended this approach and applied it to the Atlas robot.
They avoid computational challenges of formulating a single extended Kalman
filter (EKF) for a humanoid with many degrees of freedom, and propose instead
to estimate the pelvis position and joint dynamics in separate filters.

An EKF-based estimator is presented by Bloesch et al. [11] for a quadruped
that uses a prediction model driven by inertial measurements and creates
filter corrections using foothold measurements. This approach incorporates the
positions of footholds into the state vector (using a point model for each foot)
and analyzed system consistency and observability. This approach has also
been extended to bipedal locomotion on a simulated version of the SARCOS
humanoid robot [58].

While significant progress has been made in robotic mapping using combi-
nations of vision, LIDAR and other sensors, its usage on a humanoid platform
in field operations has been limited due to computation, latency and sensitiv-
ity reasons. An example result by Strasse et al. [62] demonstrated loop-closing
with a real-time monocular vision SLAM system in a laboratory setting.

Finally, the work of Hornung et al. [34] utilized a LIDAR sensor to localize
an Aldebaran NAO robot within a multi-level environment in a manner similar
to our algorithm presented in Section 5.5.2. However that approach was limited
in accuracy and probabilistic consistency as estimation was carried out with
a first-order particle filter separate from the estimation of velocities and the
robot’s height.

5.3 Signal preprocessing

Some preprocessing is required to obtain useful measurement data. This pre-
processing step is specific to the Atlas robot.

28 Scott Kuindersma et al.

Firstly, we note that the IMU measures vibrations induced by the hydraulic
pressurizer, which corrupt the acceleration and rotation rate measurements.
We notch filter these signals to remove this 85 Hz signal before integration.
Secondly, the angle of each leg joint is sensed by measuring the travel of
its hydraulic actuator with an LVDT, and then computing a transformation
through the joint linkage. This mapping does not account for flexion of the joint
linkage when loaded or backlash when a joint changes direction. To account for
these effects, we preprocess the joint angle measurements using the correction
model, previously introduced by Johnson et al. [36]. The model assumes linear
compliance at the joint level,

qpreproc
i = qraw

i − τi/Ki (35)

where qraw
i is the raw joint angle measurement, τi is the measured joint torque,

and Ki is the joint-level stiffness. In practice, we limit the magnitude of the
modification term, |τi/Ki|, to 0.1 rad. We used Ki = 10000 Nm/rad for all
joints except the hip yaw joints, where we used Ki = 7000 [36].

5.4 Process model

5.4.1 State

The state of the floating base can be described in singularity-free fashion by
the tuple

xbase =
(
bωb,

b vb,
w Rb,

w pb
)
, (36)

where bωb ∈ R3 and bvb ∈ R3 are the angular and linear velocities, wRb is
the floating-base rotation matrix, and wpb = [px, py, pz]

T is the base position.
The angular and linear velocities are expressed in the base (pelvis) frame b,
while the position and orientation of the pelvis are expressed in a fixed world
frame w (as indicated by the leading superscripts above).

As the IMU provides accurate measurements of the angular velocity bωb,
we use the measured values directly and do not incorporate bωb in the EKF
state. In addition to the floating-base state, the EKF also estimates gyro and
acceleration biases, denoted bω and ba respectively. This leads us to define
the global state of the EKF as the tuple

xbase =
(
bvb,

w Rb,
w pb,bω,ba

)
(37)

The fact that the rotation matrix wRb is an overparameterization of ori-
entation leads to constraints on the global state that cannot be handled in
a standard EKF setting. To overcome this problem, we maintain orientation
uncertainty in terms of a perturbation rotation in body frame represented by
a minimal set of coordinates.

Omitting superscripts and subscripts and summarizing [14], the true ori-
entation of the floating base is represented by the rotation matrix R. The
estimated orientation, R̂, is related to it through

R = R̂R(χ), (38)

Optimization-based Locomotion Planning, Estimation, and Control Design 29

where χ ∈ R3 is the rotation error in exponential coordinates relative to the
body frame and R(χ) = eχ̂ is the corresponding perturbation rotation matrix.
Here, ·̂ denotes the skew-symmetric matrix such that ·̂x = ·×x for any x ∈ R3,
so that eχ̂ is the rotation matrix corresponding to a rotation of |χ| about the
axis defined by χ.

Parameterizing the orientation error in terms of a minimal set of coordi-
nates χ ∈ R3 allows the orientation error covariance to be maintained as a 3 ×
3 matrix Σχ. This covariance matrix has no inherent constraints which would
appear if an overparameterization of orientation were used, and allows easy
interpretation. However, we still maintain the mean estimate of the floating
base orientation, R̂, as a rotation matrix to avoid singularity issues inherent
to any three-degree-of-freedom orientation parameterization.

We can now define the error state vector of the EKF as

ebase =




bṽb
χ

wp̃b
b̃ω
b̃a



, (39)

where ·̃ is the estimated value of · minus the actual value. Covariances are
maintained in terms of this error state vector.

5.4.2 Inputs

Similar to angular velocity, the acceleration bab is measured accurately by the
IMU. We treat both bωb and bab as inputs to the process model rather than
measurements in the EKF – a common approach. Hence, the input vector for
the EKF can be written as

ubase =

[
bωb
bab

]
. (40)

5.4.3 Dynamics

We separately define the dynamics of the global state, used to propagate the
mean of the state estimate, and those of the error state, used to propagate the
covariances.

