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Abstract

In this thesis, a hybrid model for a passive 2D walker withds@and point feet is presented. The step
cycle of the model has two phases of continuous dynamicswithean unlocked knee configuration and a
second one with a locked knee configuration. These stagesateled as three-link and two-link pendulums
correspondingly. The model switches between the two stagksee-strike and heel-strike, which are both
discrete events modeled as instantaneous inelasticionsis

The dynamics of this model were fully derived analyticalyurthermore, a stable gait was found given
a set of physical parameters and initial conditions. A bagbility analysis of this stable limit cycle was
performed around the fixed point of the Poincaré return nxapnéned right after heel-strike.

This thesis also presents the design and construction afr@ptobot based on this kneed walker model,
as well as a careful examination of its correspondence tathtéon predicted by the model simulation. The
goal is to be able to study the nonlinear dynamics of simplilgnamic models which are also physically
realizable, in order to build robots based on them in a mg®rous and reproducible manner.

The work presented here aims to bridge the gap betweenrexisteoretical models and successful ex-
periments in passive dynamic walking.

Thesis Supervisor: Russ Tedrake
Title: Assistant Professor
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Chapter 1

Introduction

This thesis presents a mathematical model for a simple fme@ukional planar kneed walker, its stability

analysis and comparison to data collected from a robot hfiér the model. The model is based on passive
dynamic walking principles. | aim to bridge an existing gagtvileen successful theoretical models and
experimental results by proposing a model that is both sneplough to study its dynamics and stability

without any linearizing, and complex enough to be able tédmaurobot faithful to the model’'s dynamics.

1.1 Motivation

As robots become more ubiquitous in our daily lives, enaptivem to move efficiently through their envi-
ronments is particularly important. Most of today’s robote simpler locomotion solutions using wheels or
more than two legs, as these achieve stability more eagily tilvo-legged solutions. However, in order for
robots to be fully incorporated into our world, they must lideato move comfortably in a world built by

humans, that is one built for bipedal locomotion.

1.1.1 Conservative Walking

Walking is inherently an underactuated problem, which rseaalking systems possess less actuators than
degrees of freedom. Due to their free-moving feet, walkarmot always produce arbitrary ground reaction
forces at their ankles. Since they are not bolted down, tigghtause the robots’ feet to roll over and cause
the robot to fall.

In maintaining static stability, a robot bypasses the probbf underactuation by simply avoiding posi-
tions where the ankles cannot produce the adequate groantiome forces. If a robot has many legs, this
constraint is not too restrictive, because the robot camlie or more legs and still maintain a reasonable
range of motion that is statically stable.

However, in the case of two-legged walking, it is particlylaifficult to achieve stability on one hand
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and efficiency on the other. Given a smaller polygon of supduipeds need to constrain their motion
considerably to achieve static stability at all times dgriheir walking cycle. This results in high energy-
losses during walking and very slow and awkward movementadivel' hey are also not capable of walking
over any sort of rough terrain, as keeping a foot flat on thegds necessary to exert the necessary torques

at the ankles.

1.1.2 Dynamic Stability

Converselydynamic stabilityallows a system to have the ground projection of its centenads leave the
support polygon as long as it re-stabilizes again befoliafpbver. By allowing this, dynamic gaits can allow
more mation, but we then need other effective measures toestability.

Many of today’s most successful bipeds are controlled witkifn-control but use the system’s center
of pressure instead of the center of mass constraint. Thercehpressure point is where all the ground
reaction forces sum up to give a force but no moment. By kegthia center of pressure close to the center
of the foot, these robots can avoid rolling over on their feet

Honda’s ASIMO robot13], shown in Figure 1-1 walking down a set of stairs, is a verycessful and
well known example of such robots. It can kick a soccer balel as walk up and down stairs. However,
these precise and impressive results are obtained withhacbigt. ASIMO is considered to be about 20 times
less efficient than humans are in walkif&. This high rate of energy consumption propagates to deedeas
performance in many other ways. ASIMQO's battery pack whiakes up the majority of the robot’s torso and
mass, only lasts for 26 minutes. The maximum walking speed$dMO is 0.56 m/s. Moreover, ASIMO has
only been shown to work on completely flat ground, given tklatiose-to-static-stability approach breaks
down in rough terrain.

In the past few decades, in trying to find more dynamic gp#ssive dynamic walkin@®DW) has been
developed and has emerged as an important discipline of ldgemotion research.

Passive dynamic walkers exhibit a stable gait when placeal @dmwnward slope with no actuation. The
kinetic energy gained from going down an incline balancesexactly with the energy lost in the various
collisions during the walk and other energy losses. Thestgrys demonstrate how the inherent dynamics of
walkers can (and should) be exploited to achieve naturatardyy-efficient gaits.

Instead of explicitly controlling the trajectory of a systewe can let them simply ‘fall’ and have the
natural dynamics of the system solve the control problemWRBsults in very natural-looking walks. This
makes sense if we think of how we humans walk. As we walk, @afyedownhill, we do no stop ourselves
at every step. On the contrary, we let our body fall forwardystopping ourselves at each footstep.

While PDW is a powerful idea, its main drawback is stabilifyjhe natural passive limit cycles of the
systems are highly susceptible to their specific constractind any slight perturbations during the gait.
Currently, manual fine-tuning and ‘a good hand’ are necgdsastart the robot in the right initial conditions

for a successful trial. Simple control systems for thesekeral have been designed in order achieve more
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Figure 1-1: Honda Asimo

stability and also flat-terrain walking.
However, in order to achieve more rigorous and consistentitewith PDW we need to fully understand
the nonlinear dynamics of these systems and their stahititytry to approximate the theoretical models of

PDW to real physical systems.

1.2 Contributions and Organization

Results from passive dynamics walking have fallen maintg ome of two categories: on one hand, there
are a number of simple dynamic models of walking [5, 11, 91 an the other, a number of impressive
machines have successfully been built [15, 16, 7]. Surpgigj these results have emerged somewhat in-
dependently. Most experimental successes have resuttedtfre designers’ intuition and relied more on
mechanical tweaking than on a close correspondence withagtecal model.

The power of the dynamic models is their simplicity. The esg wheel [5, 26] is analytically tractable.
There exists a closed-form solution for the step-to-stéyrmemap and a complete analytical expression for
the basins of attraction and convergence to the fixed poitgh the compass gait [11] and the simplest
walking model [9] (which has the limiting dynamics of the cpass gait with the leg masses approaching
zero) are low-dimensional models and amenable to exhaustimputational analysis.

These models have point feet and point masses and assurastimebllisions which cause an instan-
taneous transfer of support. These straight-legged madidsignore any premature ground contacts (foot
scuffing). In contrast, experimental passive walking maebitypically have curved feet, which increase their

basins of attraction [25] and have some mechanism for aictgdeot clearance (frontal plane oscillations
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and/or knees). Collisions with the ground have some elgstiy design and some gaits include a short
double-support phase.

My goal was to take some of the artistry out of successfulipastynamic design by understanding their
dynamics. In this thesis, | describe a mathematical modedldped for a two-legged planar biped with knees,
using the concepts of passive dynamic walking. | also prteberstability analysis of the model, as well as
the experimental results of a physical robot matching thigleh This thesis work tackles the dichotomy
between the simplified models and existing experimentakiwglmachines. Specifically, the contributions

of this thesis are the following:

e A simple model of a planar passive dynamic walker with pogettfand knees, making it both a logical

extension of the compass gait model and a physically rddézaodel

e A basic dynamic systems analysis of kneed walker modeludinf local stability analysis and an

approximation to the basin of attraction, as well as a compamwith those of the compass gait model

e Processing and parameter estimation of capture data frermtition of a robot built to match the

kneed walker model

In terms of organization, Chapter 2 gives an overview of tlstimportant passive dynamic walking and
other relevant results in the field, both in theory and experit. Chapter 3 is a detailed description of the
proposed kneed walker model. The model’s stability angligsklso presented here. In chapter 4, | discuss the
physical robot built based on the kneed walker model, as agethe various difficulties which arose during
its construction. | also discuss the data collection an@gssing from the test runs of this robot. Finally,

Chapter 5 summarizes the conclusions drawn from the praj@tproposes directions for future work.
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Chapter 2

Passive Dynamic Walking

In 1990, McGeer published a seminal paper [15] introdudiregioncept of passive dynamic walking (PDW).
The basic idea behind passive dynamic walkers is that theyghest in the inelastic collisions is balanced
exactly by the kinetic energy gained going down a ramp. Thdsva statically unstable walkers to achieve
dynamically stable limit cycles, resulting in a very natnad anthropomorphic motion without any external
energy input.

