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Abstract Motivated by the limitations of local object trackers, we present
a formulation of the underlying point-cloud object pose estimation problem
as a mixed-integer convex program, which we efficiently solve to optimality
with an off-the-shelf branch and bound solver. We show that reasoning about
object pose estimation in this way allows natural extension to point-to-mesh
correspondence, multiple simultaneous object pose estimation, and outlier
rejection without losing the ability to obtain a globally optimal solution.
We probe the extent to which rich problem-specific formulations typically
tackled with unreliable nonlinear optimization can be rigorously treated in
a global optimization framework to overcome the limitations of other global
pose estimation methods.

1 Introduction

The robotic perception community has placed significant emphasis on design-
ing and improving perception modules for estimating the poses of objects in
a scene. These modules have enormous value for autonomous systems, in
that they reduce extremely high-dimensional sensor inputs to compact and
semantically loaded object state that can be consumed by a broad range of
motion planners and robot controllers.

Here, we are concerned with systems for estimating object poses from
point cloud information, e.g. from increasingly ubiquitous RGB-D cameras.
Myriad techniques perform pose estimation without an initial guess, e.g. via
sampling [11, 24, 28], feature extraction [7, 17, 34, 35, 38], template match-
ing [14], shape descriptors [1], and direct machine learning [36]. However,
because of the scale of the sensory data and the difficulty of the global op-
timization, few of these techniques run in real time, and those that do can
not make claims concerning reliability and convergence to global optimal-
ity. Given a reasonable initial guess, another broad class of pose tracking
techniques perform real-time object tracking. These techniques have grown
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extremely mature, boasting support for multiple articulated objects [31], de-
formable objects [32], contact [20], and tactile sensing [16, 18, 30].

In this work, we present a study of the core optimization problem that un-
derlies many of these techniques. We show that the pose estimation problem
for point clouds can be viewed through the lens of mixed-integer program-
ming, and that doing so leads to a problem formulation permitting opti-
mization to certifiable approximate global optimality via branch and bound
search. This formulation is written in a general form that is extensible to
handle explicit outlier rejection and multiple models, and can consume the
output of other local and global pose estimation algorithms as seeds to accel-
erate the global search – and in doing so, verify the optimality of the output
of those other algorithms.

2 Problem Formulation

We focus on an instance of the point-cloud object pose estimation problem
that involves finding the best configuration of a rigid-body model to explain
the data available from a sensed point cloud. The model configuration is
parameterized by the rotations R ∈ SO(3) and translations T ∈ R3 of each
rigid body. The point cloud sensor samples a set of Ns points S = {si}
from the geometry of the world. Many techniques represent the model as a
collection of Nm point features, which leads to an optimization penalizing a
norm (shown here in the single-object case):

min
R,T,C

∑
i∈[1,Ns]

∥∥Rsi + T −mC(i)

∥∥ , (1)

C(i) = argmin
j∈[1,Nm]

‖Rsi + T −mj‖ ,

where C(i) corresponds each scene point to the closest model feature accord-
ing to the desired norm.

Objectives like this one are reflected in many of the pose estimation tech-
niques in the literature. Key differences between these techniques lie in the
model representation and distance function used, the method of optimization,
and further additions to the objective beyond optimization of just a distance
function.

A critical feature of this problem is that the correspondences C and trans-
formation {R, T} are each independently sufficient to specify a solution to
this problem. Given the correspondences, the optimal transformation can
be computed in closed form [9]. Given the transformation, correspondences
can be backed out if desired via, e.g., closest point lookups on the model.
The famous Iterative Closest Point (ICP) algorithm, from which many ob-
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ject trackers are inspired, performs Expectation Maximization by alternating
between solving these two problems [3, 5].

3 Related Work

As described in Section 1, numerous techniques have been developed to es-
timate object poses without an initial guess. However, in order to make the
global optimization more tractable, most of these techniques rely on methods
like stochastic sampling and downsampling via feature extraction, and addi-
tionally may make assumptions concerning the quantity of outliers and prior
knowledge of object segmentations. At a high level, several broad classes of
approaches have been used to attempt global optimization of the point cloud
pose estimation objective directly on the complete raw point cloud, including
semidefinite programming (SDP) relaxation, and branch and bound search.

