
Generative Modeling of Environments with Scene Grammars
and Variational Inference

Gregory Izatt and Russ Tedrake
{gizatt, russt}@csail.mit.edu

Abstract— How do we verify that a cleaning robot that we
have tested only in a simulator and in case studies in the lab, will
work in every house in the world? A critical step in answering
that question is to establish a quantitative understanding of
the distribution of environments that a robot will face when
when it is deployed. However, even restricting attention only
to the distribution of objects in a scene, these distributions
over environments are nontrivial: they describe mixtures of
discrete and continuous variables related to the number, type,
poses, and attributes of objects in the scene. We describe a
probabilistic generative model that uses scene trees to capture
hierarchical relationships between collections of objects, as well
as a variational inference algorithm for tuning that model to
best match a set of observed environments without any need for
tediously labeled parse trees. We demonstrate that this model
can accurately capture the distribution of a pair of nontrivial
manipulation-relevant datasets and be deployed as a density
estimator and outlier detector for novel environments.

I. INTRODUCTION

In order to safely and successfully deploy robots at scale
in the real world, we need to understand the distributional
robustness of the systems we are deploying. An essential
piece of that puzzle is to gain an understanding of how the
world is distributed. Even when restricting attention merely
to the distribution of objects in a scene, this distribution
is quite complicated: objects vary discretely in number and
type, and each object itself varies in pose, shape, material,
etc. All of these parameters may covary: for example, many
classes of objects may only ever appear in pairs or sets, and
members of that set may match in e.g. color.

A model that can capture these distributions would be
extraordinarily useful – not only could it generate enormous
amounts of relevant training data for simulation-based testing
and verification, but it could be used to detect when out-
of-distribution environments are encountered at runtime. To
be useful for these ends, however, the model must be very
accurate – and to be informative for the engineers of robot
systems, the models should be transparent as to why they
produce the scores they do.

We present a step in the direction of achieving informative
and flexible generative models for these kinds of environ-
ments. We use scene grammars and the trees they describe
as a core framework to break down the dependency structure
of complex environments. A scene tree explains a scene in
terms of a hierarchy of instances of symbols: atomic object

This work is supported by NSF Contract IIS-1427050, an NSF Graduate
Research Fellowship under Grant No. 1122374, ONR award N00014-17-
1-2699, Lockheed Martin Award No. RPP2016-002, and Lincoln Labora-
tory/Air Force Award PO# 7000374874.

Fig. 1. We generate scenes by sampling scene trees from a generative
model that has been conditioned on a training set, and then projecting the
resulting object set to the closest physically feasible pose. The original scene
trees from before the projection are illustrated here overlaid on the scenes.
The distribution of these trees – which controls the number and types of
objects and their relative placements – is tuned to match a set of observed
environments. The place setting model was trained to match synthetic 2D
data, while the mug-on-shelf model was trained to match human-authored
3D data. Top: For place settings, the root node of the scene tree is at the
center of the table (blue); intermediate table settings can spawn in cardinal
directions (green); and place settings can produce a wide variety of cutlery
and plates in typical arrangements (red). Bottom: For shelves of mugs, the
root node is at the bottom of the shelf (blue). Intermediate nodes can spawn
on each shelf (green), that themselves spawn mugs in upright, upside-down,
and other configurations (orange and red).

instances are represented by instances of terminal symbols at
the leaves of the tree, while groups of objects are explained
by intermediate non-terminal symbol instances. (See Figure
1 for some examples.) Typically, these intermediate symbols
represent semantically meaningful groupings of objects: for
example, place settings (as groupings of dishware) at a table,
or a cluster of mugs on a shelf.

