Computing Large Convex Regions of
Obstacle-Free Space through Semidefinite
Programming

Robin Deits and Russ Tedrake

MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA
{rdeits,russt}@csail.mit.edu

Abstract. This paper presents IRIS (Iterative Regional Inflation by Semi-
definite programming), a new method for quickly computing large poly-
topic and ellipsoidal regions of obstacle-free space through a series of
convex optimizations. These regions can be used, for example, to effi-
ciently optimize an objective over collision-free positions in space for a
robot manipulator. The algorithm alternates between two convex opti-
mizations: (1) a quadratic program that generates a set of hyperplanes
to separate a convex region of space from the set of obstacles and (2) a
semidefinite program that finds a maximum-volume ellipsoid inside the
polytope intersection of the obstacle-free half-spaces defined by those
hyperplanes. Both the hyperplanes and the ellipsoid are refined over
several iterations to monotonically increase the volume of the inscribed
ellipsoid, resulting in a large polytope and ellipsoid of obstacle-free space.
Practical applications of the algorithm are presented in 2D and 3D, and
extensions to IN-dimensional configuration spaces are discussed. Experi-
ments demonstrate that the algorithm has a computation time which is
linear in the number of obstacles, and our MATLAB [18] implementation
converges in seconds for environments with millions of obstacles.

1 Introduction

This work was originally motivated by the problem of planning footsteps for
a bipedal robot on rough terrain. We consider areas where the robot cannot
safely step as obstacles, and we plan whole-body walking motions of the robot
by optimizing over the space of safe foot positions. Planning around obstacles
generally introduces non-convex constraints, which typically can only be solved
with weak or probabilistic notions of optimality and completeness. In practice,
we want a real-time footstep planner that we can trust to find a locally-good
path if it exists.

One approach to combat the non-convexity of the constraints is to divide
the obstacle-free region of space into a minimal discrete set of (possibly overlap-
ping) convex regions, but this subdivision is nontrivial. For this work, we assume
a configuration space consisting of a bounded region in IR"™ which contains poly-
hedral obstacles. When n = 2, we can think of the free space as a polygon with
polygonal holes. Even for this simple case, the problem of partitioning the free

Starting point /

s
N
N
N
\\ANNAANNNNNNNNNNNNY

AAAAAAANNANANNNNY

\
N
N
N
N
N
N
'
N
N
N
N
N
N
N
N
N
N

777

ARALATILITIAL AT RTEREREANLANA N NN AR RN ~
N

8
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

N
N
N

\

=

ASSERERIRRERRRRRRRRS \ANUNNUNNANANNANNNNY R R SRR EEEEERERRSN

AAA AR RN

Fig. 1. A simple 2D environment with two rectangular obstacles and a point of interest
(left). The minimal non-overlapping convex decomposition of the obstacle-free space
produces two polygonal regions (center), while our algorithm produces a larger convex
region about the point of interest and an inscribed ellipsoidal region (right).

space into a minimum number of convex parts is NP-hard [I3]. Additionally,
searching for the minimum number of convex regions may not be the correct
problem to solve; we may be willing to give up having a complete cover of the
space in order to reduce the number of convex pieces.

In our bipedal robot application, we expect that a human operator or a
higher-level planning algorithm can provide helpful guidance about the general
area into which the robot should step. If, for example, the operator were to select
one or more seed points in space, indicating possible areas into which the robot
could step, we would like to find large, convex, obstacle-free regions near those
selected points in space so that we can perform an efficient convex optimization
of the precise step locations.

A concrete example may be helpful here. Figure shows a simple rect-
angular region with two rectangular obstacles. The obstacle-free region can be
minimally decomposed into two non-overlapping convex regions, as shown in
However, running our algorithm once using the green point as a seed re-
sults in a single larger region around the point of interest while maintaining
convexity, as shown in Additional runs of the algorithm, seeded from the
remaining obstacle-free space, could fill the remaining space if desired. Figure [2]
shows the same approach applied to real terrain map data captured from an At-
las humanoid robot, using the software developed by Team MIT for the DARPA
Robotics Challenge [5].

