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Abstract In this paper we present a novel approach for synthesizing and optimizing
both positions and forces in force closure grasps. This problem is a non-convex opti-
mization problem in general since it involves constraints that are bilinear; in partic-
ular, computing wrenches involves a bilinear product between grasp contact points
and contact forces. Thus, conventional approaches to this problem typically employ
general purpose gradient-based nonlinear optimization. The key observation of this
paper is that the force closure grasp synthesis problem can be posed as a Bilinear
Matrix Inequality (BMI), for which there exist efficient solution techniques based
on semidefinite programming. We show that we can synthesize force closure grasps
on different geometric objects, and by maximizing a lower bound of a grasp metric,
we can improve the quality of the grasp. While this approach is not guaranteed to
find a solution, it has a few distinct advantages. First, we can handle non-smooth
but convex positive semidefinite constraints, which can often be important. Second,
in contrast to gradient-based approaches we can prove infeasibility of problems. We
demonstrate our method on a 15 joint robot model grasping objects with various
geometries. The code is included in https://github.com/RobotLocomotion/drake

1 Introduction
Force closure, which measures the ability of a grasp to resist wrench disturbances,
is an important property in grasping and has an extensive literature [18, 17]. A com-
monly observed fact is that synthesis of force closure grasps is a non-convex op-
timization problem, mostly due to the fact that computing the torque on an object
involves a bilinear product between contact locations and contact forces. As a re-
sult, most approaches resort to gradient-based non-convex nonlinear optimization
to synthesize a force closure grasp [5]. On the other hand, when fixing the contact
locations, checking if the given contact achieve force closure becomes a convex op-
timization problem over contact forces only [2, 10]. Moreover, several grasp metrics
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have been introduced to measure the quality of a force closure grasp. These involve
computing the smallest wrench that the grasp cannot resist with bounded contact
forces [12, 9, 15]. Liu et al. optimized the contact locations based on such a metric
with nonlinear optimization [13].

In this paper we exploit the observation that although the force-closure grasp
synthesis problem involves non-convex constraints, the bilinear structure of the con-
straints makes it special. In particular we pose the problem of finding (and opti-
mizing) a force closure grasp as a Bilinear Matrix Inequality (BMI). There exist
powerful tools to solve BMIs via sequences of semidefinite programming problems
(SDP), which is a special form of convex optimization.

Besides satisfying the force closure constraint, the contact locations should also
be reachable by the hand, subject to robot kinematics constraints. Traditionally find-
ing robot posture is solved by the Jacobian transpose method [4] or nonlinear op-
timization [7] on robot minimal coordinates, which involve non-polynomial (e.g.
trigonometric) functions. Recently Rosales et al. searched for hand posture by solv-
ing linear and bilinear equations of robot maximal coordinates, through an iterative
linear optimization scheme [20]. We will adopt the similar idea here to formulate the
inverse kinematics problem as BMIs, and solve them through sequential semidefi-
nite programming.

Fig. 1 Optimized force closure grasp of a 15 joints robot on a cylinder, from two perspectives

Sequential semidefinite programming is a common technique in solving bilinear
matrix inequalities (BMI) [11, 8]. It relaxes the original non-convex problem to a
convex SDP, and in each iteration solves a convex relaxation until convergence. The
advantage of this approach over gradient based nonlinear-optimization include

1. The ability to incorporate non-smooth positive semidefinite (psd) constraints,
which appear frequently in grasp planning. The gradient-based nonlinear opti-
mization cannot handle such constraints gracefully due to non-smoothness.

2. Proof of infeasibility. If the relaxed convex problem is infeasible, then the orig-
inal non-convex problem is also infeasible. Nonlinear optimization cannot guar-
antee that a problem is globally infeasible, when locally it fails to find a solution.

We will introduce the background on solving BMI with sequential SDP in Sec-
tion 2, and elaborate how this technique can be applied to synthesis and optimization
of force closure grasps in Section 3. Our results are shown in Section 4.
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2 Background
As we will see in Section 3, finding force closure grasps for a broad class of object
geometries can be posed as a bilinear matrix inequality (BMI), which is a particular
kind of optimization problem. In this section we provide an introduction to BMIs
along with methods to find feasible solutions to them.