The evolution of the global floating-base state can be derived from the
Newton-Euler equations. The gyro and acceleration bias dynamics are modeled
by a simple random walk. This results in the following dynamics for the global

30 Scott Kuindersma et al.

Quantity Pos Orient Velocity Ang Rate Accel
wpb

wRb
bvb

bωb
wv̇b

Accelerometers 3
Gyroscopes 3
Leg sensing 7 7 3 7
LIDAR 3 3

Table 1 Contribution of various sensors to the filtered state estimate. Modes of integration
found to be useful are marked 3and those not used here (for a variety of reasons) are
indicated 7.

state:

bv̇b = −bω̄b ×b vb + wRT
b
wg + bāb + wv

wṘb = wRb
b ˆ̄ωb

wṗb = wRb
bvb + wp

ḃω = wbω

ḃa = wba , (41)

where wg denotes gravitational acceleration in world frame; wv, wp, wbω and
wba are Gaussian random variables; and bω̄b and bāb are the bias-corrected
angular velocity and linear acceleration vectors, respectively:

bω̄b = bωb + bω (42)
bāb = bab + ba. (43)

The error dynamics can be trivially derived from the global state dynamics
for all but the orientation error, which is expressed in terms of the exponential
coordinates χ. Bortz [12] showed that the orientation error dynamics can be
written as

χ̇ = bωb +
χ× bωb

2
+

1

‖χ‖2

[
1− ‖χ‖ sin ‖χ‖

2 (1− cos ‖χ‖)

]
χ×

(
χ× bωb

)
. (44)

Following the linearization derivations from [14], Euler integration is used to
produce the a priori state and covariance.

5.5 Measurement model

Here we describe how each sensing modality is used to form Kalman mea-
surement updates of parts of the state vector—as summarized in Table 1.
Section 5.5.1 describes the measurements due to leg kinematics, and Section
5.5.2 describes the positioning information derived from the LIDAR sensor.

Optimization-based Locomotion Planning, Estimation, and Control Design 31

5.5.1 Leg kinematics

As with many floating base state estimation algorithms [63,11], our approach
to using the leg kinematics assumes that the robot’s stance foot maintains
stationary contact with the ground during part of the gait. This allows in-
stantaneous velocity and position measurements of the robot’s floating base
to be inferred via forward kinematics. Given the accuracy of the IMU orienta-
tion sensors, we choose to use joint sensing to measure only the position and
velocity of the pelvis. Of course, perfectly clean and stable ground contact is
seldom achieved in practice. However, we assert that for short periods (on the
order of the sample time of our sensors) these assumptions are reasonable.

An estimate wp̂b [k] of the position of the floating base at time step k can
be computed using the current floating base orientation estimate in the world
frame, wRb [k], and the previous estimated position of the stationary foot,
wpf [k − 1],

wp̂b [k] = wpf [k − 1] + wpb/f [k] , (45)

where wpb/f [k] denotes the position of the floating base with respect to the
foot, which can be computed using the filtered leg joint positions and the
floating base orientation estimate, wθb [k].

Two types of filter measurement could be formulated using this position
estimate. The simplest approach would be to directly apply (45) as a position
measurement within the EKF. However, because of the inaccuracy in joint
sensing and because the robot’s foot does not always remain motionless after
initial contact, we use the difference between consecutive position estimates
over a short period of time to create a velocity measurement of the pelvis
frame,

wv̂b [k] =
wpb [k]− wpb [k − 1]

h
, (46)

where h = 3 msec is the time step duration. This approach is more attractive
because each resultant observation is a separate measurement of the robot’s
velocity and does not accumulate a history of, for example, the effects of non-
ideal ground contact or the footplate rolling or sliding. The influence of an
erroneous velocity is transient and quickly corrected by subsequent observa-
tions. Using both measurement types together has been explored in related
work [68], but we avoid doing so as it raises the possibility of creating incon-
sistencies, particularly when combined with position measurements derived
from the LIDAR module (presented in the following section).

To use the leg kinematics for state estimation, it is necessary to determine
which of the feet is most likely to be in stationary contact with the ground.
We use a Schmitt trigger with a threshold of 575 N to classify contact forces
sensed by the robot’s 3-axis foot force-torque sensors and detect whether either
foot is in contact. A simple state machine then decides which foot is most
reliably in contact and thus will provide the basis for kinematic measurements.
The output of the foot contact classifier is demonstrated in the upper plot in
Figure 7.

32 Scott Kuindersma et al.

0 2 4 6 8 10 12 14
0

500

1000

1500

S
en

se
d

F
or

ce
 [N

]

Strike Right

Break Left

Strike Left

Break Right

Strike Right

0 2 4 6 8 10 12 14
−0.1

0

0.1

Le
g

O
do

m
et

ry

0 2 4 6 8 10 12 14
−0.1

0

0.1

F
ilt

er
ed

0 2 4 6 8 10 12 14
−0.1

0

0.1

V
ic

on

0 2 4 6 8 10 12 14
−0.05

0

0.05

Time [sec]

E
rr

or

Fig. 7 Top: Evolution of foot force signals for the left (green) and right (red) foot during
two steps. Bar Chart: classification of the primary standing foot (light color indicates a
ground contact event). Lower plots: pelvis lateral (body Y-direction) velocity estimates for
(1) raw leg odometry, (2) filter output, (3) VICON-based ground truth and (4) error of (1)
and (2) relative to VICON. Vertical axis units are m/s. Note that VICON velocity ground
truth is of variable accuracy.

In the specific case of walking up stairs, the controller needs to use the toe
of the trailing foot to push the robot forward and upward while the foot is
not in stationary contact. While the design of the state estimator is almost
entirely independent of the walking controller, as we increased the speed of
locomotion we needed to feedback the active contact points from the controller
to the state estimator in this situation.

Optimization-based Locomotion Planning, Estimation, and Control Design 33

We also classify other events in the gait cycle. Striking contact is deter-
mined when a force of 20–30 N is maintained for more than 5 msec. Breaking
contact is determined when force falls below 275 N. Because these impacts cre-
ate unrealistic measurements, the EKF integrates these measurements with
higher measurement covariance. We note that when the robot is in a dou-
ble support stance, information from both legs could be leveraged to provide
additional kinematic measurements. For simplicity we currently neglect this
information.