Our approach, as described in Sect. |3} begins with an initial guess, defined as
a point in IR™. We construct an initial ellipsoid, consisting of a unit ball centered
on the selected point. We then iterate through the obstacles, for each obstacle
generating a hyperplane which is tangent to the obstacle and separates it from
the ellipsoid. These hyperplanes then define a set of linear constraints, whose
intersection is a polytope. We can then find a maximal ellipsoid in that polytope,
then use this ellipsoid to define a new set of separating hyperplanes, and thus a
new polytope. We choose our method of generating the separating hyperplanes
so that the ellipsoid volume will never decrease between iterations. We can repeat
this procedure until the ellipsoid’s rate of growth falls below some threshold, at

,
>

e
%

4

,.
Q’g@%
Sy

2o

e

=
7

=
27

e

vﬁl‘
RS

<7

Fig. 2. A visualization of an Atlas humanoid standing in front of a set of tilted steps,
as seen in the DARPA Robotics Challenge 2014 trials [5], with two convex regions
of safe terrain displayed (blue ellipses and red polytopes). The green circles indicate
two points chosen by a human operator for possible locations of the next footstep.
To compute the safe regions, we construct a grid of height values from LIDAR scans,
check the steepness of the terrain at every point on the grid, and convert any cells with
steepness above a threshold into obstacles. We then run the IRrIS algorithm with these
obstacles starting from the user-selected points.

which point we return the polytope and inscribed ellipsoid. Examples of this
procedure in 2D and 3D can be seen in Figs. [3|and [4] respectively.

The 1RIS algorithm presented here assumes that the obstacles themselves
are convex, which is an important limitation. However, existing algorithms for
approximate or exact convex decomposition can be easily used to segment the
obstacles into convex pieces before running our algorithm [I2JI7], and the favor-
able performance of our algorithm for large numbers of obstacles means that the
decomposition of the obstacles need not be minimal. It is also important to note
that the algorithm as written here does not guarantee that the initial point in
space provided by the user will be contained in the final ellipsoid or polytope. In
the experiments presented in Fig. |5, the point was contained in the final hull 95%
of the time. If this condition is required by the application, then the algorithm
can be terminated early should the region found ever cease to include the start
point.

In the remainder of this paper, we discuss the precise formulation of the
algorithm and its relationship to existing approaches. We demonstrate the al-
gorithm in 2D and 3D cases and discuss its application in N-dimensional con-
figuration spaces. Finally, we show that the algorithm is practical for extremely
cluttered environments, demonstrating that we can compute a convex region in
an environment containing one million obstacles in just a few seconds, as shown

in Fig.

" Inscribed ellipsoid

™ Polytope intersection

~ . .
Starting point

Sepaéxting ‘

planes

Fig. 3. A demonstration of the IRIS algorithm in a planar environment consisting of 20
uniformly randomly placed convex obstacles and a square boundary. Each row above
shows one complete iteration of the algorithm: on the left, the hyperplanes are gener-
ated, and their polytope intersection is computed. On the right, the ellipse is inflated
inside the polytope. After three iterations, the ellipse has ceased to grow, and the
algorithm has converged.

Fig. 4. An example of generating a large convex region in configuration space. A 2D
environment containing 10 square obstacles was generated, and the configuration space
obstacles for a rod-shaped robot in that environment were built by dividing the ori-
entations of the robot into 10 bins and constructing a convex body for each range
of orientations [I5]. The top two rows show the first two iterations of the algorithm,
generating the separating planes on the left and generating the ellipsoid on the right.
The obstacles are shown in black, the polyhedral intersection of the hyperplanes in
red, and the ellipsoid in purple. At the bottom left are the final ellipsoid and polytope
after convergence, and at the bottom right is the original 2D environment with 50
configurations of the robot uniformly sampled from the obstacle-free polytope.

