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Abstract— For humanoid robots to fulfill their mobility po-
tential they must demonstrate reliable and efficient locomotion
over rugged and irregular terrain. In this paper we present
the perception and planning algorithms which have allowed a
humanoid robot to use only passive stereo imagery (as opposed
to actuating a laser range sensor) to safely plan footsteps to
continuously walk over rough and uneven surfaces without
stopping. The perception system continuously integrates stereo
imagery to build a consistent 3D model of the terrain which is
then used by our footstep planner which reasons about obstacle
avoidance, kinematic reachability and foot rotation through
mixed-integer quadratic optimization to plan the required step
positions. We illustrate that our stereo imagery fusion approach
can measure the walking terrain with sufficient accuracy that
it matches the quality of terrain estimates from LIDAR. To
our knowledge this is the first such demonstration of the
use of computer vision to carry out general purpose terrain
estimation on a locomoting robot — and additionally to do so
in continuous motion. A particular integration challenge was
ensuring that these two computationally intensive systems oper-
ate with minimal latency (below 1 second) to allow re-planning
while walking. The results of extensive experimentation and
quantitative analysis are also presented. Our results indicate
that a laser range sensor is not necessary to achieve locomotion
in these challenging situations.

I. INTRODUCTION
A primary motivation for humanoid robotics research is

to develop platforms capable of moving through the same
environment as a human being – such as squeezing through
confined spaces and under overhanging obstacles as well
as crossing challenging terrain. While locomotion research
spans actuator development, mechanism development, dy-
namic planning and control, in this work we focus on terrain
estimation and footstep planning.

We take as motivation the recent DARPA Robotics Chal-
lenge (DRC) [1], where robots in outdoor conditions were
required to walk over a course of uneven and discontinuous
terrain. For humanoid robots to be useful, this kind of
walking task must be automated such that the robot can
locomote around or over any obstacles without stopping.

On-line footstep planning using some form of visual
feedback has been demonstrated by a number of research
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Fig. 1. As the robot walks over the terrain, its visual mapping system builds
a dense reconstruction of the environment ahead. Once per step, the planning
system captures the reconstruction, detects convex regions which are large
enough to contain a foot and determines suitable footstep placements to be
executed by the walking controller. Note that self observations of the robot
by itself are filtered and that footsteps are rotated to match the local terrain
normal.

groups. For example Lorch et al. [2] used a single camera
to estimate the layout of obstacles in front of the robot
and used an on-line footstep planner to search for possible
forward strides to clear obstacles. Only forward motion was
considered by the footstep planner, and the ground was
assumed to be flat. Asatani et al. demonstrated the use of
stereo vision to inform footstep planning for a biped robot
[3]. The researchers developed a method to detect the edge
between two planar regions, and then modified an existing
footstep plan to avoid the seam between the two planes. Later
work extended the capability to detect the edges of steps so as
to execute footsteps precisely placed on a narrow staircase.
A single camera identified colored patches on a flat floor
which were designated as obstacles, and a footstep planner
based on the graph-search approach of [4] then computed
safe footstep plans every time the robot took a step.

Gutmann et al [5] more generally explored visual edge
detection to carry out plane segmentation using stereo point



clouds and later LIDAR. They also used visual SLAM to
estimate motion.

A common aspect in these works was simplification of the
required visual processing — for example using distinctive
color to allow simple segmentation or detecting visible edges
using line detectors which typically required regular re-
mapping when the robot stopped walking.

Finally [6], used a terrain map generated by a real stereo
camera to explore the adaptation of walking trajectories
(rather than footstep placement.

Meanwhile there has been significant recent progress of
dense mapping methods using active RGB-D cameras [7],
[8]. However deficiencies in these sensors (in particular
rolling shutters and limited applicability in outdoor envi-
ronments) and the computational burden of the proposed
algorithms has limited their use on humanoid robots.

