
Global Inverse Kinematics via
Mixed-Integer Convex Optimization

Journal Title
XX(X):1–20
c©The Author(s) 0000

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Hongkai Dai1, Gregory Izatt2 and Russ Tedrake1, 2

Abstract
In this paper we present a novel formulation of the inverse kinematics (IK) problem with generic constraints as a mixed-
integer convex optimization program (MIP). The proposed approach can solve the IK problem globally with generic
task space constraints - a major improvement over existing approaches, which either solve the problem in only a
local neighborhood of the user initial guess through nonlinear non-convex optimization, or address only a limited set
of kinematics constraints. Specifically, we propose a mixed-integer convex relaxation of non-convex SO(3) rotation
constraints, and apply this relaxation on the inverse kinematics problem. Our formulation can detect if an instance of
the IK problem is globally infeasible, or produce an approximate solution when it is feasible. We show results on a
7-joint arm grasping objects in a cluttered environment, an 18 DoF quadruped standing on stepping stones, and a
parallel Stewart platform. Moreover, we show that our approach can find a collision free path for a gripper in a cluttered
environment, or certify such a path doesn’t exist. We also compare our approach against the analytical approach for a
6-joint manipulator. The code is open-sourced at drake.mit.edu.

1 Introduction

The inverse kinematics (IK) problem is one of the most
fundamental problems in robotics. It aims to find robot
postures, so as to satisfy certain kinematic constraints. The
kinematic constraints can be the end effector reaching a
certain location with a given orientation, or more complex
constraints in the task space, such as grasping a mug on the
table while keeping the robot free from collision (Fig 1a).

Solving the IK problem is quite challenging, as it
requires solving a set of nonlinear equations involving
products of trigonometric functions (sin/cos). There have
been tremendous efforts to solve the inverse kinematics
problem Craig (2005); Mason (2001); Murray et al. (1994);
Berenson et al. (2011); Singh et al. (2018), and they
can be coarsely categorized as analytical or numerical.
The analytical approach solves the kinematics equations as
polynomials of sine and cosine and can produce closed-
form solutions. It is widely known that many manipulators
with 6 Degree of Freedoms (DoFs) allow analytical solution
for the end effector to reach a specified position with a
given orientation Peiper (1968); Raghavan and Roth (1990);
Manocha and Canny (1992); Husty et al. (2007); Qiao
et al. (2010). More generally, Diankov (2010) introduced
IKfast, which can find inverse kinematics solutions for more
complicated robots by numerically discretizing the DoFs
above 6, and solving the remaining 6 DoFs in the closed
form. But the set of kinematics constraints it can handle is
still limited. For example, the collision avoidance constraint
is ignored in the analytical IK solvers, and postures in
collision are rejected only in a post-processing step.

Some researchers treated solving inverse kinematics
problems as numerically computing the roots of polynomial
equations. The polynomial equations can be solved by
solvers like Bertini (Bates et al. (2013)), or through

homotopy continuation method (Li (2003); Varedi et al.
(2009)). This approach does not permit inequality constraints
on the link poses, which occur frequently when planning
postures for certain tasks. This shortcoming makes it hard to
handle general task space constraints involving inequalities,
such as “putting the hand between the two boxes on the
table.” It is also challenging to impose collision avoidance
constraint with this approach.

On the other hand, optimization based numerical approach
can solve inverse kinematics problems for complicated
robots with generic constraints. This approach formulates
an inverse kinematics problem as a general non-convex
nonlinear optimization problem, and calls gradient-based
nonlinear solvers to handle these non-convex constraints.
For example, Beeson and Ames (2015) parameterized the
link poses using double quaternions, and solve the nonlinear
IK problem through their software Trac-IK. Similarly
other researchers solve the IK problem through nonlinear
optimization techniques, such as sequential quadratic
programming Dai et al. (2014); Fallon et al. (2015) and
Jacobian pseudo-inverse Buss (2004). The drawback of this
approach is that the solution heavily relies on the user-
supplied initial seed. Because the nonlinear optimization
typically solves the problem locally around the initial seed, it
can get trapped in a locally infeasible region and never reach
the distant feasible solutions. As a result, when these non-
convex nonlinear solvers report the problem being infeasible,
they only assert local infeasibility, providing no guarantee on

1 Toyota Research Institute, USA
2 Massachusetts Institute of Technology, USA

Corresponding author:
Hongkai Dai, Toyota Research Institute, Los Altos, CA, USA
Email: hongkai.dai@tri.global

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

drake.mit.edu

2 Journal Title XX(X)

(a) (b)

Figure 1. Our IK solver finds a collision free grasping posture for the KUKA IIWA arm (left), and a posture for Little Dog standing on
stepping stones (right).

the absence of a global solution Bertsekas (1999). Typically
the user would call the nonlinear optimization solver with
different initial guesses. If none of the initial guess leads to
a feasible solution, the user thinks the IK problem doesn’t
have a solution, but there is no guarantee on how many
initial guesses should be attempted before claiming the
global infeasibility. We will show that our approach can
significantly improve the robustness and success rate of the
IK solver, over the gradient-based nonlinear optimization
approach. More importantly, our approach can also certify
global infeasibility of the IK problem, when our approach
cannot find a solution. This global certificate is in sharp
contrast to the result from previous nonlinear optimization
techniques, which only provide local certificates without any
claim to the size of the local infeasible region.

We shall use an optimization-based numerical approach
to the IK problem with generic constraints to obtain the
global solution. Instead of tackling the problem through non-
convex nonlinear optimization, we instead consider a mixed-
integer convex optimization formulation. Solvers for this
class of optimization do not require an initial seed, and can
provide a global solution Boyd and Vandenberghe (2004);
Bertsimas and Weismantel (2005), such as a certificate of
global infeasibility. The non-convexity of the IK problem
originates from the non-convexity of SO(3) constraints on
rotation. If we choose to represent rotation with a matrix
R = [u1 u2 u3] ∈ R3×3, this rotation matrix should satisfy
the following constraints

uT
i ui = 1 (Unit length) (1a)

uT
i uj = 0 if i 6= j (Orthogonality) (1b)

ui × uj = uk, (1c)

where (i, j, k) = (1, 2, 3), (2, 3, 1) or (3, 1, 2) in (1c). We
choose the rotation matrix as the orientation representation,
since the position of a point attached to a body is a linear
expression of the body rotation matrix. If we used unit
quaternions or angle-axis representations, this expression
would be nonlinear, and would complicate the expression
of pose-dependent constraints. Using the rotation matrix
representation “concentrates” the non-convexity into only

constraints on R, leaving the rest of the IK formulation clean
and convex. It’s easy to see that orientation constraint SO(3)
(1a)-(1c) is non-convex. Take constraint (1a) as an example:
geometrically, the nontrivial convex combination of two
distinct points on the surface of a unit sphere, lies strictly
in the interior of the unit sphere. Algebraically, an equality
constraint is non-convex, if it includes quadratic terms such
as ui(1)2 in (1a), or bilinear terms like ui(1)uj(1) in (1b).

Various convex relaxations for SO(3) constraints have
been proposed. Saunderson et al. (2015) proved that the
convex hull of the set of rotation matrices can be described
by a positive semidefinite constraint (PSD), a special type
of convex constraint. In Dai et al. (2015) this convex
relaxation is exploited to solve the IK problem through a
sequence of convex optimizations. The drawback of this
approach is that the convex hull of the rotation matrix
is a rather loose relaxation of SO(3). For example, the
matrix

[
u1,0,0

]
= 0.5

[
u1,u2,u3

]
+ 0.5

[
u1,−u2,−u3

]
is in the convex hull for any rotation matrix

[
u1,u2,u3

]
, but

it is far from satisfying the SO(3) constraint. Hence quite
often the relaxed convex program is too loose to detect global
infeasibility of the original IK problem. To overcome this, we
seek a tighter mixed-integer convex relaxation of the SO(3)
constraint.

Our intuition is that instead of considering the convex
hull of all rotation matrices as in Saunderson et al. (2015),
we divide the range of the rotation matrices into smaller
intervals, and compute the convex hull of each small interval
to obtain a tighter approximation. We can then constrain
the approximated rotation matrix to be within one of the
convex hulls. This approach is inspired by Deits and Tedrake
(2014), in which the orientation constraint SO(2) in 2D
is approximated by mixed-integer linear constraints. In a
similar fashion, we replace (1a)-(1c) with mixed-integer
convex (quadratic) constraints, as a relaxation of the original
non-convex SO(3) constraints. This relaxation allows the
inverse kinematics problem to be formulated as a mixed-
integer convex optimization program, which can be solved
efficiently by modern solvers, such as Gurobi Optimization
(2016) and Mosek (2010). Like convex optimization,

Prepared using sagej.cls

Dai, Izatt and Tedrake 3

mixed-integer convex optimization also does not rely on
the initial seed, and warrants global solution (Schrijver
(1998); Bertsimas and Weismantel (2005)). With the rapid
advancement in numerical solvers, mixed integer convex
optimization has been becoming increasingly popular in
robotics. For example, it has been used in footstep planning
Deits and Tedrake (2014), aggressive legged locomotion
planning Valenzuela (2016); Ding et al. (2018), quadrotor
motion planning Mellinger et al. (2012); Deits and Tedrake
(2015b); Landry et al. (2016), grasp simulation Pang and
Tedrake (2018), pose estimation Izatt et al. (2017) and grasp
force optimization Hauser et al. (2017). In this paper we
show that our mixed-integer convex optimization approach
can either produce an approximate solution to the inverse
kinematics problem, or prove that the problem is globally
infeasible for generic constraints.