—_— Total time —o— Time computing ellipses

- - - Time computing planes Slope = 1 reference
Timing Analysis (2D) Timing Analysis (3D)
102 g ‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ \E 102 g ‘ \\HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ \E
10" | 4 w0t £
n r B r &
o 100F 4 100F E
g F E F E
& o107t ER E
10*4 L | 1 tﬂf'\v\.\bw‘\\ porvinwl vl ol vl \: 1 —4 i I \ TN S R N T IO AT | \:
10" 10 10* 10* 10° 10° 10t 10 10* 10* 10° 10°
Number of Obstacles Number of Obstacles
2] ‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T ‘ \\HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T
g 12} 1120 8
E
g 8 - B 8 B
e AN E}M‘m |
@
2 0 L L1l L L1l L L1l L L1l L L1l L 0 L1l L L1l L L1l L L1l L L1l L
10 10* 10 10* 10° 10° 10" 10* 10* 10* 10° 10°
Number of Obstacles Number of Obstacles

Fig. 5. Timing results of 1200 runs of the IRIS algorithm implemented in MATLAB
on an Intel i7 processor at 2.5 GHz with 8 Gb of RAM. In each of the 2D and 3D
cases, we generated 100 environments at 6 logarithmically spaced numbers of obstacles
between 10! and 10°. Obstacles were uniformly randomly placed in each environment.
Total time required to converge to a single convex region is shown above, along with
the breakdown of time spent computing the separating hyperplanes and time spent
finding the maximal ellipsoid. These plots demonstrate the empirically linear scaling
of computation time with number of obstacles: time spent computing planes increases
linearly with obstacle count, approaching a slope of 1 on this log-log plot, while time
spent finding the ellipsoid is nearly constant. Below, we show the number of iterations
of the algorithm (each iteration consists of finding the entire set of hyperplanes and
the maximal ellipsoid) before convergence to a relative change in ellipsoid volume of
less than 2%. Error bars are all one standard deviation.

2 Related Work

There are a variety of algorithms for approximate or approximately minimal con-
vex decompositions, most of which focus on creating a convex or nearly convex
cover of some space. Lien proposes an algorithm for segmenting non-convex poly-
gons containing polygonal holes into a small number of pieces, each of which is al-

lowed some small degree of concavity [12]. Similarly, Mamou’s approach converts
a triangulated 3D mesh into a set of approximately convex pieces by iteratively
clustering faces of the mesh together according to heuristics based on convexity
and aspect ratio [I7]. Liu’s approach [14], on the other hand, is applicable in
spaces of arbitrary dimension and relies on an integer linear programming for-
mulation to compute a set of cuts which divide the obstacle into approximately
convex pieces. These approaches are not well suited to convex optimization over
obstacle-free space: we require convex regions, and taking the convex hull of the
approximately convex pieces may result in regions which intersect the obstacle
set.

There also exist polynomial-time approximation algorithms for approximately
minimal convex covers. Eidenbenz describes an algorithm which computes a
nearly-minimal set of overlapping convex pieces for a polygon with holes [4].
Their method achieves a number of pieces within an error bound which is loga-
rithmic in the number of vertices, but it requires running time of O(n?°logn),
where n is the number of vertices in the polygon. Feng also describes an approach
that divides an input polygon with holes into pieces, which can be convex if de-
sired, and generates a tree structure of adjacent pieces [6]. This is a promising
approach, but their algorithm as presented is not applicable beyond the 2D case.

Convex decompositions which do not attempt to find the minimum number
of segments have also been used: Demyen’s approach involves triangulating the
entire free space by connecting all mutually visible vertices on the obstacles, then
performing path search among the triangulated regions [3]. Finally, Sarmiento
produces convex polytopic regions in N dimensions by sampling points in free
space and checking visibility from a set of “guard” positions [22]. This work
produces results which appear to be the most similar to ours, but requires as
input a set of samples which cover the workspace. Instead, we focus on creating
a single, large, convex region in some local area, allowing later optimizations to
be run inside this region without further consideration given to the positions of
obstacles.

Fischer solves a similar problem of finding a single maximal convex polygon in
a discrete environment [7] in polynomial time. His problem formulation consists
of a set of points which are labeled as positive or negative, with the goal being
to find a convex polygon of maximal area which has vertices only on positive
points and which contains no negative points on its boundary or interior. This
is a restricted form of our task, but it is one which can be solved to optimality
with effort which is polynomial in the number of points in the set.

The problem of finding obstacle-free regions is also relevant in structural
biology, in which a user might wish to find the void volumes enclosed by a
molecular structure represented as a collection of solid spheres. For example,
Sastry performs a search over the vertices of the Voronoi cells containing the
spherical molecules to find the connected cavities, but these cavities are not
necessarily convex [23]. Luchnikov extends this notion of searching for (non-
convex) voids over the Vornoi network to non-spherical objects [16].