In this work we build upon these two different research
fields by introducing a more thorough terrain estimation
system using dense methods and passive stereo vision and
then combine it with a new type of footstep planner based
on efficient mixed-integer optimization. From the estimated
3D map of the terrain in front of the robot, we extract all
planar regions large enough for the robot to place a foot.
These planar regions are then used as input to the general-
purpose 3D footstep planner presented by Deits and Tedrake
[9] which chooses a footstep plan which is globally optimal
with respect to a cost function informed by the length of
each step, number of steps taken, and distance of the robot’s
final pose from a desired goal (within our approximations of
the terrain geometry and discretized rotations). This entire
process is repeated every time the robot lifts a foot, allowing
the footstep plans to continually improve as more terrain
comes into view.

The research of [10] is the most closely related to ours.
The authors demonstrated continuous locomotion similar to
our approach but used an actively swinging LIDAR sensor
mounted on the robot’s torso. Vision sensing (in particular
RGB-D sensors) is displacing LIDAR thanks to high frame
rates and resolutions which allow robots to be more respon-
sive, to operate in dynamic situations and to avoid complex
sensor actuation mechanisms. This motivates our usage of
computer vision.

Aside from our demonstration that the LIDAR sensor
is not necessary for localization; as mentioned above our
footstep planner uses continuous optimization, as opposed
to search–based planning in [10], which provides more
flexibility when operating in rough terrain with few feasible
footstep configurations. Finally, the authors of [10] also give
some consideration to longer duration path planning, which
we have not as yet explored.

We first discuss our footstep planner assuming sensor-
agnostic input before describing the stereo fusion algorithm.
(Although the system described works just as well using a
laser range-finder to provide the input terrain map.) In Sect. II
we outline our approach to footstep planning and discuss how
the required inputs to our footstep planner can be extracted
from a generic terrain map of the area in front of the robot

Fig. 2. The Atlas robot’s primary sensing is provided by the Carnegie
Robotics Multisense SL sensor head which is equipped with a stereo camera
and a rotating LIDAR scanner. In this work we use only the stereo camera,
except in Sect. IV-A where we compare the terrain estimated by the stereo
camera to that estimated using the LIDAR. (photo credits: Boston Dynamics
and Carnegie Robotics)

(Sect. II-A).
We then provide an overview of recent research in dense

mapping (Sect. III) using active RGB-D cameras, before
presenting the modifications and filtering necessary to allow
dense passive stereo data to produce terrain maps suitable
for footstep planning.

Finally in Sect. IV a series of successful experiments com-
pellingly demonstrate the combination of the perception and
planning modules. As such this work presents a significant
first demonstration: using general purpose footstep planning
to locomote over challenging uneven and disconnected ter-
rain using passive stereo fusion to estimate that terrain —
all while continuously moving.

We conclude Sect. IV with a quantitative comparison be-
tween terrain maps produced by passive stereo and LIDAR.

II. RECEDING HORIZON FOOTSTEP PLANNING

The footstep planning problem typically involves choosing
an ordered set of foot positions for the robot, subject to con-
straints on the relative displacement between those footsteps,
in order to bring the robot close to some desired goal pose.
Typically, these footstep locations must be chosen in order to
avoid some set of obstacles in the environment. Performing
a smooth optimization of footstep poses while avoiding
obstacles tends to introduce non-convex constraints which
can make globally-optimal solutions extremely difficult to
find [11].

A common approach among footstep planners is to dis-
cretize the set of possible foot transitions, expressed as the
relative displacement from one foot pose to the next. From
this set of discrete actions, a tree of possible footstep plans
can be constructed and searched using existing search algo-
rithms such as A∗, D∗, and RRT [12], [10], [13], [14], [15].
These techniques, however, are limited by the discretization
of the footstep actions, since a small number of actions
severely limits the robot’s possible footstep plans, while a
large number of actions creates an extremely large search
space. Choosing an informative and admissible heuristic for
footstep planning problems can be very difficult [16].



Recent work by Deits and Tedrake reversed the problem
of obstacle avoidance into one of assigning footsteps to some
pre-computed safe regions [9]. If the regions of safe terrain
are convex, then the requirement that a footstep remain
within some safe region is a convex constraint. A problem
consisting of convex constraints (and a convex objective
function) can typically be solved to its global optimum
extremely efficiently [17]. Combining such a problem with a
discrete choice of the assignment of footsteps to safe regions
results in a mixed-integer convex program with high worst-
case complexity but which can often be solved to global
optimality efficiently with modern tools and techniques [18],
[19].

