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Abstract— We propose a novel method using a Convolutional
Neural Network (CNN) for probabilistic 6D object pose esti-
mation from color images. Unlike other methods that compute
only one data point as the output, our network returns the
information necessary to estimate the full probability distribu-
tions of 6D object poses. This not only captures the ambiguity
of object appearance in the image in a principled manner, but
also enables the results to be fused with other sensing modalities
using well-established probabilistic inference techniques. One
of the main challenges is to provide probabilistic ground truth
labels for training the network. To this end, we introduce a
way to approximate uncertainties of object poses related to
rotational symmetry, occlusion, and how distinct an object is
from the background. We demonstrate the unique capability of
our network on both fully and partially rotationally symmetric
objects while achieving comparable performance with a state-
of-the-art method on publicly available datasets.

I. INTRODUCTION

Recognizing objects and estimating their 6D poses from
color images are often critical steps in robotics applications
to enable manipulation of particular objects of interest in
the scene. However, despite significant progress on 6D pose
estimation methods using deep neural networks [1], [2], [3],
[4], [5], there are two remaining challenges that have not
been sufficiently addressed by the state-of-the-art: (1) how
to fuse 6D pose outputs from a neural network with results
from other sensing modalities and (2) how to handle the
ambiguity of object appearance due to occlusion, camouflage
and/or rotational symmetry.

This paper presents KOSNet, a unified Keypoint,
Orientation and Scale Network, for probabilistic 6D pose
estimation that can address both problems at the same time.
Our network achieves that goal by outputting probability
distributions of the object’s 6D pose instead of just point-
wise estimates as is usually done by other methods. The ben-
efits of outputting probabilistic distributions are tremendous.
First, it can capture the uncertainties of pose estimates due
to ambiguities in object geometry and/or image information
in a principled manner. For example, rotation estimates of a
rotationally symmetric object should have large uncertainties
because it looks the same at different angles around the axis
of symmetry. Similarly, the ambiguity due to occlusion or
camouflage can also be captured in probability densities.
More importantly, it enables the neural network’s outputs to
be fused with other sensing modalities using well-established
probabilistic methods [6], [7].
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Fig. 1: KOSNet’s output: Beside belief maps of keypoints
(red and green), it learns to output distributions of orienta-
tions (right figure) and scales (yellow). Ground truth in blue.

Our network extends a CNN-based keypoint detection net-
work to output probabilistic belief maps of object keypoint
locations, orientations and scales — all possible geometric
cues that can be extracted from object appearance in an input
image. Recent works in 6D pose estimation using belief maps
only output heatmaps of 2D keypoint locations [5], [8] and
obtain the pose from 3D-2D correspondences using PnP [9].
The main disadvantage of these approaches is that key-
points themselves are insufficient for objects with rotational
symmetry, because the position of certain keypoints, e.g.
the bounding box corners [5], cannot be uniquely defined.
Our network fixes this problem by learning distributions of
orientations and scales directly.

However, there are two key challenges towards our goal:
(1) how to architect a CNN to learn distributions of ori-
entations and scales and (2) how to generate ground-truth
probability distributions for training the network. Learning
distributions of orientations and scales is challenging with
CNN-based architectures as they do not correspond directly
to image pixels as keypoint locations do. We fix this problem
by learning a discretized joint belief space of keypoints
and object orientations, and estimating scales indirectly via
belief maps of the object’s 3D bounding sphere projection on
the image. Regarding ground-truth distributions for training
labels, a constant standard deviation is sufficient for keypoint
belief maps [10], [5], but it is not enough to reflect the true
amount of rotation uncertainties due to different kinds of
ambiguities. Our method approximates the true uncertainty
with a local Gaussian whose standard deviation is computed
numerically using finite differencing on synthetic images.

The main contributions of our work are:

e a 6D pose estimation network that can output probabil-
ity distributions which are ready to be fused with other



sources of probabilistic information and can represent
estimation uncertainties due to the ambiguity of object
appearance in input images,

« an extension of a CNN-based keypoint detection net-
work to learn belief maps of rotations and scales whose
spaces, unlike keypoints, are not isometric to the image
space, and

« a method to approximate ground-truth belief maps cap-
turing the ambiguities of object appearance in the image
for training our network.