Figure 7 contains a number of plots comparing (1) the raw pelvis velocity
measurements inferred from kinematics with (2) the output of our integrat-
ing filter and (3) the velocity estimated from VICON motion capture. Using
only raw leg position signals, the typical pelvis velocity standard deviation
measured while standing stationary was 7.6 cm/sec. Adding joint-level filters
reduced this to 2.3 cm/sec. Integrating filtered leg joint position into the EKF
further reduced the error standard deviation to 1.4 cm/sec.

Finally, as mentioned in Section 5.5 the revolute joints states are filtered
separately. The compliance model mentioned above is again used in prepro-
cessing, before extended Kalman Filtering.

5.5.2 LIDAR

While the drift of the combined inertial and kinematic estimator is capable of
achieving relatively low drift, it remains unsuitable for accurate walking over
tens of meters. We aim to use our exteroceptive sensors to remain localized
with the robot’s environment. In particular, we use LIDAR to continuously
infer the robot’s position relative to a prior map while walking.

We cannot assume that the sensor is oriented horizontally [23], nor can we
afford time to stop moving and perform static 3D registration, e.g., using an
Iterative Closest Point algorithm [9]. Instead we aim to incorporate informa-
tion from each individual LIDAR scan into the state estimate using a Gaussian
Particle Filter (GPF), as originally proposed by Bry et al. [14].

In typical operation, the robot is first commanded to stand still for about
30 seconds while it collects a full 3D point cloud of its environment (see Fig-
ure 8). This cloud is then converted into a probabilistic occupancy grid (Oc-
toMap) [67] against which efficient localization comparisons later performed
during locomotion. While the MAV experiments presented in [14] required
offline mapping with a separate sensor, our legged humanoid and actuated LI-
DAR with 30 m range permit the map to be constructed immediately prior to
operation and immediately utilized while walking. Furthermore, if the robot
were to approach the map boundary, on-line construction of a new map could
easily be performed during operation.

Since the LIDAR is fundamentally a planar 2D sensor, only a subset of
the state vector (namely x, y and yaw in the rotating sensor plane) is ob-
servable at any given instant. We therefore partition the full state vector into
observable and unobservable sub-states, and use a GPF to incorporate each
laser measurement over the observable variables. The particle filter samples

34 Scott Kuindersma et al.

Fig. 8 The robot initially collects a static LIDAR point cloud of its environment, which is
then converted into an occupancy map for subsequent localization.

are weighted according to the proposed sub-state likelihood, which is com-
puted by comparing the LIDAR measurements, projected from the sub-state,
to the prior map. From these weighted samples a mean and covariance, and in
turn an equivalent Kalman measurement update for the full state vector are
calculated resulting in a correction to the base position and yaw.

One technical note is that our projection of LIDAR range returns as points
in the 3D workspace accounts for the robot’s motion, and more importantly,
the spindle rotation during the 1/40 sec scanning period of the internal mirror
of the sensor. Neglecting this effect would result in mis-projections of returns to
the side of the robot by as much at 2.5 m at the highest spindle rotation speed.
Accurate projection also requires precise calibration of the LIDAR sensor, as
discussed in [24].

Given the competition environment of the DARPA Robotics Challenge
and our inability to test in precisely the DRC conditions (outdoors with a
large crowd of moving people), we typically operated without the LIDAR
localization module.

Without this information, the robot’s position is subject to drift. While
linear position drift rate was satisfactorily low, the yaw of the robot is uncon-
strained by any kinematic measurements and is subject to a slow persistent
rotation drift. In particular while standing still for tens of minutes during
testing, a few degrees of error can accrue causing fixtured objects (e.g. terrain
height-maps) in the scene to become incorrectly positioned.

Optimization-based Locomotion Planning, Estimation, and Control Design 35

Component Latency Frequency
Lower joint Kalman Filters 0.16 msec 1 kHz
Pose Extended Kalman Filter 0.54 msec 333 Hz
LIDAR data transmission 7 msec 40 Hz
GPF processing time 11.4 msec 40 Hz
Overall LIDAR latency 18.4 msec 40 Hz

Table 2 Latencies and frequencies of various state estimator components.

5.6 Latency and computation

Using the presented state estimator in a real-time system requires careful
consideration of latency. The LIDAR range measurements require significantly
more time to be sensed and processed, which introduces significant latency
relative to the 1 kHz kinematic and inertial information. These latencies are
shown in Table 2 for a 3.3 GHz 12-core desktop PC. We use a multi-process
messaging architecture to parallelize computation, with the GPF algorithm
requiring a single CPU core. Within the estimator, the EKF retains a 1 sec
history of measurements to accommodate the LIDAR/GPF latency.

The values and the experiments presented in Section 6.1 use 1000 GPF
samples, although reliable performance (and reduced latency) is possible with
just 300 samples.

6 Experiments

We describe several experiments performed on the robot and in simulation.
Code for our planning and control algorithms, along with a variety of simula-
tion examples, is available for download in the Drake [64] toolbox.

6.1 State Estimation Evaluation

To characterize the state estimator we evaluate its performance in a variety of
experiments. In our first set of experiments, we compare our state estimator
to the estimator provided by Boston Dynamics (BDI) in a variety of walking
scenarios. Because the robot’s BDI estimator requires information from their
walking controller, we were unable to use our walking controller in these tests.
In the following our localization estimate system sequentially updated a set of
desired footstep locations that were individually passed to the BDI controller
during locomotion. Figure 9 summarizes the results of a substantial set of
experiments for a variety of walking patterns totaling 57 minutes of operation
and 155 meters traveled.

