
Learning Contact-Aware Robot Controllers from

Mixed Integer Optimization

by

Robin L. H. Deits

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Februrary 2019

c© Massachusetts Institute of Technology 2019. All rights reserved.

Signature of Author .
Department of Electrical Engineering and Computer Science

December 7, 2018

Certified by .
Russ Tedrake

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Theses

2

Learning Contact-Aware Robot Controllers from Mixed Integer

Optimization

by

Robin L. H. Deits

Submitted to the Department of Electrical Engineering and Computer Science
on December 7, 2018, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

The problem of handling contact is central to the task of controlling a walking robot. Robots
can only move through the world by exerting forces on their environment, and choosing
where, when, and how to touch the world is the fundamental challenge of locomotion. Be-
cause the space of possible contacts is a high-dimensional mix of discrete and continuous
decisions, it has historically been difficult or impossible to make complex contact decisions
online at control rates. This work first presents an approach to contact planning which is able
to make some guarantees of global optimality through mixed-integer programming. That
method is applied successfully to a humanoid robot in laboratory conditions, but proves
difficult to rely on when the robot is experiences unmodeled disturbances. To overcome
those limitations, this thesis also introduces LVIS (Learning from Value Interval Sampling)
a new approach to the control of walking robots which allows complex contact decisions to
be made online using a cost function trained from offline trajectory optimizations. The LVIS
algorithm is demonstrated on a simple cart-pole system with walls as well as a simplified
bipedal robot model, and its success at allowing both models to use contact decisions to
recover from external disturbances is demonstrated in simulation.

Thesis Supervisor: Russ Tedrake
Title: Professor of Electrical Engineering and Computer Science

3

4

Contents

1 Introduction 13

I Making Contact Decisions Ahead-of-Time 17

2 Planning Footsteps with Mixed-Integer Convex Optimization 19

2.1 Introduction . 19

2.2 Technical Approach . 24

2.2.1 Assigning Steps to Obstacle-Free Regions 24

2.2.2 Ensuring Reachability . 25

2.2.3 Determining the Total Number of Footsteps 29

2.2.4 Complete Formulation . 31

2.2.5 Solving the Problem . 33

2.3 Results in Simulation . 33

2.4 Conclusion . 34

3 From Footsteps to Flight Plans 39

3.1 Introduction . 39

3.1.1 Quadrotor Dynamics . 41

3.1.2 Safety of the Entire Trajectory . 42

3.2 Technical Approach . 43

3.2.1 Generating Convex Regions of Safe Space 44

5

3.2.2 Searching over Assignments of Polynomials to Regions 44

3.2.3 Restricting a Polynomial to a Polytope 45

3.2.4 Choosing an Objective Function . 48

3.2.5 Handling Lower-Degree Trajectories 49

3.2.6 Complete Formulation . 50

3.2.7 Trajectories Without Convex Segmentation 50

3.3 Results . 51

3.3.1 Simulation . 51

3.4 Conclusion . 57

3.4.1 Limitations . 57

4 Analysis: Convex Segmentation and Mixed-Integer Planning 59

4.1 Successes . 60

4.1.1 Simulating the Footstep Planning Pipeline 60

4.1.2 Walking on Unmapped Terrain . 61

4.1.3 UAV Experiments . 64

4.2 Challenges . 66

4.2.1 Perception Challenges and IRIS . 66

4.2.2 Control Challenges . 69

4.2.3 Extensions and Derivative Works . 71

4.3 Conclusion . 75

II Learning Contact-Aware Controllers 76

5 Learning from Value Function Intervals for Contact-Aware Robot Con-

trollers 79

5.1 Introduction . 79

5.1.1 LVIS: Learning from Value Interval Sampling 81

5.2 Related Work . 81

6

5.2.1 Robot Models . 83

5.3 Technical Approach . 84

5.3.1 Modeling . 85

5.3.2 Data Collection via Optimal Control 86

5.3.3 Training the Neural Net . 91

5.3.4 Online Control Using the Learned Cost 93

5.3.5 Choosing Initial States with DAgger 94

5.3.6 Policy Net . 94

5.4 Results . 94

5.4.1 Cart-Pole With Walls . 95

5.4.2 Planar Humanoid . 100

5.5 Learning in Parameterized Environments . 106

5.6 Conclusion . 109

6 Future Work in Learned Control 111

6.1 Handling Nonlinear Dynamics . 111

6.2 Scaling LVIS to a Full Humanoid . 113

7

8

Acknowledgments

To the members of the Robot Locomotion Group: Thank you for providing the most exciting,

intelligent, supportive, and rewarding environment in the world and for being the best people

to learn from. I’ve wanted to work on walking robots at MIT ever since I was a kind playing

with Legos, and you all made it better than I could have ever imagined.

To the Fanny and John Hertz Foundation: Thank you for your support, for connecting

me with some of the smartest and most interesting people in the world, and for always

reminding me to strive to achieve something even greater.

To my parents: Thank you for everything, for just the right balance of encouragement

and freedom, for encouraging me every step of the way, for showing me how proud you were

of what I’d done and making me feel like I could still do even more. I couldn’t have done it

without you.

To Michele: Thank you for being my biggest fan and my best friend, for appreciating (or

at least tolerating) my scientific papers and dumb jokes alike, and for making me feel special

and loved every single day <3

9

10

Preface

Several of the chapters in this thesis are adapted from previously published works. Chapter 2

is adapted from Footstep Planning on Uneven Terrain with Mixed-Integer Convex Optimiza-

tion [1], Chapter 3 is adapted from Efficient Mixed-Integer Planning for UAVs in Cluttered

Environments [2], and Chapter 5 is adapted from work currently under review, available in

pre-print form as LVIS: Learning from Value Function Intervals for Contact-Aware Robot

Controllers [3].

11

12

Chapter 1

Introduction

Walking robots have a unique promise for service to the world, allowing access to environ-

ments unsuitable for wheels, treads, or propellers. Bipedal robots, in particular, offer the

ability to fit naturally into environments designed for humans, alongside them in a home or

in place of them in a dangerous situation. Current walking robots, however, tend to simul-

taneously be over-cautious and, paradoxically, unreliable (at least as far as staying upright

is concerned). One need only look as far as the finals of the DARPA Robotics Challenge [4]

to see bipedal robots laboriously and carefully moving through the world, with a constant

danger of falling. The key to bringing walking robots out of the lab will be giving them the

ability to move safely and quickly through the world, using the environment to help maintain

balance rather than trying to avoid all contact with the world.

Why, then, has this proven to be so difficult? Legged robots have a unique constraint

which is not shared with flying robots, fixed-base robots like industrial arms, or wheeled

robots: the only way for a legged robot to control its momentum is to make and break

contact with the world. This restriction is fundamental: a robot which is not in contact

with anything is, by definition, in free-fall and has no control over its momentum. In a

walking robot, this contact most often occurs between the robot’s feet and the floor, but

more complex environments might require the robot to use its hands or body to make contact

with walls, railings, ladders, chairs, vehicles, or other robots. Control of contact constitutes

13

the central challenge for the control of legged robots.

The most mature tools for the control of robots come from the study the control of linear

systems. For a system with perfectly linear dynamics and no hard constraints on its state

or actions, we can produce a stabilizing linear controller, optimal with respect to a chosen

cost function, using the Linear Quadratic Regulator (LQR) technique [5]. Even for a robot

with somewhat nonlinear dynamics, we can often make a reasonable linear approximation

and apply LQR with some success. But the addition of contact between the robot and

the world complicates the situation in a number of ways. First, the presence or absence

of contact between some part of the robot and its environment can profoundly affect the

robot’s dynamics. The difference between just reaching a foothold and just missing one can

be catastrophic, and that difference is not well expressed by a single linear approximation

of the robot’s dynamics as a function of its state. As a result, techniques like LQR tend

to perform poorly when the robot is rapidly changing contact modes. Second, even if the

presence of a contact is known and fixed, there are significant limitations in the way the robot

can move to exploit that contact to control its momentum: Physics requires that the robot’s

body not penetrate whatever rigid object it might be touching and that the force between

the robot and the world be consistent with friction. A robot’s flat foot cannot pull on the flat

ground, nor can it push on the ground from a meter away, nor can it apply a force parallel to

the ground without some corresponding force downward. These physical constraints require

a controller that can reason about constraints online and take only whatever action is optimal

and consistent with physics.

Control of a legged robot can be thought of as an optimization problem: at each time

step, the robot must choose an action which is optimal with respect to some cost, subject

to constraints imposed by the robot’s current task and by physics. For unconstrained linear

systems, LQR provides an optimal solution without any need to solve the optimization online,

but for more complex systems such complete solutions are generally not available. Instead,

we typically represent the control problem not just conceptually as an optimization, but

literally in the software as well; our control code consists of writing down the optimization

14

problem at each time step, solving it, and then applying the resulting solution to the robot.

This approach is powerful: our cost function and constraints can be as complex as we want

and can encode any imaginable combination of penalties and restrictions. But it is also

limiting, as more complex optimization problems take longer to solve, which limits the rate

at which we can control the robot. A controller which uses an intricate and detailed set of

costs and constraints is of no use for balance if it can only produce a new command for the

robot every few seconds, minutes, or hours.

The aim of this thesis is to explore ways to make the difficult task of controlling a legged

tractable and efficient. In Part I, I will describe a decomposition of the problem into one of

finding optimal contact locations and then applying existing smooth control techniques given

those contacts. I will introduce a method of planning foot contacts on complicated terrain,

and a segmentation algorithm that is useful in pre-processing the environment. I will discuss

how this allows a robot to plan a sequence of footholds which are likely to be feasible, and

I will show how that footstep planning was sufficient to allow a humanoid robot to walk,

unsupervised, across an unmapped row of cinder blocks. As an aside, I will describe how the

footstep planner led to a new technique for planning the flights of UAVs through cluttered

environments using a similar optimization approach. Finally, despite the optimality promises

of the footstep planner, I will discuss the ways in which it failed when the robot was asked

to traverse more complex rough terrain, due to a lack of reasoning about the dynamics of

the robot and the complexities of its kinematics.

In Part II, I will return to the original problem with a new question: What would it take

to truly make contact decisions online instead of trying to stick to some pre-generated plan? I

will write out the general control optimization that we might want to solve, then a linearized

version we can actually solve to global optimality (but very slowly). I will introduce the

notion of learning the solution from offline examples and discuss how even sampling from

the optimal policy offline is difficult. Instead, I will introduce the idea of collecting value

function intervals in order to train an approximation of the cost to go, and I will demonstrate

that approach on the simplified humanoid model. Finally, I will discuss the challenges that

15

remain in scaling the approach up to the full humanoid and in applying this new technique

on a real robot.

16

Part I

Making Contact Decisions

Ahead-of-Time

17

Control of a system in contact with the world involves reasoning about a set of discrete

choices (what objects to touch and with what parts of the robot to touch them) and a set of

continuous choices (what precise efforts to apply at each joint and what contact forces those

efforts will produce). Reasoning about all of those decisions simultaneously has historically

resulted in optimization problems which are too difficult to solve at an acceptable control

rate. It is tempting, then, to divide and conquer: first choose the contacts that the robot

will make with the world, then choose the precise actions and contact forces subject to those

contacts.

For a bipedal walking robot, contact primarily occurs between the robot’s feet and the

ground, so we can further reduce the problem of choosing contacts to one of simply choosing

a set of footstep positions. Chapter 2 introduces a method of planning footsteps on rough

terrain with some guarantees of global optimality. Given those footsteps, we can create a

controller capable of following that footstep plan and choosing the robot’s joint efforts online.

The online control component is discussed in [6].

Chapter 3 takes a detour from the focus on contact planning for humanoids to discuss

how the same tools from footstep planning can be applied to the motion planning of a

flying robot. The optimization framework based on convex segmentation and mixed-integer

optimization from Chapter 2 proved to be a useful approach to general obstacle-avoidance

problems. By treating the problem of an aerial vehicle moving through space analogously to

a walking robot navigating through terrain, we can construct a similar optimization problem

with similar guarantees of global optimality.

Chapter 4 returns to the topic of walking robots to discuss the success and failures of

the footstep planning approach in the lab and in field tests. It explores the way in which

the footstep planning approach was used to successfully navigate a robot across unmapped

rough terrain in a lab setting. It also discusses why it was difficult to successfully apply the

footstep planner outside of the lab and why the footstep planner was not successfully used

for the rough terrain traversal at the DARPA Robotics Challenge finals.

18

Chapter 2

Planning Footsteps with

Mixed-Integer Convex Optimization

This chapter is adapted from work previously published in [1].

2.1 Introduction

The purpose of a footstep planner is to find a list of footstep locations that a walking robot

can follow safely to reach some goal. Footstep planning is a significant simplification of

motion planning through contact, one in which the whole-body kinematics and dynamics

are typically coarsely approximated or ignored in order to produce a tractable problem.

The challenge of footstep planning thus consists of finding a path through a constrained

environment to a goal while respecting constraints on the locations of and displacements

between footsteps. An example of such a plan is shown in Figure 2-1.

Broadly speaking, there exist two families of approaches to footstep planning: discrete

searches and continuous optimizations. The discrete search approaches have typically in-

volved a precomputed action set: either represented as a set of possible displacements from

one footstep to the next or a set of possible footholds in the environment. Chaining ac-

tions together forms a tree of possible footstep plans, which can be explored using existing

19

Figure 2-1: Two examples of the output of our MIQCQP footstep planner. Above: An Atlas
biped planning footsteps across a set of stepping stones. Below: With one stepping stone
removed, Atlas must take the longer detour around the stepping stones. The gray rectangles
are the boundaries of convex regions of obstacle-free configuration space generated by IRIS
[7] projected into the xy plane.

20

discrete search methods like A∗ and RRT. Action set approaches using pre-computed step

displacements have been used by Hornung [8], Michel [9], Baudouin [10], Chestnutt [11, 12],

and Kuffner [13, 14]. Similarly, Shkolnik et al. used a precomputed set of dynamic motions,

rather than foot displacements, and an RRT search to find motions for a quadruped [15].

The fixed foothold sets have been used by Bretl for climbing robots [16] and by Neuhaus

for the LittleDog quadruped [17]. These approaches can easily handle obstacle avoidance by

pruning the tree of actions when a particular action would put a foot in collision with an

obstacle [13, 14, 10], including obstacle avoidance in the cost function evaluated at each leaf

of the tree [11, 9], or adapting the set of actions when a collision is detected [12]. However,

they have also tended to suffer from the tradeoff between a small action set, which reduces

the branching factor of the search tree, and a large action set, which covers a larger set of the

true space of foot displacements but is much harder to search [10]. In addition, applying A∗

or other informed search methods to our problem is complicated by the difficulty in defining

a good heuristic for partial footstep plans: we cannot generally know how many additional

footsteps a partial plan will need in order to reach the goal without actually searching for

those steps [11].

The continuous optimization approaches, on the other hand, operate directly on the poses

of the footsteps as continuous decision variables. This avoids the restriction to a small set of

fixed actions and thus allows more possible footstep plans to be explored, but correctly han-

dling rotation and obstacle avoidance turns out to be difficult in a continuous optimization.

Both footstep rotation and obstacle avoidance generally require non-convex constraints to

enforce them, since the set of rotation matrices and the set of points outside a closed obstacle

are non-convex. We typically cannot find guarantees of completeness or global optimality

for such non-convex problems [18]. We have presented a non-convex continuous optimization

for footstep planning, used by Team MIT during the DARPA Robotics Challenge 2013 Tri-

als [19], but this optimization could not guarantee optimality of its solutions or find paths

around obstacles. Alternatively, footstep rotation and obstacle avoidance can simply be

ignored: Herdt et al. fix the footstep orientations and do not consider obstacle avoidance.

21

This allows them to form a single quadratic program (QP) which can choose optimal footstep

placements and control actions for a walking robot model [20].

We choose to use a mixed-integer convex program (specifically, a mixed-integer quadrati-

cally constrained quadratic program) to provide a more capable continuous footstep planner.

Such a program allows us to perform a continuous optimization of the footstep placements,

while using integer variables to absorb any non-convex constraints. We handle orientation

of the footstep placements by approximating the trigonometric sin and cos functions with

piecewise linear functions, using a set of integer variables to choose the appropriate approx-

imation. We also avoid the non-convex constraints inherent in avoiding obstacles by instead

enumerating a set of convex obstacle-free configuration space regions and using additional

integer variables to assign footsteps to those regions. The presence of integer constraints

significantly complicates our formulation, but a wide variety of commercial and free tools

for mixed-integer convex programming exist, all of which can provide globally optimal so-

lutions or proofs of infeasibility, as appropriate [21, 22, 23]. Thus, we can solve an entire

footstep planning problem to optimality while ensuring obstacle avoidance, a task that, to

our knowledge, has not been accomplished before. Footstep plans produced by our algorithm

are shown in Figures 2-1 and 2-2

This is not unlike the work of Richards et al., who constructed a mixed-integer linear

program to plan UAV trajectories while avoiding obstacles [24]. They represented each

(convex, 2D) obstacle as a set of linear constraints, each of which generates a pair of half-

spaces, one containing the obstacle and one not. They assigned a binary integer variable to

every pair of half-spaces and required that, for every obstacle, the vehicle’s location must

be in at least one of the non-obstacle half-spaces. Instead of adding binary variables for

every single face of every obstacle, we precompute several convex obstacle-free regions, then

assign a single binary variable to each region and require that every footstep is assigned to

one such region, which dramatically reduces the number of binary variables required. The

precomputed convex obstacle-free regions are produced by the IRIS algorithm, presented in

[7].

22

Figure 2-2: Four randomly generated 2D environments demonstrating the MIQCQP footstep
planner. The gray squares are the randomly placed regions of safe terrain; the black circle is
the goal location, with a line indicating the desired orientation of the robot; and the green
and yellow markers are the locations of the right and left footsteps, respectively, with arrows
showing the orientation of each step. The foot is assumed to be a point for these examples.

23

2.2 Technical Approach

Our task is to determine the precise x, y, z and θ (yaw) positions of N footsteps, subject to

the constraints that

1. Each step does not intersect any obstacle

2. Each step is within some convex reachable region relative to the position of the prior

step

To accomplish this, we invert the non-convex problem of avoiding every obstacle and instead

reformulate the problem as one of assigning each footstep to some pre-computed convex

region of obstacle-free terrain. We then add quadratic constraints to ensure that each footstep

is reachable from the prior step, using a piecewise linear approximation of sin and cos to

handle step rotation.

2.2.1 Assigning Steps to Obstacle-Free Regions

Our first task is to decompose the 3D environment into a set of convex regions in which

the foot can safely be placed. The IRIS algorithm, first presented in [7] and designed for

this particular task, quickly generates obstacle-free convex regions in the x, y, and θ (yaw)

configuration space of the robot’s feet. To do so, IRIS begins with a single obstacle-free seed

point and constructs a small ellipsoidal ball around that point. The main IRIS algorithm is

an alternation between two convex optimizations: First, a set of hyperplanes is generated to

separate the ellipsoid from the set of configuration-space obstacles. The intersection of the

obstacle-free half-spaces defined by those hyperplanes is a polytope. Second, a semidefinite

program is solved to find the maximum volume ellipsoid inside that polytope. These two

steps can be repeated until the ellipsoid ceases to grow, and the result is the final obstacle-free

polytope [7].

For each obstacle-free terrain region, we fit a plane in x, y, and z to the local terrain and

add additional linear constraints to force footsteps in that region to lie on the plane. We

label the total number of convex regions as R and for each region r we identify the associated

24

polytope with the matrix Ar and vector br such that if footstep fj is assigned to region r,

then

Arfj ≤ br

where

fj ≡


xj

yj

zj

θj

 and r ∈ {1, . . . , R}

To describe the assignment of footsteps to safe regions, we construct a matrix of binary

variables H ∈ {0, 1}R×N , such that if Hr,j = 1 then footstep j is assigned to region r:

Hr,j =⇒ Arfj ≤ br (2.1)

R∑
r=1

Hr,j = 1 ∀j = 1, . . . , N (2.2)

The implies operator in (2.1) can be converted to a linear constraint using a standard

big-M formulation [25] or handled directly by mixed-integer programming solvers such as

IBM ILOG CPLEX [23]. The constraint (2.2) requires that every footstep be assigned to

exactly one safe terrain region.