We choose to use the mixed-integer convex optimization
described by Deits and Tedrake in [9] and available from
the Drake toolbox [20], to quickly produce optimal footstep
plans for an environment which has been decomposed into
convex regions of safe terrain. Rather than operating directly
on the point cloud data provided by the LIDAR or stereo
system, the footstep planner requires only a description of
each safe region as a planar area in 3D. Thus, when planning
footsteps, the entire perception system can be abstracted
away into a tool which produces regions of safe terrain.
These regions, along with a desired navigation goal pose, are
used as input to the footstep planning optimization, which
chooses the number of footsteps to take and the poses of
those footsteps. Note that the planner itself decides online
how many footsteps to place in each convex region — which
varies with the size of the region, the robot configuration and
layout of the upcoming terrain.

The procedure by which these planar regions are created
is described in full detail in the next section.

A. Continuous Walking Autonomy

The continuous walking routine used by our experiments
described in Sect IV-C is detailed with pseudo-code in
Algorithm 1. The routine uses a point cloud segmentation
algorithm to find footstep regions and a “carrot on a stick”
approach to generate navigation goals that lead the robot
forward over the terrain course. Short-horizon footstep plans
within the safe regions are computed and sent to the manu-
facturer’s walking controller for execution.

The routine OnFootLiftoff is called once to begin walking,
and again each time a foot lifts off from the ground during
walking. The first stage computes the robot configuration q
that will be used as input to the footstep planner. Because
the robot is walking continuously and planning on-line, the
configuration q used for planning is chosen to be the next
double foot support of the robot after the current swing
foot has landed, i.e., the configuration the robot is expected
to achieve in the very near future upon completion of the
current walking step. The configuration q is a list of the
robot’s joint positions in generalized coordinates plus the 6
degree of freedom position and orientation of the robot’s
base link in the world coordinate system. The function
LandingConfiguration uses inverse kinematics to find the

next double support configuration using the current stance
foot and the next target footstep fstep.

Next, the TerrainSegmentation function described in
Algorithm 2 is used to find convex regions for the footstep
planner. The point cloud segmentation algorithm is capable
of processing sensor terrain data and is fully agnostic as
to whether the input data comes from LIDAR or stereo
3D reconstruction. Analysis of the performance differences
between the two data sources is found in Sect IV-A. The
interested reader is directed to [5] for fuller discussion of
walking region segmentation and to [21] for work on more
advanced curved region segmention.

Our segmentation algorithm models the terrain course as
a series of admissible planar convex regions. The robot
was commanded to step only on these regions as it makes
progress. Because our focus was not on general navigation
but on traversal of the complex cinder block stacks shown
in Fig 8, the robot simply halts when it reaches the end of
the course.

Next, we apply point cloud surface normal estimation
using a local search neighborhood of 5 cm around each point.
The points are filtered to keep only those within 30 degrees
of horizontal according to surface normals. Steeper regions
are deemed infeasible for footsteps.

Algorithm 1 Continuous walking algorithm
1: procedure ONFOOTLIFTOFF(q, fstep)
2: . Given footstep frame fstep, or nil to bootstrap
3: if fstep then
4: qnext ← LandingConfiguration(q, fstep)
5: else
6: qnext ← q

7: p← PointcloudSnapshot()
8: rsafe ← TerrainSegmentation(p, q)
9: if empty(rsafe) then

10: ContinueQueuedFootstepP lan()
11: else
12: fgoal ← NavigationGoal(q, rsafe)
13: fplan ← FootstepP lan(qnext, rsafe, fgoal)
14: if IsV alidP lan(fplan) then
15: QueueFootstepP lan(fplan)
16: else
17: ContinueQueuedFootstepP lan()

Algorithm 2 Terrain segmentation algorithm
1: procedure TERRAINSEGMENTATION(p, q)
2: . Given point cloud p, Robot configuration q
3: scene← RemoveGroundPoints(p)
4: planarPoints← FilterByNormal(scene)
5: clusters← ExtractClusters(planarPoints)
6: regions← []
7: for each c in clusters do
8: regions← ComputeConvexSafeRegion(c)

9: return regions



The filtered points are input to a Euclidean clustering rou-
tine that finds individual connected components of uniform
planar segments. Each planar cluster is converted to a convex
region for input to the footstep planner. These convex regions
are shown in Fig 1.

