
Local Trajectory Stabilization for Dexterous Manipulation via Piecewise
Affine Approximations

Weiqiao Han and Russ Tedrake

Abstract— We propose a model-based approach to design
feedback policies for dexterous robotic manipulation. The
manipulation problem is formulated as reaching the target
region from an initial state for some non-smooth nonlinear
system. First, we use trajectory optimization to find a feasible
trajectory. Next, we characterize the local multi-contact dy-
namics around the trajectory as a piecewise affine system, and
build a funnel around the linearization of the nominal trajectory
using polytopes. We prove that the feedback controller at the
vicinity of the linearization is guaranteed to drive the nonlinear
system to the target region. During online execution, we solve
linear programs to track the system trajectory. We validate the
algorithm on hardware, showing that even under large external
disturbances, the controller is able to accomplish the task.

I. INTRODUCTION

How to enable robots to manipulate objects dexterously
like human hands do is a long-standing problem [1]. Along-
side hardware, perception, and planning, motor control is
one of the challenges in manipulation. Designing reliable
feedback controllers for manipulation is hard, due to the
nonlinear and contact-rich nature of the manipulation tasks.
For example, how should we design a controller for the
robot to flip a carrot (half-cylinder) with the flat surface
facing upwards (Fig. 1) to the pose where the flat surface
is facing downwards? This is more than a simple pick-and-
place task and indeed even an experienced human operator
tele-operating the robot often cannot succeed in one or two
tries (see the accompanying video).

In general, there are two main categories of approaches to
control design for manipulation – model-based approaches
and learning-based approaches. Model-based approaches
have mainly been applied to grasping [2], [3], and planar
pushing [4], [5]. They are usually specific to the hardware.
Most model-based controllers are open loop [6]. In order to
achieve the dexterity of a human hand, we want the robot to
do tasks more complicated than grasping and planar pushing
in a feedback fashion.

On the other end of the spectrum, learning-based ap-
proaches have been applied to tasks with greater variety and
difficulty, ranging from moving the end-effector to a target
pose [7], grasping [8], and planar pushing [9], to rotating a
long rod [10], throwing objects [11], and rotating a cube [12].
Though learning-based approaches have been successful on
tasks that model-based approaches have not been able to
solve, they lack reliability or stability guarantees. Motions
of manipulators are unpredictable, especially for those whose

Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139,
USA. weiqiaoh,russt@mit.edu

θ

CoM

w

Fig. 1: Flipping a carrot (half-cylinder) using a parallel
gripper

policies are represented by deep neural networks. Judging the
usefulness of such control policies is always empirical.

Our approach falls into the first category. We present a
general algorithm of feedback design for dexterous manip-
ulation. We draw ideas from recent advances in humanoid
robots path planning [13] and robust control synthesis [14],
[15]. We formulate the manipulation problem as using a
manipulator to change the object pose from its initial pose
to a target pose. Our algorithm consists of the following
steps. First, the pose of the object and that of the robot
are incorporated into the system state, and a trajectory
optimization method that has been used to design nominal
trajectories for humanoid robots walking over uneven terrains
is deployed to design a nominal trajectory for manipulating
the object. Second, piecewise-affine (PWA) linearization
around the nominal trajectory is computed and a funnel
around the nominal mode of the PWA linearization is formed.

ar
X

iv
:1

90
9.

08
04

5v
1 

 [
cs

.R
O

] 
 1

7 
Se

p 
20

19



Third, a linear program (LP) is solved at each time step
during online execution, achieving real time feedback con-
trol. The algorithm can be implemented on common robotic
platforms. It can be applied to more complicated tasks than
grasping and planar pushing, and in particular, it can flip the
half-cylinder. The controller is robust to moderate external
disturbances. Our contributions are (1) designing a feedback
control algorithm for dexterous manipulation, bridging the
gap between locomotion/UAV control and robotic manipula-
tion; (2) providing robustness guarantees for our algorithm
(Proposition 1); (3) validating the algorithm on hardware.

II. RELATED WORK

Model-based feedback control for manipulation: Lynch’s
group used feedback control for sliding [16], rolling [17],
vibratory manipulation [18], [19], and hybrid manipulation
using motion primitives [6], [20]. They designed specific
manipulators for specific tasks. In contrast, our algorithm
is more general and can be carried out on common robot
platforms. Rodriguez’s group used feedback control for pla-
nar pushing [21]. They linearize the nonlinear system and
solve linear model predictive control (MPC) online to plan
the trajectory.

Path planning: There are generally two categories of
approaches to path planning. One is motion planning algo-
rithms [22]. For discretized configuration space, grid search
algorithms such as A∗ and its variants [23] are widely used.
Sampling-based algorithms such as rapidly exploring random
trees [24] are common approaches for continuous configura-
tion space. The other category is the trajectory optimization
algorithms. A common approach in this category would be
to formulate the problem as nonlinear optimization programs
and solve it using off-the-shelf numerical solvers [25]–
[27]. Other approaches in this category include augmented
Lagrangian [28], mixed-integer convex optimization (MICP)
[29], differential dynamic programming (DDP) [30], and iter-
ative linear quadratic Gaussian (iLQG) [31]. A combination
of these two methods have proved even more useful [32],
[33]. In this work, we use trajectory optimization and use off-
the-shelf numerical solvers to solve a nonlinear optimization
program.