3 Technical Approach

3.1 Proposed Algorithm

Our algorithm searches for both an ellipsoid and a set of hyperplanes which sepa-
rate it from the obstacles. We choose to represent the ellipsoid as an image of the
unit ball: £(C,d) = {x = Cz +d | ||Z]] < 1} and we represent the set of hyper-
planes as linear constraints: P = {z | Az < b}. We have chosen this definition of
the ellipsoid because it makes maximization of the ellipsoid volume straightfor-
ward: volume of the ellipsoid is proportional to the log of the determinant of C,
which is a concave function of C [2] and can therefore be efficiently maximized.
In searching both for the ellipsoidal region and the hyperplanes which sepa-
rate it from the obstacles, we are attempting to solve the following nonconvex
optimization problem:

maximize logdet C

20,

subject to a;»rvk > b; for all points v, € ¢y, for j =1,..., N (1)
sup a; (CZ+d)<b; Vi=][l,...,N]
lzll<1

where a; are the rows of A, b; are the elements of b, {; is the set of points in
the convex obstacle j, and N is the number of obstacles. The constraint that
aijk > b; for all points vy, € 15 forces all of the points in obstacle ; to lie on one
side of the plane defined by a;'—x = b;. The second constraint ensures that all
x = CZ 4 d where ||Z|| < 1 fall on the other side of that plane. Satisfying these
constraints for every obstacle j ensures that the ellipsoid is completely separated
from the obstacles. Rather than solving this directly, we will alternate between
searching for the planes defining the linear constraints a; and b; and searching
for the maximal ellipsoid which satisfies those constraints. The general outline
of the IRIS procedure is given in Algorithm

Algorithm 1 Given an initial point gy and list of obstacles O, find an
obstacle-free polytopic region P defined by Ax < b and inscribed ellipsoid
E={Cz+d]| ||Z| <1} such that £ C P and P intersects O only on its bound-
ary. Subroutine SEPARATINGHYPERPLANES is expanded in Algorithm [2] and
subroutine INSCRIBEDELLIPSOID is described in Sect. [3.4]
Co — Efnxn
do +— qo
140
repeat
(Ait1,bit1) < SEPARATINGHYPERPLANES(C;, d;, O)
(Cit1,dit1) < INSCRIBEDELLIPSOID(A;41, bit1)
14—1+1
until (det C; — det C;—1) /det Ci—1 < tolerance
return (A;,b;,C;,d;)

3.2 Initializing the Algorithm

The 1RIS algorithm begins with an initial point in space, which we will label
as ¢qo- The formal algorithm described here requires gy to be in the obstacle-
free space, but in practice we can sometimes recover from a seed point which is
inside an obstacle by reversing the orientation of one or more of the separating
hyperplanes. We initialize the algorithm with an arbitrarily small sphere around
qo by setting dy < qo and Cy < €l xp.

3.3 Finding Separating Hyperplanes

We attempt to find separating hyperplanes which will allow for further expan-
sion of the ellipsoid while still ensuring that the interior of the ellipsoid never
intersects the interior of any obstacle. Conceptually, the procedure for finding
the separating hyperplanes involves finding planes that intersect the boundaries
of the obstacles and that are tangent to uniform expansions of the ellipsoid.
Given an ellipsoid £(C,d) = {C% +d | |Z|| < 1}, we define a uniform expansion
of £ as

Ea={CTZ+d|||Z|| <a} for some a>1 (2)

To find the closest point on an obstacle !; to the ellipsoid, we can search over

values of « i} '
o =arg min «
@ (3)
subject to E, N # @

We label the point of intersection between &,- and {; as *. We can then compute
a hyperplane, a;-'—x = b, with a; € R™ and b; € IR which is tangent to E,-
and which passes through z*. This hyperplane separates £,+ and ¢;, and, since
& C Eyfor a > 1, it also separates £ from ;. We choose the sign of a; and b;
such that a;'—x > b; for every x € ;.

Using this procedure, we can find for every obstacle a plane which separates it
from the ellipsoid at every iteration. In practice, we perform several optimizations
to allow for efficient computation with very large numbers of obstacles, and we
are generally able to avoid computing a new plane for every single obstacle.