Next, the NavigationGoal returns a navigation goal 1
meter beyond this region. The regions and navigation goal
are passed to the footstep planner to compute a footstep plan
to navigate towards the goal. The resulting footstep plan is
immediately queued for execution. In typical operation, only
the first footstep of a plan is executed because the remainder
of the plan is overwritten at the next online re-planning stage.

In this work we focused on navigation of the most
challenging terrains, we do not present results showing
exploration over flat terrain with protruding obstacles or
longer distance path planning. In the case of the former the
approach would be to populate the flat terrain with a spanning
set of walkable regions (as discussed in [11]). For longer
distance path planning approaches for traditional wheeled
robots seem reasonable.

III. STEREO FUSION

Dense (passive) stereo correspondence, or matching pixels
across calibrated camera pairs in order to infer triangulated
distance values, is a well-studied problem in computer vision
research; the Middlebury Benchmark System [22], for in-
stance, provides a detailed performance comparison of over
150 algorithms. However, the use of dense stereo in real-
time robotics applications — particularly at high frame rates
— has been limited. This is mainly due to difficult trade-
offs between overcoming inherent algorithmic challenges
(properly handling object boundaries and occlusions, dis-
ambiguating repeated structures that cause visual aliasing,
estimating accurate depth values in regions of low visual
texture) and realizing computationally efficient, low-latency
implementations suitable for robotic platforms.

A. Active RGB-D Mapping

Active sensors such as the Microsoft Kinect have spurred
new interest in dense visual mapping because they directly
address several of these challenges. These sensors pro-
vide color (RGB) images registered with dense, centimeter-
accurate depth (D) images at video rates using an infrared
pattern projector and camera pair. All computation is per-
formed on-board using specialized hardware, and devices are
available at commodity prices. As a result, active sensors
have quickly become the de-facto standard and have been
adopted for a wide range of indoor robotics applications.

Shortly after the release of Microsoft’s sensor, the Kinect-
Fusion system [7] demonstrated real-time RGB-D data fusion
within a volumetric data structure (the Truncated Signed
Distance Function, or TSDF) maintained in GPU memory.
A two-step process of (1) camera-to-map tracking followed
by (2) update of the TSDF via parallel ray casting produces
highly accurate dense reconstructions of small 4–6m vol-
umes at centimeter resolution. The Kintinuous algorithm [8]
was subsequently developed to accommodate larger-scale

exploration for mobile robots. It builds upon KinectFusion
to enable mapping of extended environments in real-time
using robust camera tracking and pose graph optimization
combined with non-rigid map deformation for loop closure
correction.

While active RGB-D sensors address many shortcomings
of passive stereo, they still have practical limitations. The
Kinect has a narrow field of view and short range of 4m, but
in particular the on-board cameras have rolling shutters and
utilize active illumination. This produces blurred or distorted
images while moving and cannot be used outdoors due to
interference by sunlight.

B. Passive Stereo Fusion with Kintinuous

The Atlas robot’s sensor head, the Carnegie Robotics
Multisense SL (Fig. 2), is equipped with a pair of high
quality global-shutter cameras with wide FOV lenses, and
also includes an embedded Field-Programmable Gate Array
(FPGA) that implements the Semi Global Matching stereo
disparity estimation algorithm [23]. This hardware allows the
sensor to produce rectified RGB-D images on-board at frame
rate (15-30 Hz) with low latency (∼90 msec) while moving
through indoor and outdoor environments without impacting
the robot’s computational load. While the raw stereo depth
from the device outperforms other stereo sensors, it produces
normals which are unstable from frame to frame — thus
requiring fusion to be useful for our purpose.

The Multisense has a FOV of 90◦-by-90◦ (shown in red in
Fig. 3 right), which observes a significant ground footprint in
front of the robot while also allowing the background scene
to be used for visual odometry.