2.2.2 Ensuring Reachability

We choose to approximate the reachable set of footstep positions as an intersection of circular

regions in the xy plane, with additional linear constraints on footstep displacements in yaw

and z. The reachable set defined by the intersection of two such circular regions is shown in

25

Figure 2-4. For each footstep j, we require that∥∥∥∥∥∥
xj+1

yj+1

−
xj

yj

+

cos θj − sin θj

sin θj cos θj

 p1
∥∥∥∥∥∥ ≤ d1 (2.3)

∥∥∥∥∥∥
xj+1

yj+1

−
xj

yj

+

cos θj − sin θj

sin θj cos θj

 p2
∥∥∥∥∥∥ ≤ d2 (2.4)

where p1, p2 are the centers of the circles, expressed in the frame of footstep j and d1, d2 are

their radii. When θj is fixed, constraints (2.3) and (2.4) are convex quadratic constraints,

but including θ as a decision variable makes the constraint non-convex by introducing the

trigonometric functions of θ. We will handle this problem by introducing two new vari-

ables for every footstep: sj and cj, which will approximate sin θj and cos θj, respectively.

Constraints (2.3,2.4) thus become:∥∥∥∥∥∥
xj+1

yj+1

−
xj

yj

+

cj −sj
sj cj

 p1
∥∥∥∥∥∥ ≤ d1 (2.5)

∥∥∥∥∥∥
xj+1

yj+1

−
xj

yj

+

cj −sj
sj cj

 p2
∥∥∥∥∥∥ ≤ d2. (2.6)

Since p1, p2, d1, d2 are constants, this is a convex quadratic constraint.

Our work is not yet complete, however, since we now must enforce that sj and cj ap-

proximate sin and cos without introducing non-convex trigonometric constraints. We choose

instead to create a simple piecewise linear approximation of sin and cos and a set of binary

variables to determine which piece of the approximation to use. We construct a binary ma-

trix S ∈ {0, 1}L×N , where L is the number of piecewise linear segments and add constraints

26

of the form

S`,j =⇒

φ` ≤ θj ≤ φ`+1

sj = g`θj + h`

(2.7)

L∑
`=1

S`,j = 1 ∀j = 1, . . . , N (2.8)

where g` and h` are the slope and intercept of the linear approximation of sin θ between φ`

and φ`+1. We likewise add piecewise linear constraints of the same form for cj.

The particular choice of g` and h` turns out to be quite important: we must ensure that

our approximation never overestimates the reachable space of foot placements. We can verify

this empirically for the approximation shown in Figure 2-3 by checking that the intersection

of constraints (2.5,2.6) is contained within the intersection of constraints (2.3,2.4) for all

values of θ. The reachable sets for footsteps at a variety of orientations are shown in Figure

2-5.

0 π
2

π 3π
2

2π

−1

0

1

θ

sin θ
cos θ

Approx.

Figure 2-3: Piecewise linear approximation of sine and cosine

A more typical approach would be to define a convex polytope with m faces, fixed in the

frame of one foot, into which the next foot must be placed. This approach has been success-

fully in convex optimization without rotations [20], but it produces non-convex constraints

27

p1

p2

d1

d2

left foot

x

y

right foot

Figure 2-4: Approximation of the reachable set of locations for the right foot, given the
position of the left foot. The gold arrow shows the position and orientation of the left foot,
viewed from above. The shaded region shows the set of reachable poses for the right foot in
the xy plane, defined as the intersection of constraints (2.5,2.6) at orientation of θj = 0, for
which our approximation of sin and cos is exact. One possible future pose of the right foot
is shown for reference.

28

x

y

Figure 2-5: A simple footstep plan with 2D reachable regions shown. The goal is the black
circle in the top right, and each arrow shows the position and orientation of one footstep.
For each step, we draw the shaded region defined by constraints (2.5,2.6) into which the next
step must be placed. Note that the feasible region shrinks when the step orientation is not
a multiple of π/2, as our approximation of sin and cos becomes inexact.

when rotations are introduced. Such a polytope would involve constraints of the form

Ω

 cj sj

−sj cj

xj+1

yj+1

−
xj
yj

 ≤ ω (2.9)

for some constant matrix Ω ∈ Rm×2 and vector ω ∈ Rm. Even under our piecewise lin-

ear approximation of sin and cos, (2.9) is a non-convex quadratic constraint and thus not

compatible with our mixed-integer convex formulation.

2.2.3 Determining the Total Number of Footsteps

In general we cannot expect to know a priori the total number of footsteps which must be

taken to bring the robot to a goal pose, so we need some method for determining N efficiently.

We could certainly just repeat the optimization for different values of N, performing a binary

29

search to find the minimum acceptable number of steps, but for efficiency’s sake we would

prefer to avoid the many runs of the optimizer that this would require.

We might attempt to determine the number of required steps by setting N sufficiently

large and simply adding a cost on the squared distance from each footstep to the goal pose,

which will stretch our footstep plan towards the goal. If the footsteps reach the goal before

N steps have been taken, then we can trim off any additional steps at the end of the plan.

However, this approach allows the footstep planner to produce strides of the maximum

allowable length for every footstep, even on obstacle-free flat terrain. During experiments

leading up to the DARPA Robotics Challenge trials, we determined that a forward stride of

40 cm was achievable on the Atlas biped, but that a nominal stride of approximately 20 cm

was safer and more stable. We would thus like to express in our optimization a preference

for a particular nominal stride length while still allowing occasional longer strides needed to

cross gaps or clear obstacles. We can try to create this result by adding additional quadratic

costs on the relative displacement between footsteps, but this requires very careful tuning of

the weights of the distance-to-goal cost and the relative step cost for each individual step in

order to ensure that the costs balance precisely at the nominal step length for each step.

Instead, we choose a much simpler cost function, with a quadratic cost on the distance

from the last footstep to the goal and identical cost weights on the displacement from each

footstep to the next. To control the number of footsteps used in the plan, and thus the

length of each stride, we add a single binary variable to each footstep, which we will label

as tj (for ‘trim’). If tj is true, then we require that step j be fixed to the initial position of

that same foot:

tj =⇒ fj =

f1 if j is odd

f2 if j is even.

(2.10)

Note that f1 and f2 are the fixed current positions of the robot’s two feet.

Since each footstep for which tj = 1 is fixed to the current position of the robot’s feet, the

number of footsteps which are actually used to move the robot to the goal is N −
∑N

j=1 tj.

30

By assigning a negative cost value to each binary variable tj, we can create an incentive to

reduce the number of footsteps used in the plan. To tune the nominal stride length, we can

simply adjust the cost assigned to the tj. Increasing the magnitude of this cost will lengthen

the nominal stride uniformly, and decreasing the magnitude will shorten the stride. Thus,

we have a single value to tune in order to set the desired stride length, while still allowing

strides which exceed this length. After the optimization is complete, we can remove any

footsteps at the beginning of the plan for which tj is true.

2.2.4 Complete Formulation

Putting all of the pieces together gives us the entire footstep planning problem:

31

minimize
f1,...,fj ,S,C,H,t1,...,tj

(fN − g)>Qg(fN − g) +
N∑
j=1

qttj

+
N−1∑
j=1

(fj+1 − fj)>Qr(fj+1 − fj))

subject to, for j = 1, . . . , N

safe terrain regions:

Hr,j =⇒ Arfj ≤ br r = 1, . . . , R

piecewise linear sin θ:

S`,j =⇒

φ` ≤ θj ≤ φ`+1

sj = g`θj + h`

` = 1, . . . , L

piecewise linear cos θ:

C`,j =⇒

φ` ≤ θj ≤ φ`+1

cj = g`θj + h`

` = 1, . . . , L

approximate reachability:∥∥∥∥∥∥
xj+1

yj+1

−
xj

yj

+

cj −sj
sj cj

 pi
∥∥∥∥∥∥ ≤ di i = 1, 2

fix extra steps to initial pose:

tj =⇒ fj =

f1 if j is odd

f2 if j is even.

R∑
r=1

Hr,j =
L∑
`=1

S`,j =
L∑
`=1

C`,j = 1

Hr,j, S`,j, C`,j, tj ∈ {0, 1}

bounds on step positions and differences:

fmin ≤ fj ≤ fmax

∆fmin ≤ (fj − fj−1) ≤ ∆fmax

32

where g ∈ R4 is the x, y, z, θ goal pose, Qg ∈ S4
+ and Qr ∈ S4

+ are objective weights on the

distance to the goal and between steps, qt ∈ R is an objective weight on trimming unused

steps, and fmin, fmax,∆fmin,∆fmax ∈ R4 are bounds on the absolute footstep positions and

their differences, respectively. We also fix f1 and f2 to the initial poses of the robot’s feet.

2.2.5 Solving the Problem

We have implemented this approach in MATLAB [26], using the commercial solver Gurobi

[21] to solve the MIQCQP itself. Typical problems involving 10 to 20 footsteps and 10

convex safe terrain regions can be solved in a few seconds to one minute on a Lenovo laptop

with an Intel i7 clocked at 2.9 GHz. Smaller footstep plans involving just a few steps can be

solved in well under one second on the same hardware, so this method is capable of providing

short-horizon footstep plans at realtime rates while walking or longer footstep plans involving

complex path planning while stationary. The Mosek optimizer [22] is also capable of solving

the problem our formulation to optimality with comparable computational speed.

2.3 Results in Simulation

To demonstrate the MIQCQP footstep planning algorithm, we first generated a collection of

random 2D environments. Each environment consisted of 10 square regions of safe terrain,

9 of which were uniformly randomly placed within the bounds of the environment, and 1 of

which was placed directly under the starting location of the robot to represent the robot’s

currently occupied terrain. A goal pose was uniformly randomly placed within the xy bounds

of the environment with a desired orientation between ±π
2

relative to the robot’s starting

orientation. Several such environments and the resulting footstep plans are shown in Figure

2-2. Computation times for those environments were between 1 and 10 seconds on a 2.9GHz

Intel i7. All the footstep plans shown in this chapter are the result of convergence to within

0.1% or less of the globally optimal cost value, as reported by Gurobi.

Next, we manually generated several 3D example environments using Drake, a software

33

toolbox for planning and control [27]. These environments and the resulting footstep plans

are shown in Figures 2-1, 2-6, 2-8. The IRIS algorithm [7] was used to generate convex

regions in the configuration space of a very simple box model of the entire robot, shown in

Figure 2-7, in order to avoid collisions between the upper body and the environment. This

approach is sufficient to generate rich behaviors such as turning sideways to move through a

narrow gap, as in Figure 2-8. Currently, we only ensure that each footstep admits a collision-

free posture of the robot, but we do not account for collisions during the transitions between

those postures; we will discuss possible ways to address this in Section 2.4.

We have also demonstrated the MIQCQP planner on real terrain, using sensor data

collected by Atlas. To generate this plan, we captured LIDAR scans of a stack of cinderblocks

like those encountered in the DRC Trials and constructed a heightmap of the scene using the

perception tools developed by Team MIT for the DRC [19]. A Sobel filter was used to classify

areas of the terrain which were steeper than a predefined threshold [28], and these steep areas

were represented as obstacles for the footstep planner. We used the IRIS algorithm [7] to

generate seven convex safe terrain regions which covered the terrain of interest in front of

the robot. Several footstep plans to different goal poses using these regions are shown in

Figure 2-9. Planning times in this environment ranged from 2 seconds or less for plans of 5

footsteps up to 60 seconds for plans of more than 20 footsteps.

2.4 Conclusion

We have demonstrated a novel footstep planning approach, which replaces nonlinear, non-

convex constraints with mixed-integer convex constraints. This allows us to solve footstep

planning problems to their global optimum, within our linear approximation of rotation.

We have inverted the problem of avoiding obstacles into a problem of assigning steps to

known convex safe regions, which we can construct efficiently. The primary advantage of

our MIQCQP footstep planner is its ability to generate rich footstep sequences in difficult

terrain with guarantees of completeness and global optimality. We do not rely on sampling

or fixed action sets, which may miss small regions of safe terrain entirely. Our approach also

34

Figure 2-6: Three similar environments, with footstep plans for each. Top: Atlas can mount
the center pedestal in one stride. Middle: Raising the center pedestal to twice Atlas’ maxi-
mum vertical stride forces the robot to detour to the right. Bottom: Raising the pedestals
even further requires Atlas to use three platforms to get to the required height. Gray lines
are the boundaries of the convex regions of obstacle-free configuration space, generated by
IRIS.

35

Figure 2-7: Simplified bounding box model of the robot used to plan footstep locations that
will be collision-free for the entire robot.

Figure 2-8: A footstep plan through a narrow gap, for which Atlas must turn sideways.

36

Figure 2-9: Footstep plans for to navigate over and around a set of cinderblocks, using
data sensed by the Atlas humanoid. Gray shaded areas are the obstacle-free regions of
configuration-space, into which the center of each footstep must be placed.

37

handles terrain of varying height gracefully, as the same object can be treated as both an

obstacle and a walking surface when appropriate, as in Figure 2-6.

On the other hand, we are entirely reliant on the existence of sufficiently many convex

obstacle-free regions to ensure that a path through the environment can be found. The

IRIS algorithm generates these regions efficiently, but currently requires user input to seed

the position of each region. This is a mixed blessing: by seeding such a region, the human

operator provides valuable input about the possible walking surfaces for the robot, but this

requirement clearly sacrifices autonomy of the robot. In Chapter 3 we will discuss a heuristic

for automatically seeding IRIS regions without any human input using a coarse discretization

of the space, and in Chapter 4 we will demonstrate its use on a simulated terrain map for

footstep planning.

38

Chapter 3

From Footsteps to Flight Plans

This chapter is adapted from work previously published in [2].

3.1 Introduction

Chapter 2 introduced an approach to planning footsteps on rough terrain: by segmenting

the world into convex regions, we could invert the problem of avoiding obstacles into one of

assigning foot poses to known safe areas. The need to avoid obstacles, however, is hardly

limited to just bipedal robots planning footsteps; it is, instead, a general issue for all mobile

robots.

As an example, consider the problem of planning a feasible trajectory for a quadrotor

UAV from an initial state to a goal state while avoiding obstacles (Figure 3-1). The problem

of obstacle avoidance is particularly challenging because the set of points outside a closed,

bounded obstacle is non-convex. As a result, we must generally add non-convex constraints to

an optimization in order to ensure that our trajectory remains outside the set of obstacles.

Such constraints generally prevent us from finding guarantees of completeness or global

optimality in our program [18]. We can avoid some of the problems of non-convex constraints

by adding a discrete component to our optimization. If we model the non-convex set of

obstacle-free states as the union of finitely many convex regions (analogous to the convex

39

terrain regions of Chapter 2), then we can perform a mixed-integer convex optimization in

which the integer variables correspond to the assignment of trajectory segments to convex

regions. This is not without consequences, since even the addition of binary variables (that is,

integer variables constrained to take values of 0 or 1) turns linear programming into mixed-

{0, 1} linear programming, which is known to be NP-complete [29]. However, excellent

tools for solving a variety of mixed-integer convex problems have been developed in the

past decade, and these tools can often find globally optimal solutions very efficiently for

mixed-integer linear, quadratic, and conic problems [21, 22, 23]. These tools also offer some

anytime capability, since they can be commanded to return a good feasible solution quickly

or to spend more time searching for a provably global optimum.

Earlier implementations of mixed-integer UAV obstacle avoidance have typically used

the faces of the obstacles themselves to define the convex safe regions. The requirement

that a point be outside all obstacles is converted to the requirement that, for each obstacle,

the point must be on the outside of at least one face of that obstacle. For convex obstacles

these conditions are equivalent [30]. This approach has been successfully used to encode

obstacle avoidance for UAVs as a mixed integer linear program (MILP) by Schouwenaars

[31], Richards [24], Culligan [32], and Hao [33]. Mellinger et al. add a quadratic cost function

to turn the formulation into a mixed-integer quadratic program (MIQP) [30]. However, this

approach requires separate integer variables for every face of every obstacle, which causes

the mixed-integer formulation to become intractable with more than a handful of simple

obstacles.

Instead, we again use IRIS, a greedy tool for finding large convex regions of obstacle-free

space [7], to create a small number of convex regions to cover all or part of the free space.

These regions can be seeded automatically based on heuristic methods or by an expert human

operator. We then need only one integer variable for each region, rather than for each face

of every obstacle, and we show in Section 3.3 that it allows us to handle environments with

tens or even hundreds of obstacle faces.

40

3.1.1 Quadrotor Dynamics

While the dynamics of the quadrotor are complex, we can rely on the work Mellinger and

Kumar, who demonstrated that the quadrotor system is differentially flat with respect to

the 3D position and yaw of the vehicle’s center of mass [34]. That is, the entire state of the

system can be expressed as a function of the instantaneous value of the x, y, z positions of

the CoM and the yaw of the vehicle, along with their derivatives. As a result, any smooth

trajectory with sufficiently bounded derivatives can be executed by the quadrotor. This

means that we are free to design smooth trajectories of the position and yaw of the vehicle’s

center of mass without explicitly considering the dynamics.

We define a trajectory as a piecewise polynomial function in time with vector-valued

coefficients, mapping time to position in 2D or 3D space. We choose the degree of the

polynomials and the number of pieces offline. Our optimization problem is a matter of

choosing the coefficients of each polynomial in order to ensure that the trajectory reaches a

desired goal state, avoids collisions, and satisfies an objective function of our choosing.

Figure 3-1: Fully collision-free trajectories for a quadrotor UAV in a simulated forest and
office environment, showing 1.6s of planned trajectory execution.

41

Figure 3-2: A piecewise linear trajectory between two points, with obstacle avoidance en-
forced only at 4 points along each trajectory. The continuous trajectory through those points
may cut corners or pass through thin obstacles.

Figure 3-3: A trajectory in which each linear segment is required to remain entirely within
one of the convex obstacle-free regions indicated by the colored boxes. This requirement
ensures that the entire trajectory is collision-free.

3.1.2 Safety of the Entire Trajectory

A further advantage of our convex region approach is the ability to ensure that the polynomial

trajectory for the UAV is obstacle-free over its entire length, rather than at a series of

sample points. Existing mixed-integer formulations have chosen only to enforce the obstacle-

avoidance constraint at a finite set of points [30, 31, 24]. This can result in the path between

those sample points cutting the corners of obstacles, or, more dangerously, passing through

very thin obstacles, as shown in Figure 3-2. As noted by Bellingham [35], the severity of the

corner cuts can be reduced by increasing the number of sample points and limiting the total

distance between adjacent samples, but this also increases the complexity of the optimization

problem. Mellinger approaches this problem by requiring that the bounding boxes of the

UAV at adjacent sample points must overlap [30]. This is sufficient to ensure that the UAV

never passes entirely through an obstacle, but it does not necessarily prevent corner cutting.

Representing the environment with convex safe regions allows us to completely elimi-

42

nate the cutting of corners. If we treat the problem as one of assigning entire segments of

trajectories, rather than points, to the safe regions, then we can create a fully collision-free

trajectory. For piecewise linear trajectories, this is simply a matter of ensuring that, for

each linear segment, both endpoints must be contained within the same convex safe region,

as shown in Figure 3-3. This decision weakens our claim of optimality, since it requires the

breakpoints between trajectory segments to occur in the intersection of two convex regions,

but it results in a formulation that can be solved exactly with mixed-integer programming.

We enforce the constraint that each polynomial lie within a convex region using a sums-

of-squares (SOS) approach. In this way, collision-free trajectories can be generated using

piecewise polynomials of arbitrary degree. Here we show that, for trajectory segments de-

fined by polynomials, we can exactly enforce the constraint that each segment lies inside a

convex region by solving a small semi-definite program (SDP).

This is somewhat similar to work by Flores, who uses non-uniform rational B-splines to

generate trajectories which are completely contained within convex polytopes [36]. These

polytopes must be given as an ordered union of only pairwise adjacent sets, but the tra-

jectories are guaranteed to be contained within the polytopes by construction. Since the

polytopes must be pairwise adjacent, they must be laid out along a single path from start

to goal by some other planning procedure, and the resulting trajectories may not leave

this path. On the other hand, by performing our mixed-integer optimization, we are able

to explore arbitrarily connected polytopes which may admit many different possible paths

through them.