McGeer demonstrated these ideas by building a real robotcthdd walk stably down a ramp using
stepping stones to avoid foot scuffing. He also publishedarskpaper describing a passive dynamic walker
with knees[16].

2.1 Theoretical models

To understand how a stable gait is achieved, simplified nsoafeduch systems have been studied in detail.

2.1.1 The Rimless Wheel

The simplest mathematical of passive dynamic walking isritméess wheel, as shown in Figure 2-1. The
rimless wheel has rigid, massless spokes and a single pasg at the hip. The foot collisions are modeled
to be perfectly inelastic while conserving angular momemtiurthermore, it is assumed that there is no slip
in the stance foot and that the stance leg is switched irstanusly. The system exhibits periodic motions at

different velocities, given a certain leg length and slopgle.

With the assumptions made, the eigenvalues of the limitecgah be solved analytically, and stability of
the system is proven. The nonlinear dynamics and stabilitgeorimless wheel were studied extensively by

Coleman and Ruinal[5, 4].
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Figure 2-1: The Rimless Wheel model

2.1.2 The Compass Gait

If we take only two legs from the rimless wheel and place a pintjbetween them, allowing the legs to
swing freely, we arrive at the next model shown in Figure 2h,compass gait. For this case, the legs are
modeled as point masses in the position of the center of mdssh are responsible for swinging the leg
forward. The heel-strikes are modeled as inelastic cofisiconserving angular momentum. The stance and

swing legs switch instantaneously during the collision a#l te go into the next step.

i

Ee
m

st

Figure 2-2: The Compass Gait model

This model, despite being extensively studied [10, 11]pissolved analytically. In numerical integration
methods, the simulation of this model shows a stable limiteeyAlthough it is hard to predict what gait it

will end up in, it is able to hold these indefinitely.
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Figure 2-3: The Ballistic walker

A special case of the compass gait, called the simplest walleces the masses at the legs and makes
them infinitesimally small[9, 20, 14, 27]. These further plifications allow the system to be characterized
with only one parameter, the ramp slope. It is also importanoint out that during the swing phase, the
compass gait possesses the exact same dynamics as the @&, 22, 2], an underactuated two-link
manipulator with only one actuator at the second joint (athip, for this case). The study and control of

such system then helps us describe the underactuatedprobfemon to all forms of robotic walking.

2.1.3 Kneed Walker Models

The next natural step as we build up the complexity of our mglknodes, is to look at passive kneed
walking. Adding knees has other benefits as well, such agwicigi foot clearance and a more human-like
gait. Moreover, the knees could potentially not just avaidtfscuffing but also help make bipeds that are
capable of clearing rough terrain.

Mochon and McMahon presented the ballistic walker[17, &8iich is shown in Figure 2-3. The ballistic
walker is a mathematical model of the swing phase of walkifipe entire stance leg is represented as a
pendulum fixed at its origin, assuming that the knee does e las the other leg is swinging forward. The
swing leg is modeled as two shorter links connected to thss dine, which start out straight with respect to
each other and bend as the leg swings forward. This motiomrscompletely passively.

Given that it is started in an appropriate configuration ftmevard and bending motion of the swing leg
are due entirely to gravity. This model only studies one fteghe walker and does not model the impacts of
the knee or foot at all. Therefore, the ballistic walker doesbreach the issue of stability at all. Nevertheless,

it characterizes the one-step cycle of a planar walker wittels.
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Another kneed biped model [29, 19, 1] uses a knee-consfais to lock the knee joint after it swings
forward and a velocity field controller to find an active cyalkich exploits the natural gait. However, there
is no stability analysis of the system nor an experimensilftr the specific model. Yamakita and Asano did
build a kneed walker robot, but this one had curved feet armh&ral system to help it walk.

This thesis extends these studies by performing a compyet@nics analysis comparable to the studies

of the rimless wheel and compass gait models for an equivaledel with an additional degree of freedom.

2.2 Experimental Results

A number of stable walkers [15, 16, 6, 28] have been built.tRermachines without knees, stepping stones
are used to avoid foot scuffing which requires special pugpasain. Similarly, most of these walkers possess
curved feet which help them achieve a stable gait. While #&¢ &id in balance and stability, they further
distance these machines from existing theoretical models.

In order to make energy-efficientrobots based on the ideassipe dynamic walking, which are also able
to walk on level-ground, Collins, Wisse and Tedrake haveratle actuated versions based on the McGeer
walkers.

Collins and Wisse [6, 28] have each built their version of atuated kneed walker. Both robots have
careful mechanical designs for the foot shape, actuatingchas and knee locking mechanisms in order to
achieve a stable gait. In the case of the Collins robot, tHkex#s highly sensitive to change in their physical
parameters and initial conditions and would very easillifab an unstable region. The Delft robot built by
Wisse has a greater stable region.

The controls strategies implemented on these robots wsrgrdel to enable level-ground walking, but do
not necessarily make them more robust. Wisse’s robot, MfiEexample, simply uses the actuators to pull
the swing leg forward when a heel-strike is detected. Thimaienergy into the system as gravity would
in a downward ramp. Both MIKE and Collins’ Cornell walker aleown in Figure 2-4. The stable gaits
exhibited in these models with very simple control stragegmply that much of human walking depends
on the morphology and not necessarily only on motor confrbls highlights the importance of optimizing
certain physical parameters to give the robots an adequatghmlogy for a stable gait.

Tedrake [24], on the other hand, designed Toddler, a 3D bigech used an online learning controller
that would readjust to find a stable gait under changing d¢mmdi by using reinforcement learning methods.
The adaptive nature of the controller enabled the robot tmbest to disturbances in the environments as it
quickly re-learned an approximation of the optimal polioy the new condition.

Using an actor-critic algorithm, Toddler approximates ¢iptimal control policy by climbing a gradient
descent to improve performance. The intuitive notion beltivis idea is that there is a cost function which
rewards the desired behavior, which is a stable motion irfritreal plane (sagittal plane stability is taken

care of with velocity control). Given this cost function aad estimate of the value function using a function
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Figure 2-4: The Cornell walker built by Collins, Delft Unirgty’'s MIKE built by Wisse

approximator, he compared the actual cost with the one thatpwedicted and readjust the weights in the
estimate accordingly. This readjustment of the weightaimaly makes our function approximator converge
to a controller that is very close to the optimal control.

The key advantage to this controller, however, is that itpests to different situations and it does it
fast enough to be implemented online. Toddler successfidliked on carpets after having done the learn-
ing on a tiled floor, performing better than the feedback waler. This learning controller is also a better
approximation of how animals adapt their behavior to fings&attory walking gaits under different circum-
stances. From the way we move ourselves to how we see animatsdifferent terrains, we can conclude
that a similar adaptation of a control policy is necessarystecessful animal locomotion, even when given
a well-designed but still fixed anatomy.

