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Abstract

Human pilots have the extraordinary ability to remotely maneuver small Unmanned Aerial Vehicles
(UAVs) far outside the flight envelope of conventional autopilots. Given the tremendous thrust-
to-weight ratio available on these small machines [1, 2], linear control approaches have recently
produced impressive demonstrations that come close to matching this agility for a certain class of
aerobatic maneuvers where the rotor or propeller forces dominate the dynamics of the aircraft [3, 4, 5].
However, as our flying machines scale down to smaller sizes (e.g. Micro Aerial Vehicles) operating
at low Reynold’s numbers, viscous forces dominate propeller thrust [6, 7, 8], causing classical control
(and design) techniques to fail. These new technologies will require a different approach to control,
where the control system will need to reason about the long term and time dependent effects of
the unsteady fluid dynamics on the response of the vehicle. Perching is representative of a large
class of control problems for aerobatics that requires an agile and robust control system with the
capability of planning well into the future. Our experimental paradigm along with the simplicity
of the problem structure has allowed us to study the problem at the most fundamental level. This
thesis presents methods and results for identifying an aerodynamic model of a small glider at very
high angles-of-attack using tools from supervised machine learning and system identification. Our
model then serves as a benchmark platform for studying control of perching using an optimal control
framework, namely reinforcement learning. Our results indicate that a compact parameterization of
the control is sufficient to successfully execute the task in simulation.

Thesis Supervisor: Russell L. Tedrake
Title: Assistant Professor
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Chapter 1

Introduction

Over the last century, the study of aerodynamics has resulted in impressive achievements in high

performance aircraft and automatic control systems that can fly people across the world in a matter

of hours, brake the sound barrier, travel to the moon and back, and fly unmanned missions with

relatively little human intervention [9]. However, watch carefully the next time you see a neighbor-

hood bird land on the branch of a tree. This bird is casually, but dramatically, outperforming the

best autopilots ever designed by man.

Perching, one of the most common aerobatic maneuvers executed by birds, is representative of

a large and important class of aggressive aerial maneuvers made possible by exploiting unsteady

airflow effects, which are usually characterized by instantaneous loss of control authority. During a

perching maneuver, birds rotate their wings and bodies so that they are almost perpendicular to the

direction of travel and oncoming airflow. This maneuver increases the aerodynamic drag on the bird

both by increasing the surface area exposed to the flow and by creating a low-pressure pocket of air

behind the wing. Viscous and pressure forces combine for a rapid deceleration, but the maneuver

has important consequences: the wings become “stalled”, meaning they experience a dramatic loss

of lift and of control authority, and the dynamics become unsteady and turbulent, making them

incredibly difficult to model and predict accurately. The task is further complicated by uncertain

wind dynamics (which effect both the bird and the perch) and the partial observability of the airflow.

Yet birds perch with apparent ease. In stark contrast, state-of-the-art autopilots are restricted to

a much smaller flight envelope, where the airflow stays attached to the wing and high-gain linear

feedback control remains effective[10].

The goal of the work presented in this thesis is to understand the dynamics of perching using a

fixed-wing glider. Our hope is to acquire a fundamental understanding of the problem at the most

basic level in order to apply this domain knowledge to perching with flapping-wings.
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1.1 Towards Aggressive Autonomous Aerobatics

Skilled human pilots have demonstrated an ability to remotely operate small model aircraft at the

extremes of their flight envelopes during highly complicated and unstable maneuvers. This potential

for high maneuverability is a characteristic of small model aircraft whose moment of inertia scales

down much more rapidly than their size. Helicopters, for example, exhibit a moment of inertia

that decreases with the fifth power of the scale factor, while the rotor thrust decreases almost

proportionately to the mass of the vehicle, i.e. to the third power [1, 2]. These vehicles, like

many aerobatic hobby airplanes, are capable of producing an unusually high thrust to weight ratio,

sometimes as large as 3-to-1. Due to light weight electronics for small model aircraft, linear control

approaches have allowed impressive demonstrations that come close to matching this agility for a

certain class of aerobatic maneuvers where the propeller backwash generates sufficient air over the

control surfaces to compensate for stall effects at high angles of attack [4, 5]. For example, we

were able to execute a completely autonomous aerobatic maneuver known as a prop-hang, where

an airplane is oriented vertically maintaining close to zero translational velocity [3]. Using simple

feedback linear PD control, the maneuver was stabilized for a surprising set of initial conditions

