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Abstract— In this paper, we design nonlinear state feedback
controllers for discrete-time polynomial dynamical systems via
the occupation measure approach. We propose the discrete-time
controlled Liouville equation, and use it to formulate the con-
troller synthesis problem as an infinite-dimensional linear pro-
gramming problem on measures, which is then relaxed as finite-
dimensional semidefinite programming problems on moments
of measures and their duals on sums-of-squares polynomials.
Nonlinear controllers can be extracted from the solutions to the
relaxed problems. The advantage of the occupation measure
approach is that we solve convex problems instead of generally
non-convex problems, and the computational complexity is
polynomial in the state and input dimensions, and hence the
approach is more scalable. In addition, we show that the
approach can be applied to over-approximating the backward
reachable set of discrete-time autonomous polynomial systems
and the controllable set of discrete-time polynomial systems
under known state feedback control laws. We illustrate our
approach on several dynamical systems.

I. INTRODUCTION

Given a discrete-time polynomial dynamical system and a
target set in state space, we are interested in designing con-
trollers that steer the system to the target set without violating
state or control input constraints. Controller synthesis for
polynomial systems is a challenging problem in robotics and
control. Traditional approaches include designing a linear
quadratic regulator (LQR) based on linearized dynamics in
a neighborhood of the fixed point, model predictive control
(MPC), feedback linearization, dynamic programming, and
Lyapunov-based approaches. These approaches each have
their limitations. LQR control and linear MPC only work for
a small region around the fixed point. To plan for the entire
state space, the LQR-Trees method [23] and the approximate
explicit-MPC method [15] have been invented. Feedback
linearization does not work if there are limits on the inputs.
Dynamic programming only works for systems with small
dimensionality. Lyapunov-based approaches are generally
non-convex, but can be convexified by incorporating the
integrator into the controller structure [16] or adding delayed
states in the Lyapunov function [17].

Recently the area has seen the development of the occu-
pation measure approach [11] (also known as the Lasserre
hierarchy strategy on occupation measures [5]). The general
framework of the approach is to first formulate the problem
as an infinite-dimensional LP on measures and its dual on
continuous functions, and to then approximate the LP by
a hierarchy of finite-dimensional semidefinite programming
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(SDP) programs on moments of measures and their duals
on sums-of-squares (SOS) polynomials. The earliest notable
application of the approach is the outer approximation of the
region of attraction of continuous-time polynomial systems
[6]. The advantage of the approach is that the problem
is formulated as a series of convex optimization problems
instead of general non-convex problems, and theoretically
the approximation to the real set can be made arbitrarily
close. Since then the occupation measure approach has
been attracting increasing attention and study. It has been
applied to the approximation of the region of attraction, the
backward reachable set, and the maximum controllable set
for continuous-time polynomial systems [8]–[10], [21]. It has
also been applied to controller synthesis for continuous-time
nonhybrid/hybrid polynomial systems [9], [14], [25].

Studies on discrete-time polynomial systems, however,
are relatively sparse compared to those on continuous-time
polynomial systems. In [20], the authors considered the
discrete-time nonlinear stochastic optimal control problem,
which can be interpreted in terms of the Bellman equation.
In [13], the authors proposed the discrete-time Liouville
equation and used it to formulate an optimization problem
that approximates the forward reachable set of discrete-time
autonomous polynomial systems.

We are particularly interested in discrete-time systems.
One reason is that any physical system simulated by a digital
computer is discrete in time, and the control input sent by
the digital computer is also discrete in time. When modeling
robots making and breaking contact with the environment,
the continuous-time systems using some contact models need
to handle measure differential inclusions for impacts [19],
while the discrete-time models equally capture the complex-
ity of the constrained hybrid dynamics without worrying
about impulsive events and event detection [4], [15]. As
another related example, in N -step capturability analysis
used to study balancing in legged robots, the decision-
making is discrete on a footstep-to-footstep level, and the
entire problem formulation is asking about the viability
kernel, also known as the backward reachable set [18].