When setting up a simulation-based testing environment
for a robot, roboticists often create simple, bespoke scripts
for generating random testing environments. Even simple
scripts can generate remarkably complex distributions of
environments – but such off-the-cuff scripting is usually
opaque to quantitative analysis. On the other hand, describing

and doing inference over the distribution of testing environ-
ments formally (with e.g. mixture models) is tedious and
often limiting. We propose to take the best of both worlds,
by using probabilistic programming to maintain the spirit
of flexible procedural scripting, while injecting just enough
structure to keep inference tractable. Specifically, we propose
relying on carefully-specified scene grammars to describe
the distribution over the numbers and types of objects, while
allowing the continuous distributions over object parameters
to be specified flexibly.

II. RELATED WORK

The fields of computer graphics, computer vision, and
robotics have, in the past few years, found significant com-
mon ground in the problem of “bridging the reality gap.”
Photorealistic renderers have proven invaluable for providing
densely labeled datasets for training deep learning systems
for robot perception [1] [2] – with domain randomization
[3] and domain adaptation [4] closing the gap even further.
Simulators are critical to training data-hungry reinforcement
learning systems – with the reality gap likewise usually
bridged with domain randomization [5][6], though recent
work has looked further more carefully modeling distribu-
tions over simulation parameters relating to physics [7] [8].

The particular problem of learning distributions over ar-
rangements of objects is most closely related to scene under-
standing and procedural scene generation. Scene trees (and
their associated scene grammars) have proven an effective
structure for translating between images and natural language
for image labeling, retrieval, and generation [9][10][11], and
they provide strong structure for understanding point clouds
[12] and images [13] [14]. Likewise, they are natural for
procedural content generation: [15] uses a scene-tree-like
structure to fit a model of complex, highly-structured indoor
office environments; and [16] and [17] use a scene grammar
as the backbone structure when doing inference over a gener-
ative model of human-centric environments. Our framework
builds on this previous work on scene grammars: we focus on
relaxing the formulation as much as possible while retaining
its structure by relying on automated variational inference
[18] [19] for the difficult task of model learning. We also
focus on scene parsing (that is, inferring the scene tree from
observations of only the objects) as an essential part of the
distribution learning process. Finally, and most generally, we
aim probe the usefulness of these techniques for robotics
applications.

III. GENERATIVE MODEL

A. Scene Grammars

We define a probabilistic scene grammar G =
(V T , V N , R, P) with non-terminal symbols classes V N ,
terminal symbol classes V T , production rules R, and rule
and production probabilities P . A valid scene tree is rooted
at a root symbol of class V root ∈ V N . Symbol generation
follows production rules R = {r : A → B}, where
A ∈ V N is a symbol class denoting the parent element,
and B ∈ {V N ∪ V T } is a symbol class denoting the

child element. (The extension to rules that generate multiple
symbols simultaneously is straightforward, but omitted for
clarity – see e.g. [20].)
P = {pr, pv, pg} describe the probability of generation

of a given tree. Each symbol class defines a set of global
and local random variables: a symbol class’s global variables
zgv are sampled once and shared across all instances of the
class, while its local variables zlv are sampled independently
for each instance. pg provides priors for each global variable
zgv . pr(β|α) describes the probability of generating a symbol
instance β (necessarily of class B) from symbol instance
α (of class A) using rule r. This generation probability
accounts for the dependence of local variables of symbol
β on the local and global variables of the parent α – e.g.
the relative poses of a child object to its parent – and
is assumed to be defined over only continuous variables.
Finally, pv(r1, r2, ..., rN |v) describes the probability, for a
symbol instance v ∈ VN , of the activation of a subset
of the legal set of rules ri ∈ R that have v as their
source. Thus, P is broken into a continuous part (pg and
pr) describing relationships between symbols, and a discrete
part (pv) describing the distribution over tree structures.

In practice, we further structure our grammar by im-
plementing the AND/OR/SET symbol types popular in the
scene parsing literature [13][16]. These symbol types apply
additional structure to pv(r1, ..., rN) : for example, AND
symbols always take all legal rules that start at v, while SET
symbols activate each rule as an independent Bernoulli trial.
These symbol classes are for convenience and are not an
essential or fundamental part of our architecture.