3.2 Technical Approach

The trajectory planning problem we propose has three components: (1) generating convex

safe regions, (2) assigning trajectory segments to those convex regions and (3) optimizing the

trajectories while ensuring that they remain fully within the safe regions. We perform step

(1) as a pre-processing stage, then solve (2) and (3) simultaneously in a single mixed-integer

convex optimization, which can be solved to global optimality.

43

3.2.1 Generating Convex Regions of Safe Space

In the same way that we segmented terrain into convex safe regions in Chapter 2, we can use

the IRIS (Iterative Regional Inflation by Semidefinite programming) algorithm to construct

convex 3D volumes of free space. While the footstep planner IRIS segmentation operated

in a configuration space and avoided regions of steep terrain, the IRIS segmentation in this

work operates directly in 3D Cartesian space and simply avoids whatever objects are defined

in the environment. Each run of IRIS produces a single convex safe volume from a single seed

point, and additional runs of IRIS with different seed points produce additional obstacle-free

regions.

The applicatiosn of IRIS to the footstep planning problem in Chapter 2 required a human

operator to manually place the seed points. Human input was valuable for that problem,

since the choice of seed locations allowed an expert operator to provide high-level input

such as which surfaces should be used for stepping. Manually seeded regions are, of course,

also possible in the case of an aerial vehicle, and we expect that having an expert operator

choose the location of the seeds might be beneficial when the environment is largely static

and known beforehand. However, this requirement is overly restrictive in the general case.

For that reason, we have developed a simple heuristic for automatically seeding IRIS

regions with no human input. First, the space is discretized into a coarse grid. We then

choose the grid cell which maximizes the distance to the nearest obstacle and seed one IRIS

region at that point. We then repeat, choosing a new seed which maximizes the distance to

the nearest obstacle or existing IRIS region. Currently, we terminate the algorithm when a

pre-defined number of regions have been generated, but we intend to explore other stopping

criteria, such as a threshold on the volume of the space which is currently unoccupied by

obstacles or regions. Automatic seeding of IRIS regions is shown in Section 3.3.

3.2.2 Searching over Assignments of Polynomials to Regions

We encode the assignment of each polynomial piece of the trajectory to a safe region using a

matrix of binary integer variables H ∈ {0, 1}R×N , where R is the number of regions and N

44

is the number of polynomial trajectory pieces. The polynomial trajectory pieces are labeled

as Pj(t) and the convex regions as Gr. Thus, we have:

Hr,j =⇒ Pj(t) ∈ Gr ∀t ∈ [0, 1] (3.1)

We arbitrarily choose the range of [0, 1] for simplicity in this discussion, but any desired time

span can be chosen when constructing the problem. The actual time spent executing each

trajectory segment can also be adjusted as a post-processing step by appropriately scaling

the coefficients.

Ensuring that polynomial j is collision-free is expressed with a linear constraint on H:

R∑
r=1

Hr,j = 1 (3.2)

Note that we allow the regions to overlap, so it is possible for a polynomial to simultane-

ously exist within multiple regions Gr. Such a case is allowed by our formulation, since the

implication in (3.1) is one-directional (so polynomial Pj(t) being contained in Gr does not

necessarily require that Hr,j = 1).

We show in Section 3.2.3 that the constraint Pj(t) ∈ Gr ∀t ∈ [0, 1] is convex, and we

can use a standard big-M formulation [25] to convert the implication in (3.1) to a linear

form.

3.2.3 Restricting a Polynomial to a Polytope

We represent our trajectories in n dimensions as piecewise polynomials of degree d in a single

variable, t. Each segment j of the trajectory is parameterized by d+ 1 vectors of coefficients

Cj,k ∈ Rn of a set of polynomial basis functions, Φ1(t), . . . ,Φd+1(t). For each segment j, the

trajectory can be evaluated as

Pj(t) =
d+1∑
k=1

Cj,kΦk(t) t ∈ [0, 1] (3.3)

45

We restrict the R convex regions of safe space to be polytopes, so for each region r ∈

1, . . . , R we have some Ar ∈ Rm×n and br ∈ Rm and the constraint that

Ar Pj(t) ≤ br (3.4)

if Hr,j is set to 1. To ensure that the trajectory remains entirely within the safe region, we

require that (3.4) hold for all t ∈ [0, 1]

Ar

d+1∑
k=1

Cj,kΦk(t) ≤ br ∀t ∈ [0, 1]. (3.5)

Equation 3.5 consists of m constraints of the form

a>r,`

d+1∑
k=1

Cj,kΦk(t) ≤ br,` ∀t ∈ [0, 1] (3.6)

where

Ar =


a>r,1

a>r,2
...

a>r,m

 and b =


br,1

br,2
...

br,m

 . (3.7)

We can redistribute the terms in (3.6) to get

d+1∑
k=1

(a>r,`Cj,k)Φk(t) ≤ br,` ∀t ∈ [0, 1] (3.8)

and thus

q(t) := br,` −
d+1∑
k=1

(a>r,`Cj,k)Φk(t) ≥ 0 ∀t ∈ [0, 1]. (3.9)

46

The condition that q(t) ≥ 0 ∀t ∈ [0, 1] holds if and only if q(t) can be written as

q(t) =

tσ1(t) + (1− t)σ2(t) if d is odd

σ1(t) + t(1− t)σ2(t) if d is even

(3.10)

σ1(t), σ2(t) are sums of squares (3.11)

where σ1(t) and σ2(t) are polynomials of degree d − 1 if d is odd and of degree d and

d − 2 if d is even [37]. The condition that σ1(t), σ2(t) are sums of squares requires that

each can be decomposed into a sum of squared terms, which is a necessary and sufficient

condition for nonnegativity for polynomials of a single variable [37]. The coefficients of the

polynomials σ1 and σ2 are additional decision variables in our optimization, subject to linear

constraints to enforce (3.10). The sum-of-squares constraints in (3.11) can be represented in

general with a semidefinite program [38]. The problem of assigning the trajectories to safe

regions is thus a mixed-integer semidefinite program (MISDP). This class of problems can

be solved to global optimality using, for example, the Yalmip branch-and-bound solver [39]

combined with a semidefinite programming solver like Mosek [22] or using the dedicated SDP

package developed by Mars and Schewe [40]. We have successfully applied this formulation to

polynomials of degree 1, 3, 5, and 7. For polynomials of degree 7 and higher, we experienced

numerical difficulties which often prevented Mosek from solving the semidefinite program.

As a result, we have developed more numerically stable exact reductions for lower degree

polynomials.

For polynomials of degree 1, σ1 and σ2 are constants, and the condition in (3.11) reduces

to linear constraints

σ1 ≥ 0, σ2 ≥ 0, (3.12)

which reduces the problem to a mixed-integer quadratic program (MIQP), given our quadratic

objective function.

47

If the polynomials are of degree 3, then σi(t) is a quadratic polynomial:

σi(t) = β1 + β2t+ β3t
2. (3.13)

Using the standard sum-of-squares approach, we rewrite σi(t) as

σi(t) =
[
1 t

]β1 β2
2

β2
2

β3

1

t

 . (3.14)

The condition that σ(t) is SOS is equivalent to the matrix of coefficients in (3.14) being

positive semi-definite: β1 β2
2

β2
2

β3

 � 0, (3.15)

which is in turn equivalent to the following rotated second-order cone constraint:

β2
2 − 4β1β3 ≤ 0 (3.16)

β1, β3 ≥ 0 (3.17)

We can thus write the problem of assigning degree-3 polynomials to convex regions as a

mixed-integer second-order cone problem (MISOCP), which we can solve effectively with

Mosek [22], Gurobi [21], and other tools.

3.2.4 Choosing an Objective Function

Mellinger et al. relate the snap (that is, the fourth derivative of position) to the control

inputs of a quadrotor, and thus choose an objective of the form:

minimize
N∑
j=1

∫ 1

0

∥∥∥∥ d4dt4Pj(t)
∥∥∥∥2 dt (3.18)

48

If pj(t) is of degree d ≥ 4 then we may do likewise, resulting in a convex quadratic objective

on the coefficients of the Pj. We demonstrate this objective function in operation with

5th-degree polynomials in Figure 3-4.

However, to reduce our problem to a MISOCP and improve the numerical stability of

the solver, we found it beneficial to restrict ourselves to 3rd-degree polynomials and thus

piecewise constant jerk. Our objective is

minimize
N∑
j=1

∥∥∥∥ d3dt3Pj(t)
∥∥∥∥2 . (3.19)

which is likewise convex and quadratic in the coefficients of the Pj. We also add linear

constraints on the position, velocity, and acceleration of each trajectory piece to ensure

that they are continuous from one polynomial piece to the next. Additional linear equality

constraints require that the position, velocity, and acceleration of the beginning of the first

trajectory piece and the end of the last piece match our desired initial and final states.

3.2.5 Handling Lower-Degree Trajectories

Even if the mixed-integer optimization is done over the numerically easier degree 3 polynomi-

als, we can post-process the resulting trajectories in order to successfully use the differential

flatness of the system to derive the full state and input. A piecewise degree-3 trajectory

has a piecewise constant 3rd derivative. It thus has delta functions for its 4th derivative,

which Mellinger relates directly to the rotor thrusts of the UAV [34]. Since this is clearly

undesirable, we proceed as follows: First, we run the MISOCP to optimize our degree-3

polynomials and assign them to convex safe regions. Next, we fix the resulting assignment of

trajectories to safe regions and then re-run the optimization for polynomials of degree 5 or

higher while minimizing the squared norm of the snap. Since all of the integer variables are

fixed, we no longer have a mixed-integer problem but instead a single semidefinite program,

which can be solved very efficiently. For example, in the office environment shown in Figure

3-1, computing the smooth 5th-degree polynomial trajectory required only 1.5 s in Mosek.

49

3.2.6 Complete Formulation

Our optimization problem can be written as follows for a trajectory of N piecewise 3rd-degree

polynomials:

minimize
P,H,σ

N∑
j=1

∥∥∥∥ d3dt3Pj(t)
∥∥∥∥2 (3.20)

subject to:

P1(0) = X0, Ṗ1(0) = Ẋ0, P̈1(0) = Ẍ0

PN(1) = Xf , ṖN(1) = Ẋf , P̈N(1) = Ẍf

Pj(1) = Pj+1(0), Ṗj(1) = Ṗj+1(0), P̈j(1) = P̈j+1(0)

(3.21)

Hr,j =⇒ br,` − a>r,`Pj(j) = tσ`,j,1(t) + (1− t)σ`,j,2(t)

∀j ∈ {1, . . . , N} ∀r ∈ {1, . . . , R}

where σ`,j,1(t), σ`,j,2(t) are sums of squares (3.22)

R∑
r=1

Hr,j = 1 ∀j ∈ {1, . . . , N} (3.23)

Hr,j ∈ {0, 1} (3.24)

whereX0, Ẋ0, Ẍ0 are the initial position, velocity, and acceleration of the vehicle andXf , Ẋf , Ẍf

are the final values. All of the above conditions are linear constraints on the coefficients C

and β and the matrix H, except the condition that σ1 and σ2 are sums of squares, which is

a rotated second-order cone constraint.

3.2.7 Trajectories Without Convex Segmentation

For the sake of comparison, we have included numerical experiments for the proposed mixed-

integer optimization using the faces of obstacles instead of convex regions from IRIS, just as

Bellingham [35], Mellinger [30], and others have done. Instead of a single matrix of binary

50

variables H, we have a matrix Ho for each obstacle. The m linear constraints in (3.5) are

replaced with a linear constraint for each face r of obstacle o, and we constrain that

Nfaces∑
r=1

Ho,r,j = 1 ∀j ∈ {1, . . . , N} (3.25)

for every obstacle o ∈ {1, . . . , Nobstacles}. The disadvantage of this formulation is the rapid

increase in the number of binary variables as the numbers of obstacles and faces increase.

This increases the time required to find the global optimum, as shown in Figure 3-6.

3.3 Results

3.3.1 Simulation

We demonstrate the mixed-integer trajectory planning in a variety of two- and three-dimensional

environments. Figure 3-4 shows a simple 2D environment, in which we find four convex safe

regions with IRIS and then solve for several trajectories through those regions. The arrange-

ment of the obstacles in the simple environment is such that only four convex regions are

needed to completely fill the space. For more complex environments, such as that shown in

Figure 3-5, more convex regions may be required, and those regions may not cover the entire

space.

In Figure 3-5, we show a randomly generated environment with five obstacles, a starting

pose in the upper right, and a goal pose in the lower left. We generate 7 convex safe regions

with IRIS, which do not entirely fill the obstacle-free space. Within those 7 regions, we

plan 6 polynomial segments of degree 3 to form a smooth trajectory from the start to the

goal while minimizing the objective in (3.19). This trajectory is shown in Figure 3-5a. We

can also avoid pre-computing convex regions and use the faces of the obstacles directly, as

shown in Figure 3-5b. This results in an optimal solution with a 15% lower (i.e. better)

objective function value, but requires nearly double the solver time for the example shown.

The solutions in Figures 3-5a and 3-5b are both globally optimal with respect to the cost

51

Figure 3-4: Solving a simple environment with IRIS regions. We construct an environment
with obstacles and a start and goal pose (a), then generate IRIS regions around the start (b)
and goal (c). Next, we identify a point far from the existing set of obstacles and IRIS regions
and seed a new region there (d), and repeat until we have 4 regions (e). Finally, we solve
for trajectories of 1st-degree polynomials minimizing squared velocity in 0.1s (f), 3rd-degree
polynomials minimizing squared jerk in 1.3s (g), and 5th-degree polynomials minimizing
squared snap in 4.0s (h). All trajectories lie entirely within the convex regions shown.

52

(a) With IRIS convex segmentation.

(b) Without IRIS convex segmentation.

Figure 3-5: An environment consisting of 5 uniformly randomly placed convex obstacles.
Above: We generate 7 convex regions of free space using IRIS, then solve for a piecewise
3rd-degree trajectory which is entirely contained within those safe regions in 14.1s. Below:
we also solve for a trajectory of the same degree without the convex segmentation step, which
results in a 15% decrease in the optimal cost value but requires 27.5s to solve to optimality.

53

2 4 6
0

50

100

150

200

250

S
ol

ve
r

T
im

e
(s

)
5 IRIS Regions (each bar: 20 trials)
7 IRIS Regions (each bar: 20 trials)
9 IRIS Regions (each bar: 20 trials)
No Convex Segmentation (80 / bar)

2 4 6
0 %

50 %

100 %

%
S
ol

ve
d

2 4 6
0
2
4
6

Number of ObstaclesO
p
ti

m
al

C
os

t
V

al
u
e

Figure 3-6: Comparison of our approach for various numbers of convex safe regions, as well
as the approach described in Section 3.2.7, which does not require convex segmentation. We
show results for randomly generated environments with 2, 4, or 6 obstacles. Above: the mean
and std. dev. of time required to solve the problem to within 1% of global optimality using
Mosek [22] on a 2.7 GHz 12-Core Intel Xeon E5 processor. For more than 4 obstacles, the
solve time required increases dramatically if no convex segmentation is performed. Middle:
the fraction of environments for which an optimal solution could be found. Reducing the
number of IRIS regions improves the speed of optimization but, by covering less of the free
space, it also decreases the likelihood of a feasible trajectory from start to goal being found.
Below: the final value of the objective function at optimality in each case.

54

Figure 3-7: Collision-free trajectory with very many obstacles. Five clusters of 100 obstacles
each were placed, and 6 convex regions were found with IRIS in the free space. Solve time
for this trajectory was 20s. Generating IRIS regions required < 1s.

Figure 3-8: A virtual forest environment showing two obstacle-free IRIS regions and a tra-
jectory which passes through those regions. The UAV itself is treated as a sphere to ensure
that no part of the vehicle is allowed to exit the set of obstacle-free regions.

55

function in (3.19), but they differ from one another because they are subject to different safe

region constraints. In Figure 3-5a, each polynomial must be contained entirely within one

of the seven convex safe regions shown, while in Figure 3-5b, each polynomial must lie on

the outside of one face of every obstacle.

We compare the approach of generating convex safe regions (which may fail to fill the

entire free space) with the approach of using the obstacle faces directly as our safe regions

(which may require a dramatically more complex integer program) in Figure 3-6. Environ-

ments consisting of 2, 4, or 6 obstacles were generated, and 5, 7, or 9 IRIS regions were

automatically created using the heuristic described in Section 3.1. Time spent on IRIS

segmentation is not included in the table, but was less than 1 s in all cases. For each en-

vironment, we optimized a trajectory of 6 polynomial pieces of degree 3, while minimizing

the objective in (3.19). We also attempted to find a trajectory in each environment using

the method of Section 3.2.7 with no IRIS regions, which tended to be much slower for more

than 4 obstacles. One such environment is shown in Figure 3-5.

Substantially more complex environments can also be handled by the technique intro-

duced here. In Figure 3-7, we generate an environment of 500 obstacles in 5 clusters. Al-

though we cannot in general hope to fully explore all possible paths through all 500 obstacles,

our ability to quickly find large open areas of space with IRIS allows us to find a collision-free

trajectory even in this extremely cluttered space.

We are by no means limited to problems in two dimensions. In Figure 3-1, we show

trajectories generated in two different 3D environments. For each environment, we generated

7 to 9 regions of safe space in 3D with IRIS, then planned a trajectory consisting of 7 degree-

3 polynomials assigned to those safe regions. Each trajectory took approximately 200 s to

solve to within 1% of the globally optimal objective value on an Intel i7 at 2.9GHz. The

convex regions were generated for the configuration space of a bounding sphere for the UAV

in order to ensure that the trajectory would be collision-free for the whole vehicle. Figure

3-8 shows two of the convex regions used in the forest environment, along with part of the

trajectory through those regions.

56

3.4 Conclusion

In this chapter, we have presented a new method for optimal trajectory planning around

obstacles which ensures that the entire path is collision-free, rather than enforcing obstacle

avoidance only at a set of sample points. This method is formulated as a mixed-integer convex

program and can be directly used with the mixed-integer obstacle avoidance approach which

is already common in the field. Performance of our approach can be significantly improved by

pre-computing convex regions of safe space with IRIS, a tool for greedy convex segmentation,

which can allow us to solve for trajectories even in very cluttered environments.

3.4.1 Limitations

By requiring that each polynomial trajectory piece lie entirely within one convex safe region,

we disallow trajectories which may not intersect the obstacles but which pass through several

safe regions. Our claims of global optimality are also limited to trajectories which obey this

restriction. This problem can be alleviated by increasing the number of trajectory segments

so that each segment can be assigned to a single safe region, but doing so increases the

complexity of the mixed-integer program. This limitation also exists in the footstep planning

work on which this is based: the requirement that each footstep lie completely within some

convex region eliminates potentially safe plans in which a footstep spans multiple convex

regions.

Successful trajectory generation is also dependent on the particular set of convex regions

which are generated. In the environments shown in Figures 3-4, 3-5, and 3-7 and in the

forest environment shown in Figure 3-1, automatically finding regions at points far from

the obstacles was sufficient, but as the environment becomes more complex, we may require

a more intelligent method of selecting the seed points at which the IRIS algorithm begins.

Input from a human operator can be extremely helpful in this case: in the office environment

shown in Figure 3-1, a human operator indicated the interiors of the window and doorway

as salient points at which to generate convex regions, which allowed a feasible trajectory to

be found with less time spent blindly searching for good region locations.

57

Finally, in order to ensure a smooth control input, we may wish to constrain the deriva-

tives of the snap of the trajectory, which will require polynomials of degree 5 or higher. This

will require a more careful approach to ensure the numerical stability of the mixed-integer

semidefinite program. We were not able to reliably solve these high-order problems using

Yalmip and Mosek without encountering numerical difficulties. The choice of basis functions

Φ in Equation 3.3 is likely to be a significant factor in the numerical stability of the solver

[30]. So far, we have experimented with the Legendre basis suggested by Mellinger et al.,

but not with other polynomial bases.