Local feedback controllers: In control literature, it is quite
standard to track a system trajectory using linear quadratic
servo (LQ servo) or time-varying linear quadratic regulator
(TVLQR) based on linearization of the system trajectory
around nominal states [34]. In reinforcement learning, it
is common to learn local linear models of the system and
linear feedback control gains [7], [10]. However, the local
linear model does not fully capture the contact-rich nature
of manipulation. Robot fingers may make and break multiple
contacts with the object due to small disturbances. When
contact modes change, the dynamics may change. So it is
more natural to model the local dynamics as a PWA system,
i.e., a system whose state-input space is partitioned into
several polytopic regions, with each region associated with
a different affine dynamics equation.

However, stabilizing PWA systems alone is not an easy
problem. Explicit solutions of optimal control for PWA
systems can be computed offline by multi-parametric pro-
gramming [35]–[42]. The computational complexity of these
methods grows exponentially with respect to the number
of time steps. Lyapunov-based approaches [43]–[45] and
occupation measure approaches [46], [47] do not depend
on the number of time steps, but are quite conservative and
may not always find solutions. Sampling-based methods [15],
[48] suffer from the issue of scalability. In this work, we
consider manipulation problems in which there is only one
rigid object, the manipulators are fully actuated, and the PWA
dynamics is caused by manipulators making and breaking
contacts with the object. We track the system trajectory by
solving LP online.

III. PROBLEM STATEMENT AND APPROACH

In many manipulation problems, the goal is for the manip-
ulator to change the pose of an object from the initial pose
to some target pose(s) specified by the user, for example,
using a parallel gripper to flip a half-cylinder from the pose
with the flat surface facing upwards to the pose with the flat
surface facing downwards. We incorporate the pose of the
manipulator and the pose of the object into the system state
x. Then the manipulation problem is turned into a control
problem: Design a feedback controller u(x) that drives the
initial state x0 to a target region XG. The dynamics of the
manipulator-object system, ẋ = f(x, u), is nonlinear and
non-smooth.

Our algorithm contains both offine planning and on-
line execution phases. During the offline planning phase,
we formulate a nonlinear trajectory optimization problem
that drives x0 to a target state xN ∈ XG in N time
steps. We solve the trajectory optimization using off-the-
shelf numerical solvers. The solution is a nominal trajec-
tory {x̄0, ū0, . . . , x̄N−1, ūN−1, x̄N}. This is an open-loop
trajectory and might be fragile under external disturbances.
We build funnels around (the linearization of) the nominal
trajectory using polytopes. If the system state falls into
the funnel, the system is guaranteed to reach the target
region. In order to resist larger disturbances, we compute the
PWA linearization around the nominal trajectory when the
manipulator makes and breaks contacts with the object. As
mentioned before, we assume that there is only one rigid
object, that the manipulators are fully actuated, and that
the local PWA dynamics is only caused by manipulators
making and breaking contacts with the object. During online
execution, we use a linear program to steer the system into
the polytopes or onto the nominal points.

In summary, our algorithm consists of the following three
steps: (1) solving nonlinear trajectory optimization to find the
nominal trajectory offline; (2) computing the PWA lineariza-
tion and building a polytopic funnel around the linearization
of the nominal trajectory offline; (3) solving LP’s online to
drive the system around the nominal points.



IV. TRAJECTORY PLANNING

A. Trajectory Optimization

We plan the path using trajectory optimization methods.
In particular, we use direct transcription as in [26]. The
continuous-time dynamics ẋ = f(x, u) is discretized into
a discrete-time system x+ = φ(x, u) with sampling time
dt. The trajectory is discretized into N time steps with
N · dt = T , where T is the time horizon:

minimize
T∑
t=0

L(x[t], u[t])

subject to mr̈[t] = mg +
∑
j

Fj [t]

Iθ̈[t] =
∑
j

(cj [k]− r[k])× Fj [t]

friction cone constraints, contact constraints,
kinematics constraints, time integration constraints

where r[t] is the position of the center of mass, Fj [t] are
forces, cj [t] is the the contact position of the j-th force for
each j, L is the loss function, and the decision variables
include states x[t], controls u[t], and variables in the contact
constraints. The variables r[t] and cj [t] are part of the states
x[t], and the forces Fj [t] are part of the controls u[t].

The first two constraints are Newton-Euler equations. The
friction cone constraints for planar systems are −µFj,n ≤
Fj,t ≤ µFj,n, where Fj,n is the normal force and Fj,t is
the frictional force. For 3-dimensional systems, we can use
a polyhedral cone to approximate the friction cone [49]:
Fj [t] =

∑
i βijwij , βij ≥ 0, where wij’s are the spanning

vectors of the polyhedral cone. For some contacts, we
formulate the contact constraints as linear complementarity
problems (LCP) [25] to fully characterize all possible contact
modes – sticking, sliding, or breaking contacts. We use
IPOPT [50] to solve the trajectory optimization offline. Since
IPOPT is an interior point method solver, the LCP constraints
P (x)>Q(x) = 0, P (x) ≥ 0, Q(x) ≥ 0, can be replaced
by the equivalent constraints P (x)>Q(x) ≤ 0, P (x) ≥
0, Q(x) ≥ 0, and further be relaxed as P (x)>Q(x) ≤
ε, P (x) ≥ 0, Q(x) ≥ 0 for small ε > 0.