SDP relaxation of the rotation and correspondence constraints constrain
R to be within a convex hull of SO(3), and allow a continuous relaxation of
C [2]. This relaxation transforms the difficult nonlinear problem to a much
easier convex one. This technique has proven very powerful for solving the
Procrustes Matching (PM) problem, [22], and similar SDP relaxation can
be applied to the pose estimation problem with fixed correspondences (i.e.
an alignment problem) [4]. Their method boasts tightness up to a quantified
noise threshold, and is demonstrated aligning 800 points across 30 overlapping
point clouds. SDP relaxations have also proven powerful for performing large-
scale, noisy pose graph optimization over SE(3) [29]. However, we have found
that these relaxations are difficult to apply directly to the point-cloud pose
estimation problem, because the SDP relaxation of R ∈ SO(3) is very loose
and introduces trivial solutions to Eq. 1.

Other methods perform branch and bound over the space of rotations [13,
19, 27], or rotations and translations [37]. The latter – GO-ICP – accomplishes
our broad goal of providing globally-optimal pose estimates, but it does not
explicitly reason about correspondences. This manifests itself most clearly in
the handling of outliers: a user of GO-ICP must specify the expected fraction
of outliers ahead of time, and setting this parameter incorrectly can lead to
invalid results. Other techniques take direct advantage of the property that
it is easy to detect inconsistencies in small sets of correspondences in order to
prune branches in the search tree [10, 12]. Recent work has also demonstrated
a custom search strategy over object arrangements that is aware of the order
of object occlusion and its effect on the independence of objects an alignment
objective [25]. This work explicitly reasons about outliers, but has not been
scaled beyond planar object arrangements.

The transform and correspondence information are tightly coupled in the
pose estimation problem. Thus, a formulation that reasons about point cor-
respondences and model transformations simulataneously stands to benefit
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from this interplay. We present such a formulation based on mixed-integer
programming [26]. While even the restricted class of mixed-integer linear pro-
grams (MILPs) is itself NP-hard, mixed-integer programs (MIPS) that are
convex in their continuous and integer variables are amenable to branch and
bound search that can be very efficient, given the right problem structure.
These algorithms are implemented by powerful off-the-shelf solvers capable
of solving problems with millions of variables and constraints [15].

4 Mixed-Integer Problem Formulation

Our formulation of this problem uses a generalized mesh model to represent
the objects, for the reason that the mesh model is significantly more compact
than a traditional sampled point model. Given a model defined byNm vertices
and Nf faces, where each face is defined as an affine combination of a subset
of coplanar vertices, as well as

• scene points S = {si}, i ∈ [1, Ns],
• model vertices M = {mj}, j ∈ [1, Nm],
• a binary face membership map F ∈ {0, 1}Nm×Nf ,

the generic pose estimation problem is equivalent to finding a rotation matrix
R, a translation matrix T , a combination matrix C ∈ RNs×Nm , and a face
correspondence matrix f ∈ {0, 1}Ns×Nf that satisfy the following.

minimize
R,T,C,f

1

Ns

∑
i∈[1,Ns]

∥∥Rsi + T −MCTi
∥∥2
2

subject to R ∈ SO(3),∑
j∈[1,Nm]

Ci,j = 1, ∀i,

∑
k∈[1,Nf ]

fi,k = 1, ∀i,

0 ≤ Ci,j ≤ FjfTi , ∀i, j,
fi,j ∈ [0, 1], ∀i, j.