In this work, we adopt the Multisense as a surrogate for
active sensors to generate data suitable for RGB-D fusion
algorithms – in particular, the Kintinuous algorithm, due to
its scalability, high quality fused fully 3D map representation,
and real-time operation. We adapt Kintinuous to function
with stereo image data and use the fused output to generate
terrain maps for footstep planning.

a) Pre-Filtering: As the footstep planner was originally
developed using LIDAR data, it is important that the quality
of the maps produced by the vision pipeline be comparable.
Visual aliasing, caused by poor image texture and repeated
non-distinctive patterns, commonly causes spurious outlier
regions within the disparity image and consequently incorrect
3D depth values. An example of the raw data is shown in
Fig. 3 (left).

As a result it is crucial to correctly filter and fuse the
stereo data before attempting path planning. We first apply
a de-noising filter on each frame that (1) finds connected
components in the disparity image, where connectedness
is determined by spatial pixel adjacency and by similarity
of depth values; and (2) removes components below a
threshold size, in our case 4,000 pixels. This has the effect of
suppressing small isolated disparity regions and pixels that
disagree with their neighbors.

b) 3D Fusion: The next step is to build a 3D model of
the terrain in front of the robot. Data fusion requires precise



Fig. 3. Left: The raw stereo point cloud input data. The spurious depth pixels in front of the robot can result in the system hallucinating obstructions.
Right: A side view of the TSDF volume (blue), the camera FOV (red), and the fused virtual depth image extracted on-line as the robot walks using dense
stereo fusion. Note that the unobserved edges of the terrain course cause the untriangulated faces.

knowledge of the sensor’s 3D pose over time. To maximize
map consistency, we chose to estimate the camera pose and
the position of the robot’s floating base separately.

The map of the terrain was estimated in the left camera
frame C by tracking the motion of the camera frame c rela-
tive to its initial position. At time k the pose of camera frame
is given by xC:W

t,c . Several possible tracking methods were
discussed in [8], we used the dense photometric warping
method described therein which was observed to be more
robust to image blur during foot impacts than geometric
feature tracking.

Meanwhile our humanoid state estimator, [24], fused iner-
tial and kinematic measurements to estimate the position of
the pelvis frame, p, in the humanoid coordinate frame, xH:W

t,p .
Via forward kinematics the camera pose in the humanoid
coordinate frame is given by xH:W

t,c . Thus the map estimated
in the camera frame by the Kintinuous system is projected
into the humanoid coordinate frame using

xH:C
t,c = xH:W

t,c ⊕ (xC:W
t,c )−1 (1)

We expected the camera tracking system to regularly fail
when foot impacts occur – by causing the camera to shake
and motion blur. But this only occurred very occasionally
and was aided by the slow, steady speed of locomotion.
Nonetheless, in future work we will explore a combined state
estimate to avoid this possibility.

Common active dense sensor models have 0.3MP resolu-
tion and Kintinuous typically operates at the 30 Hz frame-
rate. The Multisense stereo camera has three times the reso-
lution (1MP) with the processing rate scaling proportionally
with the resolution — operating at 9–10Hz.

c) Post-Processing: As described in [8], Kintinuous
maintains a 3D TSDF volume of the area in front of the
camera on the GPU, which continuously integrates the pre-
filtered sensor data. The volume is repositioned every few
seconds as the robot moves (illustrated in blue in Fig. 3,
right). Retrieving the contents of the TSDF volume from
the GPU is intensive, so our approach instead is to ray cast

a virtual depth image from the camera’s viewpoint — an
efficient GPU operation that is already part of the algorithm’s
alignment module. This depth image (also visible in the
figure) is then used in subsequent segmentation, applying
the algorithms previously described in Sect. II-A.

Each cell within the TSDF has a probability of occupancy
which is a measure of confidence. This probability updates
as more observations of a surface are made and converges as
we become confident of surface’s existance. While there is a
correlation between the probability and the height estimation
error (in Figure 5) typically we found it sufficient to truncate
all points from the TSDF which were had only been observed
for only a short time.

This approach allows us to implicitly support dynamic
scenes. For example quickly moving objects, such as people
in front of the robot or the robot’s own knees and thighs,
are implicitly filtered in this manner, while newly introduced
stationary obstacles will be added to the map as observations
are accumulated.

IV. EXPERIMENTS

To demonstrate the described capability we progressively
developed the various components of this system with more
challenging experiments and more general terrain layouts.
Each experiment was carried out in a repeatable manner.