58

Chapter 4

Analysis: Convex Segmentation and

Mixed-Integer Planning

The approaches to locomotion planning presented in Chapters 2 and 3 are quite similar:

we decompose a cluttered environment into convex save regions (using IRIS), then solve a

hard mixed-integer optimization to find an optimal path, including assignments of parts of

that path to their corresponding safe regions. This approach worked well for the controlled

examples presented in those chapters and was even scaled up to the full Atlas hunanoid

robot walking on completely unmapped terrain, but it still proved difficult to use outside

of the lab. Unmodeled dynamics, perception difficulties, and a variety of other violated

assumptions meant that the mixed-integer footstep planner could not be reliably used on

the most difficult tasks seen at the finals of the DARPA Robotics Challenge.

In this chapter, I will discuss the successful applications of the mixed-integer optimization

techniques beyond the initial results shown in Chapters 2 and 3, including Atlas walking on

rough terrain and a real UAV executing optimally-planned trajectories. In Section 4.2, I will

explore some of the specific challenges that made this kind of planning difficult to use reliably

in the field. Fortunately, this is not the end of the story, as Section 4.2.3 will demonstrate

how recent papers have built upon the work presented here to give better performance,

autonomy, and extension to new domains.

59

4.1 Successes

The mixed-integer planning approaches for UAVs and footsteps were both successfully demon-

strated in simulation and in hardware, despite the inevitable challenges of bringing theoretical

work into practice. In the case of the footstep planner, this required implementing an entire

pipeline to from raw perception data to optimal footstep locations, while in the UAV case

it required generating and tracking trajectories in complex physical environments.

4.1.1 Simulating the Footstep Planning Pipeline

To evaluate the entire footstep planning pipeline proposed in Chapter 2, including the convex

segmentation, footstep placement, and whole-body control, a set of self-contained examples

was implemented in the Drake software framework [27]. The experiments consisted of the

following steps:

1. An environment consisting of cinder blocks (represented as rectangular prisms) was

created manually to match the terrains seen at the DARPA Robotics Challenge.

2. A heightmap was generated automatically by raycasting the simulated terrain from

above.

3. Each cell of the heightmap was classified as safe or unsafe by applying a Sobel filter to

estimate the local gradient [28]. The IRIS algorithm was used to find convex regions

containing only safe cells, using the automated seeding procedure described in Section

3.2.1.

4. A footstep plan was generated, constrained to use only the convex safe regions, using

the optimization from Section 2.2.4.

5. A center of mass trajectory was constructed using the method in [41] and executed in

simulation using the controller from [6].

60

Figure 4-1 shows a complete execution of such an example, in which the Atlas robot crosses

a terrain course consisting of multiple cinderblock obstacles in approximately 90 seconds of

simulated walking.

The successful application of IRIS and the mixed-integer footstep planner, however, relied

on a number of assumptions whose importance became clear with further experimentation:

1. The simulated heightmap was assumed to be perfect, allowing for very accurate clas-

sification into safe and unsafe cells.

2. The simulated robot model was assumed to be perfect, with no unmodeled friction or

restrictions on the joint motions, and the joint actuators were assumed to be perfect

torque sources.

3. The simulated state estimate was assumed to be perfect, so there was no uncertainty

in the robot’s position or velocity in the world.

The effects of these assumptions became clearer as we moved from a simulated terrain course

to experiments with the real Atlas robot.

4.1.2 Walking on Unmapped Terrain

To evaluate the performance of the footstep planner in a real environment, we constructed a

terrain course consisting of a long row of cinderblocks with a variety of upward and downward

steps and some small gaps. The complete terrain course can be seen in Figure 4-2. With

no prior model of the terrain, the robot walked across the terrain course, performing the

following actions in a receding horizon manner at every footstep:

1. Depth data from the robot’s stereo cameras was fused into a 3D world map using the

Kintinuous algorithm [43].

2. Convex regions corresponding to the surfaces of the cinder blocks were generated.

3. The mixed-integer footstep planner generated a sequence of 2-6 footsteps among those

safe regions in the direction of travel.

61

Figure 4-1: The Atlas robot autonomously navigating over simulated rough terrain. Given
just the heightmap and a goal pose, IRIS regions were segmented automatically and the
mixed-integer footstep planner produced sequences of safe footholds for the robot to follow.
Each frame represents 12 seconds of simulated walking.

62

Figure 4-2: The cinderblock terrain used in the autonomous footstep planning experiment
described in Section 4.1.2. The Atlas robot was able to navigate autonomously across this
terrain using the mixed-integer footstep planning approach described in Chapter 2. Repro-
duced from [42].

Figure 4-3: A sample footstep plan from the autonomous walking experiment. Left: the
terrain map in front of the robot, reconstructed from fusion of stereo depth data. Right: the
convex regions of safe terrain, computed via RANSAC, and the footstep placements chosen
by the mixed-integer planner.

63

4. The center-of-mass plan and walking controller were re-computed from the new footstep

plan and applied to the robot.

This entire sequence of steps was reliably performed in less than 0.5 s, allowing a new footstep

plan to be generated each time the robot took a step.

A full description of the experiment and its components can be found in our earlier

publication [42]. Over the course of this experiment, the robot successfully and autonomously

navigated terrain for which it had no prior map, using only the mixed-integer footstep planner

to choose its contact locations.

There were, however, a number of caveats to that success. In particular, the noisy

sensor data made it difficult to apply the IRIS segmentation algorithm (see Section 4.2.1),

so a simpler but more reliable RANSAC-based plane-fitting approach was used instead.

Furthermore, the lack of any notion of dynamics in the footstep planner made the resulting

plans difficult to reliably follow for the robot (see Section 4.2.2). While shorter segments

of terrain could be reliably crossed, the full terrain course shown in Figure 4-2 was only

completely traversed once during our experiments, with tens of attempts resulting in the

robot falling before reaching the end. To generate more reliable behaviors and respond to

perception issues, unexpected disturbances, and unmodeled dynamics, we need controllers

that can actually reason about their future contact decisions in more detail (see Chapter 5).

4.1.3 UAV Experiments

In addition to the footstep planner from Chapter 2, the mixed-integer UAV planning ap-

proach from Chapter 3 was also successfully implemented in hardware. In a paper by Benoit

Landry, a Crazyflie quadrotor was flown autonomously through a series of cluttered envi-

ronments. The environments were constructed manually, and the IRIS algorithm was used

to generate convex safe regions from a provided model of each environment. The mixed-

integer planner then produced safe piecewise polynomial trajectories, avoiding the modeled

obstacles. The trajectories were tracked using a time-varying LQR controller running on the

vehicle. Examples of the environments and trajectories can be seen in Figure 4-4, and full

64

Figure 4-4: The Crazyflie quadrotor executing a piecewise polynomial trajectory generated
by our mixed-integer optimization in three environments. Left: the planned trajectories in
the modeled environments. Blue lines indicate the planned trajectory and green lines show
the executed trajectory, measured with motion capture. Right: execution of the trajectories
in hardware. Figures reproduced from [44].

65

details of the experiment can be found in [44].

4.2 Challenges

The Atlas robot and Crazyflie UAV experiments showed how effective the process of convex

segmentation and optimal mixed-integer planning can be, even on complex physical robots.

At the same time, they also showed some of the limitations of the approach, particularly

when perfect information about the environment and the robot model are not available.

4.2.1 Perception Challenges and IRIS

The idea of segmenting the environment into convex obstacle-free regions rests on the as-

sumption that we actually know what the environment consists of, which in general requires

some kind of perception system to measure the environment around the robot. In the

quadrotor experiments from Section 4.1.3, the issues of perception were entirely avoided by

providing a perfect model of the environment to the planner ahead of time, but perfect maps

are not something we can generally assume.

In the footstep planning experiments with the Atlas humanoid robot, we assumed that

the obstacles (regions of unsafe or steep terrain) could be identified precisely from measured

LIDAR or stereo camera data. Failing to classify part of the terrain as unsafe could result

in IRIS returning convex regions that are not entirely safe for stepping. Mis-classifying

safe regions as unsafe, on the other hand, could result in many more convex regions being

necessary to cover a particular terrain (see Figure 4-5), making the combinatorial choice of

to which region to assign each footstep much more difficult.

There was also a more subtle issue with the use of IRIS in the footstep planning exper-

iments, in which the resolution of the terrain map significantly affected the success of the

planner. The IRIS-based terrain segmentation assumed that the terrain was stored as a map

consisting of a rectangular grid of cells. Each cell could be classified as either safe or unsafe

for walking, and the IRIS algorithm would return a convex 2D polyhedron which avoided

66

(a) Hypothetical terrain consisting
of two rectangular stepping stones.

(b) Applying a discretized map
grid to the given terrain and clas-
sifying cells as safe or unsafe.

(c) Running IRIS using the dis-
cretized grid cells as obstacles
results in significant under-
estimation of the available safe
terrain.

(d) An example of false detections
of unsafe cells due to noise in the
sensor data.

(e) The minor misclassifications of
the terrain result in significantly
more IRIS regions being required
to achieve similar coverage.

Figure 4-5: Illustration of difficulties encountered when using IRIS segmentation on poten-
tially noisy terrain data.

67

any overlap with unsafe cells. This design was intentionally conservative: any obstacle, even

one much smaller than a single map cell, would cause the resulting safe regions to avoid

the entire cell around that obstacle. The primary sources of unsafe classifications were the

vertical edges of the rectangular cinder blocks. Although these unsafe regions were essen-

tially zero-width (being predominantly perfectly vertical), they would result in entire rows

and/or columns of cells in the map being labeled as unsafe. The discretization thus had the

effect over over-estimating the size of the obstacles by, on average, half the width of a map

cell. Consequently, the resulting IRIS convex regions tended to under-estimate the size of

the safe terrain by the same amount, with the ultimate result that the robot was unable

to plan footsteps that came close to the edges of the terrain. With a default map cell size

of 5 cm, the under-estimation caused by the map grid could force the robot to step several

centimeters farther than was actually required in order to ensure that the footstep landed

within the computed IRIS region. Smaller grid cells were possible, but increasing the map

resolution had additional computational costs.

Conservatively keeping the robot’s feet farther from the unsafe edges of the cinder blocks

would seem to be a reasonable choice, but it interacted poorly with the limitations of the

controller (discussed in more detail in Section 4.2.2). The distance from one cinderblock

to the next (approximately 25 cm in the experiment shown in Figure 4-2) was just on the

boundary of the maximum achievable flat-ground forward step for the controller used in this

experiment. Thus, a conservative terrain estimate which added just 5 cm (one map cell) to

the length of a forward step could easily result in plans that the controller could not actually

follow.

Instead, for the duration of the continuous walking experiment, the IRIS algorithm was

shelved in favor of a simpler approach: points in the scene were filtered by their estimated

surface normal to extract only the near-horizontal terrain surfaces, and those filtered points

were clustered into rectangular patches which could be used as convex safe terrain regions.

This simplified terrain classification approach is described in more detail in [42]. While this

approach solved the immediate problem of IRIS returning overly conservative regions, it was

68

only useful in an environment consisting entirely of rectangular planar stepping stones.

4.2.2 Control Challenges

Although the footstep planner was able to create dynamically feasible plans which could be

tracked reliably in simulation (see Figure 4-3), executing the planned footsteps on uneven

terrain proved to be unreliable. Several cases were particularly challenging in execution and

contributed to many of the robot’s falls:

Changing Height

The linear inverted pendulum model used by the walking controller described in [41] assumes

that the center of mass of the robot undergoes no acceleration in the vertical direction. In

order to avoid significantly violating that assumption, any change in height had to be done

slowly and smoothly to minimize vertical acceleration. In particular, this meant that any

step up or down had to be done extremely slowly, with long periods during which only one

foot could remain flat on the ground. While a human can step down quickly, using the

impact of the leading foot to dissipate energy, such an impact causes precisely the kind of

vertical acceleration that the linear inverted pendulum model forbids. Instead, the robot

must use its leg actuators to support itself while slowly dissipating potential energy as it

descends, resulting in long periods with the leg joints at or near their maximum rated torque

production. The overall result of this was frequent falls as the robot spent long periods of

time at its torque limits, even when descending as little as 20 cm at a time. A more human-

like gait, exploiting impact to dissipate energy, would likely have avoided the torque limit

issue, but simply was not possible while remaining close to the linear inverted pendulum

dynamics.

Moreover, since the footstep planner of Chapter 2 had no notion of dynamics (only of

whether a given foot position was reachable from some prior foot position), there was no clear

way for the planner to account for this limitation of the controller. Heuristically limiting

the amount of upward or downward travel the robot was able to make between footsteps

69

helped, but the limits proved very difficult to tune. A more complete solution would involve

planning the timing and location of the robot’s footsteps in order to exploit its full dynamics,

rather than trying to ignore them at the footstep planning stage.

External Disturbances

A wide variety of unexpected and unmodeled disturbances contributed to the difficulty in

executing planned footsteps on rough terrain. The Atlas robot’s actuators, while modeled

as perfect torque sources, were in fact biased and noisy due to the unmodeled dynamics of

the hydraulic systems which powered them. Errors in the torque output had to be corrected

with integral control, resulting in the robot’s actions lagging behind the commanded signals.

The kinematics of the robot were also difficult to model perfectly, as the complex linkages in

the joints connecting the robot’s legs to its feet resulted in coupled joint limits which were

difficult to model in simulation. The coupled joint limits resulted in unexpected internal

torques when the ankles were near the limits of their range of motion. Even wind in outdoor

environments could create small but significant disturbances of the robot’s motion.

None of these disturbances was generally catastrophic on its own, but their effects were

magnified by the robot’s total inability to correct its behavior by making or breaking contact.

Stumbling, skipping, touching a wall, dropping to a knee, or even simply stopping in place

would all require a new contact plan, a process which could take several seconds. Thus, the

robot’s only option was to continue executing its current plan, no matter the disturbance, a

strategy which often resulted in falls.

On flat ground, our footstep plans could be made sufficiently conservative and our con-

trollers were sufficiently robust that the robot could tolerate most disturbances without

falling and without needing to modify its contact plan. But on rough ground, or when the

robot received a significant push, a new strategy was needed to give the robot the ability to

make contact decisions on the fly.

The quadrotor hardware experiments, by virtue of being run in a closed lab environment,

were relatively free from external disturbances and consequently more reliable. But similar

70

effects would almost certainly have been seen had the UAV been moved out of the lab. Just

as in the case of the footstep planner, the UAV planner produced optimal results too slowly

to respond to disturbances online: a new plan is of little use if it is only returned a minute

or two after the robot has already been blown off-course.

4.2.3 Extensions and Derivative Works

The convex segmentation and mixed-integer planning approaches presented above have also

inspired extensions and modifications by other researchers, with a particular focus on ex-

ploring the tradeoffs between optimality, expressiveness, and computation time.

Convex Segmentation

The IRIS algorithm is effective at generating regions of safe terrain and volumes of safe

space, but the implementation presented in Chapter 2 required manual intervention to choose

the seed point for each region. In Section 3.2.1 we proposed a heuristic for seeding IRIS

regions automatically using a coarse discretization of the configuration space. More recently,

Sadhu et al. propose a similar heuristic, which they label Extended IRIS, to automatically

choose seed locations [45]. On the other hand, Savin chooses to keep the seeding process,

but introduces a completely different mechanism of generating convex regions, replacing

the optimization process in IRIS with a computationally simpler stereographic projection

approach and going on to apply this segmentation approach to simulated footstep and UAV

planning problems [46]. In [47], Jatsun et al. propose yet another convex segmentation

approach by casting rays out from the seed point and taking the convex hull of the intersection

of those rays with the obstacle set. Since that convex hull will not be a perfectly obstacle-

free region, they then intersect the computed region with additional half-space constraints

to cut out any intersection points between the rays and obstacles which still lie within the

computed region. The result is a potentially smaller safe region, but one computed without

solving any numerical optimizations.

Bialkowki et al. do away completely with the notion of pre-computing obstacle free

71

regions, but end up with a related result in [48]. Their work is based on a standard sampling

approach for motion planning, but each time a point is checked for its distance to the nearest

obstacle, the authors construct a disc, centered at that point, whose radius is equal to the

just-computed nearest obstacle distance. The interior of that disc is, by construction, entirely

obstacle free (since its radius must just barely reach the nearest obstacle), and that disc is

then added to a set of such discs. Future point queries can be cheaply checked against

these discs rather than requiring an expensive check against every obstacle. In this way,

the authors create a cluster of convex obstacle-free regions, although in this case the convex

shapes are always circles and their placement is determined by random sampling rather than

some seeding procedure.

Gait Generation and Dynamic Plans

The footstep planning problems presented so far have all assumed a strict gait pattern

(alternating between the left and right foot), but this assumption breaks down for many

walking robots. A bipedal robot may use one or both feet for support, but it may also use

its hands to make contact with the world, and it may even briefly have no contact with the

world at all when jumping or running. Robots with more than two legs likewise have many

possible contact sequences to choose from, and restricting them to a single gait pattern limits

their ability to traverse complex environments.

Instead, a more general approach is to expand the planning problem to allow each limb to

independently be chosen as in contact with a particular surface or out of contact. In a mixed-

integer optimization, this involves adding additional binary variables for each combination of

a limb and a potential contact surface. This is the approach taken by Aceituno-Cabezas et

al. in [49] and [50], in which the mixed-integer footstep planner from Chapter 2 is expanded

with the addition of full gait planning for a quadruped robot. The authors further extend the

footstep planner by explicitly reasoning about contact forces (using Dai’s Contact Wrench

Cone method from [51]), allowing the mixed-integer program to simultaneously choose the

set of active contacts, their location, and their distribution of forces in order to create a

72

desired motion of the robot’s center of mass.

In a similar vein, Valenzuela also adds gait planning and contact force optimization to the

mixed-integer program in [52]. While Aceituno-Cabezas focused only on assigning footsteps

to regions on the terrain [49, 50], Valenzuela also adds three-dimensional volumes of free

space above the terrain in order to ensure that the robot’s limbs are not in collision with the

world while moving from one contact surface to another, allowing for more aggressive flight

phases to be considered. Valenzuela also uses the McCormick envelope formulation [53] to

allow approximate regulation of the robot’s angular momentum while still maintaining the

mixed-integer convex optimization structure.

Finally, Ponton et al. construct a related extension to the footstep planner of Chapter 2,

adding support for hand contacts and introducing a new convex relaxation of the nonlinear

angular momentum dynamics of the robot [54]. Their work results in a more complex, but

also more expressive, mixed-integer convex optimization than the original footstep planner,

one which is able to produce locomotion involving multiple different contacts between the

robot and the world while still maintaining the basic structure of convex decomposition and

mixed-integer planning. Furthermore, their more recent work in [55] explores extending the

convex relaxation to approximate an optimization over the duration of each time step of

the planned trajectory, a feature which has otherwise only been represented using a large

number of very small time steps.

Trajectory Planning

The mixed-integer UAV trajectory planner of Chapter 3 has likewise seen some interesting

extensions and modifications. While the trajectories generated in that work were chosen

simply to optimize smoothness (minimizing the norm of some high-order derivative like jerk

or snap), other objective functions could produce different useful results. For example, in

[56], Press et al. introduce a trajectory optimization framework designed to improve the

observability of certain self-calibration variables (such as the pose of a robot’s IMU relative

to its body). This optimization framework assumes that it is given a sequence of polytopic

73

regions of free space, information which is easily extracted from the solution to our mixed-

integer optimization.

Miller et al. implement an approach which is quite similar to that of Chapter 3, but with

an application to autonomous vehicles performing lane-change maneuvers [57]. A notable

difference in their work is that simplified geometry of a multi-lane highway allows them to

write down the convex safe regions by hand, rather than requiring some convex segmentation

tool like IRIS, but the structure is otherwise comparable: by constructing convex obstacle-

free regions, they are able to write down a mixed-integer convex optimization to choose a

collision-free trajectory.

One notable drawback of our planner, however, is the relatively long computation time

required to solve the mixed-integer optimization. Liu et al. [58] and Mohta et al. [59] reduce

the computational burden by eliminating the mixed-integer component of the optimization

entirely. Instead of simultaneously choosing a smooth trajectory and a sequence of convex

safe regions, they instead use a more traditional search-based planner to first find a sequence

of straight line segments from the robot’s current position to its goal. They then use a

method similar to IRIS to inflate a sequence of convex safe polyhedra around that sequence

of line segments. This sequence of convex regions can then be used to optimize a smooth

trajectory that lies within the given regions. Since the ordered sequence of convex safe

regions is already known, no integer variables are required to assign each smooth trajectory

segment to a safe region; this results in a much simpler online optimization problem, but

sacrifices some notion of optimality, since the original sequence of line segments may not

actually correspond to the optimal path for the smooth trajectory.