We plan to publish our code and dataset and include them
in the final version of the paper.

II. RELATED WORK

Estimating the 6D pose of an object in a color image
is a long-standing problem in computer vision [11], [12].
Hoda et al. [13] presents benchmarking results of non-deep-
learning methods on standard datasets. A summary of state-
of-the-art methods using deep neural networks as of last year,
2018, can be found in [2]. Since then, the current trend seems
to converge on the idea of detecting 2D keypoints of an
object in the image, then using a Pn P algorithm to compute
the 6D object pose from 2D-3D point correspondences. This
idea was pioneered by the BB8 [14] and Semantic Key-
points [15] networks. State-of-the-art methods significantly
improve upon those results by exploiting recent advances
in single-shot CNN architectures [16] or keypoint detection
networks such as [5], [8]. These networks, however, give
poor results when the object of interest is heavily occluded.
More recent works focus on fixing this problem by using
local patches to reduce the effect of occlusion [17] or adding
a segmentation head to aggregate information only from
pixels in the object regions [18], [19].

Despite fast and significant progress on the 6d pose
estimation problem using deep neural networks, probabilistic
fusion of network outputs with other sources of information
is still a big challenge. This is because most networks only
output single point estimates of the poses [4], [20], lacking
the uncertainty information needed for fusion [6], [7]. For
example, in multi-view pose estimation, it is challenging to
infer the correct pose from conflicting results estimated from
different views without knowledge about the uncertainty of
the estimates. In [21], a voting scheme is used to choose
the pose that best agrees with all other network outputs. The
accuracy of this heuristic depends largely on the number of
networks and the consistency of their outputs. Sensor fusion
with neural networks has also been done by training all
sensor inputs jointly [22], but this approach faces challenges
in heterogeneous network design beside scalability issues,
such as requiring retraining with new data when a new
sensor is added in addition to the increase in network size.
Several other works [15], [19] realize the benefits of heat
maps of keypoints in enabling probabilistic fusion. However,
keypoint-based methods cannot deal with rotationally sym-
metric objects [5]. Our network overcomes this challenge by
learning the full heat maps of rotations, not just keypoints.

Handling ambiguities of object appearance is another big
challenge for 6D pose estimation networks. If not han-
dled carefully, ambiguities can cause network confusion
during training due to vastly different pose outputs of
similar-looking input images. The ambiguity caused by rota-
tional symmetry is commonly addressed in pose-estimation
networks, typically by treating symmetric objects differ-
ently [20], limiting the range of their poses in the training
set [14], or using a carefully designed loss function to avoid
the ambiguity [4], [23]. However, other types of ambiguities,
e.g. due to occlusion or camouflage, have not been addressed
sufficiently. For example, although a mug with a handle is
not rotationally symmetric, its image appearance where the
handle is completely occluded by itself or by other objects
does not carry enough information to determine the exact
amount of yaw rotation. Similarly, image appearance of a
red mug on a red background is more ambiguous than its
appearance on a green background. By outputting probability
distributions of poses, our network is capable of capturing
all these kinds of ambiguities.

Finally, we note that the goal of the latest work, PoseRBPF
in [24], built on top of [1], is closest to ours. By forcing an
augmented auto-encoder (AAE) to reconstruct a canonical
output image from a training set of domain-randomized
input images of the same viewpoint but vastly different in
other dimensions, e.g. lighting direction, object color, image
contrast, cluttered background, foreground occlusion, etc.,
the latent space of the AAE in [1] successfully encodes the
generic rotation space and does not suffer from the rotational
symmetry problem. PoseRBPF defines its likelihood function
for probabilistic tracking as distances between the latent
vector of the input image and those of canonical images.
This metric, however, largely depends on the reconstruction
quality of the decoder, which is sensitive to small shifts or
scale changes. In contrast, our network learns to output the
probability distributions directly.