B. Force as Control Input

In the trajectory planning described in the previous sub-
section, we borrowed the idea of zero-moment point (ZMP)
for bipedal footstep planning in the humanoid robot literature
[51], [52]. For a bipedal robot walking on the ground, ZMP
is by definition a point on the ground where the sum of all the
tangential moments equals zero. Although many humanoid
robots have pressure sensors on the feet, because of lack of
reliability (in the case of Atlas), researchers do not measure
ZMP directly. What they do is to plan a joint ZMP and
center of mass (CoM) trajectory, and then only track the
CoM trajectory during online execution [13].

Similarly, in the trajectory optimization formulation, we
use forces as part of the control input. In the manipulation
context, the forces are those between the gripper and the

θ

CoM

w

x
y

(A)

θ

CoM

w

(B)

Fig. 2: Two contact modes. (A) Right finger in contact with
carrot. (B) Right finger not in contact with carrot.

object, and those between the object and the environment,
e.g. the table. Although the hardware we are using cannot
directly measure the force it applies to the object, we still use
forces as control variables to help plan the CoM trajectory
of the object as well as the pose trajectory of the gripper.
During online execution, we only track the trajectory of the
CoM of the object and that of the gripper. We find in practice
this approach works well.

V. LOCAL FEEDBACK CONTROL

A. Local Multi-Contact Dynamics

From the nonlinear trajectory optimization, we obtain a
nominal trajectory {x̄0, ū0, x̄1, ū1, . . . , x̄N}, where x̄N ∈
XG. At each nominal point (x̄i, ūi), where i = 0, . . . , N ,
we linearize the dynamics ẋ = f(x, u) as ẋ = Ai(x− x̄i) +
Bi(u − ūi) + ci, where Ai = ∂f

∂x (x̄i, ūi), Bi = ∂f
∂u (x̄i, ūi),

and ci = f(x̄i, ūi). This continuous time affine system can be
discretized as x+ = Ãix+B̃iu+ c̃i. This can equivalently be
obtained by linearizing the discretized system x+ = φ(x, u).
The corresponding state space X1

i is obtained by linearizing
all constraints g(x, u) ≤ 0 at (x̄i, ūi).

Now we consider different contact modes due to making or
breaking contacts between an object and the manipulator. We
fix a nominal point (x̄i, ūi). Suppose there are p ∈ N contact
locations that may make or break contacts. Each contact
mode corresponds to a distinct dynamics ẋ = fj(x, u) and
constraints gj(x, u) ≤ 0, where j = 1, . . . , s := 2p, f1 = f ,
and g1 = g. For the half-cylinder example, the right finger
can be touching or not touching the half-cylinder, giving
two contact modes with distinct dynamics and distinct state
space regions (Figure 2). We call the contact mode in which
the nominal trajectory is computed the nominal mode or
Mode 1. We linearize the dynamics and the constraints for
modes other than the nominal mode and evaluate at (x̄i, ūi).
Since making and breaking contacts can happen when the
system state makes very small changes, the linearization is
in the vicinity of the nominal point and hence is valid. In
fact, the nominal points can be on the boundaries of state
space cells of a few modes. Thus we obtain a piecewise
affine system x+ = Ai,jx + Bi,ju + ci,j =: hi,j(x, u) with
state space Xj

i , j = 1, . . . , s, around each nominal point
(x̄i, ūi), i = 1, . . . , N . We call x+ = hi,1(x, u) the nominal
linearization.



B. Polytopic Funnel around Nominal Trajectory

After we get a nominal trajectory, we are going to build
a funnel around the trajectory so that if the system state is
inside the funnel, it will always stay inside the funnel until
reaching the target region. Funnels can be sum-of-squares
(SOS) [14], [53] or polytopic [15]. We use the latter, because
numerical computations involving polytopes requires solving
LP or quadratic program (QP), which are more reliable than
solving SOS programs.

Here we briefly review the polytopic tree method in [15].
Suppose the system is a time-varying affine system

xt+1 = Atxt +Btut + ct.

Given a target region XG and time horizon N , the method
computes a trajectory {x̄i, ūi}Ni=0 alongside with polytopes

Yi = {x̄i} ⊕GiP (1)

and a control law

ui(x) = ūi + θip(x) (2)

around each point (x̄i, ūi) on the trajectory by solving a
main LP. Here ⊕ represents Minkowski sum, Gi and θi are
decision matrices the main LP searches over, Gi+1 = AiGi+
Biθi captures the evolution of the polytopes over time with
respect to the system dynamics, P is the hyper-cube [−1, 1]n,
and p(x) ∈ P satisfies

x = x̄i +Gip(x). (3)

The main LP to be solved offline encodes the state space
constraints in polytopic containment forms, including the
final polytopic containment constraint YN ⊆ XG, as well
as trying to maximize the volumes of the polytopes. During
online execution, if the current state x is in some polytope
Yi, then p(x) can be found by solving an LP through
Equation (3) and ui(x) can be calculated by Equation (2).
By following the control law ui(x), the system is guaranteed
to land inside the next polytope Yi+1 and hence eventually
it will reach YN ⊆ XG.