Alonso-Mora et al. also choose to eliminate the mixed-integer optimization in favor of a

more traditional sampling-based motion planner, this time in order to support navigation of

multiple robots flying in formation among moving obstacles [60]. While it would be possible

to extend the planner from Chapter 3 to handle multiple vehicles, doing so would require

adding binary variables for the safe region assignment of each vehicle, making an already

hard mixed-integer optimization potentially much harder (in the worst case, exponentially

74

harder). Instead, Alonso-Mora chooses to simplify the optimization by constructing only a

single convex region, using a modified version of IRIS, designed to grow in the direction of

some local goal or waypoint. The entire formation of robots is then required to move within

this single convex safe region, with nonlinear constraints used to enforce collision avoidance.

Since this approach can only handle moving in a single direction, a higher level sampling-

based motion planner is used to choose the appropriate waypoints for the optimization.

Removing the mixed-integer component, as in [58], makes the optimization much easier to

solve, but likewise allows the possibility of sub-optimal trajectories.

4.3 Conclusion

The approach of segmenting an environment into convex safe pieces in order to create a

locomotion plan using those pieces has been fruitful, but it has also come with a substantial

computational cost which has made it difficult to use when online re-planning is necessary or

when perfect maps of the environment are not available. While other researchers have found

interesting ways to build upon these ideas, offering improved performance or applicability to

new domains, the fundamental question of how to control robots that make contact with the

world is still open. In the next chapter, we will introduce a new method, unlike the mixed-

integer optimizations presented here, which offers some hope for a more general solution to

contact-aware control.

75

Part II

Learning Contact-Aware Controllers

76

The contact planning approach described in Part I simplified the problem of controlling

a legged robot by separating it into tractable components, but its results left something to

be desired. The work presented previously suffered from an inability to make contact plans

which were aware of the robot’s dynamics, and it offered no answers about how to rapidly

make new contact plans in the fact of unexpected disturbances.

The problem of missing dynamics is, to some extent straightforward to solve: we can

simply add a dynamics model to the footstep plan, adding additional variables to track the

momentum of the robot and the contact forces that affect it. This is precisely the approach

taken by Valenzuela in [52]. Given a simplified quadruped robot model, a mixed-integer

optimization similar to the footstep planning problem in Chapter 2 is constructed, with

additional variables and constraints to enforce a linearized model of the robot’s centroidal

dynamics. This enables much more aggressive plans to be generated: rather than alter-

nating between two feet, the trajectories generated by [52] can involve multiple contacts or

even airborne phases as the robot leaps from one contact to another. But this additional

complexity comes at a cost: the optimizations take longer to solve, generally requiring more

than a minute to solve a single problem and putting rapid online re-planning even farther

out of reach.

Instead, it is interesting to focus on the second problem, the issue of how to make new

contact plans online when the robot experiences some external disturbance. In particular,

how could we build a controller that could decide when and how to make or break contact

instantaneously? If such a controller were possible, then it might not be necessary to pre-

plan every contact sequence, and the controller could naturally respond to disturbances by

making or breaking contact. When the robot is pushed, such a controller could cause it to

stumble or reach out for support rather than simply falling.

In Chapter 5 I present a new approach to contact-aware control. By learning a value

function from mixed-integer optimization samples, we can design a controller that is able to

make intelligent contact decisions online to stabilize the robot.

77

78

Chapter 5

Learning from Value Function

Intervals for Contact-Aware Robot

Controllers

This chapter has been submitted for independent publication as [3].

5.1 Introduction

While there are a variety of successful approaches for planning multi-contact behaviors (e.g.

[52, 61, 62, 63]), it has proven to be difficult to apply these techniques quickly enough to be

used in response to disturbances. Furthermore, most multi-contact trajectory optimizations

are solved via non-convex optimizations, typically through sequential quadratic programming

(e.g. [61, 62]) or differential dynamic programming (e.g. [63, 64, 65, 66]). These techniques

can generally find locally optimal solutions, but make no guarantees of global optimality.

While locally optimal solutions are often sufficient for planning purposes, they make training

a policy from examples (as in [66] and [64]) more difficult, as the locally optimal samples

may not describe a coherent global policy.

Mixed-integer optimization offers some hope for planning globally optimal multi-contact

79

Figure 5-1: The simplified humanoid model, consisting of a central body and four limbs, each
with mass and inertia. Each limb is connected to the body by a revolute and translational
joint, and all motion is restricted to the frontal plane. Contact is possible between each limb
and the rigid floor and wall.

behaviors: By explicitly representing the discrete changes in dynamics with discrete (i.e. in-

teger) variables, we can create optimization problems which are solvable to global optimality

using branch-and-bound [67]. Global optimality is possible even in the presence of nonlin-

ear constraints [68, 69], but for this work we restrict ourselves to piecewise affine models,

inspired by the long history of successful linearized dynamical models for humanoid robots

(e.g. [70]). Unfortunately, global optimality comes at a cost, with typical trajectory opti-

mizations taking seconds or minutes to solve [52]. Furthermore, there is no guarantee that

these expensive optimizations will result in a consistent global policy, as the optimal policy

itself may not be unique.

On the other hand, we do not necessarily need to completely solve a mixed-integer opti-

mization to get some useful information from it. Mixed-integer convex problems are generally

solved by branch-and-bound [67], a process which iteratively finds better candidate solutions

and tighter bounds on the best possible solution. If we ensure that a candidate solution al-

ways exists, then we can terminate the branch-and-bound process at any time, retrieving

the best solution and tightest bound found so far. Although we could attempt to train from

these sub-optimal solutions, we would again be learning to imitate a sub-optimal controller.

The bounds themselves, however, are extremely useful: In an MPC problem, bounds on the

80

optimal objective value are also bounds on the optimal cost-to-go1 from a given state.2 Hav-

ing a model of the cost-to-go in turn enables fast online control by simply greedily descending

that cost.

5.1.1 LVIS: Learning from Value Interval Sampling

In this work, we introduce LVIS, a new approach for the creation of contact-aware controllers.

We model our robot’s contact dynamics with complementarity constraints (Section 5.3.1).

Offline, we set up a large number of trajectory optimizations in the form of mixed-integer

quadratic programs (MIQPs) from a variety of initial states. We partially solve those op-

timizations, terminating early and extracting concrete intervals containing the optimal cost

at the given robot state (Section 5.3.2). From these intervals, we train a small neural net to

approximate the cost-to-go using a loss function which penalizes predicted values outside the

known intervals (Section 5.3.3). Online, we run a simple one-step MPC controller to greedily

descend the approximate cost-to-go as quickly as possible subject to the robot’s dynamics

(Section 5.3.4).

5.2 Related Work

This work is similar to that of Zhong et al. in [64], in which offline optimizations were also

used to train an approximate cost-to-go used as the terminal cost of a shorter-horizon MPC

problem. Zhong’s work differs from ours in its use of iterative LQR (iLQR) to generate

the cost-to-go samples. As iLQR is a local nonlinear optimization, it can only provide an

estimate of the upper bound of the the cost-to-go (since a lower cost might exist in a space

that was not explored by the local optimization). In our case, by constructing a mixed-

integer optimization and solving it with branch-and-bound, we recover global upper and

1The cost-to-go, which we will also refer to as the value function J(x), is the cost which will be accumulated
by the optimal controller starting from state x [5].

2This assumes that the MPC horizon is long enough to reach a set of states with known cost-to-go. We
will violate that assumption later, but attempt to demonstrate empirically that the objective bounds are
still useful.

81

lower bounds on cost-to-go, using the interval spanned by those bounds during training. In

Section 5.4.2, we specifically compare LVIS with an approach of learning only from upper

bounds on the cost-to-go, and we demonstrate that the intervals produce a more effective

MPC controller.

A major obstacle to solving MPC problems for system with contacts is the potentially

vast number of possible mode sequences.3 If an optimal mode sequence for a given state

could be computed, then we could perform a cheap continuous optimization to choose the

precise optimal input given that mode sequence. This is the approach taken by Hogan in

[71], in which a neural net is trained to predict mode sequences from robot states. Marcucci

takes a similar approach in [72] by creating a library of provably feasible stabilizing mode

sequences and looking up a mode sequence for the robot’s current state at run-time.

Mixed-integer optimizations are also no the only way to plan complex multi-contact be-

haviors. The contact-implicit trajectory optimizations of Posa [62] and Dai [61] can generate

complex motions exploiting a variety of contacts in the environment. These approaches have

so far been too slow to run online in an MPC fashion, but it might be possible to learn

an approximate controller or value function, as with Zhong’s work in [64], from the trajec-

tory optimization. As with the iLQG approach above, the fact that these general nonlinear

optimizations claim only local optimality may make learning from their results less effective.

Alternatively, the efficient sequential linear-quadratic methods from [65] do allow for

locally optimal real-time MPC for systems with contact, avoiding the need for offline learning.

These optimizations are still subject to local minima, but the ability to run them at real-time

means that they do not need to be used to train a global policy.

Looking more broadly, reinforcement learning offers an alternative approach which does

not require any explicit offline planning but instead simply the ability to roll out actions

in simulation or hardware. For a general survey of reinforcement learning in robotics, see

[73], and for a more up-to-date example for reinforcement learning with deep neural nets,

see [74]. The potential advantages of reinforcement learning are tremendous, as it does not

3Our humanoid system has 1, 679, 616 modes (Section 5.2.1), so a trajectory optimization with a horizon
of 10 steps has 167961610 ≈ 1.8× 1062 possible mode sequences, most of which are infeasible.

82

require the expensive offline mixed-integer optimizations that our proposed method uses. On

the other hand, directly measuring the cost-to-go from a given state, rather than trying to

estimate a reward based on expected future actions, allows us to avoid careful initialization

or reward shaping. In fact, we initialize our entire learning system randomly and use only a

quadratic cost, centered on the robot’s desired final configuration.

5.2.1 Robot Models

We demonstrate the LVIS controller on two models: a cart-pole system balancing between

two walls and a simplified humanoid model.

Cart-Pole with Walls

Figure 5-2: The cart pole system with two walls. The cart and pole both have mass and
gravity acts downward. The pole pivots freely about its joint, and the only input to the
system is the horizontal force applied to the cart. Contact occurs only between the tip of
the pole and the two walls.

The cart-pole (Figure 5-2) is a canonical underactuated robotic model (and a common

control task in Reinforcement Learning) in which a pole is stabilized to the upright position

by accelerating the cart to which it is mounted. The cart-pole has 2 degrees of freedom

(horizontal position of the cart and angular position of the pole) and 1 input (horizontal

force applied to the cart). We modify the system by adding two walls on either side (contact

is considered only between the tip of the pole and the walls). The cart-pole system has 4

83

continuous states, 1 input, and 7 discrete modes (out of contact, sticking, sliding up, and

sliding down for each wall).

Simplified Humanoid Model

To model the application of our idea to a real walking robot, we introduce a simplified

humanoid model shown in Figure 5-1. This model has 11 degrees of freedom (3 DoF for the

planar translation and rotation of the central body, and 2 DoF for the rotation and extension

of each limb in the plane). We model contact between each limb and a fixed floor and wall,

including both slipping and sticking, and we add hard position limits for each of the 8 joints

connecting the limbs to the body. The humanoid has 22 continuous states and 11 inputs.

Since each of the 4 limbs can either be free, sticking, or sliding in one of two directions, and

each of the 8 joints can either be free, at its upper limit, or at its lower limit, the system has

a total of 44 × 38 = 1, 679, 616 discrete modes. Note that we do not explicitly model each

of these 1.7 million modes, but instead model the contacts implicitly using complementarity

conditions, as described in Section 5.3.1.

5.3 Technical Approach

The LVIS approach consists of the following components:

1. Modeling the robot’s dynamics as a piecewise affine system, allowing us to write down

optimal control problems with only linear and integer constraints.

2. Offline data collection by partially solving the mixed-integer optimizations and extract-

ing bounds on the optimal cost-to-go.

3. Offline training of a neural net using a double-sided hinge loss for each pair of upper

and lower cost-to-go bounds.

4. Online control of the robot using mixed-integer greedy descent on the learned cost-to-

go, in the form of a short-horizon MPC controller.

84

5.3.1 Modeling

Following the formulation of Stewart and Trinkle in [75], we model the dynamics of our

robot in a contact-implicit manner with complementarity conditions. In discrete time, these

dynamics take the form:

M
(
vl+1 − vl

)
= hf lext + hC + hBul (5.1a)

ql+1 − ql = hvl+1 (5.1b)

where h is the length of the time step, ql and vl represent the system’s generalized config-

uration and velocity at time step l, M is the mass matrix, hfext is the external impulse due

to contact and friction, hC is the impulse caused by Coriolis, and gravitational forces, and

hBul is the impulse caused by the generalized inputs u. We further break down the contact

impulse into tangential and frictional components:

fext = ncn + Dβ (5.2)

where n is the contact normal vector, cn is the contact force along that normal, and D and

β are the basis vectors and weights, respectively, of the frictional force. Additional contacts

can be added by introducing additional fext terms.

Complementarity conditions ensure that there is no force acting at a distance and no

sliding frictional force without an accompanying velocity. For a single contact, we have:

n>ql+1 − α0 ⊥ cn (5.3a)

λe + D>vl+1 ⊥ β (5.3b)

µcn − e>β ⊥ λ (5.3c)

where α0 is a scalar indicating the displacement at which collision occurs, µ is the coefficient

of Coulomb friction, and e is an all-ones vector. We use the notation x ⊥ y to mean x ≥ 0

and y ≥ 0 and x>y = 0. For a complete explanation of these constraints, see [75].

85

It is important to note that M, k, n, and D all depend on the robot’s current state

(in general in a nonlinear way). When we write down a trajectory optimization as a mixed-

integer quadratic problem, we cannot represent these nonlinear dependencies, so we linearize

the dynamics around the current state, fixing M etc. This introduces a real drawback of our

approach, as our results are only valid for this particular linearization. We hope to explore

using the full nonlinear dynamics in future work (see Section 6.1).

5.3.2 Data Collection via Optimal Control

To generate a single sample, we first choose an initial configuration q0 and velocity v0,

collectively referred to as the state x0 =

q0

v0

. We then write down a trajectory optimization

optimal control problem:

J∗ = minimize
x1...xN ,u1...uN ,

λ1...λN ,β1...βN ,c1n...c
N
n

N∑
l=1

[
xl>Qxl + ul>Rul

]
+ xN>SxN

subject to dynamics constraints (5.1a, 5.1b)

complementarity conditions (5.3a, 5.3b, 5.3c) .

(5.4)

While specialized solvers such as PATH [76] can handle complementarity conditions of the

form in (5.3a, 5.3b, 5.3c) directly, they do not generally support minimizing a quadratic

objective. Instead, for each scalar complementarity condition xi ⊥ yi we introduce a new

binary variable zi and constrain:

xi ≥ 0 (5.5a)

yi ≥ 0 (5.5b)

zi = 1 =⇒ xi = 0 (5.5c)

zi = 0 =⇒ yi = 0 . (5.5d)

86

We formulate the implication constraints in (5.5c, 5.5d) as linear constraints using a big-M

formulation [25]. The introduction of the binary variables zi converts our optimization into

a general mixed-integer quadratic program (i.e. a program with a quadratic objective, linear

constraints, and some variables constrained to take integer values in {0, 1}). We solve the

resulting MIQPs with the Gurobi optimization software [21].

Big-M Formulation

Given a binary decision variable z and an affine function f applied to a vector of decision

variables x, the big-M formulation transforms the following logical constraint:

z = 1 =⇒ f(x) ≤ 0 (5.6)

into a linear inequality constraint:

f(x) ≤M(1− z). (5.7)

When z = 1, (5.7) becomes:

f(x) ≤ 0, (5.8)

satisfying the implication from (5.7). When z = 0, on the other hand, (5.7) becomes:

f(x) ≤M, (5.9)

which appears as if it might impose an unwanted constraint on the optimization. If, however,

M is chosen to be big enough that no otherwise feasible values of x could produce a value

of f(x) > M , then (5.9) will essentially have no effect on the optimization, and we will have

fully satisfied the original logical constraint from (5.6). Unfortunately, M cannot be chosen

to be arbitrarily large, as doing so will make the resulting optimization more difficult to

solve, both by creating poor numerical scaling and by making tight convex relaxations of the

87

mixed-integer program more difficult to find (see [25] for more on why this is the case).

In order to choose a reasonable big-M value without requiring human intervention, we

developed the ConditionalJuMP.jl software package [77] which uses validated interval arith-

metic (via the IntervalArithmetic.jl software package [78]) to compute a conservative interval

containing all possible values of f(x) given the existing bounds on the decision variables x.

The interval arithmetic upper bound on f(x) is always a valid choice for M, and we found

that such a choice produced reasonably efficient optimizations.

It is worth noting, however, that the upper bound on f(x) produced by interval arithmetic

may be arbitrarily higher than the true upper bound on f(x) achievable in any feasible

solution to the optimization problem. This can be due to (1) the interval arithemtic itself

producing overly conservative (i.e. too wide) intervals and (2) additional constraints in the

optimization problem limiting the possible values of x. Such an over-estimate does not affect

the correctness of the big-M formulation, as it simply results in choosing a big-M which is

larger than would actually be required, but it can result in an optimization problem with

worse numerical scaling or poor convex relaxations (again, as in [25]).

A tighter bound on f(x) could be achieved by solving an optimization problem to max-

imize f(x) subject to all of the constraints present in the original optimization problem. If

the other variables in the optimization are all continuous and the constraints are all linear,

then maximizing f(x) is simply a linear program. If, however, there are other integer or

binary variables (such as those created by other logical constraints with their own big-M

formulations), then even maximizing f(x) may require solving a mixed-integer linear pro-

gram, which could be quite computationally expensive. There is thus a trade-off between

the amount of work done to find an accurate value of f(x) and the quality of the resulting

big-M formulation.

In this work, we implement only the interval arithmetic approach, as it is computationally

efficient and produces sufficiently tight values of M for our work. For other models, however,

it may actually be worthwhile to pursue much tighter values of M. As an example, in [79],

Tjeng et al. implement all of the above approaches for computing M in the context of the

88

mixed-integer optimization of the output of a neural net.

Generating Feasible Solutions as Warm-Starts

One notable feature of the mixed-integer trajectory optimization problem in (5.4) is that

its constraints only enforce the dynamics and complementarity conditions of the robotic

system. These constraints represent simply the underlying physics of the robot, so any

desired behavior of the system, beyond what mechanics requires, must be expressed in the

cost matrices Q, R, and S. This is a significant restriction in the expressiveness of our

optimization, but it comes with an advantage: we can generate feasible (but not generally

optimal) solutions to the optimization (5.4) simply by simulating the system under any

controller subject to the same physical constraints. Simulation is generally much easier than

trajectory optimization, as only one time step must be solved for at a time, and any simulated

trajectory will, by construction, obey the simulated physics. We ensure, by constructing our

own simulation, that the simulated physics are exactly the constraints in (5.1a, 5.1b) and

(5.3a, 5.3c, 5.3c) and we simulate the system for exactly N steps in order to collect a

simulated trajectory whose length matches that of our trajectory optimization.

These simulated trajectories are then used as warm-starts in the mixed-integer optimiza-

tion: From the simulated trajectory, we can look up the state of each complementarity

condition at each time step and extract the values of the binary decision variables zi. We

can then provide those values as initial assignments to the zi variables when passing the full

trajectory optimization to the MIQP solver.

Warm-Start Quality

The quality of the feasible solutions we generate depends entirely on the choice of controller

used during the simulation. Fortunately, since simulation is computationally cheap compared

to a full MIQP solution, we can afford to warm-start with multiple controllers and pick

whichever simulation result happens to have lower cost. In our case, we warm-start every

optimization by simulating with an LQR controller designed around the robot’s nominal

89

posture and with the learned controller described in this chapter. The LQR controller

performs well near the robot’s nominal state, so it can provide near-optimal warm-starts in

these easy cases. The learned controller initially performs essentially randomly (as it starts

out completely untrained), but as we train its terminal cost-to-go its performance improves

and it tends to provide increasingly good warm-starts.