B. Scene Trees

A generated scene tree (also “parse tree” or “scene graph”)
t = {v, r} is a tree with a set of symbol instances v as
nodes, with each edge corresponding to the set of active
production rules r. (In the extended case where rules can
produce multiple symbols, this becomes a hypertree.) A
complete scene tree is a scene tree in which all nodes and
edges have nonzero probability.

A scene tree can be scored by combining the probability
of each node and edge. Using α(r) and β(r) for the parent
and child of rule r, and r(v) for the children of node v:

p(t) = pg(z
g)
∏
v∈v

(
pv(r(v)|v)

)∏
r∈r

(
pr(β(r)|α(r))

)
(1)

where a symbol instance v contributes terms related to
its global variables and active child rules, and a rule r
contributes a term for its produced child symbols.

C. Concrete example: Table settings

In this example, we use a scene grammar to describe the
distribution of typical table settings of dinnerware at a 4-
person square table. In this example, all nodes have local
random variable representing the planar pose x, y, θ of each
object or object group. The set of nodes types is:

1) V T = {Plate, Cup, Fork, Spoon,Knife}
2) V N = {Table, P laceSetting}

where the Table node is the only root node.
All generation rules thus define the density of the pose

of the generated node given the pose of the parent node.
These relative pose distributions are implemented as 3-
dimensional diagonal Normal distributions in the parent node
frame. Given a target pose offset of a child in parent frame
qd = {xd, yd, θd}, a generation variance Σd, and the child
pose in the parent frame qrel = {xrel, yrel, θrel}, the density
is evaluated as pr(β|α, qd,Σd) = N[µ=qd,Σ=Σd](qrel). To
support posterior inference of the parameters of these relative
pose distributions, qd and Σd are class-specific global random
variables with Normal and Inverse-Gamma prior distributions
respectively.

The Table has four child production rules for placing a
PlaceSetting in each of the four cardinal directions, and the
PlaceSetting has production rules for placing each of the
terminal node classes within the place setting. The Table and
PlaceSetting can both exercise any combination of their rules
at any time. A Table has a rule for creating a PlaceSetting
at each of the 4 cardinal directions (and hence has 24 = 16
parameters describing the distribution over active rules). A
PlaceSetting has a rule for each of 8 dishware placement
options: placing a plate, a cup, and placing a fork, knife, or
spoon on the left or right of the place setting (and hence has
28 = 256 parameters). The left-right multimodal distribution
of cutlery placement is thus captured at the tree structure
level. Examples of scenes generated from this grammar are
shown in Figures 1 and 4.

We also define a lesioned version of this model to compare
performance with the fully-expressive table setting model.
This model has node types:

1) V T = {Plate, Cup, Fork,Knife, Spoon}
2) V N = {SimpleTable}

where the SimpleTable is the only root node, and has the
same rule set as a PlaceSetting in the full model. Hence, the
model is only expressive enough to describe a single Normal
distribution in the Table reference frame for of terminal node
type. The SimpleTable has an additional rule to generate
another SimpleTable node at the same pose, giving the model
the ability to spawn as many of each terminal node type as
necessary via recursion.

D. Concrete example: Shelves of Mugs
In this example, we use a scene grammar to describe

the distribution of mugs placed neatly onto a three-level
shelf. This example captures a practical scenario in which
the simulation designer can provide insight that the mugs
are going to tend to be placed on the shelves in rightside-up
or upside-down configurations, but wants to more carefully
match the real-world distribution of placements. In this
example, all nodes have local random variables representing
the 6DOF pose of each object or object group. The set of
node types is:

1) V T = {Mug}
2) V N = {PreMug,MugShelfLevel,MugShelf}

where MugShelf is the only root node. The MugShelf
independently chooses to spawn a MugShelfLevel at each of

the three shelf levels as Bernoulli trials. Each MugShelfLevel
independently chooses whether to spawn each of 6 PreMug
instances drawn from the same Normally-distributed pose
distribution around the center of the shelf. The parameters
of those 6-DOF Normal distributions are drawn themselves
from strong priors of the same forms as the planar exam-
ple. Each PreMug can spawn a single Mug either tightly
Normally distributed around rightside-up, tightly Normally
distributed around upside-down, or broadly (Normally with
wide variance) rotationally distributed by choosing from a
3-element Categorical distribution. These final distributions
are not parameterized – the purpose of this final node is
to provide optional structure for the parser to use to more
specifically describe the scenes it observes. Examples of
environments generated with this grammar are shown in
Figures 1 and 6.

