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Abstract— We would like robots to be able to safely navigate
at high speed, efficiently use local 3D information, and robustly
plan motions that consider pose uncertainty of measurements in
a local map structure. This is hard to do with previously existing
mapping approaches, like occupancy grids, that are focused
on incrementally fusing 3D data into a common world frame.
In particular, both their fragile sensitivity to state estimation
errors and computational cost can be limiting. We develop an
alternative framework, NanoMap, which alleviates the need for
global map fusion and enables a motion planner to efficiently
query pose-uncertainty-aware local 3D geometric information.
The key idea of NanoMap is to store a history of noisy relative
pose transforms and search over a corresponding set of depth
sensor measurements for the minimum-uncertainty view of a
queried point in space. This approach affords a variety of ca-
pabilities not offered by traditional mapping techniques: (a) the
pose uncertainty associated with 3D data can be incorporated
in motion planning, (b) poses can be updated (i.e., from loop
closures) with minimal computational effort, and (c) 3D data
can be fused lazily for the purpose of planning. We provide
an open-source implementation of NanoMap, and analyze its
capabilities and computational efficiency in simulation exper-
iments. Finally, we demonstrate in hardware its effectiveness
for fast 3D obstacle avoidance onboard a quadrotor flying up
to 10 m/s.

I. INTRODUCTION

Robust, fast motion near obstacles is an open problem

that is central in robotics, with applications spanning across

manipulation, autonomous cars, and UAV navigation in

unknown environments. Although many approaches exist

for planning obstacle-free motions, mapping errors due to

significant state estimation uncertainty can degrade their

performance [1], [2]. Accordingly, a notable trend in the

state of the art has been to develop memoryless approaches

to obstacle avoidance that use only the current depth sensor

measurement [1]–[5]. These approaches are less prone to

state estimation errors, but fail to capture all available

information.

Towards this goal, a primary motivation of this work was

to be able to use pose uncertainty to reason about a local his-

tory of depth information. NanoMap is an algorithm and data

structure that enables uncertainty-aware proximity queries

for planning. While traditional mapping approaches rely on

fusing a history of depth information into a discretized world

frame, we propose an alternative: perform no discretization,

and no fusing. Instead, the process for querying local 3D

data is a search over views. When a query point (i.e. a

sample along a motion plan) is provided, the history of depth
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Fig. 1: (a) Onboard images from a quadrotor using NanoMap

and flying at 10 m/s in a forest. (b) Visualization of vehicle’s

depth camera frustums over time, and current point cloud

observing a tree. (c) Depiction of frame-specific uncertainty

ΣSi for each depth sensor measurement frame Si.

information is searched for the most-recent and therefore

minimum-uncertainty relative to current body frame view of

that query point.

In practice, this approach offers a variety of unique ca-

pabilities not present in traditional fusion-based mapping

algorithms. For one, the pose uncertainty associated with

depth sensor measurements can be incorporated into plan-

ning, by treating each pose with frame-specific uncertainty

relative to the current body frame (Figure 1, c). Second, since

fusion between measurements is not performed, it is trivial to

incorporate updated information about previous poses. Third,

the build time of the data structure is low, which leads to an

improvement in computational efficiency for small amounts

of motion planning queries (< 10, 000).

This paper presents the design of NanoMap and our ex-

periments in quantifying the benefits of its novel properties.

We believe this work strongly demonstrates that more deeply

integrating motion planning and perception can improve a

system’s robustness and computational efficiency. To briefly

clarify our scope of work: (a) we focus on a method of

incorporating pose uncertainty, but modeling the noise of

the depth sensor itself is outside of scope, (b) NanoMap

requires nonzero volume depth sensors, i.e. depth cameras

or 3D lidars, but not 2D or 1D sensors, (c) adding more

sensors to increase the FOV is a hardware route to alleviate



the problem but does not address occlusions, and (d) we are

concerned with local obstacle avoidance, rather than global

planning, and so short histories of information are sufficient.