Early Termination

Solving the MIQP optimization (5.4) can be extremely expensive for a robot with as many

states and modes as our planar humanoid: a trajectory with just N = 10 steps can take

thousands of seconds to solve to near optimality4. The key insight of LVIS is that we do

not need to solve all the way to optimality: We can easily generate feasible solutions by

simulation, so the process of solving the optimization problem in (5.4) is a matter of running

the branch-and-bound algorithm to iteratively find better solutions and tighter bounds on

the optimal cost. At any point, we can simply terminate the optimization and extract the

best solution and tightest bound found so far. We label the cost of the best solution found

so far (which is an upper bound on J∗ as Jub, and we label the tightest lower bound on the

optimal cost as Jlb.

The ability to terminate the optimization early raises a new question of when we choose

to terminate. Typical options include: optimality gap (the difference between the best

feasible solution and tightest lower bound, in absolute or relative units), nodes explored

(a measure of how many convex relaxations have been constructed by the MIQP solver),

or simply total elapsed time. We choose elapsed time for the simplified humanoid, and

somewhat arbitrarily cease optimization after a fixed time horizon. For the results shown

in this chapter, we allowed 3 seconds of work on each MIQP to balance the sub-optimality

of each sample with the rate at which samples can be generated (limits of 5 or 10 seconds

provided similar performance).

4For our humanoid robot model, solving to within 1% of the optimal cost required an average of 1160
seconds per trajectory optimization, with some cases taking several hours each. At a nominal control rate of
100 Hz, solving to full optimality would thus require the data collection to run at less than 0.0008% real-time.

90

5.3.3 Training the Neural Net

The neural net which will approximate our cost-to-go consists of a simple fully-connected

feed-forward network with exponential linear unit (ELU) activations [80]. For the humanoid

in Figure 5-1 we use two hidden layers with 48 units each, while for the cart-pole in Figure

5-2 we use two hidden layers with 24 units each. The neural net has a number of input

dimensions equal to the number of states in the robot and an output dimension of one.

We will label the predicted cost-to-go at a state x as Ĵ(x; θ), where θ are the trainable

parameters of the net.

Loss Function

0 0.5 1 1.5 2 2.5 3
0

0.5

1

Ĵ(x; θ)

lo
ss

Double-Sided Hinge Loss

Figure 5-3: The double-sided hinge loss used to train the neural net, shown with Jlb = 1 and
Jub = 2.

We train the neural net from a set of training samples, where each sample consists of a

tuple of (robot state x, cost-to-go lower bound Jlb, and cost-to-go upper bound Jub). We

penalize the net for predicting values outside of the range [Jlb, Jub] using a double-sided hinge

loss shown in Figure 5-3 and defined as:

h(x, Jlb, Jub; θ) =


Jlb − Ĵ(x; θ) if Ĵ(x; θ) < Jlb

0 if Jlb ≤ Ĵ(x; θ) ≤ Jub

Ĵ(x; θ)− Jub if Ĵ(x; θ) > Jub .

(5.10)

91

The total loss is simply the sum of the hinge losses over every sample (x, Jlb, Jub).

The use of the hinge loss provides a unique advantage: as training proceeds, we may

revisit a particular state x, and due to a better warm-start we may come up with tighter

bounds Jlb and Jub than we previously discovered. The hinge loss ensures that, so long as the

net predicts a value Ĵ which falls within the new, tighter bounds, the old, looser bounds do

not influence the total loss. If, instead, we were attempting to learn J by exactly matching

the upper or lower bounds or their precise midpoint, then our older samples would tend

to pull the net’s output away from the newer samples. Figure 5-4 shows an example of a

learned value function and the interval samples which were used to train it.

Figure 5-4: An example of an approximate value function learned from interval samples.
Each connected pair of points represents the result of a single trajectory optimization sample:
the upper point is the upper cost bound Jub and the lower point is the lower bound Jlb. The
upper and lower bound values are identical for the states in which the mixed-integer program
was solved to optimality. The neural net (green) was trained using the hinge loss from Figure
5-3 and lies between the upper and lower bound values at each sample. Note that the size
of the intervals increases as magnitude the robot’s initial x velocity increases: for small
initial velocities, the warm-start solution provided by the LQR controller (see Section 5.3.2)
is excellent, and the solver is often able to prove optimality of that solution quickly. But for
larger initial velocities, the warm-start solution is often highly suboptimal, and the solver
often needs much longer to both find the optimal solution and prove its optimality. The
LQR cost-to-go is also shown in red for reference. The LQR and learned cost-to-go functions
match closely for small initial velocities, indicating that the LQR policy is nearly optimal
for small disturbances.

92

Optimization

The parameters θ are trained using a stock Adam optimizer [81] with a batch size of 1. No

dropout or regularization was performed during the training process, and all parameters of

the Adam optimizer were set to the defaults suggested in [81].

5.3.4 Online Control Using the Learned Cost

The result of the training process described in Section 5.3.3 is a neural net whose forward

pass approximates the cost-to-go of the original MPC problem. To turn this neural net into

a control policy, we need a way to greedily descend that cost-to-go. Our procedure for this

is simple: we construct a new MPC optimization with only one time step (N = 1) using the

same step size h as in the offline optimizations, and we set as its terminal cost the learned

neural net cost. The neural net’s output is nonlinear and non-convex, so rather than directly

trying to minimize its output, we minimize a local linear approximation of the neural net’s

output expanded about the robot’s current state. This corresponds to a gradient descent on

the cost-to-go, subject to the robot’s physical dynamics constraints.

Even the one-step MPC optimization, however, still involves complementarity constraints

and is thus a mixed-integer problem. While the only control decisions are the continuous

forces applied to each limb, we must still resolve the boolean complementarity constraints to

determine the physically consistent contact and frictional forces. The restriction to a single

time step dramatically reduces the number of integer variables which must be solved, allowing

near-real-time controller performance, but solving even these smaller MIQPs at control rates

is still a challenge. For this work, we implemented an aggressively optimized online mixed-

integer controller, using the RigidBodyDynamics.jl software package [82] to model the robot’s

dynamics, the Parametron.jl software package [83] to model the optimization problem, and

the Gurobi solver [21] to solve the resulting problems.

93

5.3.5 Choosing Initial States with DAgger

Rather than sampling randomly across the robot’s entire state space, we adopt the DAgger

approach from [84]. Put simply, DAgger relies on simulating the system using the (ini-

tially poorly-trained) policy as its controller instead of the expert, iteratively collecting new

training samples from the regions of state-space visited by the learned policy. Our training

alternates between (a) letting the learned controller drive the robot for 25-100 time steps

while running the mixed-integer optimization to produce new training samples and (b) using

those new samples to further train the approximate cost-to-go.

One aspect we have not yet explored is whether an approach like DAgger can result in

even better warm-starts due to its frequent sampling of similar states along a given trajectory.

We could potentially take advantage of this by attempting to warm-start the controller using

the entire trajectory solved at the previous time step, but we have not yet done so.

5.3.6 Policy Net

Rather than trying to learn the value function, we could simply attempt to train a neural

net to mimic the mapping from x to u using the same trajectory optimization samples. We

label this approach the Policy Net, though we could also refer to it as behavioral cloning as

in [85]. As discussed in Section 5.3.2, however, the fact that the trajectory optimizations

are not generally solved to optimality means that the u samples are not generally optimal.

Training a neural net to approximate these suboptimal samples is unlikely to result in a

good approximation of the optimal policy, but we attempt to do so in order to evaluate that

claim.

5.4 Results

The learned value function controller was tested on the bounded cart-pole system (Figure

5-2) and the simplified planar humanoid model (Figure 5-1). In both cases, value function

samples were collected offline by solving mixed-integer trajectory optimizations as described

94

in Section 5.3.2 while training a neural net to mimic the optimal cost-to-go. Online, an MPC

controller with a horizon of 1 timestep was used to control the robot, greedily descending

the learned cost-to-go.

0.00 0.25 0.50 0.75 1.00
100

101

102

103

Mixed-Integer Optimality Gap after 3 s

N
um

be
r

of

 O
pt

im
im

iz
at

io
ns

Cart-Pole

0.00 0.25 0.50 0.75 1.00
100

101

102

103

Mixed-Integer Optimality Gap after 3 s

N
um

be
r

of

 O
pt

im
im

iz
at

io
ns

Humanoid

Figure 5-5: Comparing the optimality gap of the mixed-integer trajectory optimizations for
the cart-pole and humanoid robot models. Optimizations were terminated after 3 seconds
using the Gurobi solver. Optimality gap is defined as Jub−Jlb

Jub
, where a value of 0 indicates

convergence to the global optimum. The humanoid robot had an additional 932 samples with
objective gap values ranging from 1.1 to 106 (not shown on this plot), but those accounted
for less than 3% of samples. The cluster of results with an optimality of gap near 0 for the
cart-pole indicates that most of the optimizations were solved to (near) global optimality,
while the humanoid results show that full convergence to optimality was much less common
for that more complex system.

5.4.1 Cart-Pole With Walls

The approximate cost-to-go for the cart pole was trained from 3862 mixed-integer trajectory

optimization samples. Each trajectory optimization had a horizon of 20 steps and a time

step of 25 ms, for a total lookahead time of 0.5 s. Trajectory optimizations were terminated

after 3 seconds, which was sufficient for 92.0% of samples to converge to within 1% of the

globally optimal cost, as shown in Figure 5-5.

95

Baseline LQR Policy

As a baseline policy, an LQR controller was constructed using a quadratic state cost:

Q =


10 0 0 0

0 100 0 0

0 0 0.1 0

0 0 0 0.1

 (5.11)

and a quadratic input cost:

R =
[
0.1
]

(5.12)

centered around the upright fixed point of the cart and pole:

x ≡


q1

q2

q̇1

q̇2

 =


0

0

0

0

 (5.13)

A discrete-time LQR controller was constructed from the given cost matrices, and the re-

sulting cost-to-go was used as the terminal cost during the offline mixed-integer trajectory

optimization.

Data Augmentation

Since the cart-pole system and cost matrices are perfectly symmetric, any trajectory opti-

mization solution from state x with input u implied the existence of a mirrored solution from

state −x with input −u and with the same bounds on the cost-to-go. Each optimization

could thus contribute two samples to the training set: one at x and another at −x.

96

Training

Training the cart-pole cost-to-go required approximately two hours on a single CPU, the

majority of which was spent solving mixed-integer trajectory optimizations. A total of 500

rounds of training with the ADAM optimizer were performed. Convergence was estimated

from 20% of the training samples held as a validation set.

(a) t = 0 s (b) t = 0.125 s (c) t = 0.25 s (d) t = 0.375 s

(e) t = 0.5 s (f) t = 0.625 s (g) t = 0.75 s (h) t = 0.875 s

(i) t = 1 s (j) t = 1.125 s (k) t = 1.25 s (l) t = 1.375 s

Figure 5-6: The learned controller for the cart-pole recovering from an initial rotational
velocity of 8 radians per second by using the contact between the pole and the right wall.

Evaluation

Three potential controllers were evaluated for the cart-pole in order to measure the effec-

tiveness of the learned value function approach:

97

Figure 5-7: Accumulated cost of the cart-pole controllers. Each cell indicates the total
accumulated cost over a 4-second simulation from the given initial cart and pole velocities,
using the same cost matrices as the LQR controller. The regions of very low (dark blue)
accumulated cost indicate simulations for which the pole was successfully balanced. The
LVIS approach resulted in the lowest accumulated cost and successful stabilization from the
widest variety of initial conditions.

1. LVIS: One-step mixed-integer MPC using the value function learned from the [Jlb, Jub]

intervals as its terminal cost.

2. MPC + LQR: One-step mixed-integer MPC using the LQR cost-to-go as its terminal

cost.

3. Policy Net: The neural net trained to mimic the optimal policy (Section 5.3.6).

Each controller was evaluated by simulating the cart-pole for 4 seconds from a range of

initial velocities. Each simulation began with the cart centered (q1 = 0) and the pole upright

(q2 = 0), with initial cart velocity (q̇1) ranging uniformly from -8 m s−1 to 8 m s−1 and initial

pole rotational velocity (q̇2) ranging uniformly from −π rad s−1 to π rad s−1. Eleven samples

of each initial velocity were collected, for a total of 121 simulations of each controller. An

example simulation, showing the MPC + learned value controller recovering from q̇ =

0

8

,

can be seen in Figure 5-6. Performance of the controller was evaluated by measuring the

total accumulated cost (using the same quadratic cost matrices Q and R that were used to

design the LQR controller) over each simulation.

98

- 6 - 3 0 3 6
- 3

- 2

- 1

0

1

2

3

Learned Cost- to- Go

Initial cart velocity q̇₁ (m/s)

In
iti

al
 p

ol
e

ve
lo

ci
ty

 q
̇₂

(ra
d/

s)

0

2500

5000

7500

10000

12500

15000

(a) Cost-to-go learned from offline tra-
jectory optimizations.

- 6 - 3 0 3 6
- 3

- 2

- 1

0

1

2

3

LQR Cost- to- Go

0

2500

5000

7500

10000

12500

15000

In
iti

al
 p

ol
e

ve
lo

ci
ty

 q
̇₂

(ra
d/

s)

Initial cart velocity q̇₁ (m/s)

(b) Cost-to-go of the LQR policy.

Figure 5-8: Comparing the learned cost-to-go with LQR as a function of the initial cart
velocity (q̇1, horizontal axis) and initial pole velocity (q̇2, vertical axis). Note that the cost-
to-go is a scalar function of 4 variables, so the plots show only a 2D slice corresponding to
q1 = 0, q2 = 0. The learned cost is substantially lower in the regions of higher cart velocity,
as the dissipative impact with the walls can be exploited when the cart is moving quickly.

Results of the cart-pole simulation are shown in Figure 5-7. The LVIS controller (using

the learned value function) performed better than the MPC controller which used only the

LQR value function, resulting in a lower accumulated cost and successful stabilization of the

pole from a wider range of initial velocities. The policy net controller (see Section 5.3.6) was

still able to stabilize the pole from a few initial velocities, but it accumulated more cost than

either of the MPC approaches in nearly every case.

The learned cost-to-go is compared with the baseline LQR cost-to-go in Figure 5-8.

The learned cost-to-go shows a much shallower slope in the regions of higher cart velocity,

essentially indicating that high initial cart velocities are less costly than LQR would predict.

That can be explained by the accumulated knowledge from the trajectory optimization

samples: the presence of the walls allows the system to dissipate energy through contact,

making control of the pole possible from a wider array of initial velocities. The lower cost-

to-go of the learned policy reflects that knowledge.

99

5.4.2 Planar Humanoid

The training and evaluation process for the planar humanoid robot model was similar to that

of the cart-pole, although substantially more data collection was required. Approximately

33,700 trajectory optimization samples were collected, and each trajectory optimization had a

horizon of 10 and a time step of 50 ms, for a total lookahead of 0.5 s. As with the cart-pole, the

trajectory optimizations were terminated after 3 seconds of optimization with Gurobi. The

higher state dimension and larger number of discrete modes made the humanoid trajectory

optimization problems substantially harder to solve within that time limit, resulting in a

large fraction of suboptimal solutions, shown in Figure 5-5. For evidence of just how difficult

the trajectory optimizations were to solve to full optimality, see Figure 5-9.

0 1000 2000 3000 4000 5000
0

5

10

15

Time to solve to within 1% of optimality (s)

N
um

be
r

of
 O

pt
im

iz
at

io
ns

Figure 5-9: A demonstration of the difficulty of solving the trajectory optimization MIQPs
for the humanoid model (Figure 5-1) to near global optimality. A total of 54 samples were
collected over 18 hours of optimization with the Gurobi solver using the DAgger technique
(Section 5.3.5), with each optimization terminated upon reaching a 1% optimality gap (i.e.
a solution with a cost within 1% of the provable global optimum). The minimum solve
time was 0.24 s, and the maximum was 5367 s, with a mean of 664 s. In addition, one
optimization was terminated after 27,775 seconds (over 7.7 hours) having still only reached
1.29% of optimality. Since that optimization was not completed, it is not shown on the
plot, but its inclusion brings the mean solve time up to 1157 s. We do not have sufficient
information to explain the variability in solution time, but it appeared to be closely related
to the robot’s initial state: states close to the robot’s nominal state, for which the LQR
warm-start produced an optimal or near-optimal mode sequence, tended to result in the
fastest MIQP solutions. States with large initial velocities, requiring optimal behaviors very
different from the LQR warm-start, tended to have the longest MIQP solution times.

100

Baseline LQR Policy

The method of Mason et al. [86] was used to generate an LQR policy consistent with the

contact dynamics of the humanoid (the similar method of [87] could also be used). The LQR

policy was designed for the nominal configuration of the robot, shown in the left-most column

of Figure 5-10, with both feet in contact with the ground. As was the case for the cart-pole,

the baseline controller comprised a one-step mixed-integer model-predictive controller with

the LQR cost-to-go as its terminal state cost. The LQR policy was designed in the nullspace

of the contact constraints, so it implicitly assumed that the robot’s feet never move.

Training

Training the humanoid value function required approximately 36 hours, again with the ma-

jority spent collecting trajectory optimization samples. A total of 300 rounds of training

with the ADAM optimizer were performed, and convergence was estimated from 20% of the

training samples held as a validation set.

Policy Net

A policy net was also trained on the humanoid optimization samples in an attempt to directly

learn the mapping from state to action. The policy net also had two hidden layers with 48

units each, but had 11 outputs, corresponding to the 11 input dimensions of the robot. The

same DAgger training process was run for the policy net, and the same 33,700 samples

were provided for training.

Evaluation

The learned controller was evaluated by simulating the humanoid robot from a variety of

initial velocities. From the nominal configuration, the robot’s initial linear velocity (along

the y axis of Figure 5-1) was varied from -1.5 m s−1 to 1.5 m s−1 and its initial angular velocity

(about the x axis of Figure 5-1) was varied from −π rad s−1 to π rad s−1. The robot was then

simulated under each control policy for 4 seconds using a simulated control rate of 100 Hz.

101

Figure 5-10: Animations of the planar humanoid recovering from pushes using the LVIS
controller. Initial velocities refer to the velocity of the robot’s torso along the y axis of
Figure 5-1. Note that the robot can recover from a 1.5 m s−1 velocity to the right by using
contact with the wall, but cannot recover from the same initial velocity to the left.

As was the case with the cart-pole, the controller using the learned cost-to-go (trained

from the Jlb and Jub samples as described in Section 5.3.3) generated substantially lower

running cost than the baseline controller using the LQR cost-to-go. In particular, the learned

controller performed especially well when the robot’s initial velocity directed it towards the

wall, since the learned controller was able to both step and reach for the wall in order to

maintain balance. The behavior of the learned cost-to-go controller from a variety of initial

velocities can be seen in Figure 5-10, and the LVIS controller is compared with LQR and

the Policy Net in Figure 5-11.

102

Figure 5-11: Accumulated cost of the humanoid controllers. Each cell indicates the total
accumulated cost over a 4-second simulation from the given initial linear and angular velocity
of the robot’s body, using the same cost matrices as the LQR controller. LVIS achieved a
low accumulated cost (dark blue) across a wide variety of initial conditions, performing
particularly well in the bottom-right corner of the grid in which the initial velocity moved
the robot towards the wall.

Figure 5-12: Comparing the performance of the humanoid controllers with the zero-step
capturability region predicted by [88]. Each cell indicates the accumulated cost, as in Figure
5-11. For initial velocities in the yellow shaded region, the estimated Instantaneous Capture
Point (ICP) lies between the robot’s feet, so it should be possible for a controller to stabilize
the center of mass without taking a step. The set of states stabilized by the LQR controller,
indicated by the very low (dark blue) accumulated cost, approximately matches the region
predicted by the ICP, while the LVIS controller stabilizes a much larger region.

Capturability Analysis

Figure 5-11 shows that the controller using the learned cost-to-go out-performs the baseline

LQR controller, but it does not indicate whether the baseline LQR controller was particularly

103

effective. It could simply be the case that the baseline LQR controller performed very poorly,

making it easy to beat. To evaluate the performance of both controllers with respect to an

independent benchmark, we can apply the capture point work of Pratt et al. [88] to estimate

the range of initial velocities for which the controller should be able to recover without taking

a step.