Porta et al. (2009) used a similar approach to solve the
IK problem. They relaxed the non-convex constraints by
first cutting the variable intervals into small boxes, and
computing the lower and upper bounds of the constraint
within each small box. They then used a branch-and-prune
procedure (Porta et al. (2005)) to discard the boxes that
cannot possibly have a solution, and continue to divide
the boxes likely to have a solution. Although our work
shares similarities with Porta’s approach in the mathematical
formulation to relax SO(3) constraint, the key distinction is
that we formulate and solve the IK problem through mixed
integer programming (MIP). There are some important
advantages of our MIP approach: 1) Owing to the flexibility
of MIP, our approach is capable of handling a rich set
of kinematic constraints, including the collision avoidance
constraint. We impose collision avoidance as a mixed-integer
constraint, with integer variables denoting the assignment
from robot links to collision free regions. On the other
hand, Porta’s approach cannot incorporate the collision
avoidance constraint, as all the variables in their approach
have continuous values. 2) Many robotics problems have
been solved through mixed integer programming already,
as we mentioned before. But all the aforementioned work
ignores the accurate modelling on the kinematic constraints,
as mixed-integer formulation of these constraints has not
yet been available. For example, Aceituno-Cabezas et al.
(2018) computed the gait pattern for a quadruped robot
through MIP, to determine which foot to move in the
next step. The reachability of each foot is only coarsely
approximated as some spherical regions. We believe our
mixed-integer convex formulation can readily incorporate
the joint-level kinematic constraints into these planning
problem, to improve the completeness and accuracy of the
constraints. Another example of applying our formulation
is in Izatt et al. (2017), where we estimated the object
pose from the point cloud data, with binary variables to
assign each scene point to a model feature, and we relied
on the mixed-integer formulation from this paper to handle
the kinematic constraint arising from the estimated object
pose. 3) There has been abundant research on mixed integer
programming Achterberg and Wunderling (2013), and there
exist both commercial and open source solvers, such as
Gurobi Optimization (2016), Mosek (2010), CPLEX (2016)
and coin-or/CBC Forrest et al. (2018). As a result the users

won’t need to write their own algorithm (like branch-and-
prune), making our approach easy to adopt. Compared to
Porta’s approach, the shortcoming of our approach is that
the intervals have been cut before the solver starts, instead
of adaptively being adjusted online through the branch-
and-prune procedure. Hence we can’t precisely control the
accuracy of the approximated solution as Porta’s approach
does, and our solver is slower. Nevertheless, we believe that
compared to Porta’s approach, our MIP formulation grants
the flexibility to handle more generic constraints (including
collision avoidance), and can be incorporated into other
robotics problems with integer variables.

Our contribution in this paper includes 1) A mixed-integer
convex relaxation on the non-convex SO(3) constraint. 2)
Formulating the IK problem as a mixed-integer convex
problem using the SO(3) relaxation. As a result, we can
reliably solve the IK problems with complicated constraints,
and more importantly, we can also certify global infeasibility
of the problem.

The paper is organized as follows: in Section 2 we
introduce background knowledge on relaxing non-convex
constraints as mixed-integer convex constraints, and the
techniques to solve mixed-integer convex problems. In
Section 3 we introduce our approach on formulating the IK
problem as a mixed-integer optimization problem. In Section
4 we show our results of solving IK problems on robot arms,
a quadruped robot and a parallel Stewart platform. Finally
we conclude the paper in Section 5.

A conference version of this paper is published in Dai
et al. (2017). In this journal version, we add the following
improvements: 1) a section to give a brief background on
mixed-integer programming. 2) An improved formulation
to tackle collision avoidance constraints. 3) A different set
of mixed-integer convex constraints to relax the SO(3)
constraint in the Appendix. 4) More results, including finding
a collision free path of a gripper, and solving the forward
kinematics problem of a parallel robot.

2 Background

2.1 Relaxing non-convex quadratic constraint
In this section we briefly review how to relax a non-convex
quadratic constraint as mixed-integer convex constraints,
which will be used to relax the non-convex quadratic SO(3)
constraint on the rotation matrix (1a)-(1c).

Consider a generic non-convex quadratic constraint

{z|a ≤ zT Qz + cT z ≤ b}, (2)

where the matrix Q is not necessarily positive semidefinite.
This quadratic constraint contains bilinear product terms like
xy (as the cross terms in zT Qz), visualized in Fig 2a -2b.
It is NP-hard to obtain an exact global optimal solution to
optimization problems with this non-convex constraints, but
there has been a lot of research on obtaining an approximated
one through mixed-integer-convex optimization McCormick
(1976); Misener and Floudas (2012); Huchette and Vielma
(2016). The key idea is to partition the range of each variable
into smaller intervals, and replace the bilinear term xy with
a linear term which approximates xy inside each interval.
To see this geometrically, we draw the surface of w = xy in

Prepared using sagej.cls

4 Journal Title XX(X)

Fig 2 within x ∈ [0, 1], y ∈ [0, 1]. We then partition the range
[0, 1] into smaller intervals, with interval i as [φi, φi+1].
The convex hull of w = xy in interval x ∈ [φi, φi+1], y ∈
[φj , φj+1] is a tetrahedron. This tetrahedron is also called
the McCormick envelope of the surface w = xy. We can then
relax the constraintw = xy, with the constraint that the point
(x, y, w) lies within one of the tetrahedrons. We will use
some binary variables to determine within which tetrahedron
the point lies.

To enforce that (x, y, w) falls into one of the convex hulls,
we rely on the special ordered set of type 2 (sos2) constraint
Beale and Tomlin (1970), defined as follows

Definition 2.1. Special ordered set of type 2: λ =
(λ0, . . . , λn) ∈ Rn+1 is in sos2, if∑

i

λi = 1, λi ≥ 0 (3a)

∃j ∈ 0, ..., n, s.t λi = 0 ∀i 6= j, i 6= j + 1. (3b)

Namely at most two entries in λ can be strictly positive,
and these two entries must be consecutive in their ordering.

The sos2 constraint is often used to formulate a piecewise
linear approximation to a nonlinear function. For example in
Fig 3, we approximate f(x) with a new variable w satisfying[

x
w

]
=
∑
i

λi

[
φi

f(φi)

]
, λ is in sos2 (4)

(4) forces the point (x,w) to be on the black lines in Fig 3.
We can formulate the sos2 (3) as mixed-integer linear

constraints by introducing auxiliary binary variables. In this
paper we adopt the formulation proposed in Vielma and
Nemhauser (2011), which introduces log2 n binary variables.
We refer the readers to Vielma and Nemhauser (2011) for
more details on sos2 constraint.

To impose the constraint that (x, y, w) is in one
of the tetrahedron in Fig 2c-2d so as to approximate
w ≈ xy, we introduce auxiliary continuous variables γ ∈
R(n+1)×(n+1), α ∈ Rn+1, β ∈ Rn+1 with the additional
constraints

x =
∑
i

αiφi, y =
∑
j

βjφj (5a)

w =
∑
i

∑
j

γi,jφiφj (5b)

∑
j

γi,j = αi,
∑
i

γi,j = βj , γi,j ≥ 0,
∑
i,j

γi,j = 1 (5c)

α, β are in sos2 . (5d)

Constraint (5d) is formulated as mixed-integer linear
constraints with auxiliary binary variables.

Notice that (x, y, w) satisfying w = xy also satisfies
constraint (5), namely the mixed-integer constraint is a
relaxation of the non-convex constraint w = xy. Thus
by replacing the bilinear term xy in the non-convex
quadratic constraint (2) with (x, y, w) satisfying the mixed-
integer convex constraint (5), if the mixed-integer program
is infeasible, it guarantees that the original non-convex
quadratic constraint (2) is globally infeasible.

To summarize, for a non-convex quadratic constraint (2),
we can replace the bilinear term xy withw satisfying (5), and
obtain mixed-integer convex constraints as a relaxation of
the original non-convex constraint. An optimization problem
with mixed-integer convex constraint can be solved through
mixed-integer programming techniques, introduced in the
next subsection 2.2.

2.2 Mixed-integer programming
A mixed-integer (convex) program (MIP) (without a cost)
takes the following form

find x,b (6a)

s.t
[
x
b

]
∈ C (6b)

x ∈ Rnx ,b ∈ {0, 1}nb (6c)

, where C is a convex set. x are the continuous variables,
while b are the binary variables. Generally a mixed-integer
program also minimizes a convex objective function. For
simplicity of presentation, we will ignore the objective
function in the optimization.

For mixed-integer convex program (6), we can either
find its solution globally, meaning that it is guaranteed to
find a solution if one exists, or we can prove that (6) is
globally infeasible. A common algorithm for solving (6)
is the branch-and-cut algorithm, which consists of branch-
and-bound and cutting planes techniques. Here we give a
brief introduction to these two techniques, in order to help
the readers to understand how the solvers can detect global
infeasibility, or obtain global solution in MIP.

The branch-and-bound algorithm (Bertsimas and Tsitsik-
lis (1997); Lawler and Wood (1966)), as illustrated in Fig.
4, builds a binary search tree. At each node of the tree a
convex program is solved in order to either prove the node
is infeasible, or find a solution of the node. In the root
node, (6) is relaxed by replacing the integral constraint b ∈
{0, 1}nb with linear constraints 0 ≤ b ≤ 1. If the relaxed
convex program in the root node is infeasible, it certifies
the original mixed-integer problem (6) is infeasible. Since
the constraint set to the relaxed convex problem is a super
set of the constraint in (6); if there doesn’t exist a solution
in the super set, then there doesn’t exist a solution to the
original constraints in (6). If this relaxed convex program
is feasible, then two child nodes are created, by fixing one
binary variable bi to either 0 (left node) or 1 (right node).
The solutions to the mixed-integer program (6) must satisfy
the constraint in one of the child nodes. If both child nodes
are infeasible, then (6) is proved to be globally infeasible,
otherwise we continue to branch the feasible nodes by fixing
the binary variables, until either a solution satisfying integral
constraint is obtained, or the program in all leaf nodes are
infeasible, which proves global infeasibility of (6). Although
it seems that in the worst case the algorithm needs to traverse
all 2nb nodes, empirically it usually needs only a small
fraction of nodes to solve the problem. The reason is that
many nodes are infeasible, thus do not need to be branched.
As mentioned in a previous study (page 208 of Williams
(2013)), sometimes branch-and-bound solves a problem with
100 binary variables by exploring just a few hundred nodes,
about 10−26 percent of the entire tree (with 2100 ≈ 1030

Prepared using sagej.cls

Dai, Izatt and Tedrake 5

(a) (b)

(c) (d)

Figure 2. 2a,2b: w = xy surface in the range x ∈ [0, 1], y ∈ [0, 1] from two perspectives. In 2c,2d we divide the range [0, 1] into two
intervals, with (φ0, φ1, φ2) = (0, 0.5, 1), and compute the convex hull of the surface in each interval x ∈ [φi, φi+1], y ∈ [φj , φj+1].
Each convex hull is a tetrahedron drawn in distinct colors. A similar figure is drawn in Valenzuela (2016).

Figure 3. A piecewise linear function (black lines)
approximating the nonlinear function f(x) (red curve).

nodes). It is worth noting that global infeasibility can usually
be detected at the early stage of the branching process. In the
result section, we will demonstrate that by formulating IK
problem as a mixed-integer convex problem, we can usually
detect global infeasibility in a few hundred milliseconds for
problems with ≈ 100 binary variables.