The contributions of this work are as follows:

• A novel use of frame-specific uncertainty for planning

with depth sensors

• An approach to searching a history of depth frustums to

enable motion plans to satisfy field of view constraints

• An efficient use of independently spatially partitioned

depth measurements for motion planning queries

• Simulation experiments demonstrating the magnitudes

of state estimation uncertainty at which frame-specific

uncertainty becomes significant (approximately 1%
drift, or 1 m pose corrections)

• Hardware validation demonstrating this approach on-

board a quadrotor, including flight at up to 8− 10 m/s
in unknown warehouse and forest environments

II. RELATED WORK

A few related works share some features of using pose

estimation uncertainty in planning, but do not address plan-

ning around obstacles in unknown environments. Previous

works have used directly the uncertainty of a pose graph

framework for planning but have a critical limitation that

they only plan over graphs of pre-known poses [6], [7]. Other

work seeks to develop generalized belief space that includes

distributions over worlds, but there are no obstacles in these

worlds, only landmarks for navigation [8]. Another related

work includes a sampling of depth perception estimates (a

discrete probability distribution), but inserts them into a map

structure using maximum-likelihood poses [9].

Rather than deal with the belief space of previous poses,

the predominant approach for incorporating memory has

been to ignore pose uncertainty, and use a maximum-

likelihood mapping approach [10], [11]. Mapping-based ap-

proaches benefit from extensive decades of research into the

robot mapping problem. While many SLAM approaches may

internally have rich representations of uncertainty from the

fusion of a variety of noisy depth sensor, RGB, and other

sensor data, when it comes to using maps for planning, the

maximum likelihood estimate map M̂MLE is traditionally

used. There are a variety of different ways to formulate

a map – the most common versions are occupancy grids,

which are used ubiquitously [12]. Occupancy grids can prob-

abilistically incorporate depth sensor measurements (multiple

measurements can be required for a cell to be occupied), but

this doesn’t address pose estimation uncertainty. Other forms

include polar maps, and for some dense SLAM techniques,

surfel maps are used. Some probabilistic collision detection

methods can also handle non-spherical robots [13] and dy-

namic obstacles [14], whereas we have only used NanoMap

here with a method [2] that assumes spherical robot and static

environment.

A different and popular approach to the obstacle avoid-

ance problem under significant state estimation uncertainty

is to essentially cut pose estimation out of the equation,

which can be done via a method that uses no memory
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Fig. 2: Comparison of possible results using an occupancy

grid (middle), vs. NanoMap (bottom), in an example scenario

navigating amongst obstacles while experiencing pose drift.

of depth sensor measurements. In addition to planning-

based approaches that exhibit this property [1]–[5], [15], any

obstacle avoidance approaches that are considered reactive

approaches may inherently have this property as well. Reac-

tive approaches, including optic flow methods [16], reactive

imitation-learning [17], and non-planning-based geometric

approaches [18] have demonstrated considerable success at

obstacle avoidance for UAVs. The limitations, however, of

memoryless obstacle avoidance have been well noted [15],

[17], including that the restricted memoryless free space

provides less space for dynamic manuevers. Other related

approaches have limited map-building to very short time

horizons [19], or have used map structures that exponentially

decay old depth sensor measurements [9].

III. MOTIVATION

This work seeks a method to reason about local 3D

obstacles in the presence of significant state estimation uncer-

tainty. Our approach is guided by our experience with high-

speed UAVs, the use of depth sensors for obstacle avoidance,

and the planning challenges introduced by imperfect state

estimation [2].

One key observation is that in practice, depth sensor data

(Figure 1, b) is often clean enough that fusing many recent

observations is not required in order to plan obstacle-free

motions. Rather than averaging many measurements to create

intricate 3D reconstructions, mapping for obstacle avoidance

only needs to robustly determine collision-free space. Fur-

thermore, the current or very recent depth measurements

frequently contain a view of planned directions of motion

(Figure 1, b). In the case that the planned trajectory does

not fall within the current field of view, it is still possible



to perform robust trajectory planning by using the history of

depth measurements.

Additionally, as shown in Figure 2, the incorporation

of pose uncertainty (the acknowledgement that the robot

does not perfectly know its previous positions relative to

its current body frame) is a fundamentally different model

of uncertainty than, for example, what is modeled in an

occupancy grid. Although the Bayesian update in occupancy

grids may well model 0-mean Gaussian noise of both poses

and depth sensing, it does not handle the case of pose drift.