In this paper, we propose a controller synthesis method
for discrete-time polynomial systems via the occupation
measure approach. We propose the discrete-time controlled
Liouville equation, and use it to formulate the problem as an
infinite-dimensional LP, approximated by a family of finite-
dimensional SDP’s. By solving SDP’s of certain degrees, we
are able to extract controllers as polynomials of the corre-
sponding degrees. Unlike Lyapunov-based approaches, our
controller synthesis process does not simultaneously return
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the controllable region, and hence the stability of the closed-
loop system has to be checked a posteriori. Nevertheless, we
show that our approach can be applied to over-approximating
both the backward reachable set of discrete-time autonomous
polynomial systems and the controllable set of discrete-time
polynomial systems given any polynomial state feedback
control law. We illustrate our approach on several dynamical
systems. Our work can be viewed as the discrete-time coun-
terpart of [14], and a pathway towards controller synthesis
for discrete-time hybrid polynomial systems.

II. PROBLEM FORMULATION

A. Problem statement

Let n,m ∈ N. Consider the discrete-time control-affine
polynomial system

xt+1 = φ(xt, ut) := f(xt) + g(xt)ut.

The sets X ⊆ Rn and U ⊆ Rm are state and control input
constraint sets, respectively. The vectors xt ∈ X and ut ∈ U
represent states and control inputs at time t ∈ N, respectively.
f(x) and g(x) are polynomial maps. Denote the target set by
Z ⊆ X . Our goal is to design a polynomial state feedback
controller ut = u(xt) ∈ U that steers the system to the target
set Z without violating state and control input constraints.
R[x] (resp. R[u]) stands for the set of polynomials in the

variable x = (x1, . . . , xn) (resp. u = (u1, . . . , um)). R2r[x]
(resp. R2r[u]) stands for the set of polynomials in the variable
x (resp. u) of degree at most 2r.

Assume

X := {x ∈ Rn : hXi (x) ≥ 0, hXi (x) ∈ R[x], i = 1, . . . , nX},

is a compact basic semi-algebraic set. Furthermore, assume
that the moments of the Lebesgue measure on X are avail-
able. For example, if X is an n-dimensional ball or box, then
it satisfies this assumption.

Assume

U := {u ∈ Rm : hUi (u) ≥ 0, hUi (u) ∈ R[u], i = 1, . . . , nU}
= [a1, b1]× . . .× [am, bm],

where ai, bi ∈ R, i = 1, . . . ,m are upper and lower limits
on control inputs. Furthermore, without loss of generality,
assume

U := [−1, 1]m,

because the dynamics equation can be scaled and shifted.
Assume

Z := {x ∈ Rn : hZi (x) ≥ 0, hZi (x) ∈ R[x], i = 1, . . . , nZ},

is a compact basic semi-algebraic set. In practice, we may
choose Z to be a small ball or box around the origin.

B. Notations

In this subsection, we introduce some notations in real
analysis, functional analysis, and polynomial optimization.
For an introduction to these three subjects, please refer to
[3], [1], and [12], respectively.

Let X ⊆ Rn be a compact set. C(X) denotes the Banach
space of continuous functions on X equipped with the sup-
norm. Its topological dual, denoted by C′(X), is the set of all
continuous linear functionals on C(X). M(X) denotes the
Banach space of finite signed Radon measures on the Borel
σ-algebra B(X) equipped with the total variation norm.
By Riesz Representation Theorem, M(X) is isometrically
isomorphic to C′(X). C+(X) (resp. M+(X)) denotes the
cone of non-negative elements of C(X) (resp. M(X)).
The topology in C+(X) is the strong topology of uniform
convergence while the topology inM+(X) is the weak-star
topology. For any A ∈ B(X), λA denotes the restriction of
the Lebesgue measure on A. For µ, ν ∈ M(X), we say µ
is dominated by ν, denoted by µ ≤ ν, if ν − µ ∈M+(X).