2.1 Bilinear Matrix Inequalities
Bilinear matrix inequalities (BMIs) are problems of the following form:

Find x ∈ Rn (1)

s.t. F0 +
N

∑
i=1

xiFi +
N

∑
i=1

N

∑
j=1

xix jFi j � 0, (2)

where F0,Fi,Fi j are constant m×m symmetric matrices. � 0 means the matrix on
the left hand-side is positive semidefinite (psd), i.e. all the eigenvalues are non-
negative; the special case is when the matrix is just a scalar, then � 0 is the same as
≥ 0. We also note that BMIs include constraints that are both bilinear (i 6= j) as well
as quadratic (i = j).

2.2 Finding Feasible Solutions to BMIs
While it is well known that BMIs are NP-hard in general [11], there exist very good
heuristic methods based on semidefinite programming (SDP) for solving them. Here
we review the method presented in [11] for finding feasible solutions to BMIs.

The first step is to write the BMI (1) as a rank-constrained Linear Matrix In-
equality (LMI) with an additional variable X ∈ RN×N :

Find: x ∈ RN ,X ∈ RN×N (3)

s.t. F0 +
N

∑
i=1

xiFi +
N

∑
i=1

N

∑
j=1

Xi jFi j � 0, (4)

M :=

[
X x

xT 1

]
� 0, (5)

rank(M) = 1. (6)

Here, each occurrence of bilinear terms xix j in (1) has been replaced by the (i, j)
element of the decision matrix X . Constraints (5)(6) have been introduced to ensure
that X = xxT , resulting in the problems (3) and (1) having equivalent constraints.
We note that without the rank constraint (6), problem (3) is a semidefinite program,
which is a particular kind of convex optimization problem and can be solved effi-
ciently (e.g., using interior point methods) [3].

The key idea in [11] is to drop the rank constraint in (3) and solve a sequence of
SDPs that attempt to minimize the rank of M, as shown in Algorithm 1.
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Algorithm 1 Finding feasible solutions to BMIs
Minimize trace(X) subject to constraints (4) and (5). If problem is infeasible, then problem (1)
is infeasible. If problem is feasible, initialize x(0) and X (0) with the solution. Initialize k = 1.
while ¬converged do

1. Minimize trace(X (k)) - 2x(k−1)T x(k) subject to the constraints (4) and (5).
2. Set k← k+1

end while

Note that the first step in Algorithm 1 is the standard trace heuristic for min-
imizing the rank of a positive semidefinite matrix [3, 8]. The justification for the
proceeding steps in the algorithm is based on the observation that the constraint (5)
implies (by the Schur complement lemma) that X � 0 and X−xxT � 0. This in turn
implies that trace(X)− xT x ≥ 0 with equality holding if and only if X = xxT (i.e.
when we have a feasible solution to (1)). Thus, Algorithm 1 proceeds by linearizing
the function trace(X)− xT x and minimizing this linearization at every iteration. A
termination criterion for Algorithm 1 is provided by the following Lemma in [11].

Lemma 1. [11] The following sequence is bounded below by 0 and non-increasing
for k = 1,2, . . . :

tk := trace(X (k))−2x(k−1)T x(k)+ x(k−1)T x(k−1).

Hence, this sequence converges to a value topt ≥ 0. Equality holds if and only if
X (k) = x(k)x(k)T as k→ ∞.

Lemma 1 provides us with a convergence criterion for Algorithm 1. Assuming that
the first step in Algorithm 1 is feasible (if this is not the case, the original BMI is
infeasible), then convergence of the value of tk to 0 implies that we have found a
feasible solution to the BMI. In the case where topt is not 0, nothing can be inferred.