IV. FORMULATION

NanoMap is a framework composed of both a local 3D

data structure and an algorithm for searching that data

structure. Briefly, the algorithm works by reverse searching

over time through sensor measurement views until finding a

satisfactory view of a subset of space (Figure 3), and then

returning the k-nearest-neighbors from that view’s sensor

measurement. Important components of the framework in-

clude: the determination of in-frame views (the IsInFOV()

function), the propagation of uncertainty, and efficient data

structure design for handling asynchronous data inputs of

point clouds, poses, and pose updates. We first describe

the query algorithm, which gives insight into efficient data

structure design. We then discuss details of handling asyn-

chronous data.

A. Querying Algorithm

The query algorithm (Algorithm 1) iteratively transforms

an uncertain query point into the coordinate frames of

previous sensor measurements until it finds a view which

contains the query. An uncertain query point is a sampled

point along a stochastic motion plan, and is provided in

body frame, xB
query = N (µB,ΣB) ∈ R

3. The query point in

the original body frame and each of the relative transforms

are each modeled with Gaussian translational uncertainty.

In each frame associated with a given sensor measurement

Si, the query point x
Si
query = N (µSi ,ΣSi) ∈ R

3 has

uncertainty specific to that frame. As noted in Algorithm

1, NanoMap is unconventional in that it also returns the un-

certain query point itself transformed into a different frame.

While NanoMap has been implemented to only address query

points in R
3, downstream the query return points may be

inflated for spherical approximations of collision geometry.

1) Uncertainty propagation: Accounting for uncertainty

is performed as follows. The query is provided as the

mean and covariance of a point in the current body frame

B of the robot x
B
query = N (µB,ΣB). The query is first

transformed into the frame S0 of the most recent sensor

measurement, µS0 = TS0

B
µB, where TS0

B
represents the

local, relative transform between the current body frame

and the recent sensor frame. TS0

B
is modeled with a noisy

translation T S0

B
with covariance ΣS0

B
, and known rotation

RS0

B
. In addition to computational simplification, our choice

to model translational uncertainty and not rotational is guided

by the practical observation that due to gravity, IMUs provide

good observability of roll and pitch, and yaw is only a

(a) (b) (c) (d) 

Fig. 3: Depiction of how NanoMap queries can be used

to evaluate motion plans, (a, blue), given a series of depth

sensor measurements over time (a, camera frustums). For

each sample point (b, c, d; red) the history of measurements

is searched until a view is found (orange) that contains the

sample point. Note that sample points are actually Gaussian

sample points (See Figure 5).

Algorithm 1: NanoMap query algorithm. Subroutine

IsInFOV() is described in Section IV-A.2; Knn() is pro-

vided by a single-frame k-d-tree query. N is the number

of measurements stored in memory.

1 function NanoMapQuery (xB
query);

Input : body frame query point xB
query = N (µB,ΣB)

Output: i, index of frame containing view

x
Si
query = N (µSi ,ΣSi)

k-nearest-neighbors x
Si

1 , ..., xSi

k

2 Transform query point from body frame into most

recent sensor frame:

x
S0

query ← N (TS0

B
µB, ΣS0

B
+RS0

B
ΣB)

3 if IsInFOV(xS0

query) then

4 return 0, xS0

query , Knn(µS0 );

5 end

6 for i← 1 to N do

7 Transform query point into previous frame:

x
Si
query ← N (TSi

Si−1
µSi−1 , ΣSi

Si−1
+RSi

Si−1
ΣSi−1)

8 if IsInFOV(xSi
query) then

9 return i, xSi
query , Knn(µSi );

10 end

11 end

12 return “out of known space”, xS0

query , Knn(µS0 );

single integration of a noisy gyrometer (covariance grows

∝ N for N measurements), whereas positions are double

integration of the accelerometer (covariance grows ∝ N3).

Under the assumption of independence between body-frame

query point uncertainty and each transform covariance, the

variance of the query point in frame S0 is simply the sum

ΣS0 = ΣS0

B
+RS0

B
ΣB. Extending this process to the ith sensor

coordinate frame, we have

ΣS0 = ΣS0

B
+RS0

B
ΣB

ΣSi = ΣSi

Si−1
+RSi

Si−1
ΣSi−1 for i = 1, 2, ...N
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Fig. 4: The IsInFOV function (left) for determining if a query

point is in freespace or one of the regions of non-freespace

(right). The pixel coordinates u, v can easily be calculated

by (u, v) = (x
z
, y

z
) and (x, y, z) = Kµ with K the camera

intrinsics matrix, and the query point µ ∈ R
3 in the right-

down-forward Cartesian frame of the sensor measurement.

r × c is the depth camera resolution.

and concatenating transforms for the mean we have

µSi =

i
∏

j=1

[

T
Sj

Sj−1

]

TS0

B
µB

which defines x
Si
query = N (µSi ,ΣSi).