(starting from horizontal) away from the set point. Figure 1-1 shows a snapshot of the maneuver,

along with with a plot showing samples of the basin of attraction in Figure 1-2, illustrating the

dominance of propeller backwash over the control surfaces.

As we shift towards smaller and smaller designs, e.g. Micro Aerial Vehicles (MAVs) operating at

low Reynold’s numbers [6, 7, 8], this type of ‘high-gain’ control fails, as viscous and unsteady effects

tend to dominate the fluid dynamics. Success in these domains will require a different approach to

control, where the control system can reason about the complicated dynamics in a nonlinear way.

Figure 1-1: Autonomous Vertical hover
(prop-hang). This maneuver was exe-
cuted using simple PD control.
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Figure 1-2: Basin of attraction samples
for the linear controller starting from a
horizontal configuration. The linear con-
troller stabilizes a surprisingly large set of
initial conditions.
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1.2 Contributions and Organization

The contributions of this thesis includes results and methodologies for identifying an aerodynamic

model of a perching glider at very high angles of attack. This model is used as a basis for investigating

the control problem for a perching maneuver using an optimal control framework, and initial success

of a gradient following algorithm is shown on a simulated model of our glider.

The thesis is organized as follows: Chapter 2 introduces the general framework for the optimal

control problem along with a detailed derivation of the policy gradient algorithm used in Chapter

5. Chapter 3 introduces the general problem of aerobatic control and presents a literature review

highlighting relevant and related work. Chapter 4 describes in detail the requirements of our perching

task, our glider design, and experimental setup, in addition to presenting our methodology and

results for identifying an aerodynamic model at high angles of attack. Chapter 5 then describes

the results of applying the policy gradient algorithm of section 2.1. In particular, we show that a

compact parameterization of the task yields initial success using our dynamic simulation. Chapter

6 concludes with a discussion of our results and future work.
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Chapter 2

The Optimal Control Approach

Many control problems in engineering are formulated in terms of an optimal control problem (e.g.

[11]), where the ultimate goal is to minimize some measure of cost on performance. In optimal

control, this cost metric is a scalar function of the state trajectory, the actions taken over that

trajectory, and possibly time.

Consider a discrete time dynamical system of the form:

xn+1 = f(xn,un) (2.1)

where xn represents the state of the system at time n and un represents the corresponding control

inputs. A value function represents the total cost incurred during the execution of a task when

starting at a given state x at a given instant in time

Jπ(x, n) = h(xN ) +
N−1∑
m=n

g(xm,um|xn = x,um = π(xm)) (2.2)

where the (deterministic policy) π(x) and the instantaneous cost g are both independent of time,

h represents a terminal cost, and N is the time horizon over which the task is executed. In this

thesis, we consider a time horizon that is policy dependent, which makes some algorithms more

easily applicable than others (see the following sections). Eq.(2.2) can be written recursively as

Jπ(x, N) = h(x) (2.3)

Jπ(x, n) = g(x, π(x)) + Jπ(f(x, π(x)), n + 1) (2.4)

15



The optimal value function gives the optimal cost to go from any given state and is

J∗(x, N) = h(x) (2.5)

J∗(x, n) = argmin
u

[g(x,u) + J∗(f(x,u), n + 1)] (2.6)

The optimal policy is the one that minimizes the value function from any given state and is

π∗(x, n) = argmin
u

[g(xn,u) + J∗(f(xn,u), n + 1)] (2.7)

Unfortunately in robotics there exists very few examples that lend themselves to closed form

solutions for the optimal policy, in which case a computational approximation of the solution is used

instead. The following sections describe the different computational approaches used in this thesis.