2.3 Implementation Details
An important detail in implementing Algorithm 1 is that the SDP constraint (5)
can be quite large if one has many decision variables x. However, it is typically
the case that a large number of variables do not multiply with each other as bilin-
ear products. Formally, consider a graph whose vertices are the variables in x. Two
vertices are connected by an edge if the corresponding variables appear in a bilin-
ear product in some constraint. Then we can partition the variables x into subsets
xI1 ,xI2 , . . . ,xIk , . . . ,xIK corresponding to the connected components of the graph. We
can then replace the constraints (5) and (6) by the following constraints:

Mk :=

[
XIk,Ik xIk

xT
Ik 1

]
� 0, rank(Mk) = 1, ∀k = 1, . . . ,K. (7)

The cost function in Algorithm 1 is then replaced by the sum of the traces of the ma-
trices XIk,Ik . While we end up with more psd constraints in general, each constraint
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involves a smaller matrix. Since SDP solve times typically scale poorly with the size
of the largest psd constraint, we observe large computational gains in practice.

Another important implementation detail is to employ a randomization step in
Algorithm 1, as described in [11]. In each iteration k of the algorithm, we sam-
ple a point x(k)rand from the Gaussian distribution with mean x(k) and covariance
X (k)− x(k)x(k)T , where (x(k),X (k)) is a solution to the SDP at the k-th iteration, and
use cost function trace(X (k+1))− 2x(k)Trandx(k+1) in k + 1th iteration. In practice, the
randomization step prevents the algorithm from getting stuck in local minima.

Finally, we note that while we have restricted ourselves so far to feasibility prob-
lems, it is also possible to optimize cost functions subject to BMI constraints. We
will discuss this in the context of optimizing grasp metrics in Section 3.3.

3 Approach

3.1 Force Closure
The force closure property for n grasp points xi ∈ R3, i = 1, ...,n, is achieved when
these grasp points can resist arbitrary external wrenches with contact forces fi at
point xi lying within the friction cone. Mathematically, force closure is formulated
as the existence of xi and fi satisfying the following constraints:

GG′ � εI6×6 (8a)
G f = 0 (8b)
fi ∈ int(FCi) (8c)
xi ∈ Si (8d)

where

G =

[
I3×3 I3×3 . . . I3×3
bx1c× bx2c× . . . bxnc×

]
, bxic× =

 0 −x(3)i x(2)i

x(3)i 0 −x(1)i

−x(2)i x(1)i 0

 ∈ R3×3 (9)

bxic× is the skew-symmetric matrix representing the cross product bxic× fi = xi× fi,
ε is a small given positive scalar, constraint (8a) is the same as G being full rank;
f = [ f T

1 f T
2 . . . f T

n ]T ∈ R3n; int(FCi) is the interior of the friction cone FCi at grasp
point xi, and Si is the admissible contact region of grasp point xi (for example, the
surface of the object being grasped).

We note that condition (8a) is quadratic on xi, and (8b) is bilinear on xi and
fi. Unlike some existing approaches that fix the contact points xi and search only
contact force fi through convex optimization, we can search both xi and fi simul-
taneously by solving these BMIs through sequential SDP, as introduced in Section
2.2. In the following two subsections, we will show that friction cone constraint (8c)
and contact region constraint (8d) can also be formulated as BMIs.
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3.1.1 Friction cones
We consider the Coulomb friction cones as depicted in Fig 2. For the ith friction cone

Fig. 2 A nonlinear friction cone (blue), and the 4-edge linearized friction cone (red). The red arrows e1, . . . ,e4 are the
edges of the linearized friction cone. The axis c is along the direction of the normal force, pointing outward from the
contact surface.

FCi, the axis of the cone is denoted by a vector ci ∈ R3, which is a normal vector
originating at the grasp point xi and pointing outward and perpendicular to the con-
tact surface. We introduce ci as a decision variable in our problem, to parameterize
the friction cone FCi. For the benefit of the later discussion, we will constrain ci to
have unit length:

cT
i ci = 1. (10)

If we use the nonlinear friction cone, then fi ∈ int(FCi) is equivalent to

f T
i ci >

1√
µ2 +1

| fi|, (11a)

where µ is the fixed friction coefficient.
If ci was fixed, constraint (11a) would be a Second-order cone constraint on

fi, which is a special type of psd constraint [1]. Thus by searching both ci and fi,
constraints (10)(11a) are both BMIs on variables ci and fi.

If FCi is a linearized friction cone with ne edges, to compute its edges, we can
first construct a cone FC0 that has unit axis c0 = [0 01]T , with edges e1

0,e
2
0, . . . ,e

ne
0 .