We use the method to build polytopes for the nominal
linearization x+ = hi,1(x, u) around the nominal trajectory
(x̄i, ūi). While [15] deals with PWA systems, we show that
the polytopic tree method can be extended to non-smooth
nonlinear systems.

Proposition 1. If x+ = φ(x, u) and φ is Lipschitz, and if the
polytopic tree method finds the polytopes Yi as in Equation 1
for the nominal linearization x+ = hi,1(x, u) at the nominal
trajectory, with P = [−1, 1]n and Gi full rank ∀i, then there
exists Pi = [−ai, ai]n, 0 < a0 ≤ a1 ≤ · · · ≤ aN = 1 such
that if x ∈ Ỹi := {x̄i} ⊕ GiPi, then by following u as in
Equation 2, φ(x, u) ∈ Ỹi+1. So x will eventually land in
ỸN = YN ⊆ XG.

Proof Sketch. If the system state x ∈ ỸN−1 = {x̄N−1} ⊕
GN−1PN−1, by following uN−1, x+ ∈ {x̄N + eN−1} ⊕
GNPN−1, where eN−1 is the residual error induced by the
linearization. Since the dynamics φ is Lipschitz, eN−1 goes

to 0 as (x, u) goes to (x̄N−1, ūN−1). Given small ε > 0,
we can find δ > 0 such that if ||(x, u)− (x̄N−1, ūN−1)||2 <
δ, then ||eN−1||2 < ε. We can choose ε and aN−1 such
that any (x, u) satisfying x ∈ ỸN−1 and Equation 2 also
satisfies ||(x, u)−(x̄N−1, ūN−1)||2 < δ and such that eN−1⊕
GNPN−1 ⊆ GNPN . Then x+ ∈ ỸN . The proof is complete
by repeat the procedure for i = N−2, . . . , 0 in this order.

The Proposition says that if the system state is close
enough to the nominal trajectory and if the nonlinear dy-
namics is Lipschitz, then we can use the linear control law
(Equation 2) for the nominal linearization of the trajectory to
steer the nonlinear system to the target region for sure. This
gives us certain guarantees locally. We want to be able to
handle larger external disturbances during online execution.
This is what we are going to discuss in the next section.

VI. ONLINE EXECUTION

The polytopic tree method in [15] hopes to probabilisti-
cally cover the state space by polytopes by growing a single
polytopic trajectory to an existing polytopic tree, similar
in methodology to the growth of the LQR-trees [53]. The
method samples points in the state space, steers sample
points to the current polytopic tree as well as building
polytopes along the way by solving mixed-integer linear
program (MILP), and enlarges the current tree by adding
the new polytopes to the tree.

In practice, for example for the half-cylinder flipping
experiment, there are several problems with the polytopic
tree method. First, the volumes of the polytopes are very
small, and hence a state almost never falls into a polytope.
Second, the polytopic tree method requires checking the
closest polytope online, which is computationally inefficient
in the naive implementation when there are large number of
polytopes. Third, the polytopic tree method deals with PWA
systems, but our system is nonlinear and computing trajec-
tory from a sample point to the current tree is potentially an
expensive nonlinear trajectory optimization problem which
cannot be carried out online.

Therefore, we propose the practical improvement of the
polytopic tree method, with the sacrifice of stability guaran-
tees when there are large deviations to the nominal trajectory.
We only keep one nominal trajectory, which is computed
in Section IV. We build polytopes Yi = {x̄i} ⊕ GiP, i =
0, . . . , N around the nominal linearization of the trajectory.
This amounts to solving an LP. During online execution,
we compute the closest nominal state x̄i to the current state
x (with respect to some weighted L2 norm) and determine
the current contact mode j. If x is inside the polytope
{x̄i} ⊕ GiP, the we use the corresponding control law
ui(x) = ūi + θip(x), where x = x̄i + Gip(x). Otherwise
we let the target index be v = min{i+ 1, N} and solve the
following LP to get control u:

min
γ,p,δ,u

α>γ (4)

subject to xv +Gvp = hi,j(x, u) + δ

p ∈ P, |δk| ≤ γk, k = 1, . . . , n



where α is some weight or cost vector. This LP means we
want the state to get to the polytope with index v as close
as possible. When, for example in the half-cylinder flipping
experiment, the volumes of the polytopes are very small, we
can directly solve the LP

min
γ,δ,u

α>γ (5)

subject to xv = hi,j(x, u) + δ

|δk| ≤ γk, k = 1, . . . , n

which means we want the state to get to the nominal state
with index v as close as possible.

Algorithm 1 Stabilizing controller around nominal trajectory
Input Current state x 6∈ XG

Output Control u
1: if x ∈ {x̄i}⊕GiP for i ∈ I then return u = ūi+θip(x),

where x = x̄i +Gip(x), i is the largest element in I .
2: Find the closest nominal state x̄i to x, w.r.t. some

weighted L2 norm.
3: Determine the current contact mode j.
4: Let the target index be v = min{i+ 1, N}.
5: Solve LP (4) or (5), return u.