III. METHODOLOGY

A. Pose representation

Fig. 2 shows our chosen representation of the camera pose
in the object frame, which is convenient to learn with a belief
map-based keypoint detection network, especially for objects
with rotational symmetry. Our representation is based on the
viewing ray, connecting the camera center C' and the object
center O, since object appearance strongly depends on the
direction of this vector [25], [26], [27]. The object center O is
chosen to be the centroid of the main rotationally symmetric
part of the object’s body, e.g. the centroid of the mug’s body
excluding its handle. The object’s z-axis corresponds to the
axis of rotational symmetry.

The camera’s translation in the object frame is determined
by the direction of vector OC in the object frame O together
with its length. The camera’s orientation in the object frame
is determined by (1) the 2D coordinate of object’s center
keypoint on the image plane and (2) an in-plane rotation
angle quantifying how much the object rotates around the



3D bounding sphere

Fig. 2: KOSNet pose representation. The azimuth 6 and
elevation ¢ angles of the viewing ray and the size of the
bounding circle on the image capture the camera position
in the object frame. The rotation is captured by the image
projection of the object center and the in-plane rotation ~.

viewing ray as detailed in [27]. These quantities provide us
with full coverage of SE(3).

We represent OC’s direction using its azimuth 6 and
elevation ¢ angles in the object frame. For objects with rota-
tional symmetry around the z-axis, the azimuth distribution is
uniform and easy to specify. We use the object’s 2D bounding
circle, the projection of the object’s 3D bounding sphere
around its center with a known radius, in the image to capture
OC’s length, given that the camera intrinsic parameters and
object’s 3D model are known. Similar to belief maps of
keypoints, belief maps of 2D bounding circles are easy to
specify and learn using the same network architecture. More-
over, unlike the popular 2D bounding box representation,
the projection of a sphere is view-point independent as it is
always a circle under all view angles.

We choose the center keypoint and in-plane rotation over
other popular representations, e.g. Euler angles or SO(3), to
represent the camera rotation in the object frame, because
the keypoint is ready to be learned using a belief map-
based keypoint detection network. However, unlike the center
keypoint, the in-plane rotation is not trivial to define due to
a subtle singularity problem that is often ignored by most
previous works [20], [27]. The amount of in-plane rotation
around the viewing ray can be defined as the angle between
the image projection of the object’s z-axis and the image’s
z-axis. However, when the object’s z-axis coincides with the
viewing ray, its projection on the image becomes a point, and
the angle is ill-defined. We overcome this singularity issue
by using one more angle, measuring between the projection
of the object’s z-axis and the image’s x-axis. The object’s
two axes compensate for each other: they cannot be both
in the singularity condition at the same time, so at least
one is always well-defined in every case. The projection of
the object’s z-axis is easy to represent for learning with a
belief map by using a keypoint N, named the “north point”,
located at a known distance from the object center O along
its z-axis. Unfortunately, the projection of the object’s z-axis
cannot be defined by a keypoint in the same way because
it is ambiguous for rotationally symmetrical objects. Hence,

we choose to represent the angle between the projection of
the object’s x-axis and the image’s x-axis explicitly and refer
to this as “in-plane x” for brevity.

B. Network architecture

Fig. 3 shows the network architecture of KOSNet. The
basic architecture of KOSNet is structured on top of a belief
map-based keypoint detection network, which we call it KPD
for brevity, by taking the above mentioned representation into
consideration. The base KPD outputs two 2D belief maps
which correspond to the object center O and the north point
N. In addition, KOSNet also outputs (1) a 2D belief map
for object bounding circles and (2) three 3D belief maps
for the joint distributions between the center keypoint and
each of the elevation, azimuth, and in-plane x angles. The
first two dimensions of the 3D belief maps correspond to
the keypoint’s dimensions and are the same as those of the
feature map F', which represents the output of a backbone
network, whereas the third dimension corresponds to one of
the aforementioned angles.

As shown in Fig. 3, KOSNet has four main streams: scale,
elevation, azimuth, and in-plane « in addition to the keypoint
stream from the base KPD. Each of the four streams is given
a dedicated branch in order to compute the feature. The
building blocks for each of the branches are all identical
except the input and output channel numbers. The all four
branches take two stages. Each first stage, represented as
blue blocks, consists of five convolutional blocks where each
block takes a convolution layer, batch norm and ReLU,
except the last block which only has a convolution layer.
Similarly, each following stage, represented as pink blocks,
includes seven convolutional blocks, each of which is similar
to the convolutional blocks in the first stage, including the
last one. Each stage outputs 2D or 3D belief maps and those
are fed to the loss function and jointly minimized with the
keypoint belief map using ground truth belief maps.