The kneed walker robot we built is unactuated in terms of atkimg cycle (it possesses motors but only
to trigger the knees at the right times), so that we can matefith the theoretical model. In this way, we
can see how varying the different physical parameters aartirgj it at different initial conditions affects a
point-foot walker with a small basin of attraction. Everlyahe goal would be to use a similar form of

reinforcement learning to achieve a larger stable regiothis walker.
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Figure 2-5: Toddler, a 3D biped with optimal control
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Chapter 3

Kneed Walker Model

The kneed walker model is an unactuated hybrid system placeddownward incline with a fixed angje

from the horizontal plane. A diagram of the model is showniguFe 3-1 with its physical parameters.

Figure 3-1: The Kneed Walker

From the figure, we note that all angles are defined globaliynfihe vertical axis. Each leg has two point
massesn for the upper leg (thigh) andh for the lower leg (shank). There is also a mass at therhip,
Also, the link lengths are composed as follows: lerigth |; + g, Is = a; + by andl; = a, + by.

At the start of each step, the stance leg is modeled as a dinglef length L, while the swing leg
is modeled as two links connected by a frictionless joint.e Bystem is governed by its unlocked knee
dynamics until the swing legs comes forward and straightemswWhen the leg is fully extended, kneestrike

occurs. At this point, the velocities change instantly du¢he collision, and immediately afterwards, we
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switch to a two-link system in its locked knee dynamics phase

The system remains in its locked-knee phase until the svaogHits the ground. We model a heelstrike
event here with the appropriate velocity changes. Aftex¢bilision, the system returns to its initial unlocked

swing phase. A diagram of the entire step cycle is shown inreig-2.

Itis also important to note that for the case when the hdledsticcurs before kneestrike (i.e. when the foot

hits the ground with a bent leg), the robot will not be ablegoaver passively. Therefore, this is considered

a falling state.

Heel-strike Knee-strike

Figure 3-2: Stages in the step cycle for kneed walker

3.1 Continuous Dynamics

3.1.1 Unlocked Knee Dynamics

During the unlocked swing phase, the system is a three-leridplum, like the ballistic walker [17, 18].
The full equations of motion for such a system are derivedgikiagrangian formulation, which is clearly
described in [21]. The dynamics are shown in the standard &fplanar manipulator dynamics in Equation
3.1. The specific inertia, velocity-dependent and grawitetl matrices for the three-link pendulum are given

in Equation 3.2.

H(q)d+B(q,9)q+G(q) =0 (3.1)
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Hi1 Hio Hiz
H=|Hi2 Hx  Ha (3.2a)
Hiz Ho3 Has

0 Mootz hissds
B = |hp110s 0 h2330s (3.2b)
_h311Q1 hz220 0
[ (meay + M(ls-+ 82) + (my + M+ m)L)gsin(ay)
G= (mebz + mlt)gsin(dz) (3.2¢)
I meb1gsin(da)
where,
Hi1 = msaZ + my(ls+ 82) + (Mh + ms+ my) L h122 = — (M2 + mdlt)Lsin(gz — 02)
Hip = —(mbz + msly)Lcoggp — 1) hy33 = —mgbsL sin(gs — qg)
Hiz= —mgoL cog(gz — 1) h211=—h122
Hao = mb3 + myl? h233 = mgltby sin(ds — d2)
Has = mgltb; cogqz — g2) h311=—Ms3
Has = msbf 322 = —hp33.

Given appropriate mass distributions and initial condisiothe swing leg bends the knee as it swings
forward. | found in simulation that a ratio of at least 1:5we¢n the masses of the lower and upper leg
links is needed for this to happen, since the heavier uppagiles the relative moments of inertia in the leg
links necessary for a stable gait. At the instant the lomgsteaightens out and aligns with the upper leg, a

kneestrike collision is modeled.

3.1.2 Locked Knee Dynamics

After the kneestrike, the knee remains locked and we switclotible-link pendulum dynamics. The remain-
der of the swing phase occurs with straight legs. The dynafoiche newly-locked system are exactly those
of the compass gait dynamics but with a different mass cordigan. They are derived using Lagrangian

formulation and shown in Equation 3.3 for completeness.
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Hi1 Hio

H= (3.3a)
_H12 Hoo
[ 0 he

B— o (3.3b)
—h¢a 0
= a. s+ a; L)gsin

G (msag +my(Is+ 2)+(mq+m4_rms) )gsin(a) (3.30)

(mybz + m(ly + by ) )gsin(gz)

where,

Hi1 = msad + m(Is+ az)% 4 (my + ms+ my) L2
Hio = —(mbz + mg(lt + b1))Lcogaz — a1)
Haz = mb3 + mg(ly + by)?

h= —(mby + mg(lt +by))Lsin(gs — gz).

When the swing foot touches the ground, we model anotheradessevent, the heelstrike collision. After

this, we switch the stance and swing legs. This completedl atbp, and we begin a new step using the

three-link unlocked dynamics.

3.2 Discrete Collision Events

The collisions mentioned are the kneestrike and the héasthese are modeled as instantaneous collisions.
The post-collision velocities are calculated using covesgon of angular momentum about the appropriate
joints, given the pre-collision velocities. A more detdilexplanation of how these conservation equations
are derived is explained in Appendix A.

Furthermore, we assume there is infinite friction with anteaxal surface, such that the system’s config-

uration remains the same during the instantaneous callisio

3.2.1 Kneestrike

Instead of using a constraint force [29], we model the kmidesas a discrete collision event in a three-link

chain and switch to the compass gait model afterwards. Sirecenly external force on this system is at the

stance foot, angular momentum is preserved for the entitesyabout the stance foot and for the swing leg
about the hip. When looking at the lower link of the swing lbgywever, the kneestrike acts as an external
impulse. Therefore, angular momentum is not conservedtabeknee.

Using these conservation equations, we obtain the poksioal velocities for the first two joint angles.
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The third joint angle corresponding to the knee is lockedrathe collision. Therefore, its post-collision

velocity will be that of the second link. We express the cleaimgvelocities as:

q + 0o
1 1.
Q+ . =Q 2
%2 . (3.4)
03
43 = a3

The matricesQ~ andQ™, are derived from the two conditions of angular momentunseovation men-
tioned above. The angular momentum before the knee cailisiexpressed as a function of all three joint
angles, makin®@~ a 2x3 matrix. After kneestrike, the system only has two jaimgles as the knee is locked,

and thereforeQ™ is a 2x2 matrix. The elements of each matrix are specifiedibelo

a = cogd; —02)
B = cogq1 — 03)
y = cogdz — Q)

Q11 = —(mdlt + mby)Lcosa — mgbs L cosB + (my + M+ my)L? + meaZ + my(Is + ap)?
Qpp = — (Ml + miby)L cosar + mgbsl cosy + mb3 + mdlf
Q3= —MsbyL cosB + mgbyl; cosy + mgb?
Qz1 = —(mdlt + mby)L cosa — mgbs L cosp
Q,, = mebyl cosy + mdlZ + mb3
Qu5 = Mebyly cosy+ mebd
Qi1 = Qz1 + mi(ls+az)% + (my -+ m + mg)L2 + mga?
12= Qa1+ ms(l +b1)? + mb3
Q31 = —(ms(by + ) +mb)L cosa

Qf, = my(l +by)?+mb3

3.2.2 Heelstrike

The heelstrike is modeled as an inelastic collision aboaitcthiliding foot. This heelstrike event is, again,
identical to the heelstrike for the compass gait. Since tilg external force occurs at the point of impact,
there are no moments created around this point and therefmexternal torques act on the system. Angular
momentum is then conserved for the entire system about théicg foot and for the swing leg after impact

about the hip.
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Right after the event, the model switches both legs and tpadatfoot becomes the new stance foot. The
model also switches back to the unlocked three-link dynaraistart a new step cycle. The third joint angle
starts with the same angular position and velocity as therskone. This collision event is expressed in

Equation 3.5.