The procedure is summarized in Algorithm 1. There can
be many variants to Steps 4 and 5. For example, one might
use MPC-style planning based on local PWA linearization.
During offline phase, one samples states x̃k not in the nomi-
nal mode and solve MICP to get to some target points x̄v(k)
on the nominal trajectory, hence storing a list of samples
{(state x̃k, mode sequence to get to target x̄v(k))}Mk=1. The
target index v(k) for each sample state x̃k can be chosen
by comparing the cost to get to all nominal states x̄i, i =
0, . . . , N . During online execution, one finds the closest
sample x̃k to the current state x and solve QP or LP to
get to x̄v(k) fixing the mode sequence as stored.

We find empirically that for the half-cylinder flipping
experiment, solving LP like (4) or (5) to directly go to the
nominal trajectory is more efficient than MPC-style planning
which plans multiple steps to reach the nominal trajectory.
This might be because of our assumptions that the change of
contact modes is only caused by the manipulator making and
breaking contacts with the object and that the manipulator is
fully actuated. So instructing the manipulator to directly go
back to the desired position works. Also MPC-style planning
on linearized PWA systems may accumulate linearization
errors.

During the online execution, we use P = [−1, 1]n instead
from Pi in Proposition 1, because it is more computationally
efficient to use [−1, 1]n and it is hard to compute Pi. Since
Pi ⊆ P, we know once x happens to fall into {x̄i} ⊕GiPi,
then the system is guaranteed to reach the target region.

VII. EXPERIMENT

We carried out the experiment on a Kuka robot with a
two-finger Schunk gripper. The half-cylinder representing the

carrot is 0.11 m long and its radius is 0.036 m. We put an AR-
tag [54] with side width 3 cm on a side of the half-cylinder
and use a Kinect to track the pose of the half-cylinder. We
can get in real time the pose of the gripper relative to the
Kuka base and hence the pose of the gripper relative to the
table. Once we compute the initial pose of the half-cylinder
relative to the table, we can track the pose of the half-cylinder
relative to the gripper in real time.

The goal is to flip the half-cylinder 180 degrees, i.e., to ma-
nipulate the half-cylinder with the flat surface facing upwards
to the pose where the flat surface is facing downwards to the
table. We use our algorithm to design a trajectory that flips
the half-cylinder 90 degrees so that the grippers are holding
the half-cylinder. After that, a manually-designed (open-
loop) controller would transport the half-cylinder and flip
another 90 degrees. We mainly focus on the first 90-degree
rotation for several reasons. First, it is most challenging
in the entire manipulation process, and manually designed
open-loop controllers usually fail in this phase. Even an
experienced human operator tele-operating the robot cannot
accomplish this task in one or two attempts and the failures
are often in the first 90-degree phase (see the accompanying
video). Second, in the next 90-degree rotation, the dynamics
is different from that in the first 90-degree rotation, so one
needs to design a different trajectory separately, instead of
simply extending the first trajectory. Besides, it is very simple
to design a good open-loop controller for the next 90-degree
rotation (see the accompanying video).

The state is x = [x, y, θ, ẋ, ẏ, θ̇, ϕ, w], where x and y
are the coordinates of CoM of the half-cylinder, θ is the
angle between the flat surface of the half-cylinder and the
horizontal axis, ẋ, ẏ, θ̇ are the first-order time derivatives
of x, y, θ, respectively, ϕ is the angle between the fin-
ger of the gripper and the horizontal axis, and w is the
separation between two fingers. The control input is u =
[FN , Ft, F1, F1t, F2, F2t, ϕ̇, ẇ], where FN , Ft are the normal
force and the friction between the half-cylinder and the
ground, and similar definitions for F1, F1t, F2, F2t (Figure
2). We set up trajectory optimization with time horizon
N = 100 and sampling time dt = 0.01 s. We constrain
that the contact point between the left finger and the half-
cylinder does not change over the entire trajectory. The goal
state region of the trajectory optimization is XG = {x :
ϕ = θ = 90◦}. It took IPOPT about 2 seconds to solve the
trajectory optimization on an Intel i7 3.3 GHz, 32 GB RAM
machine1.

We design controllers in 2D, and in execution the half-
cylinder is 3D, so we always operate at the center section of
the half-cylinder. During execution, we let the goal region
be X̃G = {x : ϕ = θ, w ≤ c} ⊇ XG for some constant c.
Once the state is in the goal region, the gripper is in grasp
of the half-cylinder, ready for the remaining operations. The
open-loop controller obtained from trajectory optimization

1By varying the time horizon or other constraints, the solving time of
IPOPT varies from 1 to 25 seconds or IPOPT cannot find a feasible solution.
We found that on solving this particular problem with varying constraints,
IPOPT generally behaves better than SNOPT [55].



(A) (B) (C) (D) (E) (F) (G) (H)

Fig. 3: Flipping the half-cylinder

0 20 40 60 80 100
time steps

0

20

40

60

80

100

cl
os

es
et

 n
om

in
al

 in
de

x

1
2
3
4

0 10 20 30
0

1

0 5 10 15 20
0

1

0 5 10 15 20
0

1

time steps

co
nt

ac
t m

od
es

Fig. 4: The figure on the left plots the index of the closest
nominal trajectory state for the current state before reaching
the goal region X̃G vs. time steps for four typical trajectories.
Trajectory 1 can be thought of as the open loop trajectory
and is just for reference. Trajectory 2, 3, and 4 are typical
trajectories for the closed-loop controller, the closed-loop
controller under the first type of disturbance, and the closed-
loop controller under the second type of disturbance, respec-
tively. They terminate early, because X̃G is strictly larger
than XG. The figure on the right plots the contact modes for
3 typical trajectories. From top to bottom are typical contact
modes for the closed-loop controller under the first type of
disturbance, the closed-loop controller under the second type
of disturbance, and the close-loop controller under the second
type of disturbance where the gripper opens 4 cm.