2) IsInFOV(): determining in-frame views: A key chal-

lenge is in determining which view contains the uncertain

point, referred to as the IsInFOV() function. Projecting

the mean of the uncertain point into the depth image, as

described in Figure 4, can be used to efficiently check a

series of inequalities (inside each of lateral and vertical FOV,

occluded, not beyond sensor horizon) to determine if the

point is in free space. A challenge, however is represented

by Figure 5. If only the mean of the distribution is used to

check whether or not a view contains the point, then a large

portion of that distribution may lie outside the FOV. With

infinite-tail Gaussian distributions, no view fully contains

them. NanoMap approximates this problem by using an axis-

aligned bounding box (AABB), a familiar concept for fast

approximations in the graphics community. The AABB for

the 1-σ (1 standard deviation) of the distribution is used.

Checking whether or not the AABB is contained can be done

efficiently with the same number of inequality evaluations as

the single point. To check for occlusions, NanoMap performs

a simple occlusion check of the mean point.

B. Data Structure for Asynchronous Data

The data structure (Figure 6) matches the form of the

query algorithm and is performant given the requirements of

asynchronous data and continuous addition and removal of

data. The core data structure is a chain of edge-vertex pairs,

where the edge is the transform TSi

Si−1
and the vertex contains

both the raw point cloud data and the previously-processed

k-d-tree. The raw point cloud data (row-column-organized) is

used to evaluate the IsInFOV() function, whereas the k-d-tree

is used to evaluate k-nearest-neighbors if IsInFOV()=true.

We briefly highlight some data structure design considera-

tions. By nature NanoMap is never defined in one coordinate

frame, and rather has components in many coordinate frames.

One implication of this is that NanoMap must constantly be

updating TS0

B
with each new pose. Further, we desired both

Is this uncertain 

query point inside 

this FOV? 

1-σ of query point 

Criteria: must 

contain AABB 

of  1-σ

Fig. 5: Which view is sufficient for evaluating an uncertain

query point distributed as an infinite-tail Guassian? A more

recent measurement (left) may contain the mean of the

distribution, but a significant portion may fall outside. Our

criteria (right) for an approximate solution is to use the

AABB of the 1-σ of the query point distribution. If no view

fully contains the AABB, then the most recent frame is used,

which may have had a partial view (Algorithm 1).

Fig. 6: Core NanoMap data structure: a sequence (right) of

edge-vertex pairs (left), where each vertex contains both the

raw data for evaluating FOV constraints, and a k-d-tree of

the point cloud data. The edge is a relative transform to the

coordinate frame of the next vertex.

fast insertion of a new edge-vertex pair, and fast removal

of the oldest edge-vertex pair. Since search through the

data structure is also always performed linearly, a doubly-

linked list of edge-vertex pairs is a good fit for these

requirements, efficiently supporting O(1) addition/removal

at ends, and O(1) for each step of IsInFOV(). An additional

feature given the separate-frame nature of the framework and

asynchronous data is that the k-d-tree of a point cloud can

be built even before the pose of the point cloud can be

determined, allowing the k-d-tree building to begin before

a world-frame map would be capable of starting insertion.

Lastly, a key feature of NanoMap is to be able to efficiently

handle asynchronous updated recent pose information, which

may only cover a subset of its history. Upon receiving a

series of updated world-frame poses, NanoMap only updates

a transform edge TSi

Si−1
if it can fully interpolate the updated

world frame pose of both vertices. This can be done effi-

ciently by searching through the edge-vertex chain with a

time-sequenced list of pose updates.