Define rXi := ddeg hXi /2e, i = 1, . . . , nX , rUi :=
ddeg hUi /2e, i = 1, . . . , nU , and rZi := ddeg hZi /2e, i =
1, . . . , nZ . Σ[x] (resp. Σr[x]) denotes the cone of SOS
polynomials (resp. SOS polynomials of degree up to 2r) in
the variable x. QX

r (resp. QXU
r , QZ

r ) denotes the r-truncated
quadratic module generated by the defining polynomials of
X (resp. X×U , Z), assuming hX0 (x) = 1 (resp. hU0 (u) = 1,
hZ0 (x) = 1):

QX
r :=

{ nX∑
i=0

σi(x)hXi (x) : σi ∈ Σr−rXi [x], i = 0, . . . , nX
}
,

QXU
r :=

{ nX∑
i=0

σXi (x, u)hXi (x) +

nU∑
i=0

σUi (x, u)hUi (u) :

σXi ∈ Σr−rXi [x, u], σUj ∈ Σr−rUj [x, u],

i = 0, . . . , nX , j = 0, . . . , nU
}
,

QZ
r :=

{ nZ∑
i=0

σi(x)hZi (x) : σi ∈ Σr−rZi [x], i = 0, . . . , nZ
}
.

A set Ω = {x ∈ Rn : hi(x) ≥ 0, hi(x) ∈ R[x], i =
1, . . . , nΩ} ⊆ Rn is said to satisfy Putinar’s condition if
there exists σ ∈ R[x] such that σ = σ0+

∑nΩ

i=1 σihi for some
{σi}nΩ

i=0 ⊂ Σ[x], and the level set {x ∈ Rn : σ(x) ≥ 0} is
compact. Putinar’s condition can be satisfied by including the
polynomial N − ||x||22, where N is a sufficiently large real
number, in the defining polynomials {hi}. Here x represents
a general variable with n components, so for the set X×U ,
we consider the field Rm+n, the polynomial ring R[x, u],
and the cone Σ[x, u].

III. OPTIMIZATION FORMULATION

A. Discrete-time controlled Liouville equation

The Liouville equation for continuous-time systems is a
partial differential equation describing the evolution of the
system state over time. The discrete-time analogue of the
Liouville equation was studied in Markov decision process,
and was incorporated into the occupation measure approach



in [10], [13], [20]. For our controller synthesis purpose, we
are going to propose a new form of the Liouville equation,
which we call the discrete-time controlled Liouville equation.

Given measurable spaces (X1,A1) and (X2,A2), a mea-
surable function p : X1 → X2 and a measure ν : A1 →
[0,+∞], the pushforward measure of ν is defined to be
p∗ν : A2 → [0,+∞]

p∗ν(A) := ν(p−1(A))

for all A ∈ A2. Define π to be the projection map from
X × U to X , i.e., π : X × U → X, (x, u) 7→ x. The
system dynamics φ : X × U → X is as defined in the
previous section. Let X0, XT ⊆ X be the measurable sets
containing all possible initial states and final states of the
system, respectively. The discrete-time controlled Liouville
equation is

µ+ π∗ν = φ∗ν + µ0, (1)

where µ0 ∈M+(X0), µ ∈M+(XT ) and ν ∈M+(X×U).
We can view the initial measure µ0 as the distribution of

the mass of the initial states of the system trajectories (not
necessarily normalized to 1), the occupation measure ν as
describing the volume occupied by the trajectories, and the
final measure µ as the distribution of the mass of the final
states of the system trajectories. For example, µ0 = δx0

,
ν = δ(x0,u0) + . . .+ δ(xT−1,uT−1), and µ = δxT

is a solution
to the controlled Liouville equation, describing the system
trajectory {x0, x1 = φ(x0, u0), . . . , xT = φ(xT−1, uT−1)},
where δx is the Dirac measure centered at x. It is possible
that the measure ν can be disintegrated as ν1(du|x)ν2(dx)
for some measure ν2 on X and some probability measure
ν1(du|x) on U(x) for every x ∈ X , as noted in [20].

B. Primal-dual infinite-dimensional LP

We formulate the infinite-dimensional LP on measures as
follows:

sup

∫
X

1dµ0

s.t. µ+ π∗ν = φ∗ν + µ0,

µ0 + µ̂0 = λX ,

µ0, µ̂0 ∈M+(X), µ ∈M+(Z),

ν ∈M+(X × U).

(2)

The objective is to maximize the mass of the initial mea-
sure. The first constraint is the controlled Liouville equation.
Notice that we require the final measure µ to be supported
on Z. This constraint, together with the objective, means that
we want as many system trajectories as possible to land in
Z. The second constraint ensures that the initial measure is
dominated by the Lebesgue measure on X , and if the optimal
solution is achieved, then the initial measure would be the
Lebesgue measure on a set of initial states whose trajectories
end up in Z and the optimal value is the volume of the set
(similar to the idea in Theorem 3.1 in [7]).