brings the half-cylinder from 0 degree (Fig 3.A) to 90 degrees
(Fig 3.B). Then a manually-designed controller flips the half-
cylinder completely (Fig 3.DE). The closed-loop controller
stops early once the goal region has been reached (Fig 3.C),
followed by the same manually-designed controller. The
open-loop controller is already very robust during execution,
so we tested some larger disturbances to show the robustness
of the closed-loop controller. We experimented two types
of disturbances. One is to force the half-cylinder to rotate
clockwise using a human hand (Fig 3.F). We can easily fail
the open-loop controller by holding the half-cylinder long
enough so that the controller finishes open-loop execution.
We found that the closed-loop controller always recovers
when the disturbances are no more than 30 degrees. The
success rate is 100% (20 out of 20). We observe that the
contact modes do not change under small disturbances (Fig
4 Right). We also observe that the controller can some-
times recover from very large disturbances that violate the
assumptions we made when designing the trajectory, e.g.,
the disturbance is more than 30 degrees and the right finger
is on the flat surface of the half-cylinder. The other type of

Disturbance 1 Disturbance 2
≈ 15◦ ≈ 30◦ at time step 7 at time step 14
10/10 10/10 10/10 10/10

TABLE I: Success rate for recovery from two types of
disturbances.

disturbance is to “accidentally” open the gripper for 2 cm at a
certain time step (before opening: Fig 3.G, after opening: Fig
3.H). This tests the local multi-contact stabilizing controller.
The success rate is also 100% (20 out of 20). The contact
modes change when the disturbance happens (Fig 4 Right).
The controller can also recover from large disturbances that
violate our design assumptions, e.g., the gripper opens 4 cm
at a certain time step.

VIII. DISCUSSION AND CONCLUSION

We have described a locally robust feedback design al-
gorithm for dexterous manipulation. We have shown on
hardware that the algorithm can recover from large external
disturbances.

There are some limitations. First, if the size of the half-
cylinder or the object shape changes, we need to analyze
the dynamics, rerun the trajectory optimization, and build
the stabilizing controllers offline. Building a large library for
many shapes and various sizes is a possible solution to robust
manipulation. Second, we used AR-tag to track the pose of
the object. The estimation for the contact points between the
gripper and the object are very rough, which causes some
problems sometimes. In practice, perception is important for
manipulation. Third, the algorithm does not work for some
types of manipulation, for example throwing or sorting a
deck of cards. Enabling robots to do more complicated tasks
using model-based approaches still remains to be explored.

ACKNOWLEDGMENT

This work was supported by Air Force/Lincoln Laboratory
Award No. PO# 7000374874, and Lockheed Martin Cor-
poration Award No. RPP2016-002. The first author would
like to thank Twan Koolen for helpful discussions about
dynamics and humanoid robots, Sadra Sadraddini for helpful
discussions on polytopic trees, Tao Pang for setting up
the Kuka robot, Greg Izatt for providing initial code for
controlling the Kuka robot, and Pete Florence for helping
with the AR-tag and the Kinect and for tele-operating the
Kuka robot.



REFERENCES

[1] M. T. Mason, “Toward robotic manipulation,” Annual Review of
Control, Robotics, and Autonomous Systems, vol. 1, pp. 1–28, 2018.

[2] Z. Li and S. S. Sastry, “Task-oriented optimal grasping by multifin-
gered robot hands,” IEEE Journal on Robotics and Automation, vol. 4,
no. 1, pp. 32–44, 1988.

[3] A. T. Miller, S. Knoop, H. I. Christensen, and P. K. Allen, “Automatic
grasp planning using shape primitives,” in Robotics and Automa-
tion, 2003. Proceedings. ICRA’03. IEEE International Conference on,
vol. 2. IEEE, 2003, pp. 1824–1829.

[4] N. Chavan-Dafle, R. Holladay, and A. Rodriguez, “In-hand manipula-
tion via motion cones,” in Robotics: Science and Systems, 2018.

[5] J. Zhou, R. Paolini, J. A. Bagnell, and M. T. Mason, “A convex
polynomial force-motion model for planar sliding: Identification and
application,” in Robotics and Automation (ICRA), 2016 IEEE Interna-
tional Conference on. IEEE, 2016, pp. 372–377.

[6] N. C. Dafle, A. Rodriguez, R. Paolini, B. Tang, S. S. Srinivasa,
M. Erdmann, M. T. Mason, I. Lundberg, H. Staab, and T. Fuhlbrigge,
“Extrinsic dexterity: In-hand manipulation with external forces,” in
2014 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2014, pp. 1578–1585.

[7] S. Levine, N. Wagener, and P. Abbeel, “Learning contact-rich manip-
ulation skills with guided policy search,” in Robotics and Automation
(ICRA), 2015 IEEE International Conference on. IEEE, 2015, pp.
156–163.

[8] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning
hand-eye coordination for robotic grasping with deep learning and
large-scale data collection,” The International Journal of Robotics
Research, vol. 37, no. 4-5, pp. 421–436, 2018.