Without loss of generality we suppose all the edges of the cone have unit length,
|e j

0| = 1, j = 1, . . . ,ne. The edge e j
0 can be computed using the friction coefficient

and c0, thus they are fixed. The linearized friction cone at xi with cone axis ci , can be
obtained by appropriately rotating cone FC0 such that cone axis c0 is aligned with
ci. Such rotation is parameterized with a unit quaternion zi, satisfying constraints:

zi⊗ z∗i =1 (12a)
ci =R(zi)c0 (12b)

where ⊗ is the Hamiltonian product between quaternions. z∗i is the conjugate of zi,
and R(zi) ∈ R3×3 is the rotation matrix corresponding to zi, each entry in R(zi) is a
second-order polynomial of zi [21]. Applying the same rotation to the friction cone
edges e j

0 generates the friction cone edges e j
i at xi.

e j
i =R(zi)e

j
0, j = 1, . . . ,ne. (13)
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The contact force fi is a positive weighted sum of the edges of the friction cone:

fi =
ne

∑
j=1

w j
i e j

i , w j
i > 0 (14)

Constraints (12a)-(14) involve only second order terms of the decision variables
zi,w

j
i ,e

j
i , and thus can be posed as a BMI.

3.1.2 Contact geometries

Fig. 3 The polyhedron P to be grasped.
The admissible contact regions are the
shrunk regions on each facets (blue region).

Fig. 4 The shrunk polyhedron Ps ob-
tained as the convex hull of the blue regions,
which are the shrunk regions on each facets
as in Fig.3.

Fig. 5 The cylinder
to be grasped, the blue
surface is the grasp re-
gion.

In this section, we consider four types of objects to be grasped, including convex
polyhedra (Fig.3,4), spheres, ellipsoids and cylinders (Fig.5). The constraints on
contact point xi and contact normal ci are straight-forward for the sphere, ellipsoid
and cylinder, since the contact surfaces for these geometries are all parameterized
by quadratic functions. Thus the constraints on xi and ci are also quadratic, and can
be solved as BMIs. When the object is a polyhedron, and the grasp is free to choose
any facets, the problem becomes trickier to handle, and we will discuss it below.

For a convex polyhedron P = ConvexHull(v1
p, . . . ,v

Np
p ) (The red box in Fig.3),

where vi
p is the ith vertex of the polyhedron, we want to avoid contacts lying at edges

or corners of the polyhedron, since such a grasp can be unstable and the object can
slide out of the grasp. Thus the admissible contact regions are given as the shrunk
surface regions (blue shades). We then construct a shrunk polyhedron (Fig.4) as the
convex hull of the shrunk surface regions (blue shades). The shrunk polyhedron is
given as Ps = {x|Asx ≤ bs}; this H-representation of a polyhedron can be readily
computed from its vertices [24]. To constrain xi lying on one of the shrunk surface
regions, we use the fact that a point is on the surface of a convex object, if and only
if a supporting hyperplane intersects the object at that point. Thus we introduce a
supporting hyperplane Hi = {x|cT

i x+ di = 0}, where ci is the axis of the friction
cone, and the constraints:

• The grasp point xi is on the hyperplane

cT
i xi +di = 0 (15)
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• All vertices of the original polyhedron P lie on one side of the hyperplane, and
the normal vector ci points outward from the polyhedron

cT
i v j

p +di ≤ 0 ∀ j = 1, . . . ,Np (16)

• The grasp point lies within the shrunk polyhedron Ps

Asxi ≤ bs (17)

Geometrically, constraints (15)-(17) state that cT
i x+ d = 0 is a supporting hyper-

plane of the polyhedron P , and the supporting point xi is not at edges or corners
of the polyhedron, so ci has to coincide with one of the face normals. We want to
highlight that we do not specify on which facet the contact lies; by searching over
ci,xi and di, the optimization program will determine the contact facets by itself.
Constraints (16)(17) are linear on xi,ci and di. Constraint (15) is a BMI on xi and ci.