Finding the Closest Point to the Ellipse. Rather than actually searching
over values of « as in , we can instead simplify the problem of finding a
separating plane to a single least-distance programming problem, which we can
solve very efficiently.

Let £(C,d) be our ellipsoid and let vj1,v;2,...,v;m be the vertices of the
convex obstacle ¢;. Our ellipsoid is defined as an image of the unit ball in IR":
E={Cz+d|||Z| <1}, so we construct the inverse of this image map:

Ellipse Space Ball Space
E=A{Cr+dl|z[| <1} E={zeR" |7 <1}
Y; = ConvexHull(v;1,...,0)m) Y = ConvexHull(9;1,...,7;.m)

Vjk = O@j,k +d Vjk = Oil(vﬁk — d)

We now need only to find the closest point to the origin on the transformed
obstacle 1, then apply the C'T + d map once more to find the closest point to
the ellipse on ¢;. We can construct the problem of finding this point as:

arg min IElR
FeR™,weR™
subject to ['17]‘71 ’I~}j72 . 77j,m] w=2I
m (4)
Zwi =1
=1

in which we search for the point & which is a convex combination of the v,
and which is closest to the origin. As written, this is a quadratic program, but
it can be transformed into a least-distance programming instance and solved
very efficiently as a least-squares problem with nonnegativity constraints [11].
In our implementation, we achieved the best performance by solving the original
quadratic program in using a task-specific solver generated by the CVXGEN
tools [I9]. The CVXGEN solver is able to compute the closest point for a typical
obstacle with 8 vertices in 3 dimensions in under 20 ps on an Intel i7. We have
also had success with the standard commercial QP solvers Mosek [2I] and Gurobi
[9], but both required upwards of 1 ms for similar problems.

This optimization yields a point Z*. Applying the original map gives x* =
Cz* + d, which is the point on obstacle {; closest to the ellipsoid.

Finding the Tangent Plane. The simplest way to find the tangent plane to
the ellipsoid is to consider the inverse representation of £ as

E={z|(@—a)'C'C T(xz—d) <1} (5)

We can find a vector normal to the surface of the ellipse by computing the
gradient of the ellipsoid’s barrier function at x*:

a; =V, [(x—d) C7'C™ T (z — d)]
=200 T (a* — d).

. (6)

Once we have a;, we can trivially find b;, since the plane passes through z*:

b = a;rm*. (7)

Removing Redundant Planes. In an environment with very many obstacles,
most of the separating hyperplanes found using the above procedure turn out to
be unnecessary for ensuring that the ellipsoid is obstacle-free. This can be seen
in Fig.[3] in which at every iteration just 4 or 5 planes are required to completely
separate the ellipse from all 20 obstacles. By eliminating redundant planes, we
can dramatically improve the efficiency of the ellipsoid maximization step.

For a given obstacle {; we compute a; and b; such that aij > b; for all
x € 1. We can then search through all other obstacles i,k # j and check
whether a;'—v > b; also holds for every point v € Y. Since the obstacles are
required to be polyhedral, we need only to check the inequality at the vertices of
each ;. If it holds, then obstacle ¥ is also separated from £ by the hyperplane
in question, so we can skip computing a separating hyperplane for obstacle 1.
To improve this further, we can start with the obstacle containing the closest
vertex to the ellipse, since a hyperplane separating that obstacle from the ellipse
will likely also separate many more distant obstacles, and then work outward
until all obstacles have been separated from £ by some plane. This procedure is

detailed in Algorithm

Algorithm 2 Given matrix C' and d defining an ellipse £, as in Algorithm
and a set of convex obstacles O, find A and b defining a set of hyperplanes
which are tangent to the uniform expansion of £ and with {z € R" | Az <b} N
O = @. Subroutines CLOSESTOBSTACLE, CLOSESTPOINTONOBSTACLE, and
TANGENTPLANE are described in Sect. B.3]
function SEPARATINGHYPERPLANES(C, d, O)
Oezcluded — g
OT'enLaining +— O
141
while Oremaining # @ do
" +— CLOSESTOBSTACLE(C, d, Oremaining)
2" <= CLOSESTPOINTONOBSTACLE(C, d,1")
(ai, bi) < TANGENTPLANE(C, d, z™)
for all i € Oremaining do
if aiT:cj >b; Vzx; € then
O'remaining <~ Oremaininy \ Ui
Oezcluded — Oezcluded Uy
end if
end for
1+ 1+1
end while
aj bl