IV. GENERATION, INFERENCE, AND TRAINING

A. Generation

In order to generate a new tree from the grammar, a queue
of unexpanded symbol instances is initialized with a root
symbol instance, and for each v in the queue that is not a
terminal symbol:
• v’s global variables zgv are sampled from their prior pg

if this is the first node of its class to be expanded.
• The new symbol’s child rule set is sampled from pv .
• For each new child rule r in the rule set, a new symbol

is added to the queue by sampling from pr.
The primary advantage of this procedure is the simplicity

and modularity of writing generative models for large scenes.
However, some scene-wide constraints relating to physical
feasibility – e.g. nonpenetration of all objects – imply some
dependence between all of the continuous properties of the
terminal symbols. While it might be possible to construct
a complex set of rules that will only generate physically
feasible scenes, we find it more practical to keep the tree gen-
eration rules simple and handle feasibility as a postprocessing
step. To generate the synthetic training set for the place
setting example, we projected generated scenes to the closest
nonpenetrating set of object poses via nonlinear optimization,
and in the 3D example, then ran a short additional physics
simulation to let ensure the scene was statically stable. (An
alternative approach would be rejection sampling, but we
found the number of samples required to be prohibitively
high.)

B. Scene Grammar Parsing

The problem of scene parsing is: given a fixed grammar
G and a set of observed terminal symbol instances o =
{v1, v2, ...vN}, vi ∈ V T , sample a scene tree from the
posterior distribution of trees P (t|o) that has exactly that
set of terminal symbol instances. A related simpler problem
is to just produce the maximum likelihood tree from that
posterior distribution. (The use of the term “parsing” relates
to string parsing methods from (e.g. context-free) grammars,
as used in natural language processing [21].)

Fig. 2. Demonstration of the scene parsing procedure on a single place
setting (a plate, a cup, and a fork) as it incrementally builds a parse tree for
a new scene. The input (leftmost) is an incomplete parse tree consisting of
only the root node (green) and terminal nodes (red). Each iteration (left to
right) adds another intermediate node (blue) to the parse tree. The second-
to-final iteration results in complete, repaired tree, and the final iteration
(rightmost) performs HMC on the continuous hidden variables to improve
the score of the generated tree.

We attempt scene parsing by greedily building an initial
feasible tree in a bottom-up fashion starting from the ob-
served terminal symbol instances and a root symbol instance,
and then optionally performing some number of MCMC
steps over tree configurations by randomly perturbing the
tree structure. Our method is very similar in spirit to the
beam search technique of [12], and the greedy parsing and
simulated annealing of [13]. In practice, we found the initial
tree construction step to be by far the most important – for
scenes with “obvious” and relatively unambiguous structure,
like place settings, the initial tree is very often the optimal
tree, and for ambiguous scenes, greedy construction seems
empirically likely to arrive at one of the several near-optimal
trees. However, we found this method to be far from perfect
– see the Discussion for a discussion of when this algorithm
does and does not work.

Our scene parsing algorithm uses two subroutines:
• Tree Completion: Given an incomplete parse tree con-

taining a root symbol instance and a set of parent-
less nonroot symbol instances, we greedily complete
the parse tree by adding new rules and intermediate
symbol instances. To accomplish this, for some number
of attempts, a random orphan symbol instance v is
chosen, and scored against every possible way of giving
that instance a parent:

1) By adding a new production rule to any existing
non-terminal symbol instance that has v as its
child.