The kinematic-only estimates continuously drift, typically at 1.2–1.5 cm
per step. This drift rate generally increases when the walking dynamically or
on non-flat terrain. Orientation estimation performance is comparable between
different estimators. Note that the precision of the ground truth orientation

36 Scott Kuindersma et al.

XYZ drift Z drift Yaw drift
0

0.2

0.4

0.6

0.8
1. Typical − 35m − 15 min

0

0.8

1.6

XYZ drift Z drift Yaw drift
0

0.2

0.4

0.6

0.8
2. Typical − 37m − 12 min

0

0.4

0.8

XYZ drift Z drift Yaw drift
0

0.1

0.2

0.3

0.4

0.5
3. Long Steps − 28m − 10 min

0

1.0

2.0

XYZ drift Z drift Yaw drift
0

0.2

0.4

0.6

0.8

1

4. Dynamic − 7m − 2 min

0

0.6

1.2

XYZ drift Z drift Yaw drift
0

0.01

0.02

0.03

0.04

0.05

0.06
5. Manip − 6m − 4 min

0

1.0

2.0

XYZ drift Z drift Yaw drift
0

0.2

0.4

0.6

0.8

1
6. Blocks − 40m − 14 min

0

3.3

6.7

Fig. 9 Summary of localization accuracy for a variety of walking experiments. Position drift
is measured with the left scale (in meters) and yaw drift with the right scale (in degrees).
Error (versus ground truth) of the BDI state estimator (blue), our kinematic-only EKF
(green), and LIDAR (red) estimators are shown. Clockwise from upper left: 1: typical gait
(15 cm forward steps), 2: typical gait with a partial map, 3: long steps (36 cm forward steps),
4: dynamic walking, 5: carrying out manipulation, 6: traversing the cinder block course.

determined using VICON measurements is on the order of 1◦, so we were
unable to differentiate yaw drift on a finer scale than this.

As the reader can see in Figure 9 the value of fusing LIDAR-based cor-
rections becomes evident after just a few steps. Walking for just 10 mins, the
kinematic-only estimators drift by as much as a meter while the LIDAR aided
approach remains accurate to within 2 cm throughout. In the manipulation
experiment, the LIDAR contribution actually degrades performance slightly
due to occlusions caused by arm motions. For this reason, we typically discard
LIDAR data when standing still.

6.2 Walking and Balancing Control

We have evaluated the walking controller in several operating scenarios rel-
evant to the DRC. During typical walking, we observe low-error COP and
footstep tracking performance. Figure 10 illustrates the COP measured using
the foot force/torque sensors during a typical walking trajectory. Note that
unlike many COP-based walking controllers in the literature, we are not using
the COP measurement from the foot force/torque sensor in our feedback loop.
This tracking performance suggests that a model-based controller and state
estimator with sufficiently low error be used to achieve stable walking with
minimal force information at the foot.

We are currently capable of walking approximately 13 times faster (0.40 m/s
vs 0.03 m/s) with 30 cm longer steps (70 cm) compared with the quasi-static
walking controller provided with the robot while maintaining equal or better
footstep placement precision. At this speed the double-support time per step
is roughly 0.1 sec and the gait is fully dynamic (the COM is outside of the

Optimization-based Locomotion Planning, Estimation, and Control Design 37

0 0.5 1 1.5 2

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x−distance [m]

y−
di

st
an

ce
 [m

]

Measured COP
Desired COP

0 5 10 15 20 25 30 35

0

0.5

1

1.5

2

2.5

time [s]

x−
di

st
an

ce
 [m

]

0 5 10 15 20 25 30 35
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

time [s]

y−
di

st
an

ce
 [m

]
Fig. 10 Typical COP tracking performance for Atlas walking on flat terrain.

support polygon). Although this is still a slow gait by human standards, we
point out that our primary development goal to this point has been to achieve
accurate and robust walking control in environments related to the DRC (cin-
der blocks, ramps, gaps, etc.) and we have not yet invested considerable effort
improving the speed and efficiency of the robot’s walking motions.

For traversing ramps and cinder blocks, raising the heel of the trailing foot
while walking improves kinematic reachability. The controller actively moni-
tors the knee angle and breaks heel contact when the trailing leg is nearly fully
extended, resulting in a heel-raising behavior. In our implementation, the con-
troller and state estimator are separate processes that independently estimate
foot contacts (the controller uses both sensed and desired contact information
to classify a foot as in contact). We therefore had to tune the contact classifier
in the estimator to handle the slightly different contact behaviors encountered
in flat ground, steps, and ramps.

Figure 11 highlights some test cases we have used to evaluate the robot’s
balancing and walking capabilities including carrying unmodeled loads, travers-
ing irregular terrain, and climbing narrow stairs with partial foot contacts (re-
alized by shrinking the effective foot contact surface in both the planner and
controller).

6.3 Closed-loop Walking with LIDAR Feedback

During the December 2013 DRC Trials, most teams executed the terrain course
two steps at a time. In our case at least, state estimation drift was the primary
factor that motivated this conservative approach (see our previous paper for
an analysis of this task [24]).

We designed a simple experiment to compare the performance of our LIDAR-
based state estimator and the kinematic-only estimator. In this experiment,
the robot used each estimator in a closed loop while attempting to walk con-
tinuously up 6 cinder block steps using a fixed footstep plan. This scenario
requires great precision, if the state estimator drifts by even a few centime-
ters, the robot will hit a step edge and fall.

Directly feeding the higher-variance low-rate LIDAR corrections through
to the state estimator can result in significant jumps in the position (1-2 cm)

38 Scott Kuindersma et al.

(a)

(b)

(c)

(d)

Fig. 11 Example walking and balancing test cases: (a) balancing with one foot on a moving
pallet jack, (b) walking while carrying an unmodeled 8.5 kg aluminum truss, (c) climbing
stairs using partial foot contact, (d) traversing a set of tilted cinder blocks.

and yaw of the robot. Instead, our approach was to maintain a second estimate
exposed to the LIDAR measurements and to corrected drift in our primary
estimate by slowing correcting it to stay aligned to the LIDAR-based estimate
using a high covariance position correction.