0 1
a" =1 o|lq
10 (3.5)
Q" =Q¢q"
G =0

Since heelstrike is assumed to only occur during the lockee lstage, the velocity transformation occurs for
two joint angles only. Therefor€~ andQ™ are both 2x2 matrices. The individual elements of the v&foci

change matrices are shown below.

a = cogq1 — 02)

Q1 = Q-+ (MhL +2m (a2 + ) + msag )L cosa

Q= —msay (It +b1) + mb(ls +az)

Q21 =Q1p

ngz 0

Q1 = Qg1 + (Ms+m +my)L% + msaZ + m(a +1s)?
12= Q31+ m(by + 1)+ mb3

Q31 = —(ms(by + It) + mby)L cosa

Qi = mg(l + by)? + mb3

3.3 Model Simulation

By switching between the dynamics of the continuous thirdednd two-link pendulums with the two dis-
crete collision events, we characterize a full cycle forpgbet-feet kneed walker.

Using the physical parameters shown in Table 3.1, the msdwdtion a ramp with a downward angle of
y = 0.0504 rad, and simulated to find a stable limit cycle. Inegah we use a time step ofis. However,
in order to find precise pre- and post- collision velocitib®, collision events are detected with an accuracy
of 172%s. Note that the upper leg mass is 10 times the mass of the legiem general, we found that the

greater the ratio between the upper and lower links, the staide the walker became.
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Table 3.1: Parameters for Kneed Walker Simulation

Parameter Symbol | Value
leg length L 1

shank length (below point mass) a; 0.375
shank length (above point mass) by 0.125

thigh length (below point mass a 0.175
thigh length (above point mass b, 0.325
hip mass My 0.5
thigh mass m 0.5
shank mass ms 0.05

In order to find the fixed point, we had initially run some locgitimization methods unsuccessfully.
Eventually, we tried examining the simulation’s behaviothe different limiting cases. By setting the two
point masses on the legs to be the same, we observed thattargrgger link mass was in fact necessary
for the knee to bend. In order to see how much the motion coedjtarthat of the compass gait, we ran the
simulation with an infinitely small mass at the lower linkse \Witially tested a simulation with a 1:50 mass
ratio in each leg, and started it close to the fixed point ofdhi@pass gait using the same mass on each leg
as those on the upper link. This made the system walk stably.

After finding the fixed point for those parameters, we seatdhese to that point when reducing the mass
ratio to reflect reasonable physical parameters. Evegfusing the parameters in table 3.1, we found the

fixed point right after the heelstrike collision at,

th = 0.1877

02 =03 = —0.2884
G = —1.1014

do = Gz = —0.0399

A limit cycle for the upper link of the right leg starting frothis fixed point is shown in Figure 3-3. The
instantaneous velocity changes from the heelstrike anddtrike events can be observed in this limit cycle
as straight lines where the cycle jumps with the instantas&elocity changes while the positions remain the
same. An energy plot, showing kinetic and potential enexgyyell as total mechanical energy is also shown
in Figure 3-4. In this plot, there are step increases in thiergial energy on each foot transfer, since we write
the energy of the system relative to the stance point. Theseases are shown to exactly balance out the
kinetic energy lost throughout one step. We can see thatrihkrfiechanical energy is constant throughout.

We see that the limit cycle closely resembles that of the @ssgait. There is a swing phase (top half of
the curve) and a stance phase (bottom half of curve) for emgHr contrast with the compass gait, however,
in addition to the two heel-strikes, there are two more imstacous velocity changes produced by the knee-

strikes. This limit cycle is traversed clockwise. If the ke starts anywhere slightly away from the fixed
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Figure 3-3: Limit cycle trajectory for the upper link of thigint leg
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point, it will converge to this limit cycle within a few steps

The simulations of the model predict a stable gait when thgsnrathe upper leg is roughly 10 times the
mass in the lower leg. In this limit, the return map and sitghjiroperties closely match that of the compass
gait. This stability is accomplished without any assummdiabout foot clearance since passive bending at

the knees retracts the leg to avoid foot scuffing.

We also performed a few tests for the simulation in roughatarrOne of the main motivations for having
knees in a walker is that it achieves foot clearance and quatiehtially help obstacle avoidance as well. The
simulation showed that the model has no trouble clearitig lterturbations in the terrain. Due to both its
knees as well as the point feet, it does not require a flatsaitfafind a stance spot. Although large enough
perturbations would cause the kneed walker to fall, manggitime walker could sustain a series of uneven
steps for at least 10 steps. This result is very promisimg@&ally given that our model is completely passive.

An example of the results from the rough terrain simulatiaresshown in Figure 3-5.

3.3.1 Local Stability Analysis

To study the stability of the robot, we first reduce the statce from six to three variables. Given a fixed
ramp angley and an interleg angley, we define the initial angular positions for the walker whehas
straight legs (sogz = g2) and both feet are touching the ground. We also define therlswimg leg to start

at the same velocity as the upper leg. Thus, the system jsdatermined by the interleg angée and the
stance leg and swing leg velocitieg,andd, = g3. Furthermore, for comparison purposes, this is convenient

since there is an exact equivalent for the compass gait nitgs configuration.

Given this dimension reduction, we can take the Poincarioseright after heelstrike to observe its first

return map. We relate two successive heelstrike statestheétbtep-to-step function F,

Xi+1 = F(%).

We also define a fixed point;’, which is the point for whichx* = F(x*). To analyze the local stability, we
look at the eigenvalues of the first return map which are ¢aled numerically. The kneed walker is started
at random initial conditions perturbed slightly from thedfikpoint. The perturbations are smaller than 0.005

for each variable.

The first return map can then be expressed as follows,

(X412 —X) =A(x —X).

In order to approximaté, data is taken for 25 runs 10 s each. A run is considered a®oging if the

last two states immediately after heelstrike have a medardie between the last two of less than 0.001.
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Figure 3-5: Screenshots from rough terrain simulation
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With the data from the runs, we define two matrices,

X =[(xg—X), (X2 —Xx"),...]

Y =[(x2 —Xx*), (X3 —X"),...]

X andY are extended after each trial by appending the data calléaim each trial. We compute a least
squares fit of A and find the eigenvaluesfaf The eigenvalues found are 0.4053, and a complex conjugate
pair, -0.2129 0.3454i. Since all the magnitudes are within the unit cirttle system is locally stable.

Similarly, we compare these to the eigenvalues of a compass/gh an equivalent inertia to the kneed
model but concentrated in 3 point masses. The eigenvalugslfavere 0.15 and 0.13 0.57i. Although
these values do not match, since they are all smaller thaim @agnitude, any disturbance rejection occurs
within half a limit cycle, so the impact of the initial dishaince on the steady state is negligible.

Moreover, if we take the same matrix without reducing theestpace, we find the same eigenvalues
and three zero eigenvalues. These correspond to the retmnaithe state space when described by all six

variables.

3.3.2 Global Stability Analysis: Basin of Attraction

To gain more understanding about the system in general, wetaéook at the global stability analysis. We
compute the slice of the basin of attraction which crossedi#ed point. We simulated the dynamics for
different initial velocities, using the fixed point’s integ angle (0.4761 rad with the stance leg in front). A
state is considered stable if its last two steps are withimeshold of 0.001 m. We also assume that if a large
number of steps (500) are taken, the model will walk foreVee resulting section of the basin of attraction
is shown in Figure 3-6, with the fixed point marked with a star.

For comparison, Figure 3-7 shows the basin of attractiothieequivalent compass gait. Also, note that
in Figure 3-6 there are two regions (colored differentliyeTarger region is computed by ignoring any foot
scuffing, like the compass gait. In this case, the two badiratction are almost identical. This is not
surprising, since the lower leg mass is much smaller thanplper leg, and the equivalent inertias of the two
models result in essentially the same dynamics. Howeveznwie take only the physically possible states
by assuming that foot scuffing leads to a fall, the actualrbafattraction is shown to be a smaller region

within the first overestimate.
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Chapter 4

Kneed Walker Implementation

Using the general guidelines from the simulation, we hauv# buplanar robot with knees and point feet,

which is shown in Figure 4-1.