The capture point approach relies on the assumption that the robot’s center-of-mass

does not accelerate in the z direction. It defines a single point, the Instantaneous Capture

Point (ICP) on the ground, such that if the robot instantly places its center of pressure

at that point, then its center of mass will come to rest directly above that point. For

our humanoid model with both feet on the ground, the center of pressure can be placed

anywhere between the two feet. Thus, as long as the Instantaneous Capture Point is also

located between the two feet, the robot should be able to balance without taking a step.

Figure 5-12 shows the set of velocities for which the ICP can be estimated to lie between the

robot’s feet and demonstrates that the baseline controller, using the LQR cost-to-go, can

stabilize the robot from that entire range of initial velocities. The learned cost-to-go, on the

other hand, stabilizes the entire region predicted by the ICP as well as a much larger set

of initial velocities for which stepping or reaching out to the wall is necessary to maintain

balance.

Note that the correspondence between the yellow region of stability predicted by the

ICP in Figure 5-12 does not align perfectly with the set of states which are stabilized by

the controller using the LQR cost-to-go. The ICP results from [88] assume that the robot

consists of a single uniform flywheel, while the joints of our humanoid robot allow its moment

of inertia to change. We can also expect the ICP results to somewhat underestimate the set

of states for which the controller can recover: While the zero-step capturability region (the

yellow region in Figure 5-12) requires that the robot never take a step, the LQR controller

was observed to occasionally slide its foot in the direction of a fall, allowing it to recover

from slightly larger pushes.

104

Figure 5-13: Comparing learning the cost-to-go from the bounded intervals (Section 5.3.3),
just the upper bound samples Jub, or just the lower bound samples Jlb. Accumulated cost was
measured as in Figure 5-11. Neither the upper nor the lower bounds alone were sufficient to
train an approximate cost-to-go which out-performed the LQR baseline or the LVIS approach
(left).

The Importance of Intervals

Since solving the offline trajectory optimization problems could take minutes or hours for

the full humanoid system, all trajectory optimizations were terminated after a fixed 3 second

time limit, as discussed in Section 5.3.2. The optimizations were thus rarely solved to global

optimality, and the actions u returned by the optimizations were often highly sub-optimal.

This explains, to some extent, the very poor performance of the policy net, shown in Figure

5-11: Our training data consist of samples of sub-optimal actions, so there is a great deal of

noise and bias that would have to be overcome to learn the optimal policy.

Since the actions u cannot be trusted at each sample, what about the cost-to-go? Each

partial optimization produces two values: Jub, the best optimal cost found so far, and Jlb the

tightest lower bound on optimal cost so far. As described in Section 5.3.3, we only penalize

the neural net for predicting a cost-to-go which is outside of the interval [Jlb, Jub]. To test

the validity of that approach, we trained the neural net to exactly mimic the best feasible

value Jub or the best lower bound Jlb as a different way of approximating the cost-to-go.

Two additional neural nets were trained using the same neural net structure, number of

samples, and training process as in Section 5.4.2. Each net was penalized for the `1 error

105

between its prediction and Jlb or Jub, respectively.

We evaluated both of these cost-to-go approximations using the same simulation proce-

dure as in Figure 5-11. Neither the Jub samples alone nor the Jlb samples alone produced

a cost-to-go and controller which could out-perform even the LQR baseline, as shown in

Figure 5-13. In practice, attempting to train from just Jlb or Jub resulted in substantial

under-fitting, as the upper and lower bound data both showed a great deal of noise from one

sample to the next, influenced by the quality of the warm-start solutions, and the varying

behavior of Gurobi’s internal heuristics.

The lesson to be drawn from the failures of the policy net, the upper bound net, and the

lower bound net, and from the success of the interval net, is that the cost-to-go bounds gen-

erated by the branch-and-bound procedure are valuable information. The interval [Jlb, Jub]

can be trusted even when the individual upper and lower bounds are far from the optimal

cost and even when the optimization is terminated with a highly sub-optimal solution.

5.5 Learning in Parameterized Environments

One drawback of the LVIS approach is that the offline training and trajectory optimization

are performed in a fixed environment. This essentially bakes that environment into the

learned cost-to-go, resulting in a controller which is only useful in the trained environment.

To some extent, we can side-step the issue by varying the robot’s initial state. For example,

although the humanoid model in Figure 5-1 is only trained in a single environment with

a wall and a floor, by just varying the initial y and z position of the robot relative to its

modeled floor and walls, we can fit the learned controller to a wall at a variety of distances.

To make this approach more broadly applicable, however, we need the ability to handle more

diverse environments.

One approach we can take when handling a variety of environments it to create pa-

rameterized templates representing deformable environments. This idea is similar to the

templated affordance fitting in [19]. By encoding the environment parameters into the input

to the LVIS neural net (both in training and at run-time), we can create a learned cost-to-go

106

Figure 5-14: Learned cost-to-go (blue mesh) as a function of the initial cart velocity q̇1 and
the parameter representing the distance from the center of the track to each wall. The
parameterized cost-to-go closely matches LQR (in red) for states for which the cart will not
reach the wall within the planning horizon (between the yellow lines), while it rises more
gently elsewhere as the walls enable the robot to dissipate energy and reduce its cost. The
black line shows the cost function learned in Section 5.4.1, for which the wall distance was
fixed at 1.5 m.

which is a function both of the robot’s state and the environment parameters.

As a very basic demonstration of this approach, we modified the cart-pole environment

(Figure 5-2), adding a single parameter to represent the distance from the center of the track

to the walls. The same training process as in Section 5.4.1 was run, with 20,982 trajectory

optimizations samples collected over 18 hours. For each iteration of the DAgger training,

the distance to the walls was uniformly randomly varied from 0.5 m to 2.0 m. The resulting

learned cost-to-go is shown in Figure 5-14.

It is particularly interesting to examine the sharp change in the parametric learned cost

in Figure 5-14. This sharp change occurs quite close to the line, marked in yellow on both

figures, corresponding to a wall distance which is exactly 0.5 times the initial cart velocity.

107

We can easily explain this change: the time horizon of the offline trajectory optimizations

was precisely 0.5 s (see Section 5.4.1), so the yellow lines correspond to the combination of

initial cart velocity and wall distance such that the cart will, at constant velocity, impact the

walls precisely at the end of the trajectory optimization horizon. For lower initial velocities

(or higher wall distances), the cart can be expected not to reach the wall within the planning

horizon, so any further distance to the wall is irrelevant. Moreover, when the cart cannot

reach the wall within the planning horizon, we expect the cost-to-go to match the (contact-

unaware) LQR cost-to-go, as shown in red in Figure 5-14.

This cutoff shows both the effectiveness of learning the cost-to-go from trajectory opti-

mizations and also one of its weaknesses. With a fixed trajectory optimization horizon and

globally valid bounds on the cost-to-go from mixed-integer optimization, we can clearly see

the effect of future contacts in the learned cost-to-go. But that effect is not infinite: any

contacts that would occur outside of the planning horizon can not be reflected in the learned

cost-to-go. In the future, it will be interesting to compare the trade-offs of longer planning

horizons. We would expect longer horizons to give better cost-to-go samples at optimality,

but also to be harder to solve within a given time limit. It is an open question as to whether

it is worthwhile to try to solve harder optimizations which may produce looser bounds Jlb

and Jub.

One final area of interest which we have not yet explored is bootstrapping the entire LVIS

process using a previously learned cost-to-go. Specifically, the offline trajectory optimization

still requires a terminal cost, which we have so far limited to a quadratic term xN>SxN in

(5.4). We have so far only used the baseline LQR cost-to-go as that terminal cost, which

assumes that the trajectory optimization horizon is long enough to bring the system close

enough to the nominal state that the LQR cost-to-go is accurate. That assumption is unlikely

to hold for complex systems like our humanoid executing maneuvers far from the nominal

state, so a more accurate terminal cost might prove valuable. We could instead use the

learned cost-to-go from LVIS to replace that terminal cost and then run the entire data

collection and training process again to produce a new learned cost-to-go function. This

108

procedure could even be repeated multiple times as a means of value iteration to hopefully

converge to the true cost-to-go (although we cannot currently offer a proof of convergence

for such a hypothetical approach). However, since the learned cost-to-go is not a convex

quadratic function but rather the potentially complicated output of a neural net, its use as

a terminal cost for trajectory optimization may prove difficult. While we were able to use

a local linear approximation of the learned cost in our online one-step MPC, this was only

possible because we could fit that local linear approximation to the robot’s current state,

on the assumption that the state would not change substantially over the course of just one

time step. But for longer trajectory optimizations over many time steps, the robot’s state

is likely to change much more, and any linear approximation is likely to be too inaccurate.

Instead, we would need to either try to compute a sufficiently accurate convex quadratic

approximation of the neural net in the vicinity of the robot’s initial state or just include

the full neural net output in our optimization and switch to a fully nonlinear mixed-integer

optimization (as discussed further in Section 6.1).

5.6 Conclusion

LVIS allows us to collect data from offline mixed-integer trajectory optimizations in order

to train an approximation of the cost-to-go of a dynamical system. By solving the trajec-

tory optimizations only to partial optimality, we can vastly increase the number of samples

collected while still extracting useful intervals containing the true cost from the branch-and-

bound algorithm. So far, however, LVIS has only been applied to relatively small systems

with dynamics modeled as piecewise affine functions. In the next chapter, we will discuss

opportunities to move beyond those limitations and bring LVIS to more complex robots.

109

110

Chapter 6

Future Work in Learned Control

6.1 Handling Nonlinear Dynamics

The results presented in Chapter 5 relied on the use of a system with piecewise affine dy-

namics (an approximation of the true dynamics of the robots shown) in order to allow the

trajectory optimizations to be written as mixed-integer programs with linear constraints.

This in turn was necessary in order for the standard branch-and-bound algorithms imple-

mented by solvers like Gurobi [21] to provide rigorous bounds on the optimal cost-to-go

without solving the full optimization. For LVIS to be useful for a wider range of systems,

however, we need to remove this restriction.

For example, if we were to try to use an approach like LVIS to control the swing-up be-

havior of a pendulum, we would need to reason about dynamics involving sines and cosines of

the pendulum angle. While the dynamics of the cart-pole and humanoid examples from the

previous chapter also involved trigonometric functions of the state variables, those systems

remained close enough to an upright operating point that a single linearization provided a suf-

ficiently good model. This is not the case for a pendulum executing a trajectory that passes

through a wide range of angles, as any single linearization of the trigonometric functions

of that angle would be completely invalid for large deviations from the chose linearization

point. We could imagine dividing up the space of angles into bins and creating a separate

111

linearization for each bin (just as in Figure 2-3), but this makes each mixed-integer pro-

gram much more complex, as the discrete choice among bins of angles becomes yet another

discrete mode in the optimization. Rotations about more than a single axis are even more

challenging to effectively divide into appropriate bins, as explored in [89].

A related problem occurs when trying to stabilize more complex motions of a legged robot

due to the coupling of contact force and contact position. The torque ~τ produced by a force

~f acting at a displacement ~r is equal to ~r× ~f . If, as in the trajectory optimizations used for

LVIS, ~r and ~f are both decision variables, then ~τ is a bilinear product of decision variables

and therefore cannot be used in a linear constraint. Again in Chapter 5 we chose to select a

particular operating point and linearize ~τ about that point, but this prevents the trajectory

optimization from being able to reason about the interactions between contact forces and

their positions. This issue is discussed in detail in [52], in which a series of approximations

to the ~τ = ~r × ~f constraint are constructed, with additional mixed-integer variables used

to choose the appropriate approximation. The resulting optimizations, however, become

harder to solve due to the larger number of integer variables, and the results are still only

an approximation, controlled by the granularity of the approximate constraints.

It turns out, however, that the general ideas which allow branch-and-bound to find rig-

orous upper and lower bounds for mixed-integer programs with linear constraints can also

be applied to a much wider category of optimizations. One particularly relevant technique is

Spatial Branch-and-Bound, which expands the branch-and-bound algorithm to handle con-

tinuous, non-linear and non-convex constraints. In essence, the spatial branch-and-bound

involves dividing up the space of continuous variables and using using rigorous lower bounds

(produced by relaxing constraints) and upper bounds (produced by local optimization) on

the optimal cost to eliminate useless regions of state space. Just as in standard branch-

and-bound, this variant iterates between improving the upper and lower bounds until the

bounds converge or the optimization is terminated. In this way, spatial branch-and-bound

can actually provide globally optimal solutions to difficult non-convex optimization problems.

While this approach sounds extremely promising, it has a significant drawback which is

112

that performance of spatial branch-and-bound has been very poor for the kinds of trajectory

optimizations studied here. Valenzuela attempted to use the COUENNE [68] solver for tra-

jectory optimization of a planar robot model in [52], but found its performance too slow even

for offline use. The BARON [69] solver promises better performance on many problems, but

so far has still not been efficient enough to actually solve complex trajectory optimizations

to global optimality.

However, the point of LVIS is that global optimality may not be necessary: only the

ability to produce upper and lower bounds on the cost-to-go is required. This may alleviate

some of the computational cost of solvers like COUENNE and BARON: rather than solving

to optimality, which is quite expensive, we can simply terminate the solution process early

and extract a model for the cost-to-go which can be used online. In this way, LVIS could

be applied to arbitrary dynamical systems, even those which are not well represented by

piecewise affine dynamics.

6.2 Scaling LVIS to a Full Humanoid

Beyond the issue of handling nonlinear dynamics there is also a question of how to apply

LVIS to systems with many more degrees of freedom than the models used in Chapter 5.

For example, the ATlas humanoid robot, used by several teams during the DARPA Robotics

Challenge, has 36 degrees of freedom and (assuming a 6-DoF floating joint between the robot

and the world) and 72 states [6], while the planar humanoid model of Chapter 5 has just 11

DoF and 22 states. The full Atlas robot also has more complex contact between its limbs

and the world than the planar humanoid model, so even more complementarity conditions

would be required in order to fully model its dynamics. The additional complexity of a robot

like Atlas suggests that while we could certainly attempt to run LVIS exactly as proposed

(perhaps also using the full nonlinear dynamics with a spatial branch-and-bound solver), we

may find it difficult to gather enough data to train the approximate cost-to-go in a reasonable

amount of time.

On the other hand, while the full dynamics of the robot must be accounted for at run-

113

time, we may be able to create effective behaviors using a simpler model and then apply those

behaviors to the full dynamics at run time. This is the general idea behind the widely used

linear inverted pendulum model (LIPM) controllers for humanoid robots (see [70, 6, 90, 91]

for some examples). The LIPM approach treats the robot as if it is simply a mass on a

stick moving in a horizontal plane when planning footsteps, and then uses a QP to choose

appropriate contact forces and joint torques at each instant to drive the full dynamics of the

robot to match the desired LIPM behavior.

The success of LIPM for humanoid robot walking suggests that we could apply a similar

approach with LVIS. By creating a simplified humanoid (simlar to the one in Chapter 5 but

without the planar constraint) whose mass distribution and kinematic reach are similar to

those of the full Atlas, and running LVIS on that simple model, we should be able to train a

cost-to-go which encodes appropriate behaviors like balancing, stepping in the direction of a

fall, and using the arms to make contact with the world. Online, we can then use the LVIS

cost-to-go to control the full robot’s dynamics.

There are a challenges involved in actually making this approach work. First, from the

current state of the full Atlas robot, we need a way to compute an equivalent state of the

simplified model. This likely requires using the limited degrees of freedom of the simplified

model to match the positions of the full Atlas robot’s torso, hands, and feet, while also trying

to keep the center of mass of the two models close together. Second, we need to decide how

to map the behavior of the LVIS controller running on the simplified model up to the full

robot’s dynamics. Two interesting options for performing this mapping are: (1) trajectory

matching and (2) cost-to-go transfer.

In the trajectory matching approach, we would simulate running the LVIS controller on

the simplified model for one or more time steps (as many as our control rate allows) and

extract a trajectory of motions of the simplified robot’s body and limbs. Precisely which

information we would extract is an open question, but it seems reasonable to use the same

body poses which were used when matching the simplified model’s configuration to the full

robot state. From these extracted trajectories, we can create desired motions of the full

114

robot’s limbs, which would then be tracked by a whole-body QP controller. In this way, the

complex problem of planning which contacts to make is left to the simplified model while

the full dynamics of the robot are handled at each time step by the QP.

The trajectory matching approach, while promising, also presents a number of challenges.

Generating the trajectories from the reduced model requires simulating the behavior of that

model under the LVIS controller. That real-time simulation may be computationally over-

whelming and may also introduce artifacts in the motion of the full robot as it attempts to

precisely mimic the simulated result. Furthermore, if the simulated simple model becomes

unstable, the full robot will almost certainly lose stability as it attempts to track the un-

stable motion, so some mechanism would be required to detect such instabilities and avoid

propagating them to the full model.

Instead, there is a second option: direct transfer of the cost-to-go. By locally linearizing

the map from full robot state to simple model state, we can compute the gradient of the LVIS

cost-to-go (which was constructed in terms of the simple model) with respect to the state

of the full robot via the chain rule. We can then construct a controller for the full robot

which attempts to descend the gradient of this mapped cost-to-go, using a short-horizon

MPC controller just as we did when running LVIS online. This approach completely avoids

the need for simulation and also creates opportunities for other inputs to the controller,

as the cost function in its MPC optimization can involve additional terms beyond just the

LVIS learned cost-to-go. We should not expect a cost-to-go which was learned from a simple

model to lead to optimal behavior of the full robot’s dynamics, but it is still likely to be

an informative heuristic. In essence, this can be thought of as an extension of the control

approach presented in [41], but with the LIPM replaced with the simplified humanoid model.

115

116

Bibliography

[1] Robin Deits and Russ Tedrake. Footstep Planning on Uneven Terrain with Mixed-

Integer Convex Optimization. In IEEE-RAS International Conference on Humanoid

Robots, November 2014.

[2] Robin Deits and Russ Tedrake. Efficient Mixed-Integer Planning for UAVs in Cluttered

Environments. In IEEE International Conference on Robotics and Automation (ICRA),

Seattle, WA, May 2015.

[3] Robin Deits, Twan Koolen, and Russ Tedrake. LVIS: Learning from Value Function

Intervals for Contact-Aware Robot Controllers. Under Review, September 2018.

[4] DARPA Tactical Technology Office. DARPA Robotics Challenge.

https://www.darpa.mil/program/darpa-robotics-challenge, 2012.

[5] Russ Tedrake. Underactuated Robotics: Algorithms for Walking, Running, Swimming,

Flying, and Manipulation. http://underactuated.csail.mit.edu/underactuated.html,

March 2018.

[6] Scott Kuindersma, Robin Deits, Maurice Fallon, Andrés Valenzuela, Hongkai Dai, Frank

Permenter, Twan Koolen, Pat Marion, and Russ Tedrake. Optimization-based locomo-

tion planning, estimation, and control design for the atlas humanoid robot. Autonomous

Robots, 40(3):429–455, March 2016.

117

[7] Robin Deits and Russ Tedrake. Computing Large Convex Regions of Obstacle-Free

Space through Semidefinite Programming. In Workshop on the Algorithmic Foundations

of Robotics, Istanbul, Turkey, 2014.

[8] A. Hornung, A. Dornbush, M. Likhachev, and M. Bennewitz. Anytime search-based

footstep planning with suboptimality bounds. In 2012 12th IEEE-RAS International

Conference on Humanoid Robots (Humanoids), pages 674–679, November 2012.

[9] Philipp Michel, Joel Chestnutt, James Kuffner, and Takeo Kanade. Vision-guided hu-

manoid footstep planning for dynamic environments. In IEEE-RAS International Con-

ference on Humanoid Robots, pages 13–18, 2005.

[10] Léo Baudouin, Nicolas Perrin, Thomas Moulard, Florent Lamiraux, Olivier Stasse, and

Eiichi Yoshida. Real-time Replanning Using 3D Environment for Humanoid Robot.

In IEEE-RAS International Conference on Humanoid Robots, pages 584–589, Bled,

Slovénie, 2011.

[11] Joel E. Chestnutt, James Kuffner, Koichi Nishiwaki, and Satoshi Kagami. Planning

Biped Navigation Strategies in Complex Environments. In IEEE-RAS International

Conference on Humanoid Robots, Karlsruhe, Germany, 2003.