Using this approach Figure 12 illustrates the robot successfully climbing
to the top of the stack of blocks. The kinematic-only estimator only reached
the fourth step. At each step the state drifted characteristically backwards,
resulting in the robot drifting forward. The robot’s trailing foot eventually
collided with the front of the step resulting in a fall.

Optimization-based Locomotion Planning, Estimation, and Control Design 39

Fig. 12 Atlas walking continuously up six cinder block steps using LIDAR-based state
estimation in a closed loop with the walking controller. Top: images of the robot climbing
the stack of cinder blocks in our laboratory. Bottom: the state estimate rendering in our
user interface.

6.4 Dynamic Motion Planning

We are actively developing new dynamic behaviors for the robot using the
whole-body motion planning and control algorithms described previously. Here
we present two results executing running and jumping motions in simulation.

6.4.1 Running

To plan a running motion for Atlas, we consider a single half stride starting at
the apex of a flight phase. We fix the contact sequence to be flight, left-stance,
left-toe-stance, flight. By constraining the initial and final conditions of the
trajectory such that all quantities are mirrored about the robot’s sagittal plane,
we obtain a trajectory that can be mirrored to yield a full stride. In addition
to enforcing the contact sequence and the periodicity of the trajectory, we also
specify a stride-length and average speed (1.5 m and 2 m/s respectively for the
gait shown in Figure 13), require at least 3 cm of clearance between links to
avoid self-collisions, and constrain the gaze of the robot’s head cameras to be
no more than 15◦ from the direction of travel. Solving for the half-stride motion
takes approximately 2.5 min on a computer with a 3.3 GHz Intel i7 CPU. The
controller described in Section 4 is used to stabilize the resulting trajectory
(mirrored and looped to produce a ten-stride sequence) on a simulated model
of Atlas with accurate torque limits. One half-stride of the simulated motion
is depicted in Figure 13.

6.4.2 Jumping

Figure 14 shows the first half of a jumping motion generated by the whole-
body planner and stabilized by the controller from Section 4. This motion was
generated by constraining the corners of the feet to be at least 5 cm above
the ground at the mid-point of the trajectory, and requiring that the robot’s

40 Scott Kuindersma et al.

(a) Touch-down (b) Mid-stance (c) Toe-off (d) Mid-flight

Fig. 13 Snapshots from a half-stride of simulated running at 2 m/s.

(a) Starting Posture (b) Heel-off (c) Toe-off (d) Apex

Fig. 14 Snapshots from a simulated jump.

motion be symmetric about its sagittal plane. Solving for the jumping motion
takes approximately 1.5 min on a computer with a 3.1 GHz Intel i7 CPU. As in
the running case, this entire motion was stabilized in a simulation with torque
limits.

Our final example is another jumping motion, this time from a cinder
block to the ground. The robot’s starting posture on top of the cinder block is
specified, but its final posture is not. We require that the feet maintain at 3 cm
of clearance from the cinder block at all times after take-off and that they be
on the ground at the end of the trajectory. Given these constraints, and the
requirement that the robot’s motion be symmetric about its sagittal plane,
the planner finds the motion depicted in Figure 15. This sort of maneuver will
be useful in competition, as stepping down from obstacles is challenging given
Atlas’ leg kinematics. Solving this problem takes approximately 10 min on a
computer with a 3.1 GHz Intel i7 CPU. The jump down motion was stabilized
by our controller in simulation with torque limits.

7 Future Work

Our ambitions for future work can be summarized in a few words: robustness,
speed, and versatility. In terms of robustness, we have only recently begun
to explore reactiveness of the robot to large external perturbations. This is a

Optimization-based Locomotion Planning, Estimation, and Control Design 41

(a) Starting Posture (b) Toe-off (c) Apex

(d) Avoiding collision (e) Touch-down (f) Final posture

Fig. 15 Snapshots from a motion plan for jumping off a cinder block

critically important feature for any dynamically-stable field robot (especially
those that weigh more than 150 kg). Our approach to efficiently (re-)computing
LQR solutions online combines nicely with standard approaches to step recov-
ery on flat terrain. However, recovering safely in cluttered environments and
on irregular terrain remains an exciting open question.

Another potential improvement has to do with the method by which we
integrate LIDAR corrections. Currently, we input low-pass filtered corrections
from the LIDAR into the estimated state used by the controller. Alternatively,
one could use receding horizon footstep planning to adjust the plan based on
LIDAR corrections without directly modifying the state estimate that is input
to the controller. We expect this approach would be significantly more robust
in the presence of rapid state drift.

We are excited about improving the locomotion speed of Atlas to match
what we have been able to achieve in simulation (over 1.0 m/s). Our hypothesis
is that improved system identification (so as to reduce our dependence on the
integrated joint velocity references) and better leg swing and COP trajectories
will contribute significantly to closing this gap.

We also intend to translate the running and jumping behaviors to hardware
and explore dynamic multi-contact motions, such recovering after a fall. For
the latter goal, we expect to generalize our state estimator to reason about
contacts distributed throughout the robot’s body. Stabilizing whole-body plans
in hardware will demand general techniques for achieving torque-feasibility

42 Scott Kuindersma et al.

without significant human interaction, possibly by processing the output of
our dynamic motion planner. This is an important open problem that still
must be addressed.