4.1 Robot Design and Construction

The robot has two pairs of legs to ensure lateral stabilincheof the four upper legs has a mass of 0.491kg
each. The upper legs are made out of 1.25” square tube alomimith a 1/8” wall thickness. The lower legs
are made of 1/16” thick Garolite, that, along with a perfedhtonstruction make the lower legs about 1/4 of
the mass of the upper legs. There is a horizontal bar comggitte two outer legs at the top, and a smaller
leg underneath connecting the inner legs. In this way, weleothhe motion of each pair of legs, with both
sets rotating about the same axis. These bars give the sobipt’ a mass of roughly one upper leg.

Although the ratio between the upper and lower masses is:h0t We could potentially add mass to the
legs. We decided to avoid making the robot too heavy in fafananeuverability, important particularly
when starting the robot. Moreover, each link has uniformsnss by adding the weights closer to the knees,

we can concentrate the mass near the knee matching our Sonylarameters.

4.1.1 Knee Design

The biggest challenge in the construction of the real robe¢ % come up with an adequate knee design.
Other kneed walkers have successfully used suction cupshtegwith curved feet. The suction cups make
the legs lock when they swing forward, and then through afelly¢uned air valve, eventually release at the
right time for the next step’s swing phase. This method ndf cequired very careful tuning of the release
valve, it was also greatly aided by these robots’ curved festhat would naturally exert force on the cup to
release. In our case, we wanted to avoid such issues angdehsough a few different designs for the knee

locking mechanism.
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Figure 4-1: Kneed walker robot

Mechanical Latch

This was the initial design used to the knee, where a simplhargcal latch locked the lower link when it
swung forward slightly past the straight-legged positiSmall servos at each knee were used to unlock the
latch by simply moving it from its central position. The seswvere directed to release, via the foot switch,
when the swing legs contacted the ground, causing the kii#les stance legs to release. After a short pause,
the latch returned to its original position ready to lock tiet time the lower leg swung forward. This would
keep the knee locked for as long as we wanted without anydugthergy input.

Although this was a clean design that minimized actuatichéoverall robot, its main issue was that the
design required the lower leg to go past the straight-legaesiion. Even if the effect of this is neglected at
the moment of kneestrike, the design allowed for an inh&rdobse’ knee that would bend a few degrees
forwards and backwards at all times after being locked. Thanged our dynamics substantially. We had
originally modeled our stance leg as a single longer linke Khee movement while locked made the leg
behave more like two jittery links.

Another consideration was that the design of the knee igdffairly complicated, requiring many small

parts to work properly. A few diagrams and a photograph ofitsign are shown in Figure 4-2.
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Figure 4-2: Mechanical latch for knee

Electromagnets

In order to prevent the legs from hyper-extending, we addezblcaps that would stop the lower link when
the lower leg came forward straightened out. These kneewapkl then be kept in place by turning on
electromagnets placed on the upper link. This change in @ustrinvolved adding switch sensors at the
knees that would trigger the electromagnets to turn on agkheestrike.

The main problem with this option was the magnetic strengtthe® electromagnets. The space in our
knees allowed for magnets only as big as 1” in depth and 0/78liameter. These magnets did not exert
enough force to keep the leg straight even in a horizontatipns

Attempting to increase the magnetic force of the electrameégy we added permanent magnets to the knee
cap and also tried increasing the input voltage. Neithehe$é¢ options, however, improved performance.
When trying to run the robot, the weaker knees made it mofiedlif to start the robot without it collapsing

before we released it.

Electromagnetic Clutches

We tried using electromagnetic clutches to exert more ®than the electromagnets at the knees. This also
gave us the property of a rigid locked knee once the leg wasdutended. The clutches were placed on the
side of each knee, as shown in Figure 4-3.

An initial problem was there was a delay in the lock signaysiag the knee to lock slightly after the
knee switch was triggered, after the leg had bounced back fhe fully extended position. In order to fix

this, we added suction cups to the knee caps. These suctisnaawuld stop the leg when it fully extended,
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Figure 4-3: Electromagnetic clutch for knee

keeping it in a straight position, and then slowly releashegair through small holes to detach from the knee
cap. By the time the suction cups released, the clutchesdwmve locked the knee and the leg then remains

locked until the next heelstrike event.

4.1.2 Other construction issues

Other important issues for the robot included the choicepdackement of the foot and knee switches, as well

as an adequate foot design to avoid foot slip.

Figure 4-4: Details on knee and foot switches

We needed to provide switches that would trigger in paraligh the heelstrike and kneestrike events.
For kneestrike, the switch should not obtrude the knee capgswg forward in order to avoid being triggered
before the leg is straight, causing too early of a switchaligiihe foot switch, on the other hand, had to be
placed at an angle such that its extension arm could makactoss the foot hit the ground. However, we
had to be careful that the arm did not make the robot slip onftitd. Figure 4-4 shows a detail on both of

these switches.
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The foot switch detail also shows what the end of the legsdddike. The robot uses point feet, as
specified by the model. In order to avoid foot slippage, tie¢ feere dipped in PlastiDip multipurpose rubber
coating, which claims to be flexible, durable, and to pro\gdep.

Lastly, we setup a cable that hung from above, sliding on &botal cable rail. This provided a safety

catch for the robot for the falling trials, allowing us to et more trials without damaging the robot.

4.1.3 Control Sequence

Like the model, our robot has an entirely passive gait, whiglans that there is no energy introduced during
its step cycle. However, the real robot needs a simple clbattbat powers the knees at the appropriate times

of the step cycle to ensure that the knees lock and unlocleatght moments.

__———__insidekneestrike detected
,-/' - S (lock inside legs] .
/ waitKneeln N _ S
L straight =0 J /,----"" . T
g outStance = 1 7 waitFootin N
s - / : \
. o \ straight = 1 )
N o o - outStance = 1 /
v = =

outsideﬁeelstrike detected .
(sitch stance legs) inside heelstrike detected

| {switch stance legs)
1 )

= — . /

/./ ; "“\\‘\ — /
(e, T
b outStance = 0 4 & waitKneeOut N

= i { straight =0 )
=1 b outStance = 0 4

--S'ﬁt'sidekngggtr_ike detected —
(lock outside legs)

Figure 4-5: Finite State Machine for system’s controller

To do this, we used a programmable servo motor controllerdy@/BAS203B/C. The control sequence
is illustrated in the finite state machine shown in Figure 8a&sically, we cycle through 4 states in which the
robot waits for the next switch in consecutive order: indideestrike, inside heelstrike, outside kneestrike,
outside heelstrike. At each heelstrike, we unlock the gthéarof legs; whereas at each kneestrike, we lock the
pair of legs which had the strike. This sequence will emudgpassive bipedal walking assuming kneestrike
always happens before heelstrike, as our simulation does.

The controller board has 4 input sensors, 2 switches at #teafel 2 at the knee, which detect heelstrike
and kneestrike for each pair of legs. The board can also batpPWM signal to servo motors or use these
as digital outputs to other components, depending on whiethanism is being used to lock and unlock the
knees.

The basic block diagram for the final design of the walker maghin Figure 4-6. In this configuration,
the controller board uses its output port as digital outfrtas that go through a 5V regulator and then to an

H-bridge to provide the necessary power to the knees. Hawievie initial design where the knees latched
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Figure 4-6: Block Diagram for kneed walker robot

mechanically, we did not need to put any power to keep theklomied. For this configuration, we simply
connected servo motors directly to the board, skippingdigelator and H-bridge. This simpler configuration

is shown in grey in the diagram.

4.2 Data Collection

We ran numerous trials using the various different desigrsle trying to fix the causes for mechanical
failures each time. We placed our robot hanging from a cabiea 12’ long ramp built on plywood. The
elevation angle of the ramp js= 0.0504. For all of the trials, the robot successfully took a feps before
falling over.