2) By adding a new symbol instance from vnew from
V N , and adding a new production rule that has
vnew as its source and v as its child.

Of all of the available above actions, one is selected and
applied at random, with higher score actions options
taken more often. This procedure is repeated until the
tree is feasible.

• Tree HMC: Given a complete parse tree, the structure
of the tree is fixed while its continuous variables are
modified in-place via Hamiltonian Monte Carlo (HMC,
[22]) for a small number of iterations. This operation
tends to improve the score of the tree, by e.g. shift-
ing the relative poses of objects to higher probability
configurations.

The parsing algorithm itself initializes the tree with a root

symbol instance and the set of observed terminal symbol in-
stances. This tree is completed using TreeCompletion and
optimized with TreeHMC – this first pass greedily samples
a (hopefully high-likelihood) tree structure. To recover from
incorrect parses, for some number of subsequent passes, a
symbol instance is removed from the tree at random, with
the symbol being selected inverse proportionally to its score
given its children and parent, before the complete-and-HMC
procedure is repeated. The resulting tree modification is
accepted based on the tree score p(t) (Eq 1) relative to
the pre-mutation tree using a Metropolis-Hasting acceptance
ratio.

An example of the steps in a parse of a scene is shown
in Figure 2. The parsing procedure takes a few seconds
per scene in our pure-Python implementation, but is easily
parallelizable across data batches.

C. Training Procedure

Given a grammar G parameterized by Θ, and a dataset
of (independently chosen) observed terminal node sets D =
[oi], we seek to find arg maxΘ log pΘ(D). The distribution
of our (continuous and discrete) latent variables is indicated
as p(t), as it is, in spirit, a distribution over parse trees under
our grammar. Applying the standard variational inference
methodology, we optimize an approximation to that posterior
qΓ(t) parameterized by Γ, and maximize the Evidence Lower
Bound Objective (ELBO), which is derived in the standard
way (using Jensen’s inequality) [18]:

arg max
Θ

log pΘ(D) = log

∫
t

dt
∏

oi∈D
pΘ(oi, t)

= log

∫
t

dt
∏

oi∈D
pΘ(oi, t)

qΓ(t)

qΓ(t)

= log Et∼qΓ(t)

[∏
oi∈D

pΘ(oi, t)
qΓ(t)

]
≥ Et∼qΓ(t)

[
log

∏
oi∈D

pΘ(oi, t)
qΓ(t)

]
,

leading to our true objective (after converting to a sum over
logs, and moving the sum outside of the expectation):

arg max
Θ,Γ

∑
oi∈D

Et∼qΓ(t)

[
log pΘ(oi, t)− log qΓ(t)

]
. (2)

Our choice of qΓ(t) is specialized to our tree model (Eq.
1), and decomposes into separate posteriors over the global
and local latent variables. The posterior over the global
latent variables (indexing by symbol v) is approximated with
mean-field VI using Delta distributions parameterized by Γ

pg(z
g|D) ≈

∏
zgv
δ(zgv − Γv). Meanwhile, we approximate

the posterior over the scene trees (given the global variables)
implicitly by sampling the scene trees variables by using the
scene parsing method from Section IV-B, and scoring them
directly with the relevant part of Eq. 1. This procedure is
akin to amortized variational inference, in which data-local
latent variables (i.e. the latent parse tree for each data point)

Fig. 3. Top: Train and test training curves over epochs for the planar
place setting example for 3 runs each of the full model and lesioned model,
showing the mean tree score p(t) (Eq 1) across the batch. Middle: Trace of
estimation of three parameters relating to the left/right (x-axis) position of
the right knife, fork, and spoon productions over the 3 training runs for the
full model, with the nominal value used to generate the target distribution
dashed in red and the prior for the parameters shown on the left. (The right
fork, knife, and spoon have the same nominal value and prior in this case.)
Bottom: A trace across epochs of the 28 = 256 categorical production
probabilities for the 8 possible production rules of a PlaceSetting. One
vertical slice corresponds to the 256 values at one epoch. At the start of
training, the weights are assigned equally (and so all show the same color),
but the weights adapt to support the parsed rules over time. The nominal
values used to generate the test set are shown on the right with the same
color scale.

is sampled using a parameterized function of the data point
[23].