3.2 Kinematics
The contact points are meaningful only if they are reachable by the hand , subject
to the kinematic constraints. As we will show in this section, such kinematic con-
straints can also be formulated as BMIs, using robot maximal coordinates.

We illustrate the kinematic chain between two links, welded by a revolute joint
as in Fig.6. The orientation of the link frame i−1, i are represented by unit quater-

Axis i-1

Link i-1

Link i

Axis i

Fig. 6 [6] A link frame X̂i−1, Ŷi−1, Ẑi−1 is attached
to link i− 1, link frame X̂i, Ŷi, Ẑi is attached to link i.
Ẑi−1, Ẑi are the revolute axes of the joints. The axis frame
X̂0

i , Ŷ0
i , Ẑ0 is attached to the joint i, and is fixed in the link

frame i− 1. The axis frame i and the link frame i share
the frame origin and Ẑi axis, the latter frame is obtained
by rotating the former by angle θi around the Ẑi axis.

Fig. 7 To grasp the object with a given finger face (the
red shaded region with the red dots as vertices) on the
link j, the face normal vector n j must be in the opposite
direction of the object surface normal vector ci, and the
face must be in contact with the object at xi.

nions qi−1,qi, and the position of frame origins are pi−1, pi ∈ R3 respectively. The
transformation from the axis frame i to the link frame i− 1 is fixed, with a given
unit quaternion zi−1,i for the rotation, and a given vector pi−1,i for the translation,
both expressed in link frame i− 1. We introduce two additional variables ĉi, ŝi, to
represent cos θi

2 ,sin θi
2 respectively. The rotation of the axis i is thus expressed by

the unit quaternion zθi = ĉi+ ŝik. The relationship between link frame i−1 and i are
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pi =R(qi−1)pi−1,i + pi−1 (18a)
qi =qi−1⊗ zi−1,i⊗ zθi (18b)

qi⊗q∗i =1,qi−1⊗q∗i−1 = 1 (18c)

where R(qi−1) is the rotation matrix for unit quaternion qi−1.
The constraints on ĉi, ŝi are

ĉ2
i + ŝ2

i = 1 (19a)

ĉi ∈ range
(

cos
θi

2

)
, ŝi ∈ range

(
sin

θi

2

)
, θi ∈ [θ i, θ̄i] (19b)

where constraint (19a) guarantees that ĉi, ŝi are the values of cosine and sine func-
tions of a certain angle, and constraint (19b) encodes the joint limits [θ i, θ̄i] for axis
i. Constraints (18a)-(19b) encode kinematics chain that welds the adjacent links.

We constrain the hand grasping the object with a given face on link j, as shown
in Fig 7. Suppose the vertices of the contact face on link j’s are given as vl

1, . . . ,v
l
nl

(the superscript l denotes the point measured in link frame), and the finger face
touches the object at point xi on the object (introduced in Section 3.1). By introduc-
ing extra variables αk as convex weights, and vw

k as the position of the kth vertex in
the world frame (the superscript w for world frame), we can express xi as a convex
combination of the finger face vertices in the world frame:

vw
k = p j +R(q j)vl

k (20a)
nl

∑
k=1

αkvw
k = xi,

nl

∑
k=1

αk = 1,αk ≥ 0. (20b)

Suppose the unit length face normal vector in link j’s link frame is given as nl
j. Then

the face normal vector in the world frame must be the opposite to the object surface
normal vector ci, as below:

R(q j)nl
j + ci = 0. (21)

With kinematic constraints formulated as linear and bilinear equations in this
section, we can solve the inverse kinematics problem by solving BMIs. Further-
more, we can combine the kinematic constraints and the force closure constraints in
Section 3.1, to find a force closure grasping posture through sequential SDP.