The cutting plane method can quickly cut out some
search regions, by exploiting the property of variables being
integers. For example, for the constraint

5b1 + 5b2 + 4b3 ≤ 8, bi ∈ {0, 1} (7)

we can generate a cut (inequality)

b1 + b2 + b3 ≤ 1 (8)

Figure 4. A binary search tree used in branch-and-bound
process to solve the mixed-integer convex program (6).

which is equivalent to (7) when all bi are binary variables,
but stronger than (7) in the continuous relaxation (0 ≤ bi ≤
1). Thus with the cutting planes, the continuous relaxation
can search for a smaller region, and more likely to cut
out globally infeasible regions. MIP solvers typically utilize
the cutting plane method alongside the branch and bound
algorithm during the solution process. For a more detailed
introduction to cutting plane method, the readers could refer
to Marchand et al. (2002).

Prepared using sagej.cls

6 Journal Title XX(X)

3 Approach
As explained in Section 1, the non-convexity of the inverse
kinematics problem originates from the non-convexity of
the SO(3) constraint. In order to obtain a global solution
to this non-convex problem, in Section 3.1, we first
relax the SO(3) constraint (1a)-(1c), to a set of mixed-
integer convex constraints, using the technique described
in Section 2.1. Then in Section 3.2, we formulate the
inverse kinematics problem by searching over the link
poses (position/orientation) satisfying both the kinematic
constraints, and the relaxed SO(3) constraint introduced
in Section 3.1. Finally, in Section 3.3 we project the
approximated rotation matrices to the SO(3) manifold to
obtain the angle of each joint within the joint limits.

3.1 Rotation constraint relaxation
We aim to find a matrix R̄ ∈ R3×3 satisfying a relaxation
of the SO(3) constraint (1a)-(1c). To this end, we cut the
range [−1, 1] into n small intervals. The quadratic constraints
(1b)-(1c) can be relaxed by replacing each bilinear term
with a new variable approximating the bilinear term within
each interval, described by (5). For example, to relax the
orthogonality constraint uT

1 u2 = 0, we introduce a slack
variable v ∈ R3, such that v(i) approximates u1(i)u2(i),
by requiring that (u1(i),u2(i),v(i)) to be in one of the
tetrahedrons in Fig. 2 (namely they satisfy the constraint (5)).
And we instead impose the linear constraint v(1) + v(2) +
v(3) = 0 as a relaxation of the orthogonality constraint
uT

1 u2 = 0.
To relax the unit length constraint uT

i ui = 1 (1a), we
first introduce auxiliary variables wi ∈ R3, λi,j ∈ Rn+1

satisfying[
ui(j)
wi(j)

]
=

n∑
k=0

λi,jk

[
φk
φ2
k

]
, λi,j is in sos2. (9)

Constraint (9) forces the point (ui(j),wi(j)) to be on the
black lines in Fig 5, for n = 4 case. Namely wi(j) is an
upper-bound of ui(j)

2. We can thus relax the unit length
constraint (1a) as

uT
i ui ≤ 1 (10a)

wi(1) + wi(2) + wi(3) ≥ 1. (10b)

Geometrically, constraint (10a) forces the rows/columns
of the rotation matrix to be within the unit sphere, while
constraint (10b) pushes the row/column vector from inside
the unit sphere, such that the Euclidean length of the
row/column vector is bounded from below.

While the generic technique introduced in Section 2.1
can already approximate the orthogonality constraint, it
is desirable to introduce an additional relaxation, because
enforcing the solution to live in the intersection of different
relaxations can only improve its approximation quality. We
thus impose the following convex (quadratic) constraints as
a relaxation to the orthogonal constraint (1b)

|ui ± uj |22 ≤ 2, (11)

where ui,uj are two distinctive rows/columns of the matrix
R̄, | • |2 is the l2 norm of a vector. Constraint (11) is

Figure 5. The range of ui(j) is cut into 4 intervals, with
(φ0, φ1, φ2, φ3, φ4) = (−1,−0.5, 0, 0.5, 1). The adjacent two
points (φi, φ

2
i) and (φi+1, φ

2
i+1) are connected with the black

straight line. We introduce an auxiliary variable wi(j) to be on
the black lines, as an upper bound of the red curve ui(j)

2. The
unit length constraint

∑
j ui(j)

2 = 1 is relaxed as∑
j zi(j) = 1, where zi(j) lies within the shaded cyan region,

as a relaxation of the red curve ui(j)
2.

equivalent to |uT
i uj | ≤ 1

2 (2− uT
i ui − uT

j uj). When the
vectors ui,uj are “close to” the unit sphere (due to the
constraint (10a)-(10b)), constraint (11) approximates the
orthogonal constraint uT

i uj = 0. Similarly we can impose
the convex constraint |u1 ± u2 ± u3|22 ≤ 3 as an relaxation
of the orthogonal constraint, where u1,u2,u3 are all three
rows/columns of R̄.

To conclude this section, the non-convex SO(3) constraint
is thus relaxed to a set of mixed-integer convex constraints.
These mixed-integer constraints are readily handled by
modern numerical solvers such as Gurobi Optimization
(2016). We also note that this mixed-integer convex
relaxation of SO(3) can be used beyond inverse kinematics
problems. For example, it has been applied to estimating the
object pose from point cloud data (Izatt et al. (2017)), and
the code is open-sourced for general use in Drake (Tedrake
and the Drake Development Team (2016)).

3.2 Inverse kinematics formulation

We aim to solve the inverse kinematics problem by finding
the pose of each link. The pose of link i can be represented
by rigidly attaching a frame to the link, with the position
Wpi ∈ R3 and the rotation matrix WRi, where the right
subscript i denotes it is link i’s frame we are interested in,
the left superscript W indicates the quantity is expressed
in the world frame. In Fig 6, we illustrate the kinematics
relationship between two links connected by a revolute joint.
We will express this kinematics relation as constraints on the
position Wpi and orientation WRi of link i expressed in the
world frame, and the position/orientation of its parent link
i− 1. A joint frame J is rigidly attached to the parent link
i− 1, and coincides with the child link frame, when the joint
angle qi = 0. We denote the fixed translation of joint frame
to the parent link frame as i−1pJ . The joint axis is expressed
as i−1ẑi in the parent link (i− 1)’s frame, and iẑi in the
child link i’s frame. Since the position and direction of joint
axis is invariant under rotation about this axis, we can impose
the following constraints on the poses of the parent and child

Prepared using sagej.cls

Dai, Izatt and Tedrake 7

Axis i-1

Link i-1

Link i

Axis i

Figure 6. The kinematics relation between adjacent link i− 1
and i Craig (2005). The frame with axes x̂i, ŷi, ẑi is rigidly
attached to the child link i, the position of the frame origin is pi.
Without loss of generality we can assume the rotation axis i is
along the z axis ẑi. Similarly for the parent link i− 1. The joint
frame J with axes x̂J , ŷJ , ẑJ is rigidly attached to the parent
link i− 1; this joint frame coincides with the child link frame
when the joint angle qi = 0.

links

Wpi = Wpi−1 + WRi−1
i−1pJ (12a)

WRi−1
i−1ẑi = WRi

iẑi (12b)

(12) are linear constraints on the decision variables WRi,
WRi−1, Wpi, Wpi−1.

3.2.1 Joint limits We also handle the angle limits on the
revolute joint. Without loss of generality, we assume that
angle limits for joint i are −α ≤ qi ≤ α. In order to enforce
this joint limit constraint with only link poses as decision
variables, we consider a unit length vector x̂J , perpendicular
to the joint axis ẑi, and how it relates to itself before and after
joint rotation. For example in Fig 6, rotating the i’th joint by
qi transforms the unit length vector x̂J to x̂i. The joint limit
constraint |qi| ≤ α can be imposed as

|∠(W x̂J ,
W x̂i)| ≤ α

⇔W x̂T
J
W x̂i ≥ cosα

⇔
∣∣∣W x̂J −W x̂i

∣∣∣
2
≤ 2 sin

α

2

⇔
∣∣∣WRi−1

i−1x̂J −WRi
ix̂i

∣∣∣
2
≤ 2 sin

α

2
(13)

where ∠(·, ·) is the angle between two vectors. i−1x̂J is
the given unit length vector fixed and expressed in the
parent i− 1 frame, and ix̂i is the given unit length vector
fixed and expressed in the child i frame. Equation (13) is
a convex (quadratic) constraint on the decision variables
(parent and child link orientations WRi,WRi−1). The joint
limit constraint (13) would be tight if WRi,WRi−1 satisfied
SO(3) constraints exactly.

3.2.2 Kinematic constraints on link position and orienta-
tion We can also show that the kinematic constraints on link
position and orientation can be readily formulated as convex
constraints on the link poses. For example, the position of a
point Q rigidly attached to a link i is a linear function of the
decision variables, as WpQ = Wpi + WRi

ipQ, where ipQ
is the position of point Q fixed in the link i’s body frame.
Hence constraining the point Q to be within a convex region

Figure 7. The visual illustration of the joint limit constraint (13).
The red chord is the difference between unit vector x̂J and
another vector, obtained by rotating x̂J about an axis by angle
α. The chord’s length is 2 sinα/2. x̂J − x̂i should have
shorter length than the red chord, since the angle qi between
these two vectors is smaller than α.

S is a convex constraint on the link pose Wpi,
WRi.

Wpi + WRi
ipQ ∈ S (14)

To constrain that the angle difference between a link
orientation WRi and a desired orientation R∗ is less than
a tolerance γ, we utilize Rodriguez Formula (15), that the
rotation matrix corresponding to rotation axis a ∈ R3 and
rotation angle θ is

R(a, θ) = I3×3 + sin θbac× + (1− cos θ)bac2× (15)

where bac× ∈ R3×3 is the skew-symmetric matrix repre-
senting the cross product with a. From (15), it can be
readily shown that trace(R(a, θ)) = 1 + 2 cos θ. Hence we
can impose the following convex (quadratic) constraint to
enforce the angle between link orientation WRi and the
desired orientation R∗ is less than γ

|WRi −R∗|2F = trace(WRTi
WRi︸ ︷︷ ︸

=I3×3

+ (R∗)TR∗︸ ︷︷ ︸
=I3×3

−2WRTi R
∗)

= 6− 2 trace(WRTi R
∗)

= 6− 2 trace(R(a, θ))

= 4− 4 cos θ

≤ 4− 4 cos γ (16)

where | · |F is the Frobenius norm, |X|2F = trace(XT X) =∑
i

∑
j X(i, j)2.

Notice that the constraints on the link position ((14)) and
orientation ((16)) can be used in finding a continuous path
of the robot. The “continuity” requirement can be imposed
by constraining that between the adjacent knots, the angle
difference between link orientations R1, R2 to be less than a
threshold γ as |R1 −R2|2F ≤ 4− 4 cos γ, and the position
difference between link position p1,p2 to be less than
distance d as |p1 − p2| ≤ d. We will demonstrate finding a
continuous path in the result section 4.2.4.