As the base KPD and backbone network, Convolutional
Pose Machines (CPMs) [10], [28] and the first ten convo-
Iutional block of the VGG-19BN network [29] are adopted
throughout this work.

C. Uncertainty approximation

Belief map uncertainty has not gained enough attention
in previous works. The original CPMs and the subsequent
related work only use a Gaussian with a fixed standard
deviation as ground-truth belief maps for training data.

Our work requires more accurate uncertainty values to
capture the ambiguity of object appearance in the image.
One way for the network to output the correct uncertainty is
to train it with a large amount of data uniformly sampled in
the regions of ambiguity, making the network confused, and
hope that it will generate belief maps with approximately
correct uncertainties due to the confusion. However, that
might need many training samples to correctly approximate
the distributions [30].

To be more sample-efficient, we choose to approximate
the ground-truth uncertainty with a local Gaussian around
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Fig. 3: Architecture of KOSNet. See text for details.

the ground-truth pose using finite differences on synthetic
images to detect local ambiguities. More specifically, we
consider a generative model where an image I of an object
at pose X is generated by a function f(X) with Gaussian
pixel noise of standard deviation o. The posterior belief of
the pose X given the training image I is approximated as
follows, using the first-order Taylor expansion of f(X):

p(X[I) o< p(I[X)p(X)

1
o<eXp(§||f(X)—I||2) (1)
1

;HJO(X — Xo) + f(Xo) = I|I*)

~ exp(
where X is the ground-truth pose of the object in the image
1, Jy = g—)f(| X=X, 1s the derivative of the image generative
function f at Xy, and p(X) is a constant as we assume a
uniform prior on X. Under this formulation, the posterior
belief p(X|I) is locally approximated as a Gaussian with
mean f(X) and the information (inverse covariance) matrix
>t = U_ngjo.

In practice, we use a graphics renderer as the generative
function f(X) to generate a predictive image of an object
at a specific pose. We approximate the Jacobian .Jy using
finite differences Jy ~ W by computing pixel
differences between two rendered images of the object at
poses Xo + ¢ and Xy — §. We note that since X € SE(3),
the operation involving them should be interpreted in Lie
Group settings [31].

This finite-differencing method on rendered images is
generic enough to approximate the uncertainty due to factors
such as rotational symmetry, occlusion, and camouflage,
and this large uncertainty should be captured by the small
difference between the two rendered images f(Xo + 0) and
f(Xo — 6). In the rotational symmetry case, the differences
should be exactly the same wrt. small changes § along the
azimuth dimension; the information matrix should be zero
and the covariance matrix should be infinite, equivalent to a
uniform distribution. However, due to discretization errors
of the object mesh and numerical errors of the graphics
renderer, the two images are not exactly the same, but their
difference is small enough to produce a large uncertainty
approximating the uniform density. In the occlusion case, if
the handle of a uniformly colored mug is occluded by another

object or even by itself, a small pose perturbation around
its z-axis will reveal only a small portion of its handle,
leading to small pixel differences between the two rendered
images resulting in small information matrices. Similarly,
in a camouflage situation when a red mug is in front of a
red color background, even if its handle is not occluded the
differences between two rendered images will still be small
due to the similarity of the mug’s and the background’s color.

IV. EXPERIMENTS
A. Implementation

Our network is implemented using PyTorch v1.0 [32],
[33]. The first ten convolutional blocks, derived from VGG-
19BN, were initialized using the weights pretrained on Ima-
geNet [34]. The weights in the subsequent convolutional and
batch normalization layers are initialized with Xavier [35]
and uniform distributions respectively, and all the biases are
initialized with zero. We used 7 as the number of stages
for the keypoint belief maps and link vector fields inference.
We adopted 36 as the number of belief map’s third channel
for the elevation, and 72 for azimuth and inplane-z so the
resulting discretized step is 5 degrees.