In order to be able to quantitatively describe the actuabtsigait, and match the robot’s motion to the
theoretical model, we use a motion capture system to caledtanalyze data. The system consists of 16
infrared cameras placed around a rectangular structurg &lbwve the subject. The subject has markers with
reflective material placed on multiple points, which aredugetrack its motion within the capture volume.
We used a Vicon motion capture system and software, whicliiasnillimeter resolution.

In any given trial, the marker positions are captured and thieeled and calibrated to a specific model. In
this way, we remove the need for online sensors, which tylgipeovide noisy data. Using Vicon’s capture,

modeling and calibration software, we can collect real datan the walking runs. Motion capture is often
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used on humans who wear a suit with the markers. This naguatidiws for more error than using a robot

with solid legs on which we can fix the markers.

4.2.1 Skeleton and Calibration

The first step needed to use the motion capture system wasdtea ‘skeleton’ for the robot. To do so,
we define a model following our robot’s dimensions and plaeekers on different locations. By tracking
the exact position and motion of the markers, we are ableftoalthe robot’s links and their corresponding
features (i.e. length, rotation and relative motions).tdad of measuring and manually specifying precise
distances between the markers, we can parameterize théwm inddel and allow the motion capture system
to calibrate them with real data. The model built for the vealls shown in Figure 4-7. The markers are shown
by red and green points that stem off from their parent segyn#dso, the pair of inner legs are modeled as
one leg only, since their motion is kinematically coupledheTmarkers on the two inner legs are marked on

either side of this link in the model.

Figure 4-7: Skeleton template for Kneed Walker

Before using this skeleton, we had to capture a range of matial to calibrate the template with our
specific robot. This allowed us to obtain accurate data if ¢aal with the calibrated subject. Our initial
testing in trying to calibrate the template were giving uargé error (¢,25mm). As recommended by the Vicon
software manuals, we wanted to find an error smaller thanSHr1 in the calibration. Part of the problems
was that by manually moving the robot and swinging its legktzand forth, we were also occluding some of
the markers, giving less accurate data. In order to fix thishung the robot from above and moved each leg
individually. This also allowed the other links to move fyewhile we moved one of them. After doing so,

our calibration error diminished considerably and was inithe desired range.
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4.2.2 Data Capture

After obtaining a calibrated subject, we placed the robath@ramp for the trials. On most trials, the robot
would take 3-4 steps before falling forward. These trialsenvecorded with both the motion capture software

and on digital videotape.

Fae 1 Frame 2 . Frame 3

Frame 4 - Frame 5 . Fame 5

: Frame ¥ . Fame g - Frame ]

Figure 4-8: Nine progressive screenshots of video footagfeedrials

Figure 4-8 shows screenshots of the digital video taped frdnal using the first legs. The frame rate
shown is 5 frames per second and we show the progressiondietive start of a trial and right before the
robot falls over after taking a few steps.

After review of the different trials on video, we could quisaively describe the main issues in the
mechanical robot. Firstly, since the outer legs are notighilg coupled except for at the top bar, the outer
feet would not necessarily be lined up, making the robot $teene direction or another. This was minimized
considerably after we switched the knee design to makeffieistHowever, the foot misalignment was still
present.

Also, having the outer legs uncoupled below the knee alsceerttaalknee lock timing extremely sensitive.
When the legs swung forward, they would not necessarily &i¢he same time. Likewise, if the suction cups

had not entirely released the leg at the time the clutchemsed (since they were still close to the plastic
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plate), the two legs might also start bending asynchrooulthere does not seem to be a simple way to
couple these outer legs without significantly changing treadhics.

The difference in bending also causes foot scuffing on oonasind uneven landings. These, in turn,
sometimes cause the feet to slip or bounce after heelsfrtks.last problem could potentially be reduced by

placing a mat on the wooden ramp to increase damping.

4.3 Data Processing

To quantify and analyze these different issues and have & nigwrous comparison between the model
and the robot, we reconstructed and processed the colldatadwith the motion capture software. After

calibrating and fitting the data, we could playback the exraation recorded at 60 frames per second (fps).

tirne t, tirme t,

tirne t, tirme t,

Figure 4-9: Four progressive screenshots of motion caghméa

An example of the how the reproduced data is shown in the \ofivare is shown in Figure 4-9. These
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are progressive shots of a specific trial taken at titmest, < t3 < t4, although the time between each shot is
not the necessarily same. All data shown hereinafter rédetdata from this same trial.

We exported the Vicon data into a comma-separated file adntathe positions and rotations of each
segment defined in the model skeleton for each frame. Thisvdas then loaded and parsed so that we could
reproduce the motion in a Matlab simulation, and also deheeselocities and accelerations.

The first step in the data processing needed to compare ibwithlanar model is to convert the obtained
data into 2D as well. To do so, we take rotation between theetsegments at the hip (one for each of
the robot’s leg) and rotate our entire data set so that thewlgned in the y-axis. After doing so, we can

playback the data using the calibrated positions, as showigire 4-10.

Data reproduction after converting to 2D, shown each 90 frames

0 Frames 90 & 180 Frame 270 Frame 360 Frame 450 Frame 540

Frame 630

Figure 4-10: Screenshots of parsed data converted to 2D

In Figure 4-10, the blue lines represent the outer righttlegyred lines are the outer left leg, and the green
shows the position of the inner legs. For this trial, the deés rotated 0.2822 in the y-axis to obtain this
planar data. To show the progression of the trial (origin@89 frames in length), we show a frame for every
90 frames recorded. It is worth noting that the outer legs atoeactly match up on the plane and move
in a significantly disjointed manner. This trial was takenilevthe robot used the mechanical latch. Better
coupled motion was seen in the later trials.

Secondly, we need to derive the angular velocities and eatens from the position data. To obtain
velocities, we simply take our position data and take th&edéhce in each frame over the time elapsed to
obtain velocities. We do this again to obtain accelerati@rs both occasions, to reduce the noise from this
rough derivation, we filter the resulting data with a low-pfiker at a sampling rate of 120 Hz with a cutoff

frequency of 10Hz.

Finally, we resample the data at twice the rate such thahedktvectors correspond to the same time

44



instants. The resulting angular positions, velocities aocklerations for a single swing phase of the trial
above is shown in Figure 4-11. Using the start of this swingsghas the initial conditions, we can also run

our simulation to compare. These results are shown in Fidpir2.

In the graphs, the blue line corresponds to the angle of thelifitk (the stance leg) whereas the green
corresponds to the second link (the upper link of the swigy énd the red to the third link (the lower link
of the swing leg). For the real data plots, we notice how ferjtint angles, the stance leg starts in a positive
angle (going back from the vertical position) and smoothtyes to a mirroring position while the leg swings
forward. At the same time, both links on the swing leg statrfra negative angle. As the angle of the upper
link smoothly increases, the lower link first decreases asktiee bends, and then increases when the swing
leg starts straightening out. Both links end the swing stepraughly the same angle as well, as the knee

locks and the robot switches to two-link pendulum dynamics.

Roughly, the simulation shows very similar behavior, exdejs going much faster overall. The swing
phase occurs in a total of 0.25 s, while it takes the real rabotit 0.4 s. Furthermore, since the two links of
the swing leg match up exactly, these positions and veéscire the same in the beginning. The two joint
angles also end up in the same point after the leg swings fdrarad extends. The velocity and acceleration
curves for the swing leg also seem more uniform in the sirafatata. These differences are mostly likely

consequences of a difference in the mass distribution ddithalation and that of the real robot.

4.3.1 Parameter Estimation

To do a careful comparison between our model and the robattgom we can use parameter estimation to
reduce the parameter uncertainty [21, 12]. This meansrinfethe values of our parameters from the robot’s

recorded motion.

To do this, we can re-write the dynamics of the system as shoviaguation 4.1. After doing so, the

parameter estimation problem turns into a linear estimagiioblem.