The dual LP on continuous functions is given by

inf

∫
X

w(x)dλX

s.t. v(x)− v(φ(x, u)) ≥ 0,∀x ∈ X,∀u ∈ U,
w(x)− v(x)− 1 ≥ 0,∀x ∈ X,
w(x) ≥ 0,∀x ∈ X,
v(x) ≥ 0,∀x ∈ Z,
v, w ∈ C(X).

(3)

IV. SEMIDEFINITE RELAXATIONS

We have formulated the infinite-dimensional LP on mea-
sures and its dual on continuous functions, but we cannot
solve them directly. A practical solution is to approximate
the original LP by a family of finite-dimensional SDP’s.
This relaxation is based on the idea that measures can
be characterized by their moments, just as signals can be
characterized by their Fourier coefficients. By solving the
relaxed SDP’s of certain degrees, we can extract controllers
in the form of polynomials of corresponding degrees. In
this section, we first introduce some background knowledge
on moments of measures. For more detailed treatments,
please refer to [12]. Next we formulate the relaxed SDP’s on
moments of measures and their dual on SOS polynomials.
Finally, we show how to extract controllers from the SDP
solutions.

A. Preliminaries

Any polynomial p(x) ∈ R[x] can be expressed in the
monomial basis as

p(x) =
∑
α

pαx
α,

where α ∈ Nn, and p(x) can be identified with its vector
of coefficients p := (pα) indexed by α. Any measure µ is
characterized by its sequence of moments, defined by∫

xαdµ, α ∈ Nn.

Given a sequence of real numbers y := (yα), we define the
linear functional `y : R[x]→ R by

`y(p(x)) := p>y =
∑
α

pαyα.

If y = (yα) is a sequence of moments for some measure µ,
i.e.,

yα =

∫
xαdµ,

then µ is called a representing measure for y. If y has a
representing measure µ, then the linear function `y is the
same as integration with respect to µ:∫

pdµ =

∫ ∑
α

pαx
αdµ =

∑
α

pα

∫
xαdµ = `y(p(x)).

Given r ∈ N, define Nnr = {β ∈ Nn : |β| :=
∑
i βi ≤ r}.

Define the moment matrix Mr(y) of order r with entries
indexed by multi-indices α (rows) and β (columns)

[Mr(y)]α,β := `y(xαxβ) = yα+β ,∀α, β ∈ Nnr .



If y has a representing measure, then Mr(y) � 0, ∀r ∈ N.
However, the converse is generally not true.

Given a polynomial u(x) ∈ R[x] with coefficient vector
u = (uγ), define the localizing matrix w.r.t. y and u to be the
matrix indexed by multi-indices α (rows) and β (columns)

[Mr(uy)]α,β := `y(u(x)xαxβ)

=
∑
γ

uγyγ+α+β ,∀α, β ∈ Nnr .

If y has a representing measure µ, then Mr(uy) � 0
whenever the support of µ is contained in {x ∈ Rn : u(x) ≥
0}. Conversely, if X is a compact semi-algebraic set as
defined in Section II, if X satisfies Putinar’s condition, and if
Mr(h

X
j y) � 0, j = 0, . . . , nX ,∀r, then y has a finite Borel

representing measure with support contained in X (Theorem
3.8(b) in [12]).

B. Primal-dual finite-dimensional SDP

For each r ≥ rmin := maxi,j,k{rXi , rUj , rZk }, let y0 =
(y0,β), β ∈ Nn2r, be the finite sequence of moments up to
degree 2r of the measure µ0. Similarly, y1, ŷ0, y

X , and z
are finite sequences of moments up to degree 2r associated
with measures µ, µ̂0, λX , and ν, respectively. Let d :=
degree φ. The infinite-dimensional LP on measures (2) can be
relaxed with the following semidefinite program on moments
of measures:

sup y0,0

s.t. y1,β + `z(x
β) = `z(φ(x, u)β) + y0,β ,∀β ∈ Nn2r,

y0,β + ŷ0,β = yXβ ,∀β ∈ Nn2r,
Mr−rXj (hXj y0) � 0, j = 1, . . . , nX ,

Mr−rXj (hXj ŷ0) � 0, j = 1, . . . , nX ,

Mrd−rXj (hXj z) � 0, j = 1, . . . , nX ,

Mrd−rUj (hUj z) � 0, j = 1, . . . , nU ,

Mr−rZj (hZj y1) � 0, j = 1, . . . , nZ .