V. RESULTS

We start by (A) analyzing in simulation how NanoMap is

able to provide robust obstacle avoidance depsite significant

state estimation uncertainty, and quantify the scale of drift



TABLE I: NanoMap Data Inputs and Parameters

Data Input Note Example Rate

6-DOF poses timestamped 100 Hz

6-DOF pose correc-
tions

sequence of times-
tamped poses

1-100 Hz

Organized 3D Point-
Clouds

organized
(row,column) from
depth camera

30-60 Hz

Parameter Note Example Values

Max sensor range 10-20 m

Depth camera resolu-
tion, FOV

equivalently, K ma-
trix

320x240, 60 deg V,
90 deg H FOV

N , history length (#
point clouds)

150-300

Σ
Si

Si−1
covariance between sensor poses 0.005 - 0.02 m

and correction jumps (i.e., from a loop closure) at which

this is significant. We then (B) analyze the computational

efficiency of NanoMap compared to other available packages

for evaluating local 3D data in motion planning. Finally,

(C) we demonstrate NanoMap used effectively on a real

hardware system.

A. Robustness of NanoMap to State Estimation Uncertainty

A central goal of NanoMap was to increase obstacle avoid-

ance robustness in regimes of significant state estimation

uncertainty. There are two separate features we evaluate: the

ability to separately model pose uncertainty of each depth

measurement, and the ability to efficiently correct recent

pose information from a sliding-window state estimator. Our

hypothesis was that at some threshold of pose uncertainty,

these features become relevant. Here we present our findings.

1) Experimental: Motion Planner and Simulation: In

these experiments, NanoMap is used by a stochastic motion

planner. This motion planner was as described previously

[2], with the following modifications: (a) a full 3D mo-

tion primitive library of 125 primitives, (b) a collision-

chance-constrained (maximum allowed collision probability

of 0.001) rather than mixed-objective described previously,

and (c) “early-exit” for subsequent sampling of a primitive

that already evaluates below the chance constraint. Our

simulation system was also as described in [2], here used

with a professional-grade urban environment created in the

Unity game engine. The simulated depth camera was 30 Hz,

20 m range, and 46 deg FOVvertical.

2) Scenario: The ability of NanoMap to provide pose-

uncertainty-aware queries is most relevant when a motion

planner is forced to search deeper into its history of poses. As

discussed later with Figure 12, this is most apparent during

extreme dodging maneuvers. Accordingly the experiments

use the following scenario which is desirable due to its ease

of interpretability: a quadrotor, initially at 5 m altitude, is

given a desired goal 200 m away, with a desired top speed

of 15 m/s, and 100 m along its path there is a large wall of

a building with a 3D overhang near its altitude. The vehicle

must aggressively decelerate, such that its velocity is outside

of its current FOV. Significant pose uncertainty during this

aggressive deceleration period would be difficult for other

mapping and planning systems to handle.

Fig. 7: Simulation environment (left) at beginning of exper-

imental scenario. (Right top) Ground truth pose of vehicle

and corrupted pose of vehicle (axes are 10 m, for scale).

(Right below) Aggressively stopping when far wall comes

into depth sensor range.

3) Using Pose-Uncertainty-Aware Queries: To evaluate

the magnitude of pose drift at which NanoMap’s frame-

specific uncertainty capability measurably increases robust-

ness, we experimented with the following controlled exper-

iment. As we increased state estimation noise, we either

had NanoMap model the local, relative transforms with no

translation covariance, ΣSi

Si−1
= 0, or with a covariance cor-

responding to the noise level, ΣSi

Si−1
= f(Σactual). Our noise

model was to add noise to each of the x and y acceleration

measurements, ã = (a + η) × ξ, where η ∼ N (0,Σactual)
and ξ ∼ N (1,Σactual). Acceleration noise was integrated

into the corrupted velocities and positions. Since quadrotors

can measure altitude directly with downward-facing lidars

and barometers, we did not model noise in z. An intuitive

grasp of the scale of the noise model is best described as

the standard deviation of drift over the depth measurement

history (5 seconds = 150 measurements at 30 Hz) during

the final portion of the flight. We term this σdrift, 5 seconds,

and accordingly used f(Σactual) =
Σdrift, 5 seconds

150
. The singular

difference between the two groups of the data (Figure 8) was

the value of the ΣSi

Si−1
parameter in NanoMap.