The networks were trained for 60 epochs using synthetic
data, and fine-tuned for additional 20 epochs using real data.
During the first 60 epochs, additional random augmentations
were added to each input image whose values range from 0
to 255: with a probability of 0.7, a Gaussian blur was applied
using a 5x5 kernel with the strength sampled uniformly from
[0.1, 2.0]; uniform per pixel noise within the range [-20,
20] were added; and with a probability of 0.3, the channels
were randomly swapped. The Adam optimizer [36] was used
with a base learning rate 0.0016 and weight decay of 0.9.
In addition, these learning rates are decayed by 0.3 every
20 epochs. The L2 norm was used as the loss function. The
networks were trained using 32 NVIDIA V100 GPUs with
batch size 256.

B. Datasets

We evaluated KOSNet’s performance and compared its
results with our own implementation of DOPE [5] on two
datasets: the publicly available YCB-Video dataset [4] and
our own custom dataset, the TRI Kitchen v1 dataset.



The TRI Kitchen vl dataset came from our robotics
research efforts at Toyota Research Institute. Unlike the
YCB-Video dataset, it includes multiple instances per object
category in the scene. The objects are put randomly in the
sink, mimicking scenarios with highly cluttered kitchen
sinks. It is more challenging than the YCB-Video dataset due
to many ambiguities from partially occluded and rotationally
symmetric objects. We used three types of foreground
objects: corelle_livingware_lloz_mug_red,
plastic_mug, and ikea_dinera_plate_8in,
referred to as the plastic mug, red mug and plate
respectively for brevity. We also added background objects
such as silverware, plastic fruits, napkins, tissues and
sponges to the scene as distractors. Multiple configurations
of the dishes were captured using RGB and depth from
three Intel D415 RealSense cameras. The poses of the
foreground objects were labeled using a process similar to
LabelFusion [37], where the point clouds were concatenated
from each camera, and the object labels were estimated
by humans using both the 3D point clouds and back
projections on the camera images. Each scene was first
captured without distractors under three different levels of
lighting. Afterwards, distractors were added to the scene
(being careful to not disturb the objects) and captured again
with the same three levels lighting. For reproducibility,
we will make this dataset publicly available, including the
high-quality 3D mesh models of foreground objects, their
Physically-Based Rendering (PBR) materials for generating
photo-realistic training images, and the commercially
available links to purchase the real physical objects.

C. Training and Evaluation

Following the procedure in [5], we first trained both net-
works on domain-randomized datasets of synthetic images.
We used 60k images per object, four foreground instances
of the object and up to ten distractors per scene. The
PBR graphics engine in Godot [38] was used to render the
synthetic images, randomizing the following attributes: poses
of all of the objects in the scene, albedo color, metallic,
specular and roughness factors for the foreground objects,
textures, shapes and the number of instances per scene for
the distractors, and ambient light energy, directional light’s
orientation and color, as well as background images for the
scenes. For the random background images and the textures
on distractors, we used Open Images V5 [39]. For YCB
objects, we also included the FallingThings3D dataset [40]
to mitigate the domain gap [5].

In addition, we used a small set of real images to fine
tune both networks. Although the original DOPE is trained
with synthetic data only and has shown its generalization
to the data from different domains, we found that adding
real images significantly improves its precision on the test
datasets, approximately by 20% at a threshold of 2cm for
ADD. For objects in the TRI Kitchen vl dataset, we use
one portion of the dataset consisting of 648 real images
for fine tuning, leaving the remaining images for evaluation.
For the YCB objects, we used a subset of the YCB-Video

training dataset for fine-tuning, which consists of 13927
frames, sampled every other five frames from the original
training video streams ID 0000-0059.

D. Results

We evaluate the performance of both networks on
the YCB-Video test dataset and on the remaining im-
ages of the TRI Kitchen vl dataset that were not
used for fine-tuning. For the YCB-Video dataset, we
used five out of the 21 YCB objects in our experi-
ments as in [5]: 003_cracker_box, 004_sugar_box,
005_tomato_soup_can, 006_mustard_bottle and
010_potted_meat_can.