(4)

The dual of (4) is the following SDP on polynomials of
degrees up to 2r:

inf
v,w

∑
β∈Nn

2r

wβy
X
β

s.t. v − v ◦ φ ∈ QXU
rd ,

w − v − 1 ∈ QX
r ,

w ∈ QX
r , v ∈ QZ

r ,

v, w ∈ R2r[x],

(5)

where ◦ denotes function composition. The dual SDP (5) is
a strengthening of the dual LP (3) by requiring nonnegative
polynomials in (3) to be SOS polynomials up to certain
degrees.

C. Controller extraction

The controllers can be extracted from the primal SDP (4)
as in [9], [14]. We describe the procedure in detail in the
following.

Fix r ∈ N in the SDP’s (4) and (5). Let each ui be a
degree-r polynomial in x, i = 1, . . . ,m. Identify ui with
its vector of coefficients (ui,α). ν is a measure supported
on X × U . By solving the primal SDP (4), we obtain the
moments of ν (as subsequences of z):

τi,α :=

∫
xαuidν, ∀α ∈ Nnr ,

ρα :=

∫
xαdν, ∀α ∈ Nnr .

Then
Mr(ρ) · (ui,α)α = (τi,α)α,

where (ui,α)α is the column vector of coefficients of the
polynomial ui(x) indexed by α, and (τi,α)α is the column
vector consisting of τi,α’s indexed by α. The controller ui(x)
can be approximated by taking the pseudo-inverse of the
moment matrix Mr(ρ):

(ui,α)α = [Mr(ρ)]+ · (τi,α)α.

As noted in [9], the approximated controller does not
always satisfy the control input constraints. The easiest
remedy is to limit the control input to be the boundary values,
±1, if the constraints are violated. For all the examples in the
Examples Section, we used this method. Most of the time, the
control input constraints were not violated. Another method
is to solve an SOS optimization problem as in [9].

In general, our controller synthesis method is heuristic.
The controllable region needs to be checked a posteriori. In
the next section, we show that we can over-approximate the
controllable region using a simplified form of our optimiza-
tion formulation.

V. UNCONTROLLED CASE: OUTER APPROXIMATION OF
THE BACKWARD REACHABLE SET

In this section, we consider a special case – the discrete-
time autonomous polynomial system

xt+1 = f(xt),

where X , f(x), and the target set Z are defined as before.
Given a time step T ∈ N, define the T -step backward
reachable set

XT
0 := {x0 ∈ X : xt = f(xt−1) = · · · = f t(x0) ∈ Z

for some 0 ≤ t ≤ T, and xti ∈ X,∀0 ≤ ti ≤ t}.

This is the set of points in X that enter the target region Z
within T time steps and whose trajectories do not leave X
before entering Z. Once a point enters Z, what happens to
it next is not our concern. We are going to over-approximate
the backward reachable set

X∞0 :=

∞⋃
T=0

XT
0 ,



which is the union of all points in X that enter Z in finite
time. Denote by X̄∞0 the closure of X∞0 .

The primal LP is obtained from LP (2) by modifying the
Liouville equation to be the same as the one in [13] and
modifying the support of the occupation measure ν to be X .
The primal and dual LP’s are formulated as follows

p := sup

∫
X

1dµ0

s.t. ν + µ = f∗ν + µ0,

µ0 + µ̂0 = λX ,

µ0, µ̂0, ν ∈M+(X),

µ ∈M+(Z).

(6)

d := inf

∫
X

w(x)dλX

s.t. v(x)− v(f(x)) ≥ 0,∀x ∈ X,
w(x)− v(x)− 1 ≥ 0,∀x ∈ X,
w(x) ≥ 0,∀x ∈ X,
v(x) ≥ 0,∀x ∈ Z,
v, w ∈ C(X).