3.2.3 Collision avoidance To impose collision avoidance
constraints, we use a similar formulation as Blackmore et al.
(2010); Deits and Tedrake (2015b). As shown in Fig.8c, we

Prepared using sagej.cls

8 Journal Title XX(X)

I

II

III

IVobstacle

(a)

I

II

III

IVobstacle

(b)

obstacle

I

II

III

IV

(c)

Figure 8. The collision free region is represented as unions of polytopes, and the entire sphere (or point) has to be in one of the
polytopes. In 8a, the collision free region is partitioned into non-overlapping polytopes. This works for a point object, but not when
the object is a sphere (red) as in 8b: the center of the sphere can only be in the cyan region (obtained by shrinking each polytope
boundary by the radius of the sphere). The problem is that the sphere center can’t be in the blue region, as part of the sphere is in
one polytope, while the other part is in another polytope, although the spheres would be collision free. The solution is shown in 8c,
that the collision free polytopes should overlap with each other.

represent the collision free space as unions of N bounded
polytopes, that intentionally overlap each other. We represent
the collision geometry of the robot as unions of spheres and
points, and constrain that each of the spheres and points
should be in one of the collision free polytopes. We denote
the i’th polytope parameterized as Pi = {x|Aix ≤ bi}, and
assume that the sphere is centered at p with radius r (a
point is a sphere with 0 radius). The sphere being in the i’th
polytope is equivalent to Aip ≤ bi − air, where ai(j) =
|Ai(j, :)|, namely ai(j) is the norm of the j’th row of Ai.
We introduce binary variables z ∈ {0, 1}N , such that zi = 1
assigns the sphere to the polytopes Pi. We also introduce
continuous variables yi that would be equal to p if the sphere
is assigned in polytope Pi, and equal to 0 otherwise. The
collision free constraint is imposed as the following mixed-
integer linear constraint

p = y1 + . . .+ yN (17a)
Aiyi ≤ (bi − air)zi, i = 1, . . . , N (17b)

z1 + . . .+ zN = 1, zi ∈ {0, 1} (17c)

Note that when zi = 0, Aiyi ≤ 0 ((17b)) is equivalent to
yi = 0 due the boundedness of the polytope (Proof by
contradiction, suppose yi 6= 0, Aiyi ≤ 0, then for a point
ŷ in the polytope Pi satisfying Aiŷ ≤ bi, the ray ŷ +
tyi, t ≥ 0 is always in the polytope Pi, contradicting to the
boundedness assumption.) (17c) means that only one binary
variable in z will be 1, hence all yi except one will be non-
zero, and p (equal to this non-zero yi) is in the collision free
polytope Pi.

It is worth noting that zi = 1 implies that the sphere is in
polytopePi, but the converse is not true, that the sphere lying
in Pi doesn’t necessarily imply that zi = 1. For example,
in Fig.8c, when the sphere is in the overlapping region of
polytope P1 and P2, the solution to constraint (17a)-(17c)
could be either z = [1, 0, 0, 0] or z = [0, 1, 0, 0], both are
equally valid solutions. In either case, the sphere is assigned
to one of the polytopes containing the overlapping region.

We assume that the collision free polytopes Pi are
already given, through some pre-processing steps. There
are numerous approaches to represent the free space as
unions of polytopes. For example, Deits and Tedrake (2015a)
computed the large collision free regions through convex
optimization. We can also use simple bounding boxes to
segment the free space, as shown in the Result section 4.2.

With all the kinematic constraints formulated as mixed-
integer convex constraints in this subsection, we can solve
the IK problem through solvers like Gurobi Optimization
(2016) or Mosek (2010). If the solver reports the MIP being
infeasible, then we get a certificate that the IK problem is
globally infeasible.

3.3 Reconstruct joint angle by projecting back
to SO(3)

After obtaining the approximated solution to the body
orientations through the mixed-integer convex optimization,
we need to recover the value of each joint angle. Since the
solution to the body orientation does not satisfy the SO(3)
constraint exactly, we project the approximated solution to
the rotation constraint, starting from the root link. If the link
is floating, then the optimal projected solution is obtained
as UV T, where R̄ = UΣV T is the SVD of R̄, as proved
in Haralick et al. (1989). On the other hand, if the link
is connected to its parent link through a revolute joint, we
project WRT

i−1
W
R̄i onto SO(3) with the given rotation axis

and angle limits, where WRi−1 is the rotation matrix of the
parent i− 1 link, computed by doing forward kinematics
using the recovered posture from the root to the i− 1 link.
To project WRT

i−1
W
R̄i, we find the joint angle qi such that

the joint rotation matrix R(i−1ẑi, qi) has the minimal error
to WRT

i−1
W
R̄i under the joint limits (Fig 6). R(i−1ẑi, qi) ∈

SO(3) means rotating by angle qi about the axis i−1ẑi.
Algebraically, the optimal qi is the solution to the following

Prepared using sagej.cls

Dai, Izatt and Tedrake 9

program

min
qi

∣∣∣R(i−1ẑi, qi)−WRT
i−1

W
R̄i

∣∣∣2
F

(18a)

s.t − α ≤ qi ≤ α. (18b)

In the objective function | · |F is the matrix Frobenius norm.
As in (15), we again use Rodriguez Formula to compute

the rotation matrix R(i−1ẑi, qi) from its rotation angle and
rotation axis

R(i−1ẑi, qi) = I3×3 + sin qibi−1ẑic× + (1− cos qi)bi−1ẑic2×
(19)

Substituting equation (19) into the optimization objective
(18a), and taking the derivative of the cost function w.r.t
angle qi, we know the optimality occurs when either the
gradient is zero with positive Hessian, or at the boundary
points. Thus we can obtain the optimal qi in the closed-form
as

if ∃k ∈ Z,−α ≤ β + 2kπ ≤ α, qi = β + 2kπ

else:
if − cos(−α− β) ≤ − cos(α− β), qi = −α
if − cos(−α− β) > − cos(α− β), qi = α.

(20)

where β = atan2
(
trace(MA),−trace(MA2)

)
, A =

bi−1ẑic×,M = WRT
i
W
R̄i−1. Note that at value β + 2kπ

the derivative of the objective (18a) is zero, i.e., it is the
optimal solution to (18a) without the joint limits (18b). The
optimal solution is truncated to the joint bounds if β + 2kπ
is outside of the angle limits. qi in (20) is the optimal joint
angle within the joint limits, that minimizes the projection
error from the mixed-integer convex optimization solution,
to SO(3) with a given rotation axis and angle bounds. The
joint limit truncation will cause large constraint violation
error in the reconstructed postures.

With (20) to compute a single joint angle, we sweep the
robot kinematic tree from the root link to the leaf links,
to compute the posture including every joint. Since the
projection error is accumulated along the kinematic path
from the root link, we then sweep back from the leaf links
to the root link, to compute the matrix W

R̄i through forward
kinematics, using the leaf link pose and the reconstructed
joint angles from link i to the leaf links. The complete
procedure to reconstruct the joint angles is summarized in
Algorithm 1.

4 Results
We present the results on the SO(3) relaxation and the
inverse kinematics algorithm. These results were collected
on 64 bit Intel Xeon E3-1505M 2.8GHz CPUs with
Gurobi 7.5 Gurobi Optimization (2016) as the solver. The
computation time reported in this section is the Gurobi solver
time.

4.1 Tightness of rotation matrix relaxation
We first show the tightness of our mixed-integer con-
vex relaxation of the SO(3) constraint on the rotation

Algorithm 1 Reconstruct a robot posture from mixed-integer
optimization result.

1: iter = 1.
2: while iter < MaxIteration do
3: i = 1,WR0 = I3×3.
4:

W
R̄i =GetBodyApproximatdPose(iter)

5: while Not all joint angles are computed do
6: if Joint i is a floating joint then
7: Compute WRi = UV T where W

R̄i =
UΣV T.

8: else
9: Obtain the joint angle qi from (20).

10: Do forward kinematics to compute the
orientation of link i as WRi = WRi−1R(i−1ẑi, qi).

11: end if
12: i← i+ 1. . Go to the child link.
13: end while
14: iter ← iter + 1
15: end while

Algorithm 2 GetBodyApproximatedPose(iter)
1: if iter == 1 then
2:

W
R̄i is the solution to mixed integer program.

3: else
4:

W
R̄i is obtained by doing forward kinematics from

the leaf link to link i using the reconstructed posture q
from the previous iteration.

5: end if

matrix. If R̄ ∈ R3×3 satisfies the relaxed constraints, then
we know that |R̄v|2 ≈ |v|2 ∀v ∈ R3, and ∠(R̄v1, R̄v2) ≈
∠(v1,v2). Geometrically the relaxation allows the transfor-
mation v→ R̄v to change the length of a vector, and to
perturb the angle between two vectors. In this section we
show how much shorter the transformed vector can be, and
also derive a bound on the angle error.

We find the global optimum to two mixed-integer convex
optimization programs, to determine the tightness of the
relaxation. First we compute the global minimum of
minR̄,i |R̄ei|2, where ei is the unit length vector with ei(i) =
1. To determine the angle error, we compute the global
minimum minR̄ in relaxation,i6=j |R̄ei + R̄ej |2. If we denote
this global minimum as d, we obtain loose bounds on the
angle after transformation as 180◦ − arccos (d2/2− 1) ≤
∠(R̄ei, R̄ej) ≤ arccos(d2/2− 1). We compute the error
bounds on the relaxation, by partitioning the range [−1, 1]
into n = 2, 4 or 8 intervals, with φi = −1 + 2i/n. The
results are in Table 1. The last column with infinite number
of binary variables is the ideal R̄ ∈ SO(3) case without
any relaxation. The bounds on |R̄ei|2 and |R̄ei + R̄ej |2 are
tight, meaning that there are R̄ satisfying our mixed-integer
relaxation that gives the values in Table 1, but the bound on
the angle in the last row of the table is not tight.

As the number of intervals increases, the convex hull of xy
in each interval is closer to the bilinear product. As a result in
Table 1, the minimal length of R̄ei increases, and the bound
on the angle error shrinks, leading to a tighter relaxation of
SO(3). In the inverse kinematics problem, we choose to cut

Prepared using sagej.cls

10 Journal Title XX(X)

of intervals 2 4 8 ∞
minR̄

∣∣R̄ei∣∣2 0.57735 0.90453 0.97641 1
minR̄

∣∣R̄ei + R̄ej
∣∣
2

0.60229 1.22474 1.36288 1.414
∠(R̄ei, R̄ej)− 90◦ [−54.9◦, 54.9◦] [−14.5◦, 14.5◦] [−4.1◦, 4.1◦] [0◦, 0◦]

Table 1. Tightness of the mixed-integer convex relaxation on SO(3).

Figure 9. KUKA IIWA arm grasping a mug on the table with two
different postures. The mesh files of the objects are obtained
from Shapenet Chang et al. (2015).