These experiments show (Figure 8) that incorporating pose

uncertainty can have a substantial effect, in particular when

the drift is on the order of 10 cm per second. At speeds

above 10 m/s, this is approximately 1% position drift, which

is comparable to expected performance from our VIO state

estimator [20]. At very small drift (σdrift, 5 seconds = 0.4 m),

there is little noticeable difference, but at σdrift, 5 seconds =
0.7, 1.5, 3.8 m, incorporating the uncertainty enables the

vehicle to still stay safe 97-98% of the time, whereas the drift

deteriorates the safety of the group that doesn’t incorporate

pose uncertainty. The ability to stay safe diminishes at

massive levels of drift (7.3 m in 5 seconds), where the

pose-uncertainty-modeled group only stays safe 90% of the

time, but still more than the unmodeled group. The pose-

uncertainty-modeled group on average stays much farther

away from obstacles, (γ = distance to closest obstacle),

playing it conservative during the aggressive maneuver.
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4) Incorporating Updated Pose Information: NanoMap

has a unique ability to efficiently update recent pose infor-

mation, which as shown later in Figure 11, is not possible

at realtime rates for the other benchmarked packages. This

is meaningless, however, without getting a sense of when

this capability is useful. Rather than provide a drifting state

estimate, as in the previous experiment, we instead provide a

deterministic backwards ”pose correction” during the decel-

eration event (triggered at 12 m/s during the deceleration).

This is representative of a loop closure occurring in the

global state estimator. NanoMap is configured to either use

the pose corrections to update and maintain a smooth history

of poses, or only add new poses as they come in, and

accordingly have a large “jump” in its history.

We find that even at the scale of 0.5 m pose corrections,

this size of a pose jump in its history can measurably cause

crashes during the aggressive maneuver scenario, causing

18% crashes. With pose corrections of 2 m or more, these

jumps cause crashes more than 50%. By using NanoMap’s

capability to trivially update its entire pose history upon

receiving a sliding-window correction (orange), there is

expectedly little effect for any level of pose jump tested,

with crashes occurring less than 5% at all levels.

B. Computational Efficiency Benchmarking

We compare NanoMap to three other packages: OctoMap

[12], Voxblox [21], and Ewok [22]. OctoMap implements

an octree occupancy grid, Voxblox builds ESDFs (euclidean

signed distance functions) out of projective TSDFs, and

Ewok builds its ESDF by iterating over a 3D circular buffer

occupancy grid. Each of these can provide nearest-obstacle

queries, which makes them efficient for stochastic motion

planning, where there is uncertainty in configuration. There

are of course many parameters for each of these packages,

but we have made best efforts to provide a useful comparison

given reasonable parameter choices. For both benchmarking

experiments, we used a data log of a quadrotor with a

simulated 320 × 240 depth image with 20 m range traversing

an approximately 200 m× 200 m urban environment. This

dataset, and the scripts for using each of these packages to

generate the benchmarking data, are available1.

We use two metrics to measure the packages. The first

metric (Figure 10) measures total time to incorporate a

new sensor measurement and then perform nqueries nearest-

obstacle queries. The second metric (Figure 11) measures

total time to adjust or rebuild a data structure after nposes

poses are corrected, i.e. after a loop closure.

There are a number of conclusions to draw from the plots.

There is a tradeoff inherent from Figure 10 between the

fusion-based packages (OctoMap, Voxblox, Ewok) which

spend more time building their data structure, and NanoMap

which spends less time building the data structure but has

more expensive queries. For small amounts of queries, this

tips the computational advantage to NanoMap, whereas for

large amounts of queries, the fusion-based packages have

an advantage. Figure 10 also demonstrates that unlike the

discretized, fused packages, NanoMap has variable query

time, based on how deep in history the query searches. We

plot both the worst-case (each query searches the full history)

and best-case (each query is in current FOV). In practice, our

planner on average has approximately 75% best-case queries,

but it is important to specify the system to worst-case timing,

since as shown in Figure 12, more memory is used during

critical dodging maneuvers. In the range of queries of our

motion planner (2,500 queries), NanoMap is the fastest, even

in the worst-case.

1https://hub.docker.com/r/flamitdraper/mapping/



Fig. 10: Total computation time for nqueries nearest-neighbor

queries. NanoMap depth history is set to 150. Error bars are

shown as standard error of the mean.

Fig. 11: Total computation time for adapting map structure

to update nposes. Error bars are standard error of the mean.