(7)

Proposition 1. Suppose there exists a constant M > 0 such
that for any feasible solution (µ0, µ̂0, ν, µ) of the LP (6), the
mass of ν is bounded by M , i.e.,

∫
X

1dν < M .
(a) If f(X) ⊆ X , then LP (6) admits an optimal solution

(µ∗0, µ̂
∗
0, ν
∗, µ∗) such that µ∗0 = λX∞0 and p∗ = volX∞0 .

(b) There is no duality gap between the primal LP (6) and
the dual LP (7).

The semidefinite relaxations can be obtained similarly. The
primal is

pr := sup
y0,ŷ0,z,a

y0,0

s.t. y1,β + zβ = `z(f(x)β) + y0,β ,∀β ∈ Nn2r,
y0,β + ŷ0,β = yXβ ,∀β ∈ Nn2r,
Mr−rXj (hXj y0) � 0, j = 1, . . . , nX ,

Mr−rXj (hXj ŷ0) � 0, j = 1, . . . , nX ,

Mrd−rXj (hXj z) � 0, j = 1, . . . , nX ,

Mr−rZj (hZj y1) � 0, j = 1, . . . , nZ .

(8)

The dual is

dr := inf
v,w

∑
β∈Nn

2r

wβy
X
β

s.t. v − v ◦ f ∈ QX
rd,

w − v − 1 ∈ QX
r ,

w ∈ QX
r , v ∈ QZ

r ,

v, w ∈ R2r[x].

(9)

Proposition 2. Let r ≥ rmin.
(a) The primal SDP (8) and the dual SDP (9) are both

feasible. If the primal SDP (8) has a strictly feasible solution,
then there is no duality gap between the primal SDP (8)

and the dual SDP (9), and the optimal value of SDP (9) is
attained.

(b) Let (vr, wr) be a feasible solution to SDP (9). Define

X0r = {x ∈ X|wr(x)− 1 ≥ 0}.

Then X0r ⊇ X̄∞0 ⊇ X∞0 . Suppose the conditions in Part (a)
hold. In addition, if there exists a sequence of polynomials
(uk)k∈N satisfying (i) uk > 1X̄∞0 on X , (ii) (uk) converges
to 1X̄∞0 in L1 norm, and (iii) uk(x)−uk(f(x)) > 0,∀x ∈ X ,
then SDP (9) has an optimal solution (vr, wr) such that

lim
r→∞

∫
X

|wr(x)− 1X̄∞0 (x)|dλX = 0.

Remark. Part (a) is a standard strong duality theorem for
SDP’s. Part (b) indicates that X0r is an outer approximation
of the closure of the backward reachable set. If we define

X̃0r =

r⋂
k=rmin

X0k,

then the approximation by the sequence of sets {X̃0r}r is
monotone. The last technical condition in Part (b) can be
understood as follows. Since X̄∞0 is closed, the indicator
function 1X̄∞0 is upper semi-continuous. So there exists a de-
creasing sequence of bounded continuous functions (uk)k∈N
converging pointwise to 1X̄∞0 on X . By the Dominated
Convergence Theorem, (uk)k∈N converges to 1X̄∞0 in L1

norm. By the Stone-Weierstrass Theorem, each uk can be
approximated uniformly arbitrarily well by polynomials.
Therefore, there exists a sequence of polynomials (ũk)k∈N
satisfying conditions (i) and (ii). So (iii) is an additional
constraint. If (iii) holds, then Putinar’s Positivstellensatz
implies that SDP (9) has a feasible solution whose w-
component resembles (ũk). This establishes the vanishing
error of the hierarchical SDP approximations.

In practice, however, given a system it is not known a
priori if condition (iii) holds or not. Even if it is known,
current numerical solvers can only handle SDP’s up to a
certain degree. Whether the approximation up to that degree
is good or not is not known.

While the approach approximates the backward reachable
set of autonomous systems, it can also approximate the
backward controllable set of systems subject to polynomial
state feedback control inputs. This is immediately seen by
plugging the polynomial control law ut = u(xt) into the
control affine polynomial system xt+1 = f(xt) + g(xt)ut =
f(xt) + g(xt)u(xt), yielding a polynomial closed-loop dy-
namical system.