Ci and fi are the ith rows of C and f , and Fj is the jth row of F . The affine
combination coefficient for the ith scene point and jth model point Ci,j is
constrained to be inactive unless one of the faces for model point j is active
according to its face map Fj and the face selection fi. Scene points can only
correspond to a single model face. Note that, save the constraint R ∈ SO(3),
this problem is already a mixed-integer convex (quadratic) program. In the
next section, we describe how to approximate the constraint R ∈ SO(3) to
completely express this problem in a mixed-integer convex way.
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4.1 Mixed-Integer Linear Approximation of R ∈ SO(3)

We approximate the R ∈ SO(3) constraint with a piecewise-convex outer
approximation in the spirit of the McCormick Envelope [23]. For each mem-
ber of the rotation matrix Ri,j , we introduce new binary variables to assign
Ri,j to one of Nk partitions of [−1, 1]. These binary variables are used to
activate region-specific constraints approximating the constraints implied by
R ∈ SO(3), based on the formulation in [6]. The constraints approximated
are RTR = I and R1 ×R2 = R3 ⇐= =⇒ det(R) = +1 for the sets of rows
and columns {R1, R2, R3} of R.

For example, if we denote a column of R as [x, y, z]T ∈ R3, RTR = I
implies that this vector should have a unit length and hence lie on the sur-
face of the unit sphere. The partitioning of x, y, and z can be geometrically
interpreted as cutting the surface of the unit sphere by planes parallel to
either xy, xz or yz planes, as shown in Fig. 1. The intersection between the
planes and the sphere partitions the surface of the sphere into small regions
(Fig. 2). For each surface region, we can readily compute a convex polytope
A[x y z ]T ≤ b containing the region (Fig. 3). This linear constraint is acti-
vated by the binary variables denoting in which interval the variables x, y, z
lie. Similar constructions are used to approximate the remaining orthogonal-
ity and cross-product constraints.
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Fig. 1: We cut the first octant of the
sphere with regularly spaced planes nor-
mal to each axis. The intersections be-

tween the planes and the sphere (red
arcs) partition the surface of the sphere

into smaller regions.
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Fig. 2: The first octant of the sphere
surface after partition in Fig. 1. The
shaded surface region is one of the parti-

tions.
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Fig. 3: The polytope A[x y z]T ≤ b (light blue region) containing the shaded surface
region in Fig. 2, viewed from two perspectives. We relax the constraint that the vector is

on the shaded surface area, to that the vector lies within the polytope.
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5 Extensions

5.1 Handling Outliers

Correct outlier handling is critical for object pose estimation algorithms, as
point clouds in the wild invariably include unmodeled points from nearby
objects and support surfaces in the scene. We extend this formulation to
allow scene points to be explicitly classified as outliers.

We first switch from the L-2 to the L-1 norm in our error metric, so that
we can include the distance to each point in the set of linear constraints.
We introduce an intermediate variable φi for each scene point si storing the
L-1 distance from si to the matched point on the model. Additional slack
variables αi ∈ R3 are introduced to implement 3 absolute values within the
L-1 norm for each scene index i. We bound φi with a constant maximum
allowed L-1 distance φmax as a threshold (and penalty) for classifying points
as outliers. Finally, we add a new binary variable oi for each scene point
indicating that that scene point is being considered an outlier.

Extending the mesh-model MIP formulation from Section 4, we now solve
the MILP (for large M):

minimize
R,T,C,f,φ,α,o

min
1

Ns

∑
i∈[1,Ns]

φi

subject to Relaxed R ∈ SO(3),

φi ≥ 1
Tαi,

φi ≥ φmax oi,
αi ≥ +

(
Rsi + T −MCTi

)
−Moi, (2)

αi ≥ −
(
Rsi + T −MCTi

)
−Moi, (3)∑

j∈Nm

Ci,j + oi = 1,

∑
k∈Nf

fi,k + oi = 1,

0 ≤ Ci,j ≤ Fj fTi ,
φi, αi ≥ 0,

fi,j , oi ∈ {0, 1}.
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5.2 Handling Multiple Objects

Using similar machinery to that employed to correspond to outliers, we
can extend our formulation further to support multiple objects. We can ex-
tend the formulation to simultaneously optimize over multiple rotations and
translations {R1, T 1}, ..., {RNb , TNb} for Nb separate bodies. Given a map
B ∈ {0, 1}Nb×Nf , where the (i, j)th entry indicates if face j is a member of
body i, we can replace constraints (2) and (3) with the disjunction

∀i ∈ Nm, k ∈ Nb :

αi ≥ +
(
Rksi + T k −MCTi,:

)
−M(1−Bk,:fTi,:),

αi ≥ −
(
Rksi + T k −MCTi,:

)
−M(1−Bk,:fTi,:).

where the expression M(1−Bk,:fTi,:) deactivates the constraint if the current
assignment f does not assign scene point i to a face on body k.