[9] C. Finn and S. Levine, “Deep visual foresight for planning robot
motion,” in Robotics and Automation (ICRA), 2017 IEEE International
Conference on. IEEE, 2017, pp. 2786–2793.

[10] V. Kumar, E. Todorov, and S. Levine, “Optimal control with learned
local models: Application to dexterous manipulation,” in Robotics and
Automation (ICRA), 2016 IEEE International Conference on. IEEE,
2016, pp. 378–383.

[11] A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser, “Tossing-
bot: Learning to throw arbitrary objects with residual physics,” arXiv
preprint arXiv:1903.11239, 2019.

[12] M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. Mc-
Grew, J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray
et al., “Learning dexterous in-hand manipulation,” arXiv preprint
arXiv:1808.00177, 2018.

[13] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Per-
menter, T. Koolen, P. Marion, and R. Tedrake, “Optimization-based
locomotion planning, estimation, and control design for the atlas
humanoid robot,” Autonomous Robots, vol. 40, no. 3, pp. 429–455,
2016.

[14] A. Majumdar and R. Tedrake, “Funnel libraries for real-time robust
feedback motion planning,” The International Journal of Robotics
Research, vol. 36, no. 8, pp. 947–982, 2017.

[15] S. Sadraddini and R. Tedrake, “Sampling-based polytopic trees for
approximate optimal control of piecewise affine systems,” in 2019
International Conference on Robotics and Automation (ICRA). IEEE,
2019, pp. 7690–7696.

[16] J. Shi, J. Z. Woodruff, P. B. Umbanhowar, and K. M. Lynch, “Dynamic
in-hand sliding manipulation,” IEEE Transactions on Robotics, vol. 33,
no. 4, pp. 778–795, 2017.

[17] J.-C. Ryu, F. Ruggiero, and K. M. Lynch, “Control of nonprehensile
rolling manipulation: Balancing a disk on a disk,” IEEE Transactions
on Robotics, vol. 29, no. 5, pp. 1152–1161, 2013.

[18] P. Umbanhowar, T. H. Vose, A. Mitani, S. Hirai, and K. M. Lynch,
“The effect of anisotropic friction on vibratory velocity fields,” in
Robotics and Automation (ICRA), 2012 IEEE International Conference
on. IEEE, 2012, pp. 2584–2591.

[19] T. H. Vose, P. Umbanhowar, and K. M. Lynch, “Manipulation with
vibratory velocity fields on a tilted plate,” in Automation Science and
Engineering (CASE), 2012 IEEE International Conference on. IEEE,
2012, pp. 942–949.

[20] J. Z. Woodruff and K. M. Lynch, “Planning and control for dynamic,
nonprehensile, and hybrid manipulation tasks,” in Robotics and Au-
tomation (ICRA), 2017 IEEE International Conference on. IEEE,
2017, pp. 4066–4073.

[21] F. R. Hogan, E. R. Grau, and A. Rodriguez, “Reactive planar manipula-
tion with convex hybrid mpc,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 247–253.

[22] S. M. LaValle, Planning algorithms. Cambridge university press,
2006.

[23] M. Likhachev, D. I. Ferguson, G. J. Gordon, A. Stentz, and S. Thrun,
“Anytime dynamic a*: An anytime, replanning algorithm.” in ICAPS,
2005, pp. 262–271.

[24] A. C. Shkolnik, “Sample-based motion planning in high-dimensional
and differentially-constrained systems,” MASSACHUSETTS INST
OF TECH CAMBRIDGE COMPUTER SCIENCE AND ARTIFI-
CIAL , Tech. Rep., 2010.

[25] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory op-
timization of rigid bodies through contact,” The International Journal
of Robotics Research, vol. 33, no. 1, pp. 69–81, 2014.

[26] H. Dai, A. Valenzuela, and R. Tedrake, “Whole-body motion planning
with centroidal dynamics and full kinematics,” in Humanoid Robots
(Humanoids), 2014 14th IEEE-RAS International Conference on.
IEEE, 2014, pp. 295–302.

[27] I. Mordatch, E. Todorov, and Z. Popović, “Discovery of complex
behaviors through contact-invariant optimization,” ACM Transactions
on Graphics (TOG), vol. 31, no. 4, p. 43, 2012.

[28] M. Toussaint, “A novel augmented lagrangian approach for inequal-
ities and convergent any-time non-central updates,” arXiv preprint
arXiv:1412.4329, 2014.

[29] A. K. Valenzuela, “Mixed-integer convex optimization for planning
aggressive motions of legged robots over rough terrain,” Ph.D. disser-
tation, Massachusetts Institute of Technology, 2016.

[30] Y. Tassa, N. Mansard, and E. Todorov, “Control-limited differential
dynamic programming,” in Robotics and Automation (ICRA), 2014
IEEE International Conference on. IEEE, 2014, pp. 1168–1175.

[31] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of com-
plex behaviors through online trajectory optimization,” in Intelligent
Robots and Systems (IROS), 2012 IEEE/RSJ International Conference
on. IEEE, 2012, pp. 4906–4913.

[32] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Path planning
for autonomous vehicles in unknown semi-structured environments,”
The International Journal of Robotics Research, vol. 29, no. 5, pp.
485–501, 2010.