VI. EXAMPLES

We illustrate our methods on five discrete-time polynomial
systems. All computations are done using MATLAB 2016b,
the SDP solver MOSEK 8, and the polynomial optimization
toolbox Spotless [24].



A. Van der Pol oscillator

In this example, we are going to over approximate the
backward reachable set of the uncontrolled reversed-time Van
der Pol oscillator (Example 9.2 in [6]) given by

ẋ1 = −2x2,

ẋ2 = 0.8x1 + 10(x2
1 − 0.21)x2.

Discretizing the model with the explicit Euler scheme with
a sampling time δt = 0.01, the discrete-time system is

x+
1 = (−2x2)δt+ x1,

x+
2 = (0.8x1 + 10(x2

1 − 0.21)x2)δt+ x2.

Choose X = {x ∈ R2 : |x1|2 ≤ 1.52, |x2|2 ≤ 1.52} and
Z = {x ∈ R2 : |x1|2 ≤ 0.12, |x2|2 ≤ 0.12}.

We approximate the backward reachable set by degree-14
and 16 polynomials. As show in Figure 1, the gray areas are
the approximate backward reachable sets. The areas enclosed
by the red lines are the true backward reachable set, which
was obtained analytically by integrating backwards in time.

Van der Pol oscillator ROA. Degree=14
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Van der Pol oscillator ROA. Degree=16
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Fig. 1. Degree-14 and degree-16 outer approximations to the backward
reachable set (or region of attraction).

B. Double integrator

Consider a double integrator discretized by the explicit
Euler scheme with a sampling time δt = 0.01. The discrete-
time dynamics equations are

x+
1 = x1 + 0.01x2,

x+
2 = x2 + 0.01u.

We are going to design controllers and then approximate
the backward reachable set of the closed loop system. We
consider the state constraint set X = {x ∈ R2 : |x1| ≤
1, |x2| ≤ 1}, and the target set Z = {x ∈ R2 : ||x||22 ≤
0.052}. We search for a degree-1 controller.

As shown in the left plot of Figure 2, the green area
is a degree-10 approximation of the backward reachable
set of the closed loop system. We cover X by a uniform
20 × 20 grid, and compute the trajectories of the grid
vertices under the extracted controller. The red markers
represent the vertices that can be steered to Z under the
extracted controller in T = 104 time steps without violat-
ing state or control input constraints. In the right plot of
Figure 2, we plotted the trajectories of four initial states,
(−0.8, 0.8), (−0.6,−0.6), (0.6, 0.4), and (0.5,−0.68), under
the extracted controller.
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Fig. 2. Left: The green area is a degree-10 approximation of the backward
reachable set of the closed loop system. The red markers represent the
controllable sample points. Right: Trajectories of four initial states under
the extracted controller.

C. Dubin’s car

Consider the Dubin’s car model (Example 2 in [14])

ȧ = v cos(θ), ḃ = v sin(θ), θ̇ = ω,

or by a change of coordinates, the Brockett integrator

ẋ1 = u1, ẋ2 = u2, ẋ3 = x2u1 − x1u2.

The system has an uncontrollable linearization and does not
admit any continuous time-invariant control law that makes
the origin asymptotically stable [2]. We are going to design
a polynomial control law for the system.

Discretize the system using the explicit Euler scheme with
a sampling time δt = 0.01. Choose X = {x ∈ R3 :
||x||∞ ≤ 1}, and Z = {x ∈ R3 : ||x||22 ≤ 0.12}. We
search for a degree-4 controller. We sample the 2D sections
{x ∈ X : x3 = 0} and {x ∈ X : x2 = 0} uniformly, and
compute whether the grid vertices can be steered to Z under
the extracted controller in 104 time steps. In the left two
plots of Figure 3, the red vertices represent the initial states
that can be regulated to the target set under the extracted
controller, while the blue vertices are the rest. The right plot
of Figure 3 shows the trajectories of the eight initial states
(±0.9,±0.9,±0.5) under the extracted controller. They all
reach the target set Z, represented by a red ball. Some other
initial states that cannot reach the target set actually end
up somewhere very close to the target set. For example the
initial state (0.8,−0.6, 0.7) ends up at (0, 0, 0.1224).
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Fig. 3. Top left: The 2D section {x ∈ X : x3 = 0}. Bottom left: The
2D section {x ∈ X : x2 = 0}. The red vertices represent the initial
states that can be regulated to the target set under the extracted controller.
Right: Trajectories of the eight initial states (±0.9,±0.9,±0.5) under the
extracted controller. The red ball in the center is the target set Z.