3.3 Grasp quality optimization
The Q1 metric proposed by Kirkpatrick [12, 22] measures the smallest magnitude
of wrench disturbance that cannot be resisted, given an upper bound on the total
contact forces. For contact point xi, i = 1, . . . ,n, and linearized friction cone, whose
unit length edges are e j

i , j = 1, . . . ,ne, we define the wrench set W as the set of
wrench that can be resisted by those contact points, when the total contact forces on
all contact points are bounded by 1.
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W = ConvexHull(V j
i ), i = 1, . . . ,n, j = 1, . . . ,ne, where V j

i =

[
e j

i
xi× e j

i

]
. (22)

IfW contains the origin in the wrench space, then force closure is achieved.
The Q1 metric is defined as the radius of the largest L2 ball centered at the

origin and being contained in the wrench set W . An L2 ball is formulated as
B= {w ∈ R6

∣∣wT Qww≤ r2}, where Qw ∈R6×6 � 0 is a given matrix (usually diag-
onal), which weights the relative importance between the force disturbance and the
torque disturbance. We illustrate the geometric interpretation of Q1 metric in Fig.8.
This cartoon depicts the ball and convex hull in 2D. In the real problem the wrench
space has 6 dimensions.

Fig. 8 The largest ball centered at the origin O, being contained in the convex hull spanned by vertices. A necessary
and sufficient condition for the ball being contained in the convex hull, is that for any half-space parameterized as
wT a+ b ≥ 0 (the shaded region) that contains all the vertices of the convex hull, such half-space will also contain the
ball.

To find the contact points and friction cones, such that their wrench set contains
the largest L2 ball, we employ an iterative procedure. In each iteration for a given
L2 ball radius r, we search contact point xi and edges of friction cone e j

i such that
B ⊂W for that r; and then increment r in the next iteration.

To derive the condition on xi and e j
i such that B ⊂W for a given r, we define two

cones by appending an extra dimension toW and B

KB =

{[
w
t

]∣∣∣∣wT Qww≤ r2t2, t ≥ 0
}
, (23a)

KW =∑
i, j

λ
j

i

[
V j

i
1

]
,λ j

i ≥ 0, i = 1, . . . ,n, j = 1, . . . ,ne. (23b)

The cross section of cones KB and KW with plane
{[

w
t

]∣∣∣∣ t = 1
}

are B and W

respectively. So the subset relation between B,W is equivalent to the subset relation
between KB,KW

B ⊂W ⇔KB ⊂KW ⇔K∗W ⊂K∗B. (24)

The second equivalence is based on the fact that for any arbitrary cones K1,K2,
K1⊂K2⇔K∗2 ⊂K∗1, whereK∗1 andK∗2 are the dual cones ofK1,K2 respectively[3].

The formulation of the dual cones K∗W and K∗B are
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K∗W =

{[
a
b

]∣∣∣∣(V j
i )

T a+b≥ 0,∀i = 1, . . . ,n, j = 1, . . . ,ne

}
(25a)

K∗B =

{[
a
b

]∣∣∣∣b2 ≥ r2aT Q−1
w a, b≥ 0

}
. (25b)

The geometric interpretation for K∗W ⊂ K∗B is that for any half-space {w|wT a+b≥
0} which contains all the vertices V j

i , i = 1, . . . ,n, j = 1, . . . ,ne, that half-space will
also contain the L2 ball B, as shown in the cartoon Fig.8. So the necessary and
sufficient condition on B ⊂W for a given r is that

(V j
i )

T a+b≥ 0,∀i, j ⇒

{
b2 ≥ r2aT Q−1

w a
b≥ 0

(26)

where⇒means that the conditions on a,b on the left hand-side implies the relations
on a,b on the right hand-side. We simplify this condition further to remove the
quadratic term on b. Condition (26) is equivalent to{

(V j
i )

T a+b≥ 0,∀i, j
aT Q−1

w a = 1
⇒ b≥ r. (27)

Condition (27) is a necessary and sufficient condition for B ⊂ W . Using the S-
procedure [19], we write the sufficient condition for (27) as the following algebraic
constraints on polynomials, with a,b being indeterminates

b− r−L1(a,b)(aT Q−1
w a−1)− ∑

1≤i≤n
∑

1≤ j≤ne

Li, j
2 (a,b)((V j

i )
T a+b) is SOS (28a)

Li, j
2 (a,b) is SOS ∀i, j (28b)

where L1(a,b),L
i, j
2 (a,b) are polynomials on indeterminates a,b. SOS stands for

Sum of Squares, and is a sufficient condition for a polynomial being non-negative.
For a polynomial α(y) on indeterminates y ∈ Rk with highest order 2d

α(y) is SOS⇔ α(y) = Φ(y)T HΦ(y),H � 0 (29)

where Φ(y) is the vector containing all monomials of y up to degree d. Thus to
search for a non-negative polynomial, it is sufficient to search for the psd matrix H,
which ends up with a semidefnite problem on the coefficients of the polynomial.
The reader can refer to [19, 23] for more details on SOS.