8 Conclusion

In this paper we described the optimization algorithms that comprise our ap-
proach to achieving reliable locomotion in demanding environments with var-
ied terrain and geometric constraints. For planning typical walking motions,
our footstep planner efficiently solves a mixed-integer convex optimization to
compute an obstacle-free sequence of footsteps from estimates of the terrain.
For more complex kinematically-constrained, multi-contact motions, we pro-
posed a sparse nonlinear trajectory optimization algorithm that combines full
body kinematics with centroidal dynamics to efficiently compute whole-body
dynamic motions.

Our controller exploits time-varying LQR solutions on reduced dynamical
models to construct an efficiently-solvable QP to stabilize both walking and
whole-body trajectories. Despite significant sensor limitations and inevitable
model inaccuracies, we have been able to achieve reliable balancing and walk-
ing with Atlas. Notably, by combining IMU, kinematic, and LIDAR data
within our state estimator, we have demonstrated precise navigation over ex-
tended walking trajectories. Our current efforts are focused on improving both
the speed and variety of dynamic locomotion strategies.

Acknowledgments

We gratefully acknowledge the support of the Defense Advanced Research
Projects Agency via Air Force Research Laboratory award FA8750-12-1-0321,
the Office of Naval Research via awards N00014-12-1-0071 and N00014-10-1-
0951, NSF awards IIS-0746194 and IIS-1161909, MIT, and MIT CSAIL. Robin
Deits is supported by the Fannie and John Hertz Foundation. We are also
grateful to Boston Dynamics and Carnegie Robotics for their support during
the DRC.

We would like to thank the members of the Robot Locomotion Group and
the MIT DRC Team for their insights and supporting contributions to this
work. A special thanks to Matt Antone for developing LIDAR calibration and
terrain map software that our experiments relied upon.

References

1. Abe, Y., da Silva, M., Popović, J.: Multiobjective control with frictional contacts. In:
SCA ’07: Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation, pp. 249–258. Aire-la-Ville, Switzerland (2007)

Optimization-based Locomotion Planning, Estimation, and Control Design 43

2. Ames, A.D.: First steps toward underactuated human-inspired bipedal robotic walking.
In: Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA). St. Paul, MN (2012)

3. Ames, A.D.: Human-inspired control of bipedal robotics via control Lyapunov functions
and quadratic programs. In: Hybrid Systems: Computation and Control (2013)

4. Ames, A.D., Galloway, K., Grizzle, J.W.: Control Lyapunov functions and hybrid zero
dynamics. In: Proceedings of the 51st IEEE Conference on Decision and Control. Maui,
HI (2012)

5. Bartlett, R.A., Wächter, A., Biegler, L.T.: Active set vs. interior point strategies for
model predictive control. In: Proceedings of the American Control Conference. Chicago,
IL (2000)

6. Baudouin, L., Perrin, N., Moulard, T., Lamiraux, F., Stasse, O., Yoshida, E.: Real-time
replanning using 3d environment for humanoid robot. In: IEEE-RAS International
Conference on Humanoid Robots, pp. p.584–589. Bled, Slovnie (2011)

7. Bemporad, A., Morari, M.: Control of systems integrating logic, dynamics, and con-
straints. Automatica 35(3), 407–427 (1999). DOI 10.1016/S0005-1098(98)00178-2

8. Bertsekas, D.P.: Dynamic Programming and Optimal Control. Athena Scientific (1995)
9. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern

Anal. Machine Intell. 14(2), 239–256 (1992)
10. Betts, J.T.: Survey of numerical methods for trajectory optimization. Journal of Guid-

ance, Control, and Dynamics 21(2), 193–207 (1998)
11. Bloesch, M., Hutter, M., Hoepflinger, M.A., Leutenegger, S., Gehring, C., Remy, C.D.,

Siegwart, R.: State estimation for legged robots - consistent fusion of leg kinematics and
IMU. In: Robotics: Science and Systems (RSS) (2012)

12. Bortz, J.: A New Mathematical Formulation for Strapdown Inertial Navigation. IEEE
Transactions on Aerospace and Electronic Systems AES-7(1), 61–66 (1971)

13. Boyd, S.P., Vandenberghe, L.: Convex optimization. Cambridge University Press, Cam-
bridge, UK; New York (2004)

14. Bry, A., Bachrach, A., Roy, N.: State estimation for aggressive flight in GPS-denied
environments using onboard sensing. In: IEEE Intl. Conf. on Robotics and Automation
(ICRA), pp. 1–8 (2012)

15. Chestnutt, J., Kuffner, J., Nishiwaki, K., Kagami, S.: Planning biped navigation strate-
gies in complex environments. In: Proc. IEEE Int. Conf. Humanoid Robots. Karlsruhe,
Germany (2003)

16. Chestnutt, J.E., Nishiwaki, K., Kuffner, J., Kagami, S.: An adaptive action model
for legged navigation planning. In: IEEE-RAS International Conference on Humanoid
Robots, pp. 196–202 (2007)

17. Collette, C., Micaelli, A., Andriot, C., Lemerle, P.: Dynamic balance control of hu-
manoids for multiple grasps and non coplanar frictional contacts. In: Proceedings of the
IEEE/RAS International Conference on Humanoid Robots, pp. 81–88 (2007)

18. Dai, H., Valenzuela, A., Tedrake, R.: Whole-body motion planning with centroidal dy-
namics and full kinematics. In: Proceedings of the IEEE-RAS International Conference
on Humanoid Robots (2014)

19. Dalibard, S., Khoury, A.E., Lamiraux, F., Nakhaei, A., Täıx, M., Laumond, J.P.: Dy-
namic walking and whole-body motion planning for humanoid robots: an integrated
approach. International Journal of Robotics Research 32(9-10), 1089–1103 (2013)

20. Deits, R., Tedrake, R.: Efficient mixed-integer planning for UAVs in cluttered environ-
ments. In: IEEE Intl. Conf. on Robotics and Automation (ICRA) (2015)