A |oz b |2

return (A, b)
end function

3.4 Computing the Inscribed Ellipsoid

The problem of computing an ellipsoid of maximum volume inscribed in a poly-
tope is well studied, and efficient practical algorithms for solving it can be easily

found. We represent the inscribed ellipsoid as an image of the unit ball:
E={Ci+d||z]| <1} (8)

with the volume of the ellipsoid proportional to the determinant of C' [2]. The
problem of finding the maximum volume ellipse contained in the polytope P =
{r € R" | Az < b} can be expressed as

maximize logdet C
C.d
subject to sup(a; CZ)+ad<b; Vi=][1,...,N] (9)
llzll<1

c>0

as stated by Boyd [2], where the a; and b; are the rows and elements, respectively,
of A and b and A € RV *". The constraints can be rewritten without mention
of Z, yielding:

maximize logdet C
C,d
subject to ||a;rC’H +a] <bVi=[l,...,N] (10)
C>-0

which is a convex optimization [2]. Khachiyan and Todd describe an approxima-
tion algorithm to solve this problem through a sequence of convex optimizations
with linear constraints with a guaranteed convergence to within a given relative
error from the maximum possible ellipsoid volume [10]. Ben-Tal and Nemirovski,
meanwhile, present a method for computing the ellipsoid through a semidefinite
and conic quadratically constrained optimization [I], and we use this approach,
as implemented by Mosek [20], in our code. We have also successfully used CVX,
a tool for specifying and solving convex problems [§], to solve (L0), but we found
that the Mosek implementation was at least an order of magnitude faster, pri-
marily due to the overhead of constructing the problem in CVX.

3.5 Convergence

The IRIS algorithm makes no guarantee of finding the largest possible ellipsoid in
the environment, but it still provides some assurance of convergence. Since our
separating hyperplanes are, by construction, tangent to an expanded ellipsoid
&, for some a > 1, the original ellipsoid £ will always be contained in the
feasible set of Az < b. Additionally, because the ellipsoid maximization SDP is
a convex optimization which is solved to its global maximum, it must be true
that the volume of the ellipsoid produced no less than the volume of £. If this
were not the case, then £ would be a feasible solution with larger volume, which
contradicts global optimality of the SDP. As long as the environment is bounded
on all sides, there is an upper limit on the volume of the ellipsoid, corresponding
to the whole volume of the environment. Since the ellipsoid volume is bounded
above and monotonically increasing, it will converge to a final value, although we
do not currently make any claims about how many iterations this will require.

4 Results

We implemented the proposed algorithm in MATLAB [I§], using CVXGEN [I9]
to solve each least-distance QP and Mosek [20] to solve each maximal-ellipsoid
SDP. Given a list of convex obstacles, a boundary around the environment, and
a starting point, the implemented algorithm rapidly finds a large convex region
and its inscribed ellipsoid. A simple 2D example of the results can be seen in Fig.
The algorithm is also equally applicable in 3D, or in the 3D representation
of the configuration space of a 3-degree of freedom robot. Such an application
is shown in Fig. [d] in which a convex region of configuration space for a rod-
shaped robot in the plane is found and sampled. The algorithm also extends
without modification to higher dimensions. Figure [f] shows a 3D slice of the
output of the IRIS procedure in 4 dimensions, and the algorithm can also be run
in higher-dimensional configuration spaces, assuming that the N-dimensional
configuration space obstacles can be generated.

Fig. 6. An example of the output of the algorithm in 4-dimensional space. We generated
4-dimensional obstacles consisting of uniformly random points centered on uniformly
randomly chosen locations in [—1, 1]*. The figure shows the 3-dimensional intersection
with the z4 = 0 plane of the obstacles and the polytope produced by the IRIS algorithm.