5.3 Using Other Pose Estimation Methods as a
Heuristic

A benefit of optimizing directly over the fundamental problem addressed by
a wide class of pose estimation methods is that we can take advantage of
solutions generated by those other methods by consuming them as candidate
feasible solutions. The branch and bound algorithm (and solvers that imple-
ment it) is able to asynchronously consume feasible solution guesses as nodes
in the search tree. These new feasible solutions provide upper bounds on the
global optimal cost, which are used to prune bad nodes. Because a significant
amount of search time is spent finding better feasible solutions (as can be
seen in the results in e.g. Figure 4), getting better feasible solutions from
faster but less-consistent pose estimation methods can improve the runtime
of the global optimization. This ability also means that this formulation can
be used to post-process the output of methods that trade consistency for
efficiency in order to guarantee stable results without completely discarding
the efficiency of the original method.

Given the MIP formulation described above and a candidate pose {R̂, T̂}
generated by any method, one can extract C, f , φ, and α via closest-point
queries against the mesh models. The value of R̂ directly determines which
binary variables should be active in the piecewise-linear relaxation of R ∈
SO(3).
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Fig. 4: Pose estimate produced by our MIP formulation with a cube model
of 12 triangular faces, given 15 scene points with 5 outliers. The solution
shown here has optimal cost that matches the optimal cost of the ground
truth solution. Optimality of this solution was certified to a MIP gap of
5%. Top left: Ground truth pose. Top right: Pose estimate using our MIP
formulation. Bottom: Convergence time of upper and lower bounds across
time for the MIP solution.

6 Results

We executed several experiments to verify our formulation on synthetic data.
In addition, we performed exploratory experiments on real data to probe the
practicality of this and competing approaches to global pose estimation. To
perform these experiments, we implemented both formulations in C++ and
Julia, relying on the Drake [33] and JuMP [8] symbolic optimization libraries
respectively. No performance difference between the libraries was observed.
We used Gurobi 7.0.2 [15] as a backend to solve the resulting MIPs.

6.1 Experiments on Synthetic Data

6.1.1 General Performance

We generated a synthetic point cloud from a cube model with a side length
of 1 unit. We generated 15 scene points, with 10 sampled randomly from the
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Fig. 5: The time scaling of the convergence time to a MIP gap of 5% as
scene, model, and outlier complexity is varied. Each point represents a com-
plete solve of a problem instance. Scene points were sampled uniformly from
the surface of a cube described by varying numbers of triangular faces. The
verticle red bar indicates the condition that is shared between each experi-
ment (i.e. 18 scene points, 12 model faces, 33% outliers). Left: Solve times
across a varying number of scene points, with 12 model faces and 33% inten-
tionally injected outliers. Vertical blue bars indicate solutions that reached a
maximum timeout of 1200s without converging to a MIP gap. Middle: Solve
times across a varying number of model faces, with 18 scene points and 33%
outliers. Right: Solve times across a varying set of outlier ratios, with 18
scene points and 12 model faces.

surface of the cube at its ground truth pose, and 5 more generated randomly
in the area around the cube. We included outliers in this test case to illu-
minate how the solver performs in terms of progress of the upper and lower
bounds – without outliers, the optimal error would be close to the trivial
lower bound of 0. An optimal fit in this configuration has an optimal average
saturated L-1 error of 0.033: the 2

3 of points that are inliers have L-1 error
of 0, and the 1

3 of points that are outliers have L-1 error of ≥ φmax = 0.1 by
construction.