Since constraint (28a),(28b) are sufficient conditions of (27), for xi and e j
i satis-

fying constraints (28a)(28b), r is a lower bound of its Q1 metric. To maximize r, we
can use either bilinear alternation (Algorithm 2) or binary search (Algorithm 3).

In the bilinear alternation, the kth iteration is guaranteed to obtain an objective r
that is at least as good as the previous iteration, since a solution to step 2 in iteration
k is also feasible for step 1 in both iteration k and k+ 1; also r cannot increase to
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Algorithm 2 Bilinear alternation
Start with a force closure grasp xi, e j

i ,ci and V j
i found using approach described in sections 3.1

while r ¬ converged do
1. At iteration k, fix V j

i in constraint (28a), search for L1(a,b),L
i, j
2 (a,b) and r to maximize

r, subject to constraints (28a),(28b). This optimization is a semi-definite programming
problem. It finds an L2 ball contained in the convex hull of V j

i .
2. Fix Li, j

2 (a,b) to the solution in step 1, find feasible V j
i ,xi,e

j
i ,ci,L1(a,b) that satisfy (28a)

and constraints on xi,ci,e
j
i in section 3.1, 3.2. This is a BMI problem. It finds grasp points

xi and friction cone edges e j
i , such that the grasp quality is no worse than that in the

previous iteration. The solution V j
i will be used in step 1 in the next iteration.

end while

infinity. Hence the bilinear alternation will terminate with convergence of the cost.
It is a common strategy in the SDP literature [19, 23, 14].

Algorithm 3 Binary search
Start with r = 0, and r̄ to be some big value, r = r̄+r

2 .
while r ¬ converged do
1. Fix r, search for the coefficients of L1(a,b),L

i, j
2 (a,b), V j

i ,xi,e
j
i ,ci together, subject to con-

straints (28a),(28b) and the constraints on xi,e
j
i ,ci in section 3.1. This is a BMI problem.

If the problem converges, set the lower-bound r = r; otherwise set the upper-bound r̄ = r.
2. r = r̄+r

2 , go to step 1.
end while

The binary search algorithm needs to deal with psd constraints of larger size than
that in bilinear alternation, since it involves the product of Li, j

2 (a,b) and V j
i . Thus

the binary search algorithm takes longer time to solve each SDP. Experimentally,
we find that the binary search algorithm is less susceptible to local minima than the
bilinear alternation alone.

4 Results

4.1 Force closure contact
We show the results of finding force closure contact locations on different geome-
tries in Fig.9. We also show the time scalability w.r.t number of contacts in Fig.10,
11, and number of polyhedron facets in Fig.12. When we increase the number of
contacts (Fig.10, 11), the size of the largest psd constraints remains the same, and
the number of psd constraints increases linearly. As expected, the computation time
in each SDP scales linearly (Fig.11); and empirically we observe that the number of
SDP calls remains almost constant (Fig.10). As a result, the total computation time
scales linearly w.r.t number of contacts. On the other hand, the number of polyhe-
dron facets does not affect the size or the number of the psd constraints, so the total
computation time remains almost constant (Fig.12).
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Fig. 9 Force closure contacts on different geometries. The upper row uses nonlinear friction cone, the lower row uses
linearized friction cone. For the polyhedron (column 3), the contact facets are not specified by the user beforehand.
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4.2 Kinematics
The inverse kinematics problem is solved for an ABB IRB140 arm with a Robotiq
hand, with 15 joints in total. To evaluate how effective the algorithm is as solving
this inverse kinematics problem, in Fig.13 we take 10000 samples within the 0.6m
x 0.6m x 0.6m box in the shaded region, and require the center of the palm to reach
the sample point. There are three possible outcomes from the sequential SDP.