This objective is optimized with REINFORCE [24] to
estimate the gradient through the expectation: in each epoch,
a batch of environments from D are sampled, and for each
one, the expectation is approximated with a modest number
of samples from qΓ(t). This optimization pushes qΓ(t) closer
to the true posterior, as well as optimizing any parameters
Θ of the model itself to give more density to observed
samples and their corresponding sampled latents (see [18]).
We use a moving-average control variate baseline to reduce
the variance of the gradient estimate, following [25].

V. RESULTS

All models are implemented in PyTorch [26] and Pyro
[19]. We use Adam [27] for choosing variable step sizes for
REINFORCE updates – see [19], and specifically [28], for
details. For Adam, we use step size 0.01, with a batch size
of 10. A single parse tree sample is used to approximate the
expectation for each data point. Physical feasibility checks
and physics simulations use Drake [29].

Fig. 4. Each plot shows 20 overlaid samples from a distribution over
table settings. Left: Samples from the test set. Middle: The pre- and post-
training distribution of a simplified version of our full model that does not
have access to intermediate symbols describing the place settings. Right:
The pre- and post-training distribution from one training run of our full
place setting model.

Fig. 5. Left: Histogram of the scores of every PlaceSetting that occurs
in the maximum-likelihood parse trees for each example in the test set,
compared to the scores across a novel dataset that includes left-spoon
productions not observed in the training distribution. Right: An example
of a scene that includes the novel production, with the parse tree nodes
color-coded by their score (blue low, red high). The right place setting has
abnormally low score because of the left-spoon production (indicated with
a yellow box), which never occurs in the training or test set.

A. Planar Place Settings

1) Learning the Distribution: In order to probe the con-
vergence of the inference routine, we created a synthetic
dataset of 200 scenes (split into 100 train, 100 test) by manu-
ally setting the model parameters and global latent variables
to qualitatively-reasonable values and generating samples
from the model. We then trained the model from random
initializations (drawn from the priors over the latent global
variables); loss curves and traces of parameters of interest are
shown in Figure 3, and visualizations of the distribution of
generated scenes from before and after training are shown in
Figure 4. We trained the lesioned model in the same way and
include its results in the figures for comparison; as expected,
our richer model outperforms the lesioned model.

2) Density Estimation of Novel Scenes: We used the
trained model to score all 100 examples from the test set,
as well as 100 examples from a different dataset generated

Fig. 6. Left: Examples from the human-generated dataset of mug arrangements on a rack. Middle: Example scene trees and scenes drawn from the
MugShelf model before training, illustrated before being projected to physical feasibility. Right: Example scenes drawn from the MugShelf model after
training. Scenes from before projection are shown on the left, and from after projection to physically feasible configurations are shown on the right. Even
without projection, the model clusters mugs tightly on the shelves, and reliably places them upright and upside down the majority of the time, matching
the human distribution. However, post-processing is still required to satisfy the tight constraints of physical feasibility – see Section IV-A.

Fig. 7. Train and test training curves over epochs for the MugShelf
example, showing the mean tree score p(t) (Eq 1) across the batch.

similarly to the training and test sets, but with an additional
generation rule allowing the placement of spoons to the left
of the plate. (This placement does not appear in the training
or test set.) Results are shown in Figure 5. These results
demonstrate that the trained model can be used for relatively
sensitive and transparent outlier detection by inspecting the
score of each node of the tree for outliers.