Our MIP formulation converged to the optimal solution and certified its
global optimality to within a MIP gap of 5% (Figure 4). This desired MIP gap
is tunable, and trades off with runtime. This gap of 5% was chosen arbitrarily,
and corresponds to an optimality gap of 0.033 × 0.05 = 0.00165 average L-
1 error over the scene points. We used 4 binary variables per element of R.
The largest elementwise infeasibility of RTR = I being 0.020, and det(R) was
1.002. These values reflect that the approximation of R ∈ SO(3) is reasonably
tight.
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6.1.2 Characterization of Runtime

To characterize the time scaling of this algorithm with respect to model com-
plexity, we recorded the runtime of the solver across a set of synthetic scene-
model pairs with varying scene, model, and outlier complexities (Figure 5).
Intriguingly, the characterization example had little noticeable runtime vari-
ation when model complexity was increased, even though the total problem
size and number of binary variables scales linearly with the model complexity.
It is possible that, since only the representation of the underlying geometry
is changing (and not the underlying geometry itself), either the post-presolve
MIP or its LP relaxations are not significantly different between these cases,
in such a way to lead to similar runtimes. The case of zero outliers showed
significantly lower runtime than the case of nonzero outliers, as the case of
zero outliers has a trivial lower bound of 0 and thus an easier branch and
bound search. In the case of nonzero outliers, however, there was no clear
relationship between outlier ratio and runtime. These two properties make
scaling this method to larger examples more hopeful, though it is unclear if
the relationships will continue to hold for higher numbers of scene points and
significantly more complex models.

6.1.3 Outlier Rejection and Multiple Models

To highlight the extensions of our formulation, we generated similar synthetic
point clouds to test the outlier rejection and multiple model cases, with re-
sults shown in Figures 6 and 7. To avoid unreasonably long runtimes, we had
to constrain rotations and limit the search to be over translations and cor-
respondences. R was thus constrained to take the value of the ground truth
rotation.

6.1.4 Upper Bounds from ICP

To demonstrate that solutions generated from other efficient but non-global
methods can be leveraged to make our global optimization faster, we im-
plemented an ICP-based heuristic for generating candidate feasible solutions
online during the optimization. This procedure is directly inspired by GO-
ICP [37]. Our solver maintains a queue of feasible solutions found by the
branch and bound algorithm, and runs point-to-plane ICP with proportional
outlier rejection on each feasible solution in a parallel thread alongside the
global optimization solver. If the ICP produces a solution better than the best
currently held by the solver, the ICP solution is handed to the solver as a
heuristically-derived feasible solution. This procedure significantly improves
runtime, as is shown in Figure 8.
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Fig. 6: Pose estimates produced by our MIP formulation for a cube model of
12 triangular faces, given 100 scene points, with a varying number of them
being outliers: Left: 50% outliers, converged in 50s. Middle: 80% outliers,
converged in 400s. Right: 90% outliers, converged in 2000s. Rotations were
frozen to the ground truth rotation in order to produce these solutions in
reasonable time. All solutions shown here have optimal cost that matches
the optimal cost of the ground truth solution and align with the ground
truth pose. Optimality of these solutions were certified to a MIP gap of 5%.

Fig. 7: Pose estimates produced
by our MIP formulation simultane-
ously fitting two box models to 100
scene points with no outliers. Ro-
tations were frozen to the ground
truth rotations in order to produce
these solutions in reasonable time.
Convergence took 1100s.

6.2 Experiments on Real-World Data

To illustrate how this method compares to other global pose estimation meth-
ods when applied to real-world data, we provide experiments comparing the
performance of GO-ICP [37], Super4PCS [24], and our method (MIP) on a
set of examples drawn from point clouds collected from office and labora-
tory environments [21]. Examples were generated by cropping each complete
point cloud (Figure 9) around the object of interest. No additional cleanup
was performed to remove outliers or other clutter, and each method was sup-
plied with only this raw cropped point cloud. GO-ICP and Super4PCS were
chosen as representative methods from the approaches of branch-and-bound
search and sampling methods respectively. The parameters of each method
were hand-tuned to improve performance, but held constant across the entire
dataset. In order to keep timings reasonable, we terminated our MIP solver
after 60 seconds and took as its answer its current best feasible solution. We
used ICP to provide candidate feasible solutions as described in Section 6.1.4,
resulting in the MIP system functioning as a hybrid method that used ICP
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Fig. 8: Comparison of the upper bound convergence behavior of the MIP
formulation with 50 scene points and 0 outliers fitting a box model, with and
without an ICP algorithm generating novel feasible solutions in parallel. The
lower bound is omitted, as it is trivially 0 for the 0 outlier case.