The robot was set up in front of a terrain of uneven cinder
blocks and instructed to progress towards a goal, as described
in Sect. II-A, and repeatedly did so until it reached the end
of the course with no flat surfaces and stopped. We did
not implement a general purpose exploration strategy as we
focused on the perception and motion planning problems. As
mentioned in Sect. II-A, footstep execution was carried out
by the manufacturer’s stepping controller.

Our computation was amply provided by two identical off-
board desktops each with a 3.30GHz Intel i7 CPU and an
Nvidia GeForce GTX 680 GPU. The computation time of
each step of the vision processing chain was as follows:

• Image acquisition: 105 msec (incl FPGA Matching)
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Fig. 4. A visualization of the difference between the heightmap estimated
by LIDAR and by stereo fusion (in m) for two experiments — one indoor
(upper) and one outdoor (lower). The major deviations around block edges
are due to the lower resolution of the LIDAR heightmap.

• Speckle component removal: 40 msec
• Kintinuous stereo fusion: 110 msec (averaging 9.5Hz)
Comparable mean timing for segmentation and planning:
• Planar region segmentation: 615 msec (400-1100 msec)
• Footstep planning: 445 msec (300-600 msec)
Note that each of the modules operated asynchronously on

different threads. In particular, the segmentation and planning
chain is time critical as there is a 4 sec period (the foot
swing cycle) where a new footstep plan can be accepted by
the controller.

A. Comparison between LIDAR and Fused Stereo

A first experiment used a long row of horizontal cinder
blocks at alternating heights and orientations which was
approximately 5 m long.

The resolution of our LIDAR heightmaps is a function
of the speed at which the actuated sensor was rotated and
hence has non-uniform density. So to observe the terrain with
enough density to allow normal estimation requires a sweep
time of about 6 seconds and a heightmap resolution of 1.5 cm
which also requires some unobserved heightmap cells to be
filled in by local smoothing. As a result, the scanning speed
of this LIDAR sensor, and not the perception, planning or
control algorithms, is the unavoidable limiting factor upon
the speed of walking of the robot - at roughly half the typical
human walking speeding. (Although in these experiments the
robot moves slowly enough that this constraint is not as yet
a limiting issue).
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Fig. 5. Distribution of height error for the fused stereo heightmap in Fig 4
(with step edge errors removed). We believe that the slight negative bias is
anomalous.

By comparison the stereo camera has an entirely uniform
resolution of 1024-by-1024 pixels, which when integrated
within the TSDF volume allows us to create a much denser
heightmap. We used a resolution of 0.5 cm in this work —
3 times higher than for LIDAR.

In Fig. 4 and Fig. 5 we provide a comparison between
LIDAR and fused stereo heightmaps for this indoor experi-
ment as well as a (post-processed) result from the DRC Trials
– both collected while in walking motion. We interpret the
differences as error in the stereo heightmaps.

The major deviations around block edges are primarily
due to quantization of the low resolution LIDAR heightmap.
Within footstep regions the mean height error is typically
1 cm — but locally continuous. (The walking controller is
robust to errors of 2–3 cm in height and about 20 degrees in
the normal of the commanded footstep.)

The marginally degraded performance of the algorithm
in the poor lighting conditions of our laboratory is also
apparent. The outdoor dataset produced a marginally lower
error variance (8 mm vs. 11.5 mm). We estimate the
variance of a heightmap from raw unused stereo to be
approximately 40 mm (and unsuitable for footstep plan-
ning). A video showing a like-for-like comparison be-
tween raw and fused stereo with LIDAR can be seen at
http://youtu.be/0ibv09D3JIw .

A central part of the Kintinuous fusion algorithm is
a smoothing and averaging effect. This results in a mild
rounding of the edges of the reconstructed cinder blocks
which in turn reduces the size of the segmented regions,
typically by about a centimeter in the horizontal dimensions.
This in turn mildly effects footstep placement.

While this does not cause the robot to step into a dan-
gerous place, it can mean that a slightly longer stride is
necessary to clear a hurdle or in rare cases segmentation
can fail to find a planar region of sufficient area where the
LIDAR would have detected one.