B. Shelves of Mugs

To probe whether our method extends to practical 3D
scenes that are relevant to robotics, we created a dataset of
100 physically realistic configurations of 1 to 6 mugs on a
three-level shelf by motion-controller based teleoperation of
a simulation environment. (Using a simulation environment
made collecting object poses trivial, while using a motion-
controller based interface ensured mug placements were still
reasonably natural.) We trained the Shelves-of-Mugs model
on this dataset, and report results in Figures 6 and 7.

VI. DISCUSSION AND CONCLUSIONS

Our scene parsing and variational inference algorithms,
in tandem, are capable of learning the distributions of
scenes with wildly varying numbers of objects and complex
conditional dependence. This style of model has significant
advantages: the procedural, modular structure of the grammar
made models easy and fast to develop and debug, and the
symbol-and-rule-level accounting of the total score of each

scene parse was extremely practically useful, even during in
development.

The method as presented has plenty of limitations, how-
ever. Needing to hand-write the grammar is a major draw-
back – future work could explore automated creation of
new production rules and symbols when the current set is
insufficient as a form of model repair. Similarly, requiring
that terminal nodes be rigid object instances of fixed class is
restrictive; prior work has shown that image features can be
used as the terminal nodes in graphs (e.g. [13]), at the cost of
greater parsing difficulty. In our experience, the most brittle
part of our system is the scene parsing procedure. Greedy
parsing needs good guesses of the values of the intermediate
instance’s variables to succeed – and the correct value may
not be obvious, since it may relate to both the instance’s
parents and children, only some of which are available in
the middle of the parsing procedure. An example of a scene
where this method did not perform well was in capturing
the distribution of dishware in a cluttered dish bin: while
there was semantic structure to leverage (e.g. stacks of plates,
clusters of the same object), the parsing procedure could not
consistently parse the center of clusters, as the center of each
cluster is unobserved with an uninformative prior, and the
number and identity of its child objects are not obvious.

Practically, this system is at its best fine-tuning models
that describe structured scenes that are close to correct but
do not quite match reality. In those cases, this model can
provide transparent, accurate density estimates for new ob-
served scenes. Scene-grammar-based models have potential
for sampling environments for simulation-based testing and
for runtime density estimation and outlier detection of task
environments. We are particularly excited about the prospect
of using structured models like this one as a backbone for
simulation-driven rare event and adversarial example search
for complex robotic systems (in the style of e.g. [30]).

REFERENCES

[1] M. Johnson-Roberson, C. Barto, R. Mehta, S. N. Sridhar, K. Rosaen,
and R. Vasudevan, “Driving in the matrix: Can virtual worlds replace
human-generated annotations for real world tasks?” arXiv preprint
arXiv:1610.01983, 2016.

[2] J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and S. Birch-
field, “Deep object pose estimation for semantic robotic grasping of
household objects,” arXiv preprint arXiv:1809.10790, 2018.

[3] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in 2017 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). IEEE, 2017, pp.
23–30.

[4] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan,
“Unsupervised pixel-level domain adaptation with generative adver-
sarial networks,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017, pp. 3722–3731.

[5] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” in 2018
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2018, pp. 1–8.

[6] M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. Mc-
Grew, J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray,
et al., “Learning dexterous in-hand manipulation,” arXiv preprint
arXiv:1808.00177, 2018.

[7] F. Ramos, R. C. Possas, and D. Fox, “Bayessim: adaptive domain
randomization via probabilistic inference for robotics simulators,”
arXiv preprint arXiv:1906.01728, 2019.

[8] G. Louppe, J. Hermans, and K. Cranmer, “Adversarial varia-
tional optimization of non-differentiable simulators,” arXiv preprint
arXiv:1707.07113, 2017.

[9] J. Johnson, R. Krishna, M. Stark, L.-J. Li, D. Shamma, M. Bernstein,
and L. Fei-Fei, “Image retrieval using scene graphs,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2015, pp. 3668–3678.

[10] R. Socher, C. C. Lin, C. Manning, and A. Y. Ng, “Parsing natural
scenes and natural language with recursive neural networks,” in
Proceedings of the 28th international conference on machine learning
(ICML-11), 2011, pp. 129–136.