Fig. 9: An example pointcloud from our testing dataset. The ground-truth
location of the object of interest in the pointcloud (in this case, the drill on
the table) is known precisely. Test cases are drawn by cropping the point
cloud around the known object location with varying crop sizes.

to make local progress, while using MIP heuristics and branch-and-bound
search to generate new seeds for ICP to explore.

While each method was successful on a number of examples (e.g. Fig-
ure 10), this dataset proved extremely difficult for all methods (Figure 11).
In almost all cases, incorrect solutions were the consequence of clutter and
incorrect outlier handling.
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Fig. 10: Example performance of GOICP (Left), our solver’s best solution
after 60s (Middle), and Super4PCS (Right), given 25cm crops around the
true object location without additional outlier removal. The ground-truth
object location is shown in purple.

7 Conclusion

The formulations we present can be used to find certified ε-globally-optimal
solutions for small numbers of scene points and outliers, even in the face
of combinatorial complexity. The solver is capable of finding and certifying
the right solution, even in very high outlier ratios, and can optimize with
multiple objects seamlessly. That this technique can so easily incorporate
hypotheses from other methods makes it a candidate for being an offline
verification technique for the results from other efficient but inconsistent
pose estimation methods. This functionality is critical when considering the
kinds of highly ambiguous point clouds that result from highly cluttered
scenes, and from tactile sensing. However, pilot experiments on real data
from natural cluttered scenes results underline how elusive reliable global
object pose estimation in complex, practical data remains. A truncated form
of our method can hold its own in terms of performance against competing
global pose estimation techniques, when compared on difficult, unsegmented,
colorless point clouds. Further work is required to remove the early-stopped
requirement and make it tractable to perform the branch and bound search
to convergence for practically sized point clouds and models, as well as to
incorporate RGB and other feature cues.

By framing the core point-cloud object pose estimation problem as a
mixed-integer convex program, our solution method makes clear what it
means to examine partial relaxations of the problem; and in doing so, makes
it possible to verify that solutions are approximately globally optimal, or
provide a search region that may contain better solutions. Further, the class
of mixed integer convex programs seems sufficiently rich to capture many
of the nuances of this problem – [6] shows that, in a similar mixed-integer
convex framework with maximal coordinate rigid body configurations, it is
possible to enforce complex kinematic constraints including revolute joints
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GOICP MIP Super4PCS

% correct 13.0% 12.6% 8.9%

Fig. 11: Histogram of translation and angle error of pose estimate of each
method across a set of 246 test instances. The MIP results presented here were
generated by taking the best solution found by the branch-and-bound search
after 60s, and thus are not certified ε-optimal. While the object-centered
cropping made the translation easy to estimate, the extreme clutter of the
examples greatly injured all methods. Approximate rotational symmetries in
the most common object (a drill) caused many erroneous solutions with 180-
degree error, emphasizing the vulnerability of even these global methods to
confusing clutter. Using a threshold of 5cm translation error and 10 degree
angle error, only approximately 10% of examples were estimated correctly by
a given method.

and nonpenetration with an environment. While object tracking algorithms
(e.g. [30]) have had great success taking advantage of articulations, nonpen-
etration, and free-space information to combat ambiguity and refine their
results, there remains a great opportunity for global pose estimation algo-
rithms to utilize these additional sources of information. We hope that the
tools and techniques we have presented will lead to more reliable and in-
formed algorithms in these directions that can tackle object pose estimation
in the complex and occluded scenes that are unavoidable as our robots move
into the natural world.
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