As shown in Fig. 4, KOSNet achieves comparable results
with DOPE on the YCB-Video dataset, but outperforms
DOPE on the more challenging TRI Kitchen v1 dataset by
a wide margin. Fig. 4 shows the precision of KOSNet and
DOPE over varying average distance thresholds on the YCB-
Video and TRI Kitchen v1 datasets with area under the curve
(AUC). We use the ADD metric as the average distance for
all objects except plates, which were evaluated using the ADI
metric due to its rotational symmetry [41].

Beside the original network presented in section III-B,
named KOSNet-KP2, we also experimented with adding
more keypoints to the network, hoping that they can help
capture relevant features to improve the network’s perfor-
mance under heavy occlusion. The extended version, named
KOSNet-KP7, has five additional channels in the output
keypoint belief maps, corresponding to the five additional
crossing points between object’s 3D bounding box surfaces
and the x, y and z axes of the object frame, in addition to
the crossing point from the positive z axis already included
as the north point N. As shown in Fig. 4, KOSNet-KP7
improves its average precision by approx. 10 to 15 % at
the thresholds of 2cm and 4cm for ADD. This improvement
especially becomes obvious when the objects are heavily
occluded. However, it is not effective in relatively easy
scenes like those used for the metrics of 004_sugar_box
and 006_mustard_bottle in Fig. 4

The ambiguities in the TRI Kitchen v1 dataset due to
heavy occlusion and rotational symmetry confuse DOPE
whereas KOSNet can still capture the information in its
estimated rotation distributions. Fig. 5 and 1 visualize KOS-
Net outputs on red mugs in the TRI Kitchen v1 dataset,
showing the output belief maps of keypoints, links, bounding
circles, and rotation angles at the peak locations of the center
keypoint heatmap.

Lastly, we conducted experiments to understand our Gaus-
sian uncertainty approximation for angle distributions using
the finite-differencing method in section III-C. We compare
its results with the results when using a constant standard
deviation of 3 degrees, which we call ’spike mode”. Fig. 6
shows KOSNet’s estimates of angle distributions on a se-
quence of synthetic images of one red mug viewed from
different angles. Notice that in the ambiguous cases where
mug handles are occluded, the heatmaps of azimuth have a
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Fig. 4: Precision vs. average distance threshold curves for KOSNet and DOPE on YCB-Video and TRI Kichen v1 datasets.
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Fig. 5: KOSNet results on TRI Kitchen v1 dataset. Belief
maps of center keypoints, north keypoints and bounding
circles are overlaid on the input images in red, green and
yellow respectively. Belief maps of elevation, azimuth and
inplane-x angles at the center keypoints are on the right.
Ground truth circles and angles are shown in blue.

wider breadth than those in cases with no occlusion. Inter-
estingly, our method tends to over estimate the uncertainty,
whereas the spike mode, while being noisier especially in
inplane-x estimates, correctly approximates the distributions
in the true intervals. The mean estimates of the spike test
mode, however, are biased in some cases where KOSNet’s
Gaussians are better.

V. CONCLUSION

The two major paradigms of estimation methods, model-
based probabilistic inference and data-driven neural net-
works, both have their own weaknesses and strengths. By
teaching a network to estimate probability distributions, we
can combine the strengths of these two vastly different
paradigms together. Our KOSNet framework is one step
toward that direction. Its probabilistic outputs not only cap-

-~ o

Fig. 6: Comparing KOSNet’s estimates of angle distributions
in two modes: with approximate standard deviations using
finite-differencing (first row heatmaps in each image) and
with a constant standard deviation of 3 degrees (second row).

ture the inherent uncertainties due to ambiguities in input
information, but also are ready to be fused with other
sources of information in any probabilistic framework. We
demonstrated its capabilities in handling uncertainties due
to heavy occlusion, outperforming a state-of-the-art method.
While not demonstrated here, the method can be easily
extended to handle objects with discrete rotational symmetry.

For future work, we aim to apply KOSNet in various
vision-based robotics applications involving multisensor fu-
sion and/or fusion of estimates over time. We also aim
to understand more deeply the effectiveness and accuracy
of its uncertainty estimates, especially compared to related
methods, and improve its results by experimenting with
different backbone networks and uncertainty representations.
In addition, we plan to apply KOSNet to the category-level
object pose estimation problem.
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