In Equation 4.1arepresents a vector containing the unknown parametergaystem\V is the matrix
with the remaining terms containing only terms combinedrfrdifferent measurable state variables (i.e.
angular positions, velocities and accelerations for eadt);landy usually contains the external torques
applied to the system. In this specific cages just the zero vector since we are dealing with unactuated

dynamics.

Now, by parameterizing our unlocked dynamics, we obtainntiaérix and vectors shown in Equations
4.2,
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Joint angles for a single swing phase (frames 270-320)
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q(rad)
o
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Corresponding angular velocities (derived and filtered)
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Figure 4-11: Swing phase of collected data

Simulated joint angles for a single swing phase
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time (s)

Simulated angular velocities

w & 0 o
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time (s)

Corresponding angular accelerations (derived)
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Figure 4-12: Simulated swing phase using first frame of ctdié data as initial conditions
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Gi  Ciolp+S12022  Cizz+Sists® st O 0 0 0 0
W=10  ciof1 — 12012 0 0 0 Colz+Sabs®? s O 0
K 0 1301 — S13012 0 0 2302 — Spaln? 0 a3 S3
(4.2a)
r T
a=|la @& @& a & a a7 a ag} (4.2b)
y=0 (4.2¢)

ay = mead + my(Is+ a2)? + (My + Mg+ my)L? C12 = €Oz — Cl1)
ap = —(mbz + mgly)| S12 = sin(dz — 1)
ag = —mgL C13= €003 — 01)
a3 = —(msas +m(Is+az) + (My+ Ms+m)L)g S13 = sin(gs — Gs)
as = mb3 + myl? C23 = COYO3 — O)
as = Mglthy Sp3 = sin(dz — 02)
ay = (mby +mdlt)g s1 = singp
ag = mgb? s, = singp
ag = mgbig S3 = Singa.

To find estimates for the parameter vecrwe use a linear least-squares estimator (LLSE). Like the
name suggests, a LLSE reduces the squared error, defifjédbasy||2. By taking the derivative of this with
respect taa, we can explicitly derive the value fd@rthat gives the smallest error using an Euclidean norm
(Equation 4.3).

a=W'w) wTy (4.3)

However, in this case, thg vector is zero because our system is completely unactudiedise the
estimator, we artificially ‘lock down’ at least one of the pareter and estimate the other parameters relative
to this one. This solution works precisely because we haxetpeques, so the scale of the system is entirely
irrelevant to our dynamics outputs. We need a combinatigpaoAmeters which will give rise to the same
dynamics of our robot, but basically, these could be in eithi&groscopic or huge dimensions. For our
estimation problem, scale is not just irrelevant but alsdatermined unless we apply external torques to the

system or manually specify one of the parameters.
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To do this, we found the physical measurements that would e@sily define one or more of the param-
eters ina. We definedns = 0.1kg andb; = 0.25m. By doing soag andag are determined and used as known

guantities that give us a non-zeyovector. This results in a new set of parametrization magriseown in

Equation 4.4.
G Cithtsi?  Cislstsad? s O 0 0
W= 10 ciol1—S120:2 0 0 Op Coslzt+spts® % (4.4a)
I 0 C13G1 — S13G12 0 0 C2302 — $2302° 0
a=laa & a a a @ a7} ! (4.4Db)
y=[o 0 - mbids-mbigs (4.40)
where,
ay = msa] + m(Is+ ap)” + (My+ ms+my)L? C12=cog0z — 01)
ap = —(mbz + mgly)| S12 = sin(dz — 1)
ag = —mgL C13= €003 —01)
ag = —(msar + m(ls+az) + (My+ ms+m)L)g S13 = sin(gz — qa)
as = mb3 + myl? C23 = COY03 — Op)
as = msltby Sp3 = sin(gz — d2)
ay = (mby +mdlt)g s1 = singy
S = singy S3 = Singa.

Parameter Estimation on Simulated Data

To test the LLSE with a fixed parameter method, we ran the astinwith a set of 100 points of simulated
data first. To do so, we generated the data set of inputs usingystem’s dynamics. After picking arbitrary
initial conditions, we simulate forward the original dynamequations, using hand-picked link lengths and
masses within a reasonable range. The parameter \&eitan turn defined with these physical parameters,

and is shown below,
T
Aguess— |1.3875 —0.1750 —0.0250 —1.5000 00563 00125 0175@ .

By using the generated data, we estimate the parametersisftg ms andb;, and as expected, obtain

a=a
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We can do the same set of experiments by adding noise eitkie fositions or velocities of the system.
We noticed that the velocities were much more insensitiveoise than the positions. To quantify this, we

define a Euclidean error between the estimated and the neathpters, as shown in Equation 4.5.

e=(a—-a)(a—-a) (4.5)

We add random noise drawn from a normal distribution of me&nt@ the velocity and position sets
separately. After running the experiment 10 times for eathwse see that e j 0.1 for the tests with noisy
velocities, and e 4.2 when we add noise to the positions. &ference, the norm of our real parameter

vector,||al| = 2.0592.

This initial set of experiments indicate the error in theipos data is most important. Given that we can
directly collect the angular position data from the motiapiire system but have to derive the velocities and

accelerations, this is a good result because we can motiedly correct for errors in the position data.

Parameter Estimation on Collected Data

We also tested the LLSE with the same fixed parametaysidb;) on our collected data. After parsing the

data for two swing phases, we concatenated the data anda@atameter estimation on 303 data points.

The estimated parameter vector is shown below,

T
a= [—0.0016 —0.0007 00005 00139 00006 00023 - 0.0026% .

We can also calculate the squared error for the estimateahyders, where the error is defined as
in Equation 4.6. Comparing the squared error with the eséitchparameters and those we had arbitrar-
ily assigned in the previous section, we see that the estmaloes the norm of the error significantly,
Eguess= 2803992 ELse =0.0857

E=(Wa-y)(Wa-y) (4.6)

However, if we look at the signs in the estimated parametetdank at the expressions they are supposed
to correspond, we see that omly, az anda, can and should be negative, since the masses and link levfgths
these terms can only have positive values. This is a cle@atat that our estimation is not getting the right
parameters. Furthermore, playing back the robot’s motsimgthese parameters give wrong trajectories that

do not match those of a swing phase.
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4.4 Future improvements

Errors in the calibration of our captured raw data might besaay our parameter estimation on the real data
to break down. As noted in the simulated data tests thoughpdisition data is the most important. This
observation is promising as improvements on the calibmadind collection of the motion capture data could
drastically improve our parameter estimation.

Currently, our motion capture trials are calibrated withearor of typically 15mm. Exactly how this error
translates into the random noise used in the simulated da& however, is not clear. Improving on more
precise measures of the motion capture data, though, coydcbive our parameter estimation and help us

compare quantitatively the robot with our model, to see howy tmatch up.
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Chapter 5

Conclusions

The kneed walker model and its corresponding robot have deesloped as a more rigorous tool to study
passive dynamic walking. This work was an effort to make pash/namic walking results more quantifiable
problem by reducing the amount of artistry needed to maksetisensitive systems work. Before adding
actuation to the system, we wanted to study the system’distabgion and try to find the actual one in the
robot. Building the robot would also allow us to see how wisét aissumptions our model made held up in
experiment.

From the simulation results, we learned general guidefimending a stable gait. In general, we found
in simulation that a mass ratio of at least 1:10 not only héygsknee bend but also helps achieve a stable
gait. Also, the hip mass should be roughly the size of the ufggemasses. Another important point is to
keep the point masses close to the knee joint. These spéoffisavould make the kneed walker approximate
the compass gait dynamics in the limiting case.

Finally, the objective was to develop a simple enough modéhat we could characterize its full step
cycle, but also one that was physically realizable. We foaiptanar walker with point feet and knees to be
such model. The point feet allowed straight-forward penldunrdynamics (as opposed to the friction model
needed for curved feet) and the knees allowed natural featrahce. In using the passive dynamic ideas,
we showed that our model had a basin of attraction. The systanbe started in this region and remain
stable, converging eventually to the system’s fixed poiriteAfinding a point in the basin of attraction, we
subsequently found the fixed point. A local and global sifgtéinalysis was then performed on the model.