[−1, 1] into 4 intervals by default, as a compromise between
computation speed and relaxation accuracy.

4.2 Inverse Kinematics
4.2.1 KUKA IIWA arm We first show that our inverse
kinematics approach can find postures for complicated
kinematics constraints including inequalities, such as those
arising from the task “grasping a mug on the table in a
cluttered environment” in Fig 9. We use a KUKA IIWA arm
and a Schunk gripper with 7 total joints. We constrain the
gripper to achieve an antipodal grasp on the mug. Rather than
finding a single solution, the branch-and-bound algorithm
for mixed-integer problem can find multiple solutions,
corresponding to different sets of active binary variables. In
Fig 9, we show two distinct postures found by solving the
mixed-integer convex program. These two postures belong

to different homotopy classes, grasping the mug from either
left or right side of the wine bottle. The collision geometry of
the robot is represented by a union of points and spheres in
Fig 10a, and the free space as unions of 6 overlapping boxes
in Fig 10b. The computation took 7 seconds in the Gurobi
solver. The antipodal grasp constraint is violated by about
0.5 cm in the reconstructed posture, due to the relaxation of
the SO(3) constraint.

As a comparison, we also solve the same IK problem
with the gradient-based nonlinear optimization based IK
solver (Dai et al. (2014)) in the software package Drake
(Tedrake and the Drake Development Team (2016)). This
IK solver can also incorporate collision avoidance as a
nonlinear constraint. With the initial guess of all joint angles
being 0 (the posture shown in the bottom plot of Fig 11),
the nonlinear optimization IK fails, as the initial guess is
singular with 0 gradient. We also attempt 10 randomly
chosen initial guesses, and 6 of them find the collision free
postures through nonlinear optimization. The computation
time is usually about 0.3 s with the nonlinear optimization
based IK, and the constraint violation is less than 0.1 mm.
This comparison shows that the MIP IK is slower and
less accurate than the nonlinear optimization based IK. The
advantage of MIP IK is being insensitive to the initial guess.

We also show that our approach can prove the global
infeasibility of some kinematic constraints. In Fig 11, we
impose the task constraint that the hand should grasp the
wine bottle, by keeping its center on the green line segment,
and its orientation aligned with the bottle’s longitudinal
axis. In the left plot the mixed-integer program is solved
successfully, while in the right plot with the fridge on the
table, the collision avoidance constraint causes the mixed-
integer convex program to be globally infeasible. The solver
takes 0.75 seconds to detect the global infeasibility.

4.2.2 Little Dog For more complicated robots like Lit-
tleDog (Fig 12, 13), we show that our approach can find
postures of the robot with each leg standing on one of
the stepping stones. This constraint is imposed similar to
the collision avoidance constraint (17a)-(17c), but replacing
each polytope with the top face of each stepping stone, and
use binary variables to assign the tip of each foot to one of
the stepping stones. In Fig 12, our mixed-integer solver finds
different postures of the robot, with its feet on distinct sets
of stepping stones. In Fig 13 the mixed-integer convex IK
spends 0.25s to determine that there does not exist a posture
for the robot to put each of its toes on one of the violet
stepping stones, while avoiding the red obstacles.

4.2.3 ABB IRB140 6R robot arm To get some statistics
on our mixed-integer convex IK approach, we test its
performance on an ABB IRB140 arm with 6 DoF, for which
the IK problem can be solved analytically Craig (2005).
In Fig 14, we show the results of running both analytical
and mixed-integer convex IK on the robot. We solve the

Prepared using sagej.cls

Dai, Izatt and Tedrake 11

(a)

(b)

Figure 10. The collision geometry of the robot is represented
by a union of spheres and points in 10a. Note that due to the
antipodal grasp constraint (the gripper is open, the midpoint
between the two grippers coincides with the object center, with
appropriate constraint on the orientation of the gripper), we
don’t need to add collision spheres on the grippers. Satisfying
the antipodal grasp automatically guarantees that the gripper
fingers don’t collide with the object. The free space of Fig 9 is
represented as the union of axis-aligned bounding boxes in Fig
10b (seen from the top). These axis-aligned bounding boxes are
created manually, by expanding a point along each axis until
visually touching the obstacles.

IK problem to reach each sampled position with the given
orientation. There are three categories of the solutions

• Green dot. Both analytical and mixed-integer convex
IK find the solution.
• Blue dot. Both analytical and mixed-integer convex IK

prove global infeasibility.
• Red dot. Analytical IK proves the problem is

infeasible, but mixed-integer convex IK thinks the
problem is feasible, due to the constraint relaxation.

We test the MIP IK solver with different number of
intervals [φi, φi+1] per entry in rotation matrix R. As
explained in section 2.1, the range [−1, 1] of each entry in
R is divided into n intervals, each with length 2/n. So each
entry in R requires log2 n binary variables. We show the
status of MIP solvers for each sample point in Fig 14, and the
average performance in Table. 2. For 2 or 4 intervals cases,
we solve the MIP with nonlinear convex constraints (10a)
(13). For 8 intervals case, to speed up the computation, we
outer-approximate these nonlinear convex constraints with
linear constraints.

We first analyze the tightness of the relaxation. The red
dots, which imply loose relaxation on the SO(3), form
only a thin layer between the unreachable blue dots, and
the reachable green dots, implying the relaxation is pretty
tight. All mixed integer convex IK solvers can detect more
than 90% of global infeasibility (last row in Table 2). As
a comparison, we also solve the same IK problem with the
PSD relaxation on SO(3) proposed in Saunderson et al.
(2015); Dai et al. (2015), which is the tightest convex
relaxation of SO(3). Merely 42.23% of global infeasibility

Figure 11. KUKA IIWA arm grasping the wine bottle. On the
left, the IK problem is solved successfully. The center of the
hand is constrained to be on the green line segment. On the
right, with the fridge on the table, the mixed-integer convex
program proves there is no posture that can satisfy the same
grasping constraint, while keeping the robot from colliding with
the fridge.

is detected with the PSD relaxation. This huge difference
demonstrates that our mixed-integer convex relaxation of
SO(3) constraint is a lot tighter than the best convex
relaxation.

We also examine the computation time of the mixed-
integer convex IK, together with the quality of the
approximated solution. In Fig 15a we show the histogram of
the mixed-integer convex IK computation time for the green
dots (both IK approaches can find the solution). In Fig 15c
and 15d we demonstrate the accuracy of the approximated
solution. After reconstructing the posture from the mixed-
integer convex IK, we compute the end effector pose error
from the reconstructed posture to the sampled pose, to
demonstrate how much relaxation error is brought into the
approximated IK solution. The orientation matches almost
exactly, with less than 0.001◦ error. The end effector position
is a lot less accurate. With 4 intervals perR(i, j), the position
error can be centimeters; and with 8 intervals, the average
position error is reduced to half a centimeter.

Although it takes several seconds to obtain a solution
to the mixed-integer program, the mixed-integer solver

Prepared using sagej.cls

12 Journal Title XX(X)

Figure 12. Postures of LittleDog standing on different sets of
stepping stones. Computation time is about 15s for this 18 Dof
quadruped.

Figure 13. Mixed-Integer Convex IK proves it infeasible to put each
foot on one of the stepping stone (violet), while avoiding the red
obstacles.

is usually fast to prove that the IK problem is globally
infeasible. In Fig 15b we draw the histograms of the
computation time, when the mixed-integer convex IK proves
global infeasibility. In most cases the computation takes less
than 0.1s (row 4 in Table 2). This demonstrates that when

the IK problem is infeasible, our mixed-integer approach
can quickly detect the infeasibility and terminates early in
the branch-and-bound process, as explained in Sec 2.2. We
believe that the rapid detection of global infeasibility is
a major advantage of our mixed-integer program IK. By
adopting our method, users of high-DoF robots can avoid
needing to exhaustively try out different initial guesses with
the nonlinear optimization based approaches, or to fix some
DoFs to certain sampled values with analytical approaches.

Moreover, we solve the inverse kinematics program for
the samples in Fig 14 through a nonlinear optimization
based IK solver Dai et al. (2014); Fallon et al. (2015). We
first set the initial seed as the postures in Fig 14, and then
solve the nonlinear optimization again, but replace the initial
seed with the reconstructed posture from the mixed-integer
convex IK. The success rate of the nonlinear IK solver
increases from 85.67% to 98.35%, indicating the solution of
the MIP IK usually lives within the region of attraction of the
nonlinear optimization solver. Our experiments indicate that
the approximated solution from mixed-integer programming
can frequently serve as a good initial guess for the nonlinear
optimization.

4.2.4 Schunk Gripper As we have seen in the previous
results, when searching for a feasible solution, the MIP
IK is significantly slower than its alternatives, like the
nonlinear optimization based IK (Dai et al. (2014); Fallon
et al. (2015); Beeson and Ames (2015)) or the analytical
approach Diankov (2010). On the other hand, MIP IK is
good at detecting global infeasibility, and also providing
good initial guesses for the nonlinear optimization IK. Hence
we think MIP IK can be best used as a complement to other
IK approaches. Here we use a parallel gripper example to
demonstrate how MIP IK can help other approaches.

If the goal is to grasp an object with a Schunk parallel
gripper mounted on the robot arm (like the KUKA robot
shown in Fig 9), then we can first test if there exists a
collision free grasping posture or an approaching path with
the gripper only, without considering the robot arm. For
example, in Fig 16, the MIP IK detects it is infeasible for
the gripper to achieve the antipodal grasp on the mug in the
small cabinet, so we can save the effort to call the other IK
approaches to solve the more complicated IK problem with
the robot arm. On the other hand, if we enlarge the cabinet
size a little bit, then the MIP IK can find an antipodal grasp,
but if we ask to find an approaching path of the gripper
starting from outside the cabinet to the mug, then in 2.3
seconds the MIP IK certifies non-existence of the path, as
the small space in the cabinet doesn’t allow the gripper to
yaw its orientation without hitting the obstacles. Finding
an approaching path can be formulated as a mixed-integer
optimization problem. We first discretize the path to a few
way points, and impose the kinematic constraints for each
way points (no collision for all way points, initial way point
start outside the cabinet, and the final way point grasp the
mug). We also impose the continuity constraint on the path,
by requiring that the change of pose is smaller than a certain
threshold between two consecutive way points, formulated
as convex constraints on the link poses (explained in the
end of Section 3.2.2). We solve this mixed-integer problem
to search for the postures at all way points simultaneously.