Finally, as equivalent reconstruction performance can be



Fig. 6. Reconstruction of the DRC Trials terrain course (approximately
4-by-8m). Note the quality of the reconstruction normals.

achieved with the stereo camera1, it is also interesting to
compare the actuated LIDAR and the stereo sensor on the
grounds of added mass and power consumption, which are
at a premium on humanoid platforms. The Multisense sensor
weighs 2.6 kg and consumes 18-45 W (depending on spin
rate) while the stereo component by itself weighs 1.2 kg
and uses just 7 W — suggesting that for footstep planning
LIDAR sensing is not necessary.

B. Outdoor Mapping Experiments

As referred to in the previous section we also analyzed the
data collected during the DRC Trials, which we can use to
verify performance of the dense mapping system outside of
our own laboratory conditions. Note that the camera used in
this experiment had a 40 degree vertical field of view while
the collected camera data was at just 5 Hz.

As expected, reconstruction in bright, texture-rich outdoor
conditions, results in the precise reconstructions of the terrain
course as seen in Fig. 6 — including on the black matte
carpet on the left side. We were surprised that the mild
texture present in typical industrial and office environments is
usually sufficient to produce an accurate fused depth estimate
while very poor lighting and high dynamic range are typical
limits our approach, as can bee seen in Figure 7.

C. Uneven and Discontinuous Terrain

In our final experiment, we constructed a more general
terrain course containing a climb, uneven and tilted steps,
cracks, and gaps which is illustrated in Fig. 8 and in the
attached video. Note that the spinning LIDAR sensor was
specifically covered with a white box to indicate that only
stereo vision was used to estimate the terrain.

1But of a slightly lower quality than for active RGB-D sensors.

Fig. 7. Texture in industrial and office environments such as the brick,
wood (DRC Trials, left) and carpet (center) is sufficient to produce accurate
terrain reconstructions, however the poor gain control in an example from
the DRC Finals (right) cannot produce a reliable reconstruction.

This experiment demonstrated that the footstep planning
could support all these terrain complexities and it also
dynamically chose the number of steps to place on each
block depending on the configuration. In the latter part of
the course the front portion of the steps only became visible
just before the robot was expected to step on them which is
a particular challenge to the stereo fusion algorithm.

The robot autonomously walked over the entire course in
240 seconds for a total of 25 steps and 14 rows of blocks.

A key part of our success was the low drift rate of our
inertial/kinematic state estimator, described in [24]. Over
the course of the 25 steps our position drifted in XYZ by
(0.2, 0.0,−0.1) meters and 1 degree in yaw — slightly below
1 cm per step. The position drift of Kintinuous’ stereo motion
estimate was only marginally higher but orientation drift was
higher at about 4 degrees.

V. CONCLUSION

In this work we have outlined terrain estimation and
footstep planning algorithms which enable continuous hu-
manoid locomotion across uneven terrain and demonstrated
the approach across a 5.5 m, 25–30 step terrain course.

In particular we have also shown how real-time passive
stereo fusion can be used as a direct replacement for an ac-
tuated LIDAR sensor and that it produces comparable results
in challenging conditions. We anticipate the responsiveness
and greater resolution of this type visual reconstruction may
be required for humanoids to move at human walking speeds
in the future. Demonstrations were provided with both indoor
and outdoor experiments.

As mentioned in Sect. III, in the future we would like
to estimate the robot’s motion by fusing visual, inertial and
kinematic sensor data so as to robustify the camera tracking
system.

It is clear that the optimal footstep placement (i.e. chosen
by a human) uses subtle information beyond terrain geometry
alone — such as hanging footsteps over step edges and
reasoning about occlusions when stepping onto unobserved
terrain (e.g. foot-wells). In future work we aim to add such
features to our own system as well as to develop more general
navigation strategies.



Fig. 8. Visualization of the robot continuously locomoting over a complex terrain course (see Sect. IV-C). The upper left figure shows the camera view
from the robot’s sensor head. The lower left figure shows a side view of the experiment. The robot’s actuated LIDAR sensor is covered up by a white box
to demonstrate that only vision is used here. The main figure shows a rendering of the robot’s configuration while mid-step and the placements of the next
seven steps on the terrain map. Note how the fused terrain map is unaffected by the left leg temporarily appearing in the camera field of view.
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