Due to the point feet and knees, we had expected this walker &ble to walk in rough terrain effectively.
The simulation did in fact take multiple steps under rougheie conditions successfully. Future work in the
stability analysis includes studying how stable this masddly calculating the mean-first passage time [3]

both for the deterministic flat-terrain system and for ststit rough terrain conditions.

After developing and studying the model, our next step walsuitd a machine that would match our

model and test our theoretical results. The machine we talki#is a few steps after which it falls forward.
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Various designs were tried for the knee to fix the differenthamical problems that were identified, such as
hyper-extension of the leg, mismatch in the position of theenfeet and delayed knee lock. The results seen
with the robot are very promising and we needed a more ddtaitalysis tool to study what was causing it
to fail.

To do so, we took digital video footage and motion captura déthe robot and carefully quantified the
motion of the robot. This allowed us to compare the machitg'smmics directly to those of the model. After
reproducing the collected data in simulation, we could caragphe joint angles of the robot during a swing
phase and the corresponding velocities and acceleratitthghese predicted in simulation. The robot did
move roughly as the model predicts. However, in order to mtte two more closely and fit the length of
the stride as well as the small characteristics in the cumwesneeded to first perform a careful parameter
estimation of the robot to find the correct physical paransatéth which to run the simulation.

Although the parameter estimation was shown to work withusited data with a controlled amount of
noise, it did not result in reasonable values when we rantht wirr collected data. An improvement on this
could be calibrating the robot to the motion capture ‘skaiétmore carefully. We can define the template
markers exactly using fixed and carefully measured distrinstead of relying on the system to calibrate
parameters. To take full advantage of the resolution of théan capture system, we should make sure our
captured model fit the robot as accurately as possible. Dihisgwvould allow us to exactly playback the
corresponding simulation, and make sure we are startinghtmthe basin of attraction.

We believe that by doing so, we can perform a satisfactorgrpater estimation. This would help us
catch the specific problems either with how we are startinglitow its feet are slipping, in order to achieve a
successful gait on the robot, for example. Furthermoreaytbiton capture data will also allow us to compare

the heelstrike and kneestrike events with the inelastitsomhs we modeled.
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Appendix A

Collision Models for Kinematic Chains

We can simplify any planar robot into a kinematic chain wightain link lengths with point masses either at
the joints or in the middle of the links. To understand theatyits during robot collisions then, let us study
what happens when collisions occur in kinematic chains.

Consider the kinematic chain shown in Figure A-1. The cardirs dynamics of such a system are derived
easily using Lagrange’s equations of motion. The collisiorthis chain, however, either internal or external
are modeled as discrete events because we assume instantyvethanges due to rigid body collisions.

For the collisions, we make two basic assumptions:

e No slip occurs due to infinite friction with the external aaoé

e Collisions are inelastic, losing kinetic energy in the s

As long as the impact forces do not create a moment about aircetis, we can say that angular mo-
mentum is conserved about that point.

If an impulsive collision occurs at point A, an instantang@arce is exerted. The force creates zero torque
at this point. Also, because this is the only external forcgyistem gas marked in the diagram) we can say
that the angular momentum feystem as conserved about the impact point, A. This collision isiegjent
to our heelstrike event, where the impact point is the foat ih hitting the ground.

Furthermore, the effects of the collision ripple throughtigid body. If we takesystem lior example, that
is, if we isolate everything beyond point B, we notice that ¢imly force that can be created from the impulse
at A is a net force at point B. Since that is the only externedédrom the collision, angular momentum of
system bthen, is conserved about B. Similarly, angular momentuoutpoint C ofsystem ds conserved.

In this way, we propagate up the chain, obtaining n equafimns joints.

To derive the equations for our specific example, we name iffereht segments by denoting the two
endpoints in the subscript (e.@?ﬁ corresponds to the straight line going from point A and thsitgan of
the point massn,). We also denote the linear velocities from a certain posimg v and the corresponding

subscript. The subscripts, - and +, denote pre- and podisioalvelocities.
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.

If system b

"

A

Figure A-1: A 3 degree of freedom planar kinematic chain

Using this nomenclature, we can write the equations of awasien of angular momentum as follows,

— — — — — —
MeAax Vi + MADX Vi + MAACX Vi = maAax vy + MpAbx Vi + MeAC X Vg (A.1)
— — — —
mpBbx V) + mBecx v = mpBbxV, +MACx v, (A.2)
— —
mCcx Vvl = mCcx\g. (A.3)

Conversely, consider an internal collision, such as an legtorque at point C (from locking link c, for
example, when it aligns with link b), as is the case of our khemlker's kneestrike event. In this case,
the internal force is the impact force at the knee when thet@awing leg swings forward and locks in the

straight leg position.

This torque again, will be the only force acting on the ensiystem. However, since this is an internal
torque forsystem andsystem pwe can say that both linear and angular momentum are ca@t@vthese

systems. However, the angular momentursystem és changed by the torque at C.

In this case, only equations A.1 and A.2 hold true. HoweVet,is the case that link c is locked after
aligning with link b as it is for our model, then there is a newdmatic constraint: link ¢ possesses the same

angular position and velocity as link c after the collision.
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A.1 Collisions in the Kneed Walker model

Below are the specific conservation equations used to dévéveransformation matric&3~ andQ for the

heelstrike and kneestrike events of the kneed walker model.

Pre-collision

Pre-collision

Figure A-2: Kneestrike: pre- and post- collision configioas

In Figures A-3 and A-2, the segment names are specified agabsing the names of both endpoints. O
corresponds to the stance foot before collision, whichde #ie swing foot after collision; H corresponds to
the point at the hip, and K to the point at the knee where theahpccurs. For the points at the masses, we
use t for the upper links, s for the lower links, and the subssare used to denote the stance (st) or swing

(sw) leg.

In the kneestrike event (shown in Figure A-2), we have arriiratiecollision in this 3 degree of freedom
kinematic chain. This means that angular momentum is ceeddpr the whole systems about the stance
foot, and for the swing leg about the hip. Angular momentunoisconserved, however, about the impacting

knee joint.

For the heelstrike case (shown in Figure A-3), the consenvatquations are those of a 2 degree of
freedom kinematic chain with 5 point masses that experienoeexternal torque exerted at the impact foot.
In this case, angular momentum is also conserved for theenyatem about the back pre-collision stance

foot, as it is conserved for the front pre-collision swing igith respect to the hip.

Therefore, the conservation of angular momentum equasiomthe same for both events, and written as

follows,
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Pre-collision Post-collision

Figure A-3: Heelstrike: pre- and post- collision configioat

— — — —_—

.
MsOS;; X Vg, + MOty X Vi + My OH x Vi + MOt X Vi, + MO, X Vg, = - (A.4)
— — — — o
MsOs;,, X Vg, + MOty X Vi, + My OH X vy + MOty X Vi, + MOy X Vg,
— E— — —
MHtg, X Vi, + MeH Sg X Vg, = MiHtg X Vi + msH s X g, (A.5)

These equations yield different results for the two everite heelstrike event occurs when the robot has
straight locked-knee legs, resulting in a 2 degree of freedgstem. This means we will have 2 equations
with 2 state variablegy; andg,. The resulting matrices will therefore be 2x2 in dimensidhe velocity of
the third link is assumed to be the same as the second betausg$ remain straight during this event. This
kinematic constraint can be expressed as follaws; gs.

In the case of kneestrike, this straight-legged constigionly true after the knee hits and locks. For the
pre-collision configuration, our system has 3 degrees @fdiven, which also means that the velocity of the
swing shank does not equal that of the corresponding thighd # .. Therefore, we obtain a 2x3 matrix

on the left-hand side of the conservation equations and ar2#élx on the right hand side, as seen in Section

3.2.1.
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