From Figure 11, we see a unique capability of NanoMap –

its ability to incorporate updated pose information at realtime

rates. NanoMap is two to four orders of magnitude faster

than the others – this is not a capability that is feasible

at realtime rates for the other packages for more than a

handful of nposes. Whereas the only way to incorporate

new pose information for the other packages is to rebuild

the data structure with new world-frame-registered measure-

ments, NanoMap can adjust by simply updating the relevant

sequential transforms (TSi

Si−1
) in its data structure.

We also have been able to empirically validate that for

obstacle avoidance motion planning in our flight regimes,

a large percentage of NanoMap queries fall within the

current or very recent FOV of the depth sensor. For a

representative flight, we measure a very strong sufficiency of

recent measurements, with 74.4% of queries falling within

the current FOV, and a cumulative 92.3% of queries satisfied

with the last 40 measurements. Figure 12 shows a histogram

plotted over time during the course of the flight. During

aggressive obstacle avoidance maneuvers (between ∼ 9 to 11

seconds into flight), there is expectedly more of a need to use

memory. Yet even during this period, the last few seconds of

Hovering at 
start 

Forward acceleration Constant 
velocity 

Dodging 
maneuvers 

Hovering at 
goal 

Fig. 12: Histogram over time for depth of history is searched

in a representative flight. This data is from a 13 second flight

traveling approximately 50 m in low clutter with a 30 Hz

depth sensor, 10 m range, and 45 deg FOVvertical. Phases

of flight are labeled above the time axis.

flight mostly suffice for satisfying motion planning queries.

C. Hardware Experimentation

NanoMap has been extensively used in our hardware

system on our MIT-Draper DARPA FLA2 team. Figure 1,

a, shows images from onboard video of a flight. Over the

course of a week of experimental testing at the May 2017

FLA event, NanoMap was the local mapping representation

used for the majority of flights, with both an Intel RealSense

r200 (for outdoor environments) and an ASUS Xtion (for

indoor environments) used as the depth camera sensor. A

Hokuyo 2D lidar sensor also aided obstacle perception for

many of these flights, but it was used in a memoryless

fashion, and due to its 0-deg vertical FOV was not useful

during aggressive high-attitude maneuvers. We also (see

video) demonstrate flight using only the RealSense, with no

Hokuyo lidar. A sliding-window visual inertial (VIO) state

estimator [20] with 100 Hz low-latency poses and lower-

rate, higher-latency pose corrections over a 5-second sliding

window. NanoMap incorporated these sliding window pose

corrections. The mapping, planning, and hardware systems

have been described in the author’s Master’s Thesis [23].

Notable other vehicle hardware includes: a dual-core Intel

NUC i7, a 450 mm Flamewheel DJI frame, and monocular

Point Grey Flea3 camera and ADIS 16448 IMU for visual-

inertial state estimation.

Our hardware experimentation with NanoMap demon-

strates its robustness and applicability to high-speed obstacle

avoidance. We have flown at up to 10 m/s in forested

canopy environments with the Intel r200 (empirically, we

observe 20+ m range in high-texture environments), and

8 m/s in indoor warehouse environments with the ASUS

Xtion (empirically, we observe ∼ 8-10 m range). Flights in

these types of settings can be seen in our video.

2DARPA Fast Lightweight Autonomy program:
https://www.darpa.mil/program/fast-lightweight-autonomy



VI. CONCLUSION

We have described, implemented, analyzed, and validated

NanoMap. NanoMap provides novel features for using local

3D data with pose uncertainty. Specifically, it (a) models

relative positional uncertainty into its response to local 3D

data queries, (b) uses the minimum-uncertainty view to

respond to these queries, and (c) can trivially incorporate

updated pose information two to four orders of magnitude

faster than the benchmarked alternatives.

We have shown that for state estimation drift on the order

of tens of cm/s (about 1% position drift at speeds above

10 m/s), or state estimate position corrections on the order

of 1 m, using NanoMap’s uncertainty-aware features can

substantially increase robustness. Given these results, we

believe NanoMap is a compelling, novel route forward when

compared to the traditional, fusion-first paradigm of mapping

for planning. We would encourage future work that may

draw inspiration from NanoMap and supplement traditional

mapping approaches. NanoMap is open source and available

at github.com/peteflorence/nanomap ros.
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