[12] Joel E. Chestnutt, Koichi Nishiwaki, James Kuffner, and Satoshi Kagami. An adaptive

action model for legged navigation planning. In IEEE-RAS International Conference

on Humanoid Robots, pages 196–202, 2007.

[13] James J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue. Footstep planning

among obstacles for biped robots. In IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), volume 1, pages 500–505, Maui, Hawaii, 2001.

[14] James J. Kuffner, Koichi Nishiwaki, Satoshi Kagami, Masayuki Inaba, and Hirochika

Inoue. Online footstep planning for humanoid robots. In IEEE International Conference

on Robotics and Automation (ICRA), pages 932–937, 2003.

118

[15] A Shkolnik, M Levashov, I R Manchester, and R Tedrake. Bounding on rough terrain

with the LittleDog robot. The International Journal of Robotics Research, 30(2):192–

215, 2011.

[16] Tim Bretl, Sanjay Lall, Jean-Claude Latombe, and Stephen Rock. Multi-Step Motion

Planning for Free-Climbing Robots. In Michael Erdmann, Mark Overmars, David Hsu,

and Frank van der Stappen, editors, Algorithmic Foundations of Robotics VI, number 17

in Springer Tracts in Advanced Robotics, pages 59–74. Springer Berlin Heidelberg,

January 2005.

[17] Peter D. Neuhaus, Jerry E. Pratt, and Matthew J. Johnson. Comprehensive summary

of the Institute for Human and Machine Cognition’s experience with LittleDog. The

International Journal of Robotics Research, 30(2):216–235, January 2011.

[18] Stephen P Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University

Press, Cambridge, UK; New York, 2004.

[19] Maurice Fallon, Scott Kuindersma, Sisir Karumanchi, Matthew Antone, Toby Schnei-

der, Hongkai Dai, Claudia Perez D’Arpino, Robin Deits, Matt DiCicco, Dehann Fourie,

Twan Koolen, Pat Marion, Michael Posa, Andres Valenzuela, Kuan-Ting Yu, Julie Shah,

Karl Iagnemma, Russ Tedrake, and Seth Teller. An Architecture for Online Affordance-

based Perception and Whole-body Planning. Journal of Field Robotics, 32(2):229–254,

March 2015.

[20] Andrei Herdt, Holger Diedam, Pierre-Brice Wieber, Dimitar Dimitrov, Katja Mom-

baur, and Moritz Diehl. Online Walking Motion Generation with Automatic Foot Step

Placement. Advanced Robotics, 24(5-6):719–737, 2010.

[21] Gurobi Optimization, Inc. Gurobi Optimizer Reference Manual.

http://www.gurobi.com/, 2014.

[22] Mosek ApS. The MOSEK optimization toolbox for MATLAB manual. Version 7.0

(Revision 141). https://docs.mosek.com/7.0/toolbox/index.html, 2014.

119

[23] IBM Corp. User’s Manual for CPLEX. www.cplex.com, 2010.

[24] Arthur Richards, John Bellingham, Michael Tillerson, and Jonathan How. Coordination

and Control of Multiple UAVs. In AIAA Guidance, Navigation, and Control Conference

and Exhibit. American Institute of Aeronautics and Astronautics, Monterey, CA, August

2002.

[25] Johan Lofberg. Big-M and Convex Hulls. http://users.isy.liu.se/johanl/yalmip/pmwiki.php,

2012.

[26] MATLAB. Version 8.2.0.701 (R2013b). The MathWorks Inc., Natick, MA, 2013.

[27] Russ Tedrake. Drake: A planning, control, and analysis toolbox for nonlinear dynamical

systems. http://drake.mit.edu, 2014.

[28] Per-Erik Danielsson and Olle Seger. Generalized and Separable Sobel Operators. In Her-

bert Freeman, editor, Machine Vision for Three-Dimensional Scenes. Academic Press,

Inc., Sand Diego, CA, 1990.

[29] Richard M. Karp. Reducibility Among Combinatorial Problems. In Michael Jünger,

Thomas M. Liebling, Denis Naddef, George L. Nemhauser, William R. Pulleyblank,

Gerhard Reinelt, Giovanni Rinaldi, and Laurence A. Wolsey, editors, 50 Years of Integer

Programming 1958-2008, pages 219–241. Springer Berlin Heidelberg, 2010.

[30] D. Mellinger, A Kushleyev, and V. Kumar. Mixed-integer quadratic program trajectory

generation for heterogeneous quadrotor teams. In IEEE International Conference on

Robotics and Automation (ICRA), pages 477–483, May 2012.

[31] Tom Schouwenaars, Bart De Moor, Eric Feron, and Jonathan How. Mixed Integer

Programming for Multi-Vehicle Path Planning. In European Control Conference, Porto,

Portugal, 2001.

[32] Kieran Forbes Culligan. Online Trajectory Planning for UAVs Using Mixed Integer

Linear Programming. Thesis, Massachusetts Institute of Technology, 2006. Thesis

120

(S.M.)–Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics,

2006.

[33] Yongxing Hao, Asad Davari, and Ali Manesh. Differential flatness-based trajectory

planning for multiple unmanned aerial vehicles using mixed-integer linear programming.

In Proceedings of the American Control Conference, volume 1, page 104, 2005.

[34] D. Mellinger and V. Kumar. Minimum snap trajectory generation and control for

quadrotors. In 2011 IEEE International Conference on Robotics and Automation

(ICRA), pages 2520–2525, May 2011.

[35] John Saunders Bellingham. Coordination and Control of Uav Fleets Using Mixed-Integer

Linear Programming. PhD thesis, Citeseer, 2002.

[36] Melvin E. Flores. Real-Time Trajectory Generation for Constrained Nonlinear Dy-

namical Systems Using Non-Uniform Rational B-Spline Basis Functions. PhD thesis,

California Institue of Technology, Pasadena, CA, 2007.

[37] Pablo A. Parrilo. Sums of Squares and Semidefinite Programming.

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-

972-algebraic-techniques-and-semidefinite-optimization-spring-2006/lecture-

notes/lecture 10.pdf, March 2006.

[38] Victoria Powers and Thorsten Wörmann. An algorithm for sums of squares of real

polynomials. Journal of Pure and Applied Algebra, 127(1):99–104, May 1998.

[39] Johan Lofberg. YALMIP Wiki. http://users.isy.liu.se/johanl/yalmip/, 2012.

[40] Sonja Mars and Lars Schewe. An SDP-package for SCIP. Technical report, Technical

report, TU Darmstadt, 2012.

[41] Russ Tedrake, Scott Kuindersma, Robin Deits, and Kanako Miura. A closed-form

solution for real-time ZMP gait generation and feedback stabilization. In International

Conference on Humanoid Robots, Seoul, South Korea, November 2015.

121

[42] Maurice F. Fallon, Pat Marion, Robin Deits, Thomas Whelan, Matthew Antone, John

McDonald, and Russ Tedrake. Continuous humanoid locomotion over uneven terrain

using stereo fusion. In IEEE-RAS International Conference on Humanoid Robots, pages

881–888, Seoul, South Korea, November 2015. IEEE.

[43] Thomas Whelan, Michael Kaess, Hordur Johannsson, Maurice Fallon, John J. Leonard,

and John McDonald. Real-time large-scale dense RGB-D SLAM with volumetric fusion.

The International Journal of Robotics Research, 34(4-5):598–626, April 2015.

[44] B. Landry, R. Deits, P. R. Florence, and R. Tedrake. Aggressive quadrotor flight through

cluttered environments using mixed integer programming. In IEEE International Con-

ference on Robotics and Automation (ICRA), pages 1469–1475, May 2016.

[45] A. K. Sadhu, R. Dasgupta, and P. Balamuralidhar. EIRIS - An Extended Proposi-

tion Using Modified Occupancy Grid Map and Proper Seeding. In 2018 International

Conference on Indoor Positioning and Indoor Navigation (IPIN), pages 1–8, September

2018.

[46] Sergei Savin. An Algorithm for Generating Convex Obstacle-free Regions Based on

Stereographic Projection. In International Siberian Conference on Control and Com-

munications, page 6, 2017.

[47] Sergey Jatsun, Sergei Savin, and Andrey Yatsun. Footstep Planner Algorithm for a

Lower Limb Exoskeleton Climbing Stairs. In Andrey Ronzhin, Gerhard Rigoll, and

Roman Meshcheryakov, editors, Interactive Collaborative Robotics, Lecture Notes in

Computer Science, pages 75–82. Springer International Publishing, 2017.

[48] Joshua Bialkowski, Michael Otte, Sertac Karaman, and Emilio Frazzoli. Efficient col-

lision checking in sampling-based motion planning via safety certificates. The Interna-

tional Journal of Robotics Research, 35(7):767–796, June 2016.

[49] B. Aceituno-Cabezas, H. Dai, J. Cappelletto, J. C. Grieco, and G. Fernández-López. A

mixed-integer convex optimization framework for robust multilegged robot locomotion

122

planning over challenging terrain. In 2017 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 4467–4472, September 2017.

[50] B. Aceituno-Cabezas, C. Mastalli, H. Dai, M. Focchi, A. Radulescu, D. G. Caldwell,

J. Cappelletto, J. C. Grieco, G. Fernández-López, and C. Semini. Simultaneous Con-

tact, Gait, and Motion Planning for Robust Multilegged Locomotion via Mixed-Integer

Convex Optimization. IEEE Robotics and Automation Letters, 3(3):2531–2538, July

2018.

[51] Hongkai Dai and Russ Tedrake. Planning robust walking motion on uneven terrain

via convex optimization. In IEEE-RAS International Conference on Humanoid Robots,

pages 579–586, Cancun, Mexico, November 2016. IEEE.

[52] Andrés Klee Valenzuela. Mixed-Integer Convex Optimization for Planning Aggressive

Motions of Legged Robots over Rough Terrain. PhD thesis, Massachusetts Institute of

Technology, 2016.

[53] Garth P. McCormick. Computability of global solutions to factorable nonconvex pro-

grams: Part I — Convex underestimating problems. Mathematical Programming,

10(1):147–175, December 1976.

[54] Brahayam Ponton, Alexander Herzog, Stefan Schaal, and Ludovic Righetti. A

Convex Model of Momentum Dynamics for Multi-Contact Motion Generation.

arXiv:1607.08644 [cs], July 2016.

[55] B. Ponton, A. Herzog, A. Del Prete, S. Schaal, and L. Righetti. On Time Optimization of

Centroidal Momentum Dynamics. In 2018 IEEE International Conference on Robotics

and Automation (ICRA), pages 1–7, May 2018.

[56] James Preiss, Karol Hausman, Gaurav Sukhatme, and Stephan Weiss. Trajectory Op-

timization for Self-Calibration and Navigation. In Robotics: Science and Systems XIII,

July 2017.

123

[57] C. Miller, C. Pek, and M. Althoff. Efficient Mixed-Integer Programming for Longitudinal

and Lateral Motion Planning of Autonomous Vehicles. In 2018 IEEE Intelligent Vehicles

Symposium (IV), pages 1954–1961, June 2018.

[58] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J. Taylor, and V. Kumar.

Planning Dynamically Feasible Trajectories for Quadrotors Using Safe Flight Corridors

in 3-D Complex Environments. IEEE Robotics and Automation Letters, 2(3):1688–1695,

July 2017.

[59] Kartik Mohta, Michael Watterson, Yash Mulgaonkar, Sikang Liu, Chao Qu, Anurag

Makineni, Kelsey Saulnier, Ke Sun, Alex Zhu, Jeffrey Delmerico, Konstantinos Kary-

dis, Nikolay Atanasov, Giuseppe Loianno, Davide Scaramuzza, Kostas Daniilidis,

Camillo Jose Taylor, and Vijay Kumar. Fast, autonomous flight in GPS-denied and

cluttered environments. Journal of Field Robotics, 35(1):101–120, January 2018.

[60] Javier Alonso-Mora, Stuart Baker, and Daniela Rus. Multi-robot formation control and

object transport in dynamic environments via constrained optimization. The Interna-

tional Journal of Robotics Research, 36(9):1000–1021, August 2017.

[61] Hongkai Dai, Andrés Valenzuela, and Russ Tedrake. Whole-body Motion Planning

with Simple Dynamics and Full Kinematics. In IEEE-RAS International Conference on

Humanoid Robots, Madrid, Spain, 2014.

[62] Michael Posa, Cecilia Cantu, and Russ Tedrake. A direct method for trajectory op-

timization of rigid bodies through contact. The International Journal of Robotics Re-

search, 33(1):69–81, January 2014.

[63] Igor Mordatch and Emo Todorov. Combining the benefits of function approximation

and trajectory optimization. In Robotics: Science and Systems, 2014.

[64] M. Zhong, M. Johnson, Y. Tassa, T. Erez, and E. Todorov. Value function approxi-

mation and model predictive control. In 2013 IEEE Symposium on Adaptive Dynamic

Programming and Reinforcement Learning (ADPRL), pages 100–107, April 2013.

124

[65] Farbod Farshidian, Edo Jelavić, Asutosh Satapathy, Markus Giftthaler, and Jonas

Buchli. Real-Time Motion Planning of Legged Robots: A Model Predictive Control

Approach. arXiv:1710.04029 [cs], October 2017.

[66] Sergey Levine and Vladlen Koltun. Guided Policy Search. In ICML, page 10, Atlanta,

GA, USA, 2013.

[67] Christodoulos A. Floudas. Nonlinear and Mixed Integer Optimization: Fundamentals

and Applications. Topics in chemical engineering. Oxford Univ. Press, New York, 1995.

OCLC: 246760342.

[68] Pietro Belotti, Jon Lee, Leo Liberti, François Margot, and Andreas Wächter. Branching

and bounds tighteningtechniques for non-convex MINLP. Optimization Methods and

Software, 24(4-5):597–634, October 2009.

[69] Mohit Tawarmalani and Nikolaos V. Sahinidis. A polyhedral branch-and-cut approach

to global optimization. Mathematical Programming, 103(2):225–249, June 2005.

[70] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa.

Biped walking pattern generation by using preview control of zero-moment point. In

IEEE International Conference on Robotics and Automation (ICRA), volume 2, pages

1620–1626, September 2003.

[71] Francois Robert Hogan, Eudald Romo Grau, and Alberto Rodriguez. Reactive Planar

Manipulation with Convex Hybrid MPC. In IEEE International Conference on Robotics

and Automation (ICRA), May 2018.

[72] Tobia Marcucci, Robin Deits, Marco Gabiccini, Antonio Bicchi, and Russ Tedrake. Ap-

proximate hybrid model predictive control for multi-contact push recovery in complex

environments. In IEEE-RAS International Conference on Humanoid Robotics, Birm-

ingham, UK, November 2017.

[73] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement Learning in Robotics:

A Survey. International Journal of Robotics Research, July 2013.

125

[74] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep Reinforce-

ment Learning for Robotic Manipulation with Asynchronous Off-Policy Updates.

arXiv:1610.00633 [cs], October 2016.

[75] David Stewart and Jeffrey C. Trinkle. An implicit time-stepping scheme for rigid body

dynamics with coulomb friction. In IEEE International Conference on Robotics and

Automation (ICRA), volume 1, pages 162–169. IEEE, 2000.

[76] Michael C. Ferris and Todd S. Munson. Complementarity problems in GAMS and the

PATH solver. Journal of Economic Dynamics and Control, 24(2):165–188, February

2000.

[77] Robin Deits and contributors. ConditionalJuMP.jl.

https://github.com/rdeits/ConditionalJuMP.jl, 2018.

[78] Luis Benet and David P. Saunders. IntervalArithmetic.jl.

https://github.com/JuliaIntervals/IntervalArithmetic.jl, 2018.

[79] Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating Robustness of Neural Networks

with Mixed Integer Programming. arXiv:1711.07356 [cs], November 2017.

[80] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and Accurate

Deep Network Learning by Exponential Linear Units (ELUs). arXiv:1511.07289 [cs],

November 2015.

[81] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.

arXiv:1412.6980 [cs], December 2014.

[82] Twan Koolen and contributors. RigidBodyDynamics.jl.

https://github.com/JuliaRobotics/RigidBodyDynamics.jl, 2016.

[83] Twan Koolen and Robin Deits. Parametron.jl.

https://github.com/tkoolen/Parametron.jl, 2018.

126

[84] Stéphane Ross, Geoffrey J. Gordon, and Drew Bagnell. A reduction of imitation learning

and structured prediction to no-regret online learning. In International Conference on

Artificial Intelligence and Statistics, pages 627–635, 2011.

[85] Claude Sammut, Scott Hurst, Dana Kedzier, and Donald Michie. Learning to Fly. In

Derek Sleeman and Peter Edwards, editors, Machine Learning Proceedings 1992, pages

385–393. Morgan Kaufmann, San Francisco (CA), January 1992.

[86] S. Mason, N. Rotella, S. Schaal, and L. Righetti. Balancing and walking using full

dynamics LQR control with contact constraints. In IEEE-RAS International Conference

on Humanoid Robots, Cancun, Mexico, November 2016.

[87] M. Posa, S. Kuindersma, and R. Tedrake. Optimization and stabilization of trajectories

for constrained dynamical systems. In IEEE International Conference on Robotics and

Automation (ICRA), May 2016.

[88] J. Pratt, J. Carff, S. Drakunov, and A. Goswami. Capture Point: A Step toward Hu-

manoid Push Recovery. In IEEE-RAS International Conference on Humanoid Robots,

December 2006.

[89] Gregory Izatt and Russ Tedrake. Globally Optimal Object Pose Estimation in Point

Clouds with Mixed-Integer Programming. International Symposium on Robotics Re-

search, 2017.

[90] Siyuan Feng, Eric Whitman, X. Xinjilefu, and Christopher G. Atkeson. Optimization-

based Full Body Control for the DARPA Robotics Challenge. Journal of Field Robotics,

32(2):293–312, March 2015.

[91] Matthew Johnson, Brandon Shrewsbury, Sylvain Bertrand, Tingfan Wu, Daniel Duran,

Marshall Floyd, Peter Abeles, Douglas Stephen, Nathan Mertins, Alex Lesman, John

Carff, William Rifenburgh, Pushyami Kaveti, Wessel Straatman, Jesper Smith, Maarten

Griffioen, Brooke Layton, Tomas de Boer, Twan Koolen, Peter Neuhaus, and Jerry

127

Pratt. Team IHMC’s Lessons Learned from the DARPA Robotics Challenge Trials.

Journal of Field Robotics, 32(2):192–208, March 2015.

128

	Introduction
	I Making Contact Decisions Ahead-of-Time
	Planning Footsteps with Mixed-Integer Convex Optimization
	Introduction
	Technical Approach
	Assigning Steps to Obstacle-Free Regions
	Ensuring Reachability
	Determining the Total Number of Footsteps
	Complete Formulation
	Solving the Problem

	Results in Simulation
	Conclusion

	From Footsteps to Flight Plans
	Introduction
	Quadrotor Dynamics
	Safety of the Entire Trajectory

	Technical Approach
	Generating Convex Regions of Safe Space
	Searching over Assignments of Polynomials to Regions
	Restricting a Polynomial to a Polytope
	Choosing an Objective Function
	Handling Lower-Degree Trajectories
	Complete Formulation
	Trajectories Without Convex Segmentation

	Results
	Simulation

	Conclusion
	Limitations

	Analysis: Convex Segmentation and Mixed-Integer Planning
	Successes
	Simulating the Footstep Planning Pipeline
	Walking on Unmapped Terrain
	UAV Experiments

	Challenges
	Perception Challenges and IRIS
	Control Challenges
	Extensions and Derivative Works

	Conclusion

	II Learning Contact-Aware Controllers
	Learning from Value Function Intervals for Contact-Aware Robot Controllers
	Introduction
	LVIS: Learning from Value Interval Sampling

	Related Work
	Robot Models

	Technical Approach
	Modeling
	Data Collection via Optimal Control
	Training the Neural Net
	Online Control Using the Learned Cost
	Choosing Initial States with DAgger
	Policy Net

	Results
	Cart-Pole With Walls
	Planar Humanoid

	Learning in Parameterized Environments
	Conclusion

	Future Work in Learned Control
	Handling Nonlinear Dynamics
	Scaling LVIS to a Full Humanoid