Prepared using sagej.cls

Dai, Izatt and Tedrake 13

(a) Analytical IK (b) Analytical IK

(c) MIP IK, 2 intervals per R(i, j) (d) MIP IK, 2 intervals per R(i, j)

(e) MIP IK, 4 intervals per R(i, j) (f) MIP IK, 4 intervals per R(i, j)

(g) MIP IK, 8 intervals per R(i, j) (h) MIP IK, 8 intervals per R(i, j)

Figure 14. The results of running both analytical and mixed-integer program IK on an ABB IRB140 arm. We take 213 = 9321 sample points in a
1 m3 cube. The robot end effector is required to reach each sampled location with the given orientation, shown in silver color next to the coordinate
axes in the bottom left. The green dots correspond to positions for which IK solvers obtain the solution. The blue dots correspond to positions for
which the IK solvers detect global infeasibility. The red dots correspond to the gap for which the analytical IK proves that the problem is infeasible,
while the mixed-integer convex IK thinks the problem is feasible under relaxation. We show MIP IK with different number of intervals per R(i, j). For
the last row with 8 intervals per R(i, j), we outer-approximate all nonlinear convex constraints with linear constraints.

Prepared using sagej.cls

14 Journal Title XX(X)

0 0.2 0.4 0.6 0.8 1 1.2

time (s)

0

100

200

300

400

500

c
o

u
n

t

0 5 10 15 20 25 30
time (s)

0

50

100

150

200

250

co
un

t

0 50 100 150 200 250 300

time (s)

0

100

200

300

400

500

600

c
o
u
n
t

(a) Histogram on the computation time for MIP IK to find a solution on the ABB IRB140 robot (green dots in Fig 14). The number of
intervals per R(i, j) is 2 (left), 4 (middle) and 8 (right).

(b) Histogram on the computation time for MIP IK to detect global infeasibility on the ABB IRB140 robot (red dots in Fig 14). The
number of intervals per R(i, j) is 2 (left), 4 (middle) and 8 (right).

0 10 20 30 40 50 60

position error (cm)

0

50

100

150

200

c
o

u
n

t

0 2 4 6 8 10 12

Position error (cm)

0

50

100

150

200

250

C
o

u
n

t

0 0.5 1 1.5 2 2.5 3

position error (cm)

0

50

100

150

200

250

300

350

c
o
u
n
t

(c) Histogram on the end effector position error for the reconstructed postures from MIP IK. The number of intervals per R(i, j) is 2
(left), 4 (middle) and 8 (right).

0 0.2 0.4 0.6 0.8 1

orientation error (deg) ×10
-3

0

50

100

150

200

250

c
o

u
n

t

0 0.2 0.4 0.6 0.8 1

Orientation error (deg) 10 -3

0

20

40

60

80

100

120

140

160

180

C
o

u
n

t

0 0.2 0.4 0.6 0.8 1

orientation error (deg) ×10
-3

0

50

100

150

200

c
o
u
n
t

(d) Histogram on the end effector orientation error for the reconstructed postures from MIP IK. The number of intervals per R(i, j)
is 2 (left), 4 (middle) and 8 (right).

Figure 15. Performance of the MIP IK solver on ABB IRB140 arm for the samples in Fig 14.

of intervals per R(i, j) 2 4 8
total # of binary variables 54 108 162

average time to find a solution (s) 0.2338 4.2 43.4
average time to detect global infeasibility (s) 0.0173 0.1151 1.126
average end effector orientation error (deg) 3.16× 10−4 3.01× 10−4 2.98× 10−4

average end effector position error (cm) 15.08 2.6 0.48
percentage of detected global infeasibility 93.19% 94.87% 95.43%

Table 2. The average performance of the mixed integer IK solver on ABB IRB140 robot, for different
number of intervals per R(i, j). This table summarizes the histograms in Fig 15.

Prepared using sagej.cls

Dai, Izatt and Tedrake 15

Figure 16. MIP IK detects global infeasibility for the gripper to
achieve antipodal grasp on the mug within the small cabinet. The
collision geometry of the gripper is represented by the red
spheres, and the free space is represented by the polytopes in
shaded colors. The cabinet top is covered by glass, so the gripper
cannot directly grasp the mug from the top.

Figure 17. Enlarge the cabinet size in Fig 16 by 2 cm along the
green axis direction, the MIP IK can find an antipodal grasp on
the mug. On the other hand, the MIP IK detects that it is
infeasible to find a path such that the mug can move from outside
the cabinet, to the grasping posture.

If this mixed-integer problem is infeasible, it certifies there
doesn’t exist an approaching path. Finally in Fig 18 we
further enlarge the cabinet size, and the MIP IK took 9
seconds to find an approaching path. Hence we show that we
can use MIP IK to check the feasibility of the posture/path
with the gripper only, before forwarding the problem to a
nonlinear optimization based IK solver.

4.2.5 Parallel Stewart platform Finally, we show that our
approach can find the solution to the forward-kinematics
problem on parallel robots like the Stewart platform Stewart
(1965), with constraints that the leg length are fixed. The
schematic of this Stewart platform is shown in Fig 19. Here
we adopt the settings in Dietmaier (1998), that the leg length
li = |AiBi| is fixed, and position BpAi

of Ai in base B and
position PpBi of point Bi in the platform P are given in
Table 3. It is known that this platform has 40 possible poses.

Since the constraint

|AiBi|2 = |BpP + BRP
PpBi

− BpAi
|2 = l2i (21)

(a)
(b)

Figure 18. The approaching sequence of the gripper to the
mug. The cabinet size is further enlarged from that in Fig 17.
The gripper starts outside the cabinet, and ends up with an
antipodal grasp on the mug. The collision geometry of the
gripper (red spheres on the palm and fingers) and 3 collision
free polytopes are shown in Fig 18a. All of the 6 way points are
visualized in Fig 18b.

Figure 19. A general Stewart platform Porta et al.
(2009).

is a bilinear function of the platform position BpP and
orientation BRP , we can again approximate constraint (21)
as mixed-integer convex constraint, through McCormick
envelope technique introduced in Section 2.1, and find
all the solutions using MIP. In Fig 20, we show our
approximated solution together with the analytical solution
found in Dietmaier (1998). Our MIP solver can find
all approximated solutions, as each of the 40 analytical
solutions is accompanied by an approximated solution
found through MIP. The converse is not true, that the
approximated solution is not always accompanied by an
analytical solution, there are some approximated solutions
(blue dots in Fig 20) that have no analytical solutions
(red dots) in their neighbourhood, since the approximated
solution only satisfies the relaxed constraints (for example,
x = 0 approximately satisfies the constraint x2 + 10−6 = 0,
but there is no actual solution in the neighbourhood). We also
draw the histogram on the constraint violation |li − |AiBi||
for the approximated solutions in Fig 21. All the violation is

Prepared using sagej.cls

16 Journal Title XX(X)

-0.8

-0.6

-0.4

0.5

-0.2

z
 (

m
)

0

y (m)

0.90

0.2

0.8

x (m)

0.4

0.7
-0.5 0.6

0.5

analytical result

MIP approximated result

Figure 20. The solution to the Stewart platform for the
platform origin position BpP .

0 0.5 1 1.5 2 2.5 3

Leg length constraint violation (cm)

0

2

4

6

8

10

12

14

16

18

20

C
o
u
n
t

Figure 21. Histogram on leg length constraint violation for
the Stewart platform.

less than 3 cm. The computation time for finding all solutions
is 340s.

5 Conclusion and Discussion
In this paper we propose a mixed-integer convex relaxation
of the non-convex SO(3) constraint, and formulate a mixed-
integer convex optimization program to solve the inverse
kinematics problem globally with generic constraints. We
show that this relaxation is relatively tight, and our IK
approach can either produce an approximate solution,
or prove that the solution does not exist globally.
We demonstrate results when applying our approach on
manipulators, a quadruped robot and a parallel Stewart
platform.

In the future, we would like to apply our mixed-integer
optimization approach to trajectory optimization problems,
to combine the kinematics constraints in this paper, together
with dynamic constraints. Some trajectory optimization
problems, such as dexterous manipulation or walking
gait optimization, involves frequent change of contact.
The contact state (active/inactive contact) can naturally
be represented though binary variables, and thus can be
incorporated into a mixed-integer optimization formulation.

6 Acknowledgement
This material is based upon work supported by the National
Science Foundation Graduate Research Fellowship under

Grant No. 1122374. We would also like to thank our
colleagues at Toyota Research Institute and MIT Robot
Locomotion Group for the valuable discussions.

References

Aceituno-Cabezas B, Mastalli C, Dai H, Focchi M, Radulescu A,
Caldwell DG, Cappelletto J, Grieco JC, Fernández-López G
and Semini C (2018) Simultaneous contact, gait, and motion
planning for robust multilegged locomotion via mixed-integer
convex optimization. IEEE Robotics and Automation Letters
3(3): 2531–2538.

Achterberg T and Wunderling R (2013) Mixed integer program-
ming: Analyzing 12 years of progress. In: Facets of combina-
torial optimization. Springer, pp. 449–481.

Bates DJ, Hauenstein JD, Sommese AJ and Wampler CW
(2013) Numerically solving polynomial systems with Bertini,
volume 25. SIAM.

Beale EML and Tomlin JA (1970) Special facilities in a general
mathematical programming system for non-convex problems
using ordered sets of variables. OR 69(447-454): 99.

Beeson P and Ames B (2015) Trac-ik: An open-source library for
improved solving of generic inverse kinematics. In: Humanoid
Robots (Humanoids), 2015 IEEE-RAS 15th International
Conference on. IEEE, pp. 928–935.

Berenson D, Srinivasa S and Kuffner J (2011) Task space regions:
A framework for pose-constrained manipulation planning. The
International Journal of Robotics Research 30(12): 1435–
1460.

Bertsekas DP (1999) Nonlinear programming. Athena scientific
Belmont.

Bertsimas D and Tsitsiklis JN (1997) Introduction to linear
optimization.

Bertsimas D and Weismantel R (2005) Optimization over integers,
volume 13. Dynamic Ideas Belmont.

Blackmore L, Ono M, Bektassov A and Williams BC (2010)
A probabilistic particle-control approximation of chance-
constrained stochastic predictive control. IEEE transactions
on Robotics 26(3): 502–517.

Boyd S and Vandenberghe L (2004) Convex optimization.
Cambridge university press.

Buss SR (2004) Introduction to inverse kinematics with jacobian
transpose, pseudoinverse and damped least squares methods.
IEEE Journal of Robotics and Automation 17(1-19): 16.

Chang AX, Funkhouser T, Guibas L, Hanrahan P, Huang Q, Li Z,
Savarese S, Savva M, Song S, Su H, Xiao J and Yu F (2015)
Shapenet: An information-rich 3d model repository. arXiv
preprint arXiv:1512.03012 .