• Green dot: sequential SDP converges to topt = 0⇒ feasible BMIs, thus reachable.
• Red dot: the rank-relaxed SDP reports infeasibility, thus proved unreachable.
• Blue dot: the rank-relaxed SDP is feasible, but the sequential SDP does not con-

verge to topt = 0.

As shown in Fig.13, the blue dot layer is thin, showing that in most cases the sequen-
tial SDP algorithm either solves the problem or proves that the problem is infeasible.
The histogram in Fig.14 shows that when the sequential SDP can solve the problem,
in most (81.36%) cases it converges within 5 SDP calls. The average time to solve
the BMI is 0.25 seconds using MOSEK [16] on an Intel i7 machine.

4.3 Grasp optimization
We first show the result of using bilinear alternation to optimize a 3-point force clo-
sure grasp on a sphere. The initial contacts and linearized friction cones are plotted
in Fig.15, the optimized contacts become more evenly distributed (Fig.16), as is
known to be the better 3-point grasp on the sphere [13]. In Fig.17 we draw the Q1
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reachable point, sequential SDP converge to 
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Fig. 13 Robot arm reachability.
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Fig. 14 Histogram on number of SDP calls.

metric in each iteration. The SOS program (28a),(28b) finds a lower bound of the
Q1 metric. The true Q1 metric is computed as in Appendix. We can see that the gap
between the SOS verified lower bound and true Q1 metric is small. The computation
time is 172 seconds using MOSEK solver [16] on an Intel i7 machine.

Fig. 15 Initial contacts and fric-
tion cones.

Fig. 16 Optimized contacts and
friction cones.
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Fig. 17 The change of Q1 metric in each iteration of
bilinear alternation.

We also show the result of optimizing force closure contacts on a diamond shaped
polyhedron, through binary search. The optimized contacts (Fig.19) are more evenly
distributed than the initial contacts (Fig.18). Also we want to highlight that the facets
on which the contacts lie are changed through optimization, this again demonstrates
that the optimization program can search over all facets by itself. The computation
time is around an hour using MOSEK solver on an Intel i7 machine.

We show the result of optimizing the force closure grasp with Robotiq hand and
ABB arm on a cylinder. The initial posture grasps the tip of the cylinder (Fig.21),
the optimized posture gets improved by grasping the center of the cylinder (Fig.22).
The computation time is around 20 minutes using MOSEK on an Intel i7 machine.

5 Conclusion and Discussion
In this paper we exploit the bilinear structure in the force closure and kinematic
constraints to synthesize and optimize force closure grasping postures. We do this
by formulating the problem as bilinear matrix inequalities (BMIs) and applying the
sequential semidefinite programming technique commonly employed in the BMI
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Fig. 18 Initial contacts and friction
cones.

Fig. 19 Optimized contacts and fric-
tion cones.
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Fig. 20 The change of Q1 metric in each iteration
of binary search.

Fig. 21 initial force closure
grasp from two views.

Fig. 22 optimized force
closure grasp from two views.
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Fig. 23 The change of Q1 metric in each iteration of bi-
linear alternation, for robotiq hand grasping the cylinder.

literature. In contrast to more conventional approaches to the problem that rely on
gradient based nonlinear optimization, our approach is able to handle non-smooth
(such as psd) constraints along with being able to prove infeasibility of problems. We
demonstrate our results on a 15-joint robot and several types of object geometries.

Some tangible improvements include using the nonlinear friction cone when op-
timizing force closure grasps, dealing with non-convex polyhedron object, etc.
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7 Appendix
When all contact points xi and friction cone edges e j

i are given, we can compute
the exact value of Q1 metric. First we transform representation of the wrench setW
from using vertices V j

i (V-representation) to using half-spaces (H-representation)
W =

{
w|wT ai

W ≤ bi
W , i = 1, . . . ,m

}
, where m is the number of facets forW . The

Q1 metric is computed as mini=1,...,m bi
W/

√(
ai
W
)T Q−1

w aW . Note that we cannot
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optimize the Q1 metric while searching for xi and e j
i , since it is nontrivial to trans-

form from V-representation to H-representation when the vertices are not fixed [24].
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