A major advantage of this algorithm is the efficiency with which it can han-
dle extremely cluttered environments. Computing each separating hyperplane
requires work which is linear in the number of obstacles, since each obstacle
must be checked against the newly found hyperplane to determine if it is also
excluded, as in Sect. The total number of planes required to exclude all
the obstacles, however, turns out to be nearly constant in practice. This means
that the entire hyperplane computation step requires nearly linear time in the
number of obstacles. Additionally, since each hyperplane found creates one con-
straint for the ellipsoid maximization step, the constant number of hyperplanes
means that the ellipsoid maximization requires approximately constant time as
the number of obstacles increases. We demonstrate this by running the algorithm

in 2D and 3D for 10 to 1,000,000 obstacles and displaying the linear increase in
computation time in Fig. [f]

5 Conclusion

We have demonstrated a new algorithm for finding large regions of obstacle-free
space in a cluttered environment. These regions can be rapidly computed and
then used later to aid some future optimization problem, such as the problem of
planning robot footstep locations while avoiding obstacles.

Our immediate future plans are to apply this algorithm to footstep planning
for a real humanoid robot. We will allow the user to select a point in space on a
terrain map, compute an obstacle free region, and find a footstep position which
optimizes reachability and stability within that region. We are also interested
in exploring other applications of this algorithm to problems beyond footstep
planning, in which one or more convex regions are preferable to a large set of
non-convex constraints.

6 Source Code and Animations

A development version of the IRIS implementation can be found on GitHub at
https://github.com/rdeits/iris-distrol It includes all of the algorithms
presented in this paper, as well as animations of IRIS running in 2D, 3D, and
4D.

7 Acknowledgements

This work was supported by the Fannie and John Hertz Foundation and by MIT
CSAIL. The authors also wish to thank the members of the Robot Locomotion
Group at CSAIL for their advice and help.

References

1. Ben-Tal, A., Nemirovski, A.: More examples of CQ-representable functions/sets.
In: Lectures on Modern Convex Optimization: Analysis, Algorithms and Engineer-
ing Applications, pp. 105-110. MPS-STAM Series on Optimization, STAM, Philadel-
phia, PA (2001)

2. Boyd, S.P., Vandenberghe, L.: Convex optimization. Cambridge University Press,
Cambridge, UK; New York (2004)

3. Demyen, D., Buro, M.: Efficient triangulation-based pathfinding. AAATI 6, 942-947
(2006), http://www.aaai.org/Papers/AAAI/2006/AAAT06-148.pdf

4. Eidenbenz, S.J., Widmayer, P.: An approximation algorithm for minimum convex
cover with logarithmic performance guarantee. SIAM Journal on Computing 32(3),
654-670 (2003), http://epubs.siam.org/doi/abs/10.1137/50097539702405139

https://github.com/rdeits/iris-distro
http://www.aaai.org/Papers/AAAI/2006/AAAI06-148.pdf
http://epubs.siam.org/doi/abs/10.1137/S0097539702405139

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

Fallon, M., Kuindersma, S., Karumanchi, S., Antone, M., Schneider, T., Dai, H.,
Perez D’Arpino, C., Deits, R., DiCicco, M., Fourie, D., Koolen, T., Marion, P.,
Posa, M., Valenzuela, A., Yu, K.T., Shah, J., lagnemma, K., Tedrake, R., Teller, S.:
An architecture for online affordance-based perception and whole-body planning.
Submitted to: Journal of Field Robotics (2014), http://dspace.mit.edu/handle/
1721.1/85690

Feng, H.Y.F., Pavlidis, T.: Decomposition of polygons into simpler components:
Feature generation for syntactic pattern recognition. Computers, IEEE Transac-
tions on 100(6), 636-650 (1975), http://ieeexplore.ieee.org/xpls/abs_all.
jsp?arnumber=1672869

Fischer, P.: Finding maximum convex polygons. In: sik, Z. (ed.) Fundamentals
of Computation Theory, pp. 234-243. No. 710 in Lecture Notes in Computer
Science, Springer Berlin Heidelberg (1993), http://link.springer.com/chapter/
10.1007/3-540-57163-9_19

Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming,
version 2.1 (2014), http://cvxr.com/cvx

Gurobi Optimization, Inc.: Gurobi optimizer reference manual (2014), http://
Www . gurobi.com/