CPLEX I (2016) 12.7. 0 users manual.
Craig JJ (2005) Introduction to robotics: mechanics and control,

volume 3.
Dai H, Izatt G and Tedrake R (2017) Global inverse kinematics

via mixed-integer convex optimization. In: International
Symposium on Robotics Research.

Dai H, Majumdar A and Tedrake R (2015) Synthesis and
optimization of force closure grasps via sequential semidefinite
programming. In: International Symposium on Robotics
Research.

Dai H, Valenzuela A and Tedrake R (2014) Whole-body motion
planning with centroidal dynamics and full kinematics.

Prepared using sagej.cls

Dai, Izatt and Tedrake 17

i BpAi
PpBi

li
1 (0, 0, 0) (0, 0, 0) l1 = 1
2 (1.107915, 0, 0) (0.542805, 0, 0) l2 = 0.645275
3 (0.549094, 0.756063, 0) (0.956919, 0.528915, 0) l3 = 1.086284
4 (0.735077, 0.223935, 0.525991) (0.665885, 0.353482, 1.402538) l4 = 1.503439
5 (0.514188, 0.526063, 0.368418) (0.478359, 1.158742, 0.107672) l5 = 1.281933
6 (0.590473, 0.094733, 0.205018) (0.137087, 0.235121, 0.353913) l6 = 0.771071

Table 3. Geometric parameters of the Stewart platform Dietmaier (1998)

In: Humanoid Robots (Humanoids), 2014 14th IEEE-RAS
International Conference on. IEEE, pp. 295–302.

Deits R and Tedrake R (2014) Footstep planning on uneven terrain
with mixed-integer convex optimization. In: Humanoid Robots
(Humanoids), 2014 14th IEEE-RAS International Conference
on. IEEE.

Deits R and Tedrake R (2015a) Computing large convex regions
of obstacle-free space through semidefinite programming. In:
Algorithmic foundations of robotics XI. Springer, pp. 109–124.

Deits R and Tedrake R (2015b) Efficient mixed-integer planning for
uavs in cluttered environments. In: Robotics and Automation
(ICRA), 2015 IEEE International Conference on. IEEE.

Diankov R (2010) Automated construction of robotic manipulation
programs. PhD Thesis, Carnegie Mellon University.

Dietmaier P (1998) The stewart-gough platform of general
geometry can have 40 real postures. In: Advances in Robot
Kinematics: Analysis and Control. Springer, pp. 7–16.

Ding Y, Li C and Park HW (2018) Single leg dynamic motion
planning with mixed-integer convex optimization. In: 2018
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, pp. 1–6.

Fallon M, Kuindersma S, Karumanchi S, Antone M, Schneider
T, Dai H, D’Arpino CP, Deits R, DiCicco M, Fourie D,
Koolen T, Marion P, Posa M, Valenzuela A, Yu KT, Shah J,
Iagnemma K, Tedrake R and Teller S (2015) An architecture for
online affordance-based perception and whole-body planning.
Journal of Field Robotics 32(2): 229–254.

Forrest J, Ralphs T, Vigerske S, LouHafer, Kristjansson B, jpfasano,
EdwinStraver, Lubin M, Santos HG, rlougee and Saltzman
M (2018) coin-or/cbc: Version 2.9.9. DOI:10.5281/zenodo.
1317566. URL https://doi.org/10.5281/zenodo.

1317566.
Gurobi Optimization I (2016) Gurobi optimizer reference manual.

URL http://www.gurobi.com.
Haralick RM, Joo H, Lee CN, Zhuang X, Vaidya VG and Kim MB

(1989) Pose estimation from corresponding point data. IEEE
Transactions on Systems, Man, and Cybernetics 19(6): 1426–
1446.

Hauser K, Wang S and Cutkosky M (2017) Efficient equilibrium
testing under adhesion and anisotropy using empirical contact
force models. In: In proceedings of Robotics: Science and
Systems (RSS).

Huchette J and Vielma JP (2016) Small independent branching
formulations for unions of v-polyhedra. arXiv preprint
arXiv:1607.04803 .

Husty ML, Pfurner M and Schröcker HP (2007) A new and efficient
algorithm for the inverse kinematics of a general serial 6r
manipulator. Mechanism and machine theory 42(1): 66–81.

Izatt G, Dai H and Tedrake R (2017) Globally optimal object pose
estimation in point clouds with mixed-integer programming.

In: International Symposium on Robotics Research.
Landry B, Deits R, Florence PR and Tedrake R (2016) Aggressive

quadrotor flight through cluttered environments using mixed
integer programming. In: Robotics and Automation (ICRA),
2016 IEEE International Conference on. IEEE, pp. 1469–1475.

Lawler EL and Wood DE (1966) Branch-and-bound methods: A
survey. Operations research 14(4): 699–719.

Li TY (2003) Solving polynomial systems by the homotopy
continuation method. Handbook of numerical analysis 11:
209–304.

Manocha D and Canny JF (1992) Real time inverse kinematics for
general 6r manipulators. In: Robotics and Automation, 1992.
Proceedings., 1992 IEEE International Conference on. IEEE,
pp. 383–389.

Marchand H, Martin A, Weismantel R and Wolsey L (2002) Cutting
planes in integer and mixed integer programming. Discrete
Applied Mathematics 123(1-3): 397–446.

Mason MT (2001) Mechanics of robotic manipulation. MIT press.
McCormick GP (1976) Computability of global solutions to

factorable nonconvex programs: Part iconvex underestimating
problems. Mathematical programming 10(1): 147–175.

Mellinger D, Kushleyev A and Kumar V (2012) Mixed-integer
quadratic program trajectory generation for heterogeneous
quadrotor teams. In: Robotics and Automation (ICRA), 2012
IEEE International Conference on. IEEE, pp. 477–483.

Misener R and Floudas CA (2012) Global optimization of mixed-
integer quadratically-constrained quadratic programs (miqcqp)
through piecewise-linear and edge-concave relaxations. Math-
ematical Programming : 1–28.

Mosek A (2010) The mosek optimization software. Online at
http://www. mosek. com 54(2-1): 5.

Murray RM, Li Z, Sastry SS and Sastry SS (1994) A mathematical
introduction to robotic manipulation. CRC press.

Pang T and Tedrake R (2018) A robust time-stepping scheme for
quasistatic rigid multibody systems .

Peiper DL (1968) The kinematics of manipulators under computer
control. Technical report.

Porta JM, Ros L and Thomas F (2009) A linear relaxation
technique for the position analysis of multiloop linkages. IEEE
Transactions on Robotics 25(2): 225–239.

Porta JM, Ros L, Thomas F and Torras C (2005) A branch-and-
prune solver for distance constraints. IEEE Transactions on
Robotics 21(2): 176–187.

Qiao S, Liao Q, Wei S and Su HJ (2010) Inverse kinematic
analysis of the general 6r serial manipulators based on double
quaternions. Mechanism and Machine Theory 45(2): 193–199.

Raghavan M and Roth B (1990) Kinematic analysis of the 6r
manipulator of general geometry. In: International symposium
on robotics research. pp. 314–320.

Prepared using sagej.cls

https://doi.org/10.5281/zenodo.1317566
https://doi.org/10.5281/zenodo.1317566
http://www.gurobi.com

18 Journal Title XX(X)

Saunderson J, Parrilo PA and Willsky AS (2015) Semidefinite
descriptions of the convex hull of rotation matrices. SIAM
Journal on Optimization 25(3): 1314–1343.

Schrijver A (1998) Theory of linear and integer programming. John
Wiley & Sons.

Singh A, Ghabcheloo R, Muller A and Pandya H (2018) Combining
method of alternating projections and augmented lagrangian
for task constrained trajectory optimization.

Stewart D (1965) A platform with six degrees of freedom.
Proceedings of the institution of mechanical engineers 180(1):
371–386.

Tedrake R and the Drake Development Team (2016) Drake: A
planning, control, and analysis toolbox for nonlinear dynamical
systems. URL http://drake.mit.edu.

Valenzuela AK (2016) Mixed-integer convex optimization for
planning aggressive motions of legged robots over rough
terrain. PhD Thesis, Massachusetts Institute of Technology.

Varedi S, Daniali H and Ganji D (2009) Kinematics of an offset
3-upu translational parallel manipulator by the homotopy
continuation method. Nonlinear Analysis: Real World
Applications 10(3): 1767–1774.

Vielma JP and Nemhauser GL (2011) Modeling disjunctive
constraints with a logarithmic number of binary variables and
constraints. Mathematical Programming 128(1): 49–72.

Williams HP (2013) Model building in mathematical programming.
John Wiley & Sons.

A Appendix

A.1 Tighter relaxation on SO(3) constraint

In Section 3.1, we relax the SO(3) constraint, by cutting
the range [−1, 1] into smaller intervals, and approximate the
SO(3) constraint (1) by replacing the bilinear products and
quadratic terms with slack variables in their convex hulls
within each interval. In this subsection, we introduce an
alternative approach to relax the SO(3) constraint as mixed-
integer convex constraints. This approach is more geometric,
and it has been used in Izatt et al. (2017). The constraints
formulated in this section can be imposed in addition to the
constraints in Section 3.1, to give a tighter approximation on
SO(3) constraint.

Geometrically, for each 3D column vector ui ∈ R3 in the
rotation matrixR, the unit length constraint uT

i ui = 1 ((1a))
means ui is on the surface of a 3D unit sphere. By cutting
the range of each entry R(i, j), namely [−1, 1], into smaller
intervals [φk, φk+1] as we did in 3.1, the 3D space that ui
lives in is segmented to small boxes, by planes perpendicular
to either x, y or z axes. In Fig. 22a, we show the sphere
together with the boxes in the first orthant (x, y, z ≥ 0). The
intersection region between each box and the surface of the
sphere is depicted in Fig. 22b.

Although each intersection region is non-convex, we can
readily formulate its convex hull as {ui|uT

i ui ≤ 1, Aui ≤
b}. Namely the boundary of the convex hull includes the
sphere surface, and some planes inside the sphere. As an
example, the convex hull of the shaded region in Fig. 22b

can be written as

uT
i ui ≤ 1 (22a)

nT
1 ui ≥ n1(2) (22b)

nT
2 ui ≥ n2(2) (22c)

0 ≤ ui(1) ≤ 0.5 (22d)
0 ≤ ui(3) ≤ 0.5 (22e)

where n1,n2 are the normal vectors of the planes, shown
in Fig. 22c. Since both planes pass the point [0, 1, 0]T,
the right-hand side of (22b)(22c) are the inner-product
[0, 1, 0]n1, [0, 1, 0]n2 respectively.