21. Deits, R.L.H., Tedrake, R.: Computing large convex regions of obstacle-free space
through semidefinite programming. In: Proceedings of the Eleventh International Work-
shop on the Algorithmic Foundations of Robotics. Istanbul (2014)

22. Deits, R.L.H., Tedrake, R.: Footstep planning on uneven terrain with mixed-integer
convex optimization. In: Proceedings of the IEEE-RAS International Conference on
Humanoid Robots (2014)

23. Dellaert, F., Fox, D., Burgard, W., Thrun, S.: Monte Carlo localization for mobile
robots. In: IEEE Intl. Conf. on Robotics and Automation (ICRA) (1999)

24. Fallon, M., Kuindersma, S., Karumanchi, S., Antone, M., Schneider, T., Dai, H.,
D’Arpino, C.P., Deits, R., DiCicco, M., Fourie, D., Koolen, T.T., Marion, P., Posa,

44 Scott Kuindersma et al.

M., Valenzuela, A., Yu, K.T., Shah, J., Iagnemma, K., Tedrake, R., Teller, S.: An ar-
chitecture for online affordance-based perception and whole-body planning. J. of Field
Robotics (2014)

25. Fallon, M.F., Antone, M., Roy, N., Teller, S.: Drift-free humanoid state estimation fusing
kinematic, inertial and LIDAR sensing. In: Proc. IEEE Int. Conf. Humanoid Robots
(2014)

26. Feng, S., Xinjilefu, X., Huang, W., Atkeson, C.G.: 3d walking based on online optimiza-
tion. In: Proceedings of the IEEE-RAS International Conference on Humanoid Robots.
Atlanta, GA (2013)

27. Ferreau, H., Bock, H., Diehl, M.: An online active set strategy to overcome the limita-
tions of explicit MPC. International Journal of Robust and Nonlinear Control 18(8),
816–830 (2008)

28. Garimort, J., Hornung, A.: Humanoid navigation with dynamic footstep plans. In:
Robotics and Automation (ICRA), 2011 IEEE International Conference on, pp. 3982–
3987. IEEE (2011)

29. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: An SQP algorithm for large-scale
constrained optimization. SIAM Review 47(1), 99–131 (2005)

30. Gurobi Optimization, Inc.: Gurobi optimizer reference manual (2014). URL http://

www.gurobi.com/

31. Herdt, A., Diedam, H., Wieber, P.B., Dimitrov, D., Mombaur, K., Diehl, M.: Online
walking motion generation with automatic foot step placement. Advanced Robotics
24(5-6), 719–737 (2010)

32. Herzog, A., Righetti, L., Grimminger, F., Pastor, P., Schaal, S.: Momentum-based bal-
ance control for torque-controlled humanoids. CoRR abs/1305.2042 (2013)

33. Herzog, A., Righetti, L., Grimminger, F., Pastor, P., Schaal, S.: Balancing experiments
on a torque-controlled humanoid with hierarchical inverse dynamics. In: Proceeedings
of 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (2014)

34. Hornung, A., Wurm, K.M., Bennewitz, M.: Humanoid robot localization in complex
indoor environments. In: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS). Taipei, Taiwan (2010)

35. IBM Corp.: User’s manual for CPLEX (2010). URL http://pic.dhe.ibm.com/

infocenter/cosinfoc/v12r2/topic/com.ibm.common.doc/doc/banner.htm

36. Johnson, M., Shrewsbury, B., Bertrand, S., Wu, T., Duran, D., Floyd, M., Abeles, P.,
Stephen, D., Mertins, N., Lesman, A., Carff, J., Rifenburgh, W., Kaveti, P., Straatman,
W., Smith, J., Griffioen, M., Layton, B., de Boer, T., Koolen, T., Neuhaus, P., Pratt,
J.: Team IHMC’s lessons learned from the DARPA Robotics Challenge trials. Journal
of Field Robotics (2014)

37. Kajita, Kanehiro, S., Kaneko, F., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, K.,
H.: Resolved momentum control: humanoid motion planning based on the linear and
angular momentum. Intelligent Robots and Systems (IROS), Proceedings (2003)

38. Koolen, T., Smith, J., Thomas, G., Bertrand, S., Carff, J., Mertins, N., Stephen, D.,
Abeles, P., Englsberger, J., Mccrory, S., Egmond, J.: Summary of team ihmc s virtual
robotics challenge entry. In: Proceedings of the IEEE-RAS International Conference on
Humanoid Robots. IEEE, IEEE, Atlanta, GA (2013)

39. Koolen, T., Smith, J., Thomas, G., Bertrand, S., Carff, J., Mertins, N., Stephen, D.,
Abeles, P., Englsberger, J., McCrory, S., van Egmond, J., Griffioen, M., Floyd, M.,
Kobus, S., Manor, N., Alsheikh, S., Duran, D., Bunch, L., Morphis, E., Colasanto,
L., Hoang, K.L.H., Layton, B., Neuhaus, P., Johnson, M., Pratt, J.: Summary of team
IHMC’s virtual robotics challenge entry. In: Proceedings of the IEEE-RAS International
Conference on Humanoid Robots. Atlanta, GA (2013)

40. Koyanagi, K., Hirukawa, H., Hattori, S., Morisawa, M., Nakaoka, S., Harada, K., Kajita,
S.: A pattern generator of humanoid robots walking on a rough terrain using a handrail.
In: Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Confer-
ence on, pp. 2617–2622 (2008)

41. Kudoh, S., Komura, T., Ikeuchi, K.: The dynamic postural adjustment with the
quadratic programming method. In: International Conference on Intelligent Robots
and Systems (IROS), pp. 2563–2568 (2002)