[11] J. Johnson, A. Gupta, and L. Fei-Fei, “Image generation from scene
graphs,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 1219–1228.

[12] A. Anand and S. Li, “3d scene grammar for parsing rgb-d pointclouds,”
arXiv preprint arXiv:1211.1752, 2012.

[13] Y. Zhao and S.-C. Zhu, “Image parsing with stochastic scene gram-
mar,” in Advances in Neural Information Processing Systems, 2011,
pp. 73–81.

[14] J. Chua and P. F. Felzenszwalb, “Scene grammars, factor graphs, and
belief propagation,” arXiv preprint arXiv:1606.01307, 2016.

[15] M. Fisher, D. Ritchie, M. Savva, T. Funkhouser, and P. Hanrahan,
“Example-based synthesis of 3d object arrangements,” ACM Transac-
tions on Graphics (TOG), vol. 31, no. 6, p. 135, 2012.

[16] S. Qi, Y. Zhu, S. Huang, C. Jiang, and S.-C. Zhu, “Human-centric
indoor scene synthesis using stochastic grammar,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 5899–5908.

[17] E. Jahangiri, R. Vidal, L. Younes, and D. Geman, “Object-level
generative models for 3d scene understanding,” in SUNw: Scene
Understanding Workshop, 2014.

[18] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational infer-
ence: A review for statisticians,” Journal of the American Statistical
Association, vol. 112, no. 518, pp. 859–877, 2017.

[19] E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan,
T. Karaletsos, R. Singh, P. Szerlip, P. Horsfall, and N. D. Goodman,
“Pyro: Deep Universal Probabilistic Programming,” arXiv preprint
arXiv:1810.09538, 2018.

[20] T. Liu, S. Chaudhuri, V. G. Kim, Q. Huang, N. J. Mitra, and
T. Funkhouser, “Creating consistent scene graphs using a probabilistic
grammar,” ACM Transactions on Graphics (TOG), vol. 33, no. 6, p.
211, 2014.

[21] C. D. Manning, C. D. Manning, and H. Schütze, Foundations of
statistical natural language processing. MIT press, 1999.

[22] R. M. Neal et al., “Mcmc using hamiltonian dynamics,” Handbook of
markov chain monte carlo, vol. 2, no. 11, p. 2, 2011.

[23] C. Zhang, J. Butepage, H. Kjellstrom, and S. Mandt, “Advances
in variational inference,” IEEE transactions on pattern analysis and
machine intelligence, 2018.

[24] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, no.
3-4, pp. 229–256, 1992.

[25] A. Mnih and K. Gregor, “Neural variational inference and learning in
belief networks,” arXiv preprint arXiv:1402.0030, 2014.

[26] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differen-
tiation in PyTorch,” in NIPS Autodiff Workshop, 2017.

[27] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[28] “Svi part iii: Elbo gradient estimators.” [Online]. Available:
https://pyro.ai/examples/svi part iii.html

[29] R. Tedrake and the Drake Development Team, “Drake: Model-based
design and verification for robotics,” 2019. [Online]. Available:
https://drake.mit.edu

[30] M. O’Kelly, A. Sinha, H. Namkoong, R. Tedrake, and J. C. Duchi,
“Scalable end-to-end autonomous vehicle testing via rare-event simu-
lation,” in Advances in Neural Information Processing Systems, 2018,
pp. 9827–9838.

https://pyro.ai/examples/svi_part_iii.html
https://drake.mit.edu

	Introduction
	Related Work
	Generative Model
	Scene Grammars
	Scene Trees
	Concrete example: Table settings
	Concrete example: Shelves of Mugs

	Generation, Inference, and Training
	Generation
	Scene Grammar Parsing
	Training Procedure

	Results
	Planar Place Settings
	Learning the Distribution
	Density Estimation of Novel Scenes

	Shelves of Mugs

	Discussion and Conclusions
	References