D. Controlled 3D Van der Pol oscillator

Consider the controlled 3D Van der Pol oscillator (Exam-
ple 2 in [9]) discretized by the explicit Euler scheme with a
sampling time δt = 0.01. The dynamics are given by

x+
1 = x1 − 2x2δt

x+
2 = x2 + (0.8x1 − 2.1x2 + x3 + 10x2

1x2)δt

x+
3 = x3 + (−x3 + x3

3 + 0.5u)δt

Let the state constraint set be the unit ball X = {x ∈ R3 :
||x||22 ≤ 1} and the target set be Z = {x ∈ R3 : ||x||22 ≤
0.12}. We search for a degree-1 controller, i.e., an affine
controller.
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Fig. 4. Left: Controllable sample points in red and uncontrollable points in
blue. Right: Trajectories of six initial states under the extracted controller.
The red ball in the center is the target set Z.

We choose as our sample points the uniform 5 × 5 × 5
grid vertices that are inside the unit ball X . As shown in the
left plot in figure 4, the red dots represent the sample points
that can be controlled to the target set under the extracted
controller in 104 time steps. The blue dots represent those
cannot. In the right plot, we show the trajectories of six initial
states (0.6,−0.6,−0.2), (−0.6,−0.6, 0.2), (0.6, 0.2, 0.6),
(0.6,−0.2, 0.6), (−0.2, 0.6,−0.6), and (−0.2,−0.6, 0.6)
under the extracted controller. The red ball in the center
represents the target set.

E. Cart-pole system
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Fig. 5. The cart-pole system.

Consider balancing the cart-pole system [22], shown in
Figure 5, to its upright position, an unstable equilibrium. We
are allowed to apply only horizontal force on the cart, so the
system is underactuated. The equations of motion are given
by

(mc +mp)ẍ+mplθ̈ cos θ −mplθ̇
2 sin θ = f,

mplẍ cos θ +mpl
2θ̈ +mpgl sin θ = 0.

Let x = [x, θ, ẋ, θ̇]> and u = f . Choose mc = 10,mp =
1, l = 0.5, g = 9.81, X = {x ∈ R4 : |x| ≤ 4, |θ| ≤
π/6, |ẋ| ≤ 4, |θ̇| ≤ 2}, f ∈ [−40, 40], and Z = {x ∈
R4 : ||x||∞ ≤ 0.5}. We Taylor-expand the equation of
motion to the third order around the unstable equilibrium
x = [0, π, 0, 0]>, and synthesize a third degree polynomial
controller. We sample points uniformly in six 2D sections
and compute the controllable points under our controller
(represented by red circles in Fig 6) using the true equations
of motion. Each section is obtained by setting two variables
to be 0. For example, the section in the x − θ plane is
{x ∈ X : ẋ = 0, θ̇ = 0}. As a comparison, we also
compute the controllable points under the infinite-horizon
LQR controller (represented by blue dots in Fig 6) with Q
and R being identity matrices.
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Fig. 6. Controllable sample points in six 2D sections. The red circles
represent the controllable points using our controller, while the blue dots
represent the controllable points using the infinite-horizon LQR controller.

VII. CONCLUSION

We have presented a controller synthesis method for
discrete-time polynomial systems via the occupation measure
approach. We have also showed how to over approximate
the backward reachable set of a discrete-time autonomous
polynomial system and the backward controllable set of a
discrete-time polynomial system under state feedback control
laws. The advantage of our approach is that we solve convex
optimization problems instead of generally non-convex prob-
lems, and the computational complexity is polynomial in the
state and input dimensions. However, for controller synthesis,
our method is heuristic – stability is not guaranteed in any
region. In our future work, we will consider the discrete-time
hybrid systems.
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