Optimization-based Locomotion Planning, Estimation, and Control Design 45

42. Kuffner, J., Nishiwaki, K., Kagami, S., Inaba, M., Inoue, H.: Footstep planning among
obstacles for biped robots. In: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), vol. 1, pp. 500–505. Maui, Hawaii (2001)

43. Kuffner, J.J., Nishiwaki, K., Kagami, S., Inaba, M., Inoue, H.: Online footstep planning
for humanoid robots. In: IEEE International Conference on Robotics and Automation,
vol. 1, pp. 932–937 (2003). DOI 10.1109/ROBOT.2003.1241712

44. Kuindersma, S., Permenter, F., Tedrake, R.: An efficiently solvable quadratic program
for stabilizing dynamic locomotion. In: Proceedings of the International Conference on
Robotics and Automation (ICRA). Hong Kong, China (2014)

45. Lee, S.H., Goswami, A.: A momentum-based balance controller for humanoid robots on
non-level and non-stationary ground. Autonomous Robots 33, 339–414 (2012)

46. Lien, J.M., Amato, N.M.: Approximate convex decomposition of polygons. Proceedings
of the twentieth annual symposium on Computational geometry pp. 17–26 (2004)

47. Lingas, A.: The power of non-rectilinear holes. In: M. Nielsen, E.M. Schmidt (eds.)
Automata, Languages and Programming, no. 140 in Lecture Notes in Computer Sci-
ence, pp. 369–383. Springer Berlin Heidelberg (1982). URL http://link.springer.

com/chapter/10.1007/BFb0012784
48. Macchietto, A., Zordan, V., Shelton, C.R.: Momentum control for balance. In: Trans-

actions on Graphics/ACM SIGGRAPH (2009)
49. Manchester, I.R., Tobenkin, M.M., Levashov, M., Tedrake, R.: Regions of attraction for

hybrid limit cycles of walking robots. In: Proceedings of the 18th IFAC World Congress
(2011)

50. Michel, P., Chestnutt, J., Kuffner, J., Kanade, T.: Vision-guided humanoid footstep
planning for dynamic environments. IEEE-RAS International Conference on Humanoid
Robots pp. 13–18 (2005)

51. Mombaur, K.D.: Using optimization to create self-stable human-like running. Robotica
27(3), 321–330 (2009)

52. Mosek ApS: The MOSEK optimization software (2014). URL http://www.mosek.com/
53. Neo, E., Yokoi, K., Kajita, S., Tanie, K.: Whole-body motion generation integrating

operator’s intention and robot’s autonomy in controlling humanoid robots. Robotics,
IEEE Transactions on 23(4), 763–775 (2007). DOI 10.1109/TRO.2007.903818

54. Nishiwaki, K., Chestnutt, J., Kagami, S.: Autonomous navigation of a humanoid robot
on unknown rough terrain. In: Proceedings of the International Symposium on Robotics
Research (2011)

55. Orin, D.E., Goswami, A.: Centroidal momentum matrix of a humanoid robot: Structure
and properties. In: Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems. Nice, France (2008)

56. Pollard, N.S., Reitsma, P.S.A.: Animation of humanlike characters: Dynamic motion
filtering with a physically plausible contact model. In: Yale Workshop on Adaptive and
Learning Systems (2001)

57. Posa, M., Cantu, C., Tedrake, R.: A direct method for trajectory optimization of rigid
bodies through contact. International Journal of Robotics Research 33(1), 69–81 (2014)

58. Rotella, N., Bloesch, M., Righetti, L., Schaal, S.: State estimation for a humanoid robot.
CoRR 1402.5450 (2014). IROS Submission

59. Saab, L., Ramos, O., Mansard, N., Fourquet, J.Y., Souères, P.: Generic dynamic mo-
tion generation with multiple unilateral constraints. In: Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems. San Fransisco, USA (2011)

60. Saab, L., Ramos, O.E., Keith, F., Mansard, N., Souères, P., Fourquet, J.Y.: Dynamic
whole-body motion generation under rigid contacts and other unilateral constraints.
IEEE Transactions on Robotics 29(2), 346–362 (2013)

61. Shkolnik, A., Levashov, M., Manchester, I.R., Tedrake, R.: Bounding on rough terrain
with the littledog robot. The International Journal of Robotics Research (IJRR) 30(2),
192–215 (2011)

62. Stasse, O., Davison, A.J., Sellaouti, R., Yokoi, K.: Real-time 3D SLAM for a humanoid
robot considering pattern generator information. In: IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS) (2006)

63. Stephens, B.J.: State estimation for force-controlled humanoid balance using simple
models in the presence of modeling error. In: IEEE Intl. Conf. on Robotics and Au-
tomation (ICRA), pp. 3994–3999 (2011)

46 Scott Kuindersma et al.

64. Tedrake, R.: Drake: A planning, control, and analysis toolbox for nonlinear dynamical
systems. http://drake.mit.edu (2014). URL http://drake.mit.edu

65. Tedrake, R.: Underactuated robotics: Algorithms for walking, running, swimming, fly-
ing, and manipulation (course notes for mit 6.832). Downloaded in Fall, 2014 from
http://people.csail.mit.edu/russt/underactuated/ (2014)

66. Wang, Y., Boyd, S.: Fast evaluation of quadratic control-Lyapunov policy. IEEE Trans-
actions on Control Systems Technology 19(4), 939–946 (2011)

67. Wurm, K.M., Hornung, A., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: A
probabilistic, flexible, and compact 3D map representation for robotic systems. In: Proc.
of the ICRA 2010 Workshop on Best Practice in 3D Perception and Modeling for Mobile
Manipulation. Anchorage, AK, USA (2010)

68. Xinjilefu, X., Feng, S., Huang, W., Atkeson, C.: Decoupled state estimation for hu-
manoids using full-body dynamics. In: IEEE Intl. Conf. on Robotics and Automation
(ICRA). Hong Kong, China (2014)