For each column vector ui, to approximate the unit length
constraint uT

i ui = 1, we will always impose constraint (22a)
to bound the vector to be within the unit sphere. In order to
push the vector to the boundary of the sphere, depending
on which box the vector is in, we will activate the linear
constraints, such as (22b)-(22e) using big-M tricks in mixed-
integer optimization Bertsimas and Weismantel (2005). The
binary variables introduced in the sos2 constraint (3) can
be used to determine the activated box. The big-M trick is
a common technique to activate constraint based on binary
variables. For example, to active linear constraint aT x ≤ b
when binary variable z = 1, we can impose the constraint
aT x ≤ b+M(1− z) where M is a big positive number.

In order to relax the orthogonality constraint uT
i uj = 0,

we consider to introduce a given vector v that approximates
ui within one of the intersection region, and then impose
the orthogonality constraint as vT uj ≈ 0 instead. The
geometric intuition is illustrated in Fig 23 in a 2D plot.
When the vector ui is within on of the intersection region
in Fig.22b, we can find the “center” of that intersection
region as v, also with the bound that vT ui ≥ cos θ, namely
∠(v,ui) ≤ θ for all ui within the intersection region. (The
procedure to find such v and θ will be explained in detail
in Section A.2.) The orthogonality constraint ∠(ui,uj) =
90◦ implies |∠(v,uj)− 90◦| ≤ θ, namely vT uj ≤ sin θ.
Algebraically, when the binary variables indicate that ui is
in an intersection region, we can impose the linear constraint

vT uj ≤ sin θ (23)

as a relaxation of the orthogonality constraint uT
i uj = 0.

In order to relax the constraint uk − ui × uj = 0, we
again consider to replace ui by the vector v in the “center”
of the intersection region in which ui is, we thus obtain the
following constraint

|uk − v × uj |22 (24a)

= |uk|22 + |v × uj |22 − 2uT
k (v × uj) (24b)

= 1 + |v × uj |22 − 2vT (uj × uk) (24c)

= 1 + |v × uj |22 − 2vT ui (24d)

≤ 1 + |v × uj |22 − 2 cos θ (24e)
≤ 1 + 1− 2 cos θ (24f)

(24c) holds because uk should be a unit length
vector, and the property of cross product aT (b× c) =
bT (c× a)∀a,b, c. (24d) holds because uj × uk = ui. The
inequality (24e) is obtained from the assumption vT ui ≥
cos θ when we approximate ui with the “center” vector v.

Prepared using sagej.cls

http://drake.mit.edu

Dai, Izatt and Tedrake 19

-1
-1

-0.5

0

-1

z

0.5

-0.5

1

y

0

x

0
0.5

11

(a) The unit-length sphere, together with the boxes
obtained by cutting 3D space at 0, 0.5, 1 on each axis.
Each plane intersects with the surface of the sphere along
the red curves. The first orthant is cut into 8 boxes.

-1
-1

-0.5

0

-1

z

0.5

-0.5

1

y

0

x

0
0.5

11

(b) The intersection region between each box and the
surface of the sphere in the first orthant. The boundaries of
the regions are the red curves in Fig. 22a. Note that
although there are 8 boxes in Fig.22a, the box
0 ≤ x, y, z ≤ 0.5 does not intersect with the surface of the
sphere, thus there are only 7 regions on the sphere
surface. We highlight the bottom right region in shaded
color as an example for analysis. This region is the
intersection of the sphere surface with the box
0 ≤ x ≤ 0.5, 0.5 ≤ y ≤ 1, 0 ≤ z ≤ 0.5.

0

0.1

0.2

0.3

0.4

0

z

0.5

0.2

x

n
1

0.4

n
2

y
1.110.90.80.7

0

0.1

0.7

0.2

0

z

0.3

0.8 0.1

0.4

y

0.2

x

0.9

0.5

0.3
1 0.4

0.51.1

n
2

n
1

(c) Fig.22c are the convex hull of the shaded region in Fig.22b
from two perspectives. n1,n2 are the normal vectors of the
planes, as the boundary of the convex hull region.

Lastly (24f) is valid because |v × uj |2 ≤ 1 as both v,uj
are unit length vectors. As a result, we can impose (24)
as a convex quadratic constraint on the decision variables
uk,uj to approximate the constraint uk = ui × uj in SO(3)
constraint.

Figure 23. If the unit length vector ui is within a region (the red
arc) on the sphere surface, we can find the “center” of that
region as v with ∠(ui,v) ≤ θ. The orthogonal constraint that
∠(ui,uj) = 90◦ implies that |∠(v,uj)− 90◦| ≤ θ.

To conclude, we can divide the range [−1, 1] into small
intervals, and then consider the approximation of SO(3)
constraint within each interval. To do so, we segment the unit
sphere surface into small regions, depicted in Fig. 22b, and
then impose constraint (22)(23)(24) as a relaxation of SO(3)
constraint. By imposing these constraints in addition to the
relaxation in Section 3.1, we obtain a tighter relaxation on
SO(3) constraint, as can be seen in Table 4. minR̄ |R̄ei +
R̄ej |2 is slightly larger with the additional constraints
formulated in this section.

A.2 Computing “center” vector on the
intersection region

We aim to compute the “center vector” v in the middle of
each region. By “center vector”, we mean v minimizes the
largest angle ∠(v,ui) for all vector ui in the intersection
region. To this end, we denote the intersection region as S,
and solves the following optimization problem to find the
center vector v.

min
v∈S

max
ui∈S

∠(v,ui) (25a)

= min
v∈S

max
ui∈S

arccos(vT ui) (25b)

From (25a) to (25b), we use the fact that since both v,ui
have unit length (as they are both on S), thus ∠(v,ui) =
arccos(vT ui). The optimal objective function in (25) is the
angle θ, satisfying ∠(v,ui) ≤ θ ∀ui ∈ S, namely θ is the
maximal angle between the “center vector” v and any vector
ui ∈ S.

Since arccos is monotonically decreasing, (25b) is
equivalent to the following a max-min problem without
arccos

max
v∈S

min
ui∈S

vT ui (26)

(26) and (25) has the same optimal v,ui, and the optimal
objective of (26) is cos θ.

In order to solve this max-min problem (26), we aim to
first convert (26) to a maximization problem, by obtaining
the optimal solution to the inner minimization problem
minui∈S v

T ui for a fixed vector v. After the inner
minimization problem is solved for a fixed v, we can then

Prepared using sagej.cls

20 Journal Title XX(X)

of intervals 2 4 6 ∞
With constraints in Section 3.1 0.60229 1.22474 1.32667 1.414

With constraints in both Section 3.1 and A.1 0.60302 1.25649 1.33283 1.414
Table 4. minR̄

∣∣R̄ei + R̄ej

∣∣
2

as the tightness measure of the mixed-integer convex
relaxation on SO(3).

Figure 24

maximize over v ∈ S. In the following discussion we will
show that when v is fixed, the optimal ui to the inner
minimization problem minui v

T ui is always obtained at one
of the corners of S.

Lemma The minimal of

min
ui∈S

vT ui (27)

is obtained at one of the corners pj of the intersection region
S, for a given vector v ∈ S.

Proof. Without loss of generality, we prove the lemma
for the highlighted intersection region in Fig 22b, namely
{ui|uT

i ui = 1, 0 ≤ ui(1) ≤ 0.5, 0.5 ≤ ui(2) ≤ 1, 0 ≤
ui(3) ≤ 0.5}, and show that vT ui ≥ minj v

T pj where v
is a given point on the surface patch, pj is the corner of the
intersection region, shown in Fig 24.

To do so, we first draw an arc (the blue arc) crossing
ui, as the intersection between the plane perpendicular
to z axis, and the surface region. We will show that
the minimal of vT w over w along the arc occurs
at one of the two ends p̄1, p̄2. minw on the blue arc v

T w
is equivalent to minγ v(1) cos γ + v(2) sin γ, where γ =
atan2(w(2),w(1)). The range of γ is within [0◦, 90◦]. The
minimal of this concave function occurs at its boundary,
namely either p̄1, p̄2. Likewise, we can consider the two
green arcs in Fig 24, and the minimal of minw vT w on the
green arc also occurs at one of the two ends. Thus we proved
that vT ui ≥ minj v

T p̄j ≥ minj v
T pj .

On the other hand, pj ∈ S, so by taking ui = pj we
obtain the minimal vT ui.

Using the lemma above, we can replace the inner
minimization minui∈S v

T ui in (26) with minj v
T pj , and

(26) is equivalent to maxv∈S minj v
T pj , which could be

reformulated as the following maximization problem with

the slack variable t, which represents minj v
T pj .

max
v,t

t (28a)

s.t vT pj ≥ t ∀j (28b)
v ∈ S (28c)

The optimization problem (28) is equivalent to (26). But
now instead of solving a max-min problem as in (26), we
only need to solve a maximization problem (28), which is
a lot easier. (28) is almost a convex optimization problem,
except constraint (28c), as S is not a convex set. On the other
hand, S is on the boundary of the convex sphere vT v ≤ 1,
and it is easy to see that if we replace the constraint v ∈ S
with v on the surface of the sphere vT v = 1, the optimal
solution is unchanged, as the “center vector” v would still
be on S, even if we relax the range of v to the whole sphere
surface. Moreover, we know that the optimal value of (28)
occurs when v has the longest length, so we can replace the
non-convex constraint vT v = 1 with the convex constraint
vT v ≤ 1, and expect the same optimal solution. Namely
we solve the following convex (second order conic) problem
which is equivalent to (28)

max
v,t

t (29a)

s.t vT pj ≥ t ∀j (29b)

vT v ≤ 1 (29c)

The optimal v to (29) is the “center vector”, and the optimal
objective to (29) is cos θ.

As a result, we can find the “center” vector v in the
intersection region S, together with the maximal angle
difference θ between v and ui in the same region, by
solving the convex optimization problem (29) above. This
optimization problem (29) is solved before solving the
mixed-integer problem in Section A.1, to set up constraints
(23) (24) in the mixed-integer problem.

Prepared using sagej.cls

	1 Introduction
	2 Background
	2.1 Relaxing non-convex quadratic constraint
	2.2 Mixed-integer programming

	3 Approach
	3.1 Rotation constraint relaxation
	3.2 Inverse kinematics formulation
	3.2.1 Joint limits
	3.2.2 Kinematic constraints on link position and orientation
	3.2.3 Collision avoidance

	3.3 Reconstruct joint angle by projecting back to SO(3)

	4 Results
	4.1 Tightness of rotation matrix relaxation
	4.2 Inverse Kinematics
	4.2.1 KUKA IIWA arm
	4.2.2 Little Dog
	4.2.3 ABB IRB140 6R robot arm
	4.2.4 Schunk Gripper
	4.2.5 Parallel Stewart platform

	5 Conclusion and Discussion
	6 Acknowledgement
	A Appendix
	A.1 Tighter relaxation on SO(3) constraint
	A.2 Computing ``center" vector on the intersection region