Khachiyan, L.G., Todd, M.J.: On the complexity of approximating the maximal
inscribed ellipsoid for a polytope. Mathematical Programming 61(1-3), 137-159
(1993), http://link.springer.com/article/10.1007/BF01582144

Lawson, C.L., Hanson, R.J.: Solving Least Squares Problems. SIAM (1995)

Lien, J.M., Amato, N.M.: Approximate convex decomposition of polygons. Pro-
ceedings of the twentieth annual symposium on Computational geometry pp. 17-26
(2004), http://dl.acm.org/citation.cfm?id=997823

Lingas, A.: The power of non-rectilinear holes. In: Nielsen, M., Schmidt, E.M. (eds.)
Automata, Languages and Programming, pp. 369-383. No. 140 in Lecture Notes
in Computer Science, Springer Berlin Heidelberg (1982), http://link.springer.
com/chapter/10.1007/BFb0012784

Liu, H., Liu, W., Latecki, L.: Convex shape decomposition. In: 2010 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR). pp. 97-104 (2010)
Lozano-Perez, T.: Spatial planning: A configuration space approach. IEEE Trans-
actions on Computers (2), 108-120 (1983), http://ieeexplore.ieee.org/xpl/
articleDetails. jsp?arnumber=1676196

Luchnikov, V.A., Medvedev, N.N., Oger, L., Troadec, J.P.: Voronoi-delaunay anal-
ysis of voids in systems of nonspherical particles. Physical review E 59(6), 7205
(1999), http://pre.aps.org/abstract/PRE/v59/1i6/p7205_1

Mamou, K., Ghorbel, F.: A simple and efficient approach for 3d mesh approximate
convex decomposition. In: 2009 16th IEEE International Conference on Image Pro-
cessing (ICIP). pp. 3501-3504 (2009)

MATLAB: version 8.2.0.701 (R2013b). The MathWorks Inc., Natick, MA (2013)
Mattingley, J., Boyd, S.: CVXGEN: Code generation for convex optimization
(2013), http://cvxgen.com/docs/index.html

Mosek ApS: Inner and outer lowner-john ellipsoids (2014), http://docs.mosek.
com/7.0/matlabfusion/Inner_and_outer_L_wner-John_Ellipsoids.html

Mosek ApS: The MOSEK optimization software (2014), http://www.mosek.com/
Sarmiento, A., Murrieta-Cid, R., Hutchinson, S.: A sample-based convex cover
for rapidly finding an object in a 3-d environment. In: Robotics and Automa-
tion, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference
on. p. 34863491. IEEE (2005), http://ieeexplore.ieee.org/xpls/abs_all. jsp?
arnumber=1570649

http://dspace.mit.edu/handle/1721.1/85690
http://dspace.mit.edu/handle/1721.1/85690
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1672869
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1672869
http://link.springer.com/chapter/10.1007/3-540-57163-9_19
http://link.springer.com/chapter/10.1007/3-540-57163-9_19
http://cvxr.com/cvx
http://www.gurobi.com/
http://www.gurobi.com/
http://link.springer.com/article/10.1007/BF01582144
http://dl.acm.org/citation.cfm?id=997823
http://link.springer.com/chapter/10.1007/BFb0012784
http://link.springer.com/chapter/10.1007/BFb0012784
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1676196
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1676196
http://pre.aps.org/abstract/PRE/v59/i6/p7205_1
http://cvxgen.com/docs/index.html
http://docs.mosek.com/7.0/matlabfusion/Inner_and_outer_L_wner-John_Ellipsoids.html
http://docs.mosek.com/7.0/matlabfusion/Inner_and_outer_L_wner-John_Ellipsoids.html
http://www.mosek.com/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1570649
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1570649

23. Sastry, S., Corti, D.S., Debenedetti, P.G., Stillinger, F.H.: Statistical geometry
of particle packings.i.algorithm for exact determination of connectivity, volume,
and surface areas of void space in monodisperse and polydisperse sphere packings.
Physical Review E 56(5), 5524-5532 (1997), http://link.aps.org/doi/10.1103/
PhysRevE.56.5524

http://link.aps.org/doi/10.1103/PhysRevE.56.5524
http://link.aps.org/doi/10.1103/PhysRevE.56.5524

	Computing Large Convex Regions of Obstacle-Free Space through Semidefinite Programming