[33] X. Zhang, A. Liniger, A. Sakai, and F. Borrelli, “Autonomous parking
using optimization-based collision avoidance,” in 2018 IEEE Confer-
ence on Decision and Control (CDC). IEEE, 2018, pp. 4327–4332.

[34] B. D. Anderson and J. B. Moore, Optimal control: linear quadratic
methods. Courier Corporation, 2007.

[35] M. Baoti, F. J. Christophersen, and M. Morari, “Constrained optimal
control of hybrid systems with a linear performance index,” IEEE
Transactions on Automatic Control, vol. 51, no. 12, pp. 1903–1919,
2006.

[36] F. J. Christophersen, M. Baotić, and M. Morari, “Optimal control
of piecewise affine systems: A dynamic programming approach,”
in Control and Observer Design for Nonlinear Finite and Infinite
Dimensional Systems. Springer, 2005, pp. 183–198.

[37] F. Borrelli, M. Baotić, A. Bemporad, and M. Morari, “Dynamic
programming for constrained optimal control of discrete-time linear
hybrid systems,” Automatica, vol. 41, no. 10, pp. 1709–1721, 2005.

[38] M. Barić, P. Grieder, M. Baotić, and M. Morari, “An efficient algorithm
for optimal control of pwa systems with polyhedral performance
indices,” Automatica, vol. 44, no. 1, pp. 296–301, 2008.

[39] A. Bemporad, F. Borrelli, and M. Morari, “Optimal controllers for
hybrid systems: Stability and piecewise linear explicit form,” in
Proceedings of the 39th IEEE Conference on Decision and Control
(Cat. No. 00CH37187), vol. 2. IEEE, 2000, pp. 1810–1815.

[40] ——, “Piecewise linear optimal controllers for hybrid systems,” in
Proceedings of the 2000 American Control Conference. ACC (IEEE
Cat. No. 00CH36334), vol. 2. IEEE, 2000, pp. 1190–1194.

[41] ——, “On the optimal control law for linear discrete time hybrid
systems,” in International workshop on hybrid systems: computation
and control. Springer, 2002, pp. 105–119.

[42] D. Mayne and S. Rakovic, “Optimal control of constrained piecewise
affine discrete time systems using reverse transformation,” in Proceed-
ings of the 41st IEEE Conference on Decision and Control, 2002.,
vol. 2. IEEE, 2002, pp. 1546–1551.

[43] L. Rodrigues, “Dynamic output feedback controller synthesis for
piecewise-affine systems,” Ph.D. dissertation, Stanford University,
2002.



[44] M. Lazar, “Model predictive control of hybrid systems: Stability and
robustness,” Ph.D. dissertation, Eindhoven: Technische Universiteit
Eindhoven, 2006.

[45] W. Han and R. Tedrake, “Feedback design for multi-contact push
recovery via lmi approximation of the piecewise-affine quadratic
regulator,” in Humanoid Robotics (Humanoids), 2017 IEEE-RAS 17th
International Conference on. IEEE, 2017, pp. 842–849.

[46] P. Zhao, S. Mohan, and R. Vasudevan, “Optimal control for
nonlinear hybrid systems via convex relaxations,” arXiv preprint
arXiv:1702.04310, 2017.

[47] W. Han and R. Tedrake, “Controller synthesis for discrete-time hybrid
polynomial systems via occupation measures,” in 2019 International
Conference on Robotics and Automation (ICRA). IEEE, 2019, pp.
7675–7682.

[48] T. Marcucci, R. Deits, M. Gabiccini, A. Bicchi, and R. Tedrake,
“Approximate hybrid model predictive control for multi-contact push
recovery in complex environments,” Under Review, 2017.

[49] D. Stewart and J. C. Trinkle, “An implicit time-stepping scheme for
rigid body dynamics with coulomb friction,” in Robotics and Automa-
tion, 2000. Proceedings. ICRA’00. IEEE International Conference on,
vol. 1. IEEE, 2000, pp. 162–169.

[50] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical programming, vol. 106, no. 1, pp. 25–57, 2006.

[51] S. Kajita, H. Hirukawa, K. Harada, and K. Yokoi, Introduction to
humanoid robotics. Springer, 2014, vol. 101.

[52] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in 2003 IEEE International Conference
on Robotics and Automation (Cat. No. 03CH37422), vol. 2. IEEE,
2003, pp. 1620–1626.

[53] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts, “Lqr-
trees: Feedback motion planning via sums-of-squares verification,” The
International Journal of Robotics Research, vol. 29, no. 8, pp. 1038–
1052, 2010.

[54] M. Fiala, “Artag, a fiducial marker system using digital techniques,”
in 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), vol. 2. IEEE, 2005, pp. 590–596.

[55] P. E. Gill, W. Murray, and M. A. Saunders, “Snopt: An sqp algorithm
for large-scale constrained optimization,” SIAM review, vol. 47, no. 1,
pp. 99–131, 2005.


	I Introduction
	II Related Work
	III Problem Statement and Approach
	IV Trajectory Planning
	IV-A Trajectory Optimization
	IV-B Force as Control Input

	V Local Feedback Control
	V-A Local Multi-Contact Dynamics
	V-B Polytopic Funnel around Nominal Trajectory

	VI Online Execution
	VII Experiment
	VIII Discussion and Conclusion
	References