2.1 Policy Gradient

Policy gradient algorithms are a class of reinforcement algorithms that search directly in the space

of policies vs. computing an exhaustive state space search for an optimal feedback policy, e.g.

in dynamic programming or value iteration [12]. They are typically subject to local minima and

smoothness constraints. The policy is typically parameterized by a vector w and is generally written

as un = πw(xn, n). The parameterization typically includes the user’s domain knowledge of the

control problem to restrict the solution to a particular class of policies. The goal in policy gradient

algorithms is to perform gradient descent on the policy parameters by computing the gradient of

the cost w.r.t. the parameterization vector and take small steps along this gradient to the local

optimum. Weight perturbation (a flavor of the well known REINFORCE algorithms [13]) provides

a simple algorithm for computing these policy gradients. Although true gradient descent using the

backpropogation through time algorithm [14], for example, would be more efficient, it requires an

explicit representation of the cost and plant gradients, which may be difficult to compute for policy

dependent time horizons (see section 5.1).

The simple idea in weight perturbation is to run a trial once with the original parameter vector

w, and then run a second trial with the parameter vector perturbed by some small random noise

vector. This will allow one to evaluate a change in the cost function with respect to changes in the

policy parameters. Given a general cost function (independent of time)

J(w,x0) =
∞∑

n=0

g(xn, πw(xn)) (2.8)

The goal is to find an update of the form w = w + ∆w, where ∆w represents the change to the
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parameters. If we choose an update such that the dot product

− ∂J

∂w
·∆w > 0 (2.9)

then we can assure that the update will always be within 90◦ of the true gradient. Using a first

order Taylor expansion, the perturbed cost can be written as

J(w + ε) ≈ J(w) +
∂J

∂w
ε , (2.10)

where ε is a random vector drawn from a zero-mean distribution. Consider the update

∆w = −η[J(w + ε)− J(w)]ε (2.11)

Using our Taylor expansion, we have

− ∂J

∂w
·∆w = η

∂J

w
ε[J(w + ε)− J(w)] ≈ η

(
∂J

w
ε

)2

> 0 , (2.12)

which satisfies Eq. 2.9. Note that the update requires evaluating the cost twice per update. One way

around this is to replace our baseline value J(w) with an estimate Ĵ(w) computed from previous

trials. More generally, however, we can replace our baseline with any estimator uncorrelated with

ε. The expected value of the update using a general baseline estimator b would then be

E[∆w] = −ηE

[
[J(w + ε)− b]ε

]
(2.13)

≈ −ηE

[
[J(w) +

∂J

∂w
ε− b]ε

]
(2.14)

= −ηE[J(w)− b]E[ε]− ηE[εεT ]
∂J

∂w

T

(2.15)

= −ηE[εεT ]
∂J

∂w

T

, (2.16)

where we used the fact that (J(w) − b) and ε are uncorrelated and E[ε] = 0. To assure that the

expected value of the update is in the direction of the true gradient we need

E{∆w} ∝ − ∂J

∂w
(2.17)

which translates to having E[εεT ] ∝ I in 2.16. One way to achieve this is to choose each εi from a

normal distribution with mean 0 and variance σ2, such that E{εiεj} = 0 for i 6= j and E{εiεj} = σ2

17



otherwise. This gives us the standard weight perturbation update

∆w = − η

σ2
[J(w + ε)− b]ε (2.18)

Even for an arbitrary baseline b, the expected value of the update will be in the direction of the

true gradient. In practice, using a good estimator for the baseline can dramatically improve learning

performance by reducing the variance of the updates.

Although this algorithm is simple to understand and implement, it requires the cost function

to be smooth with respect to the parameter vector w and is subject to local optimum. However,

weight perturbation is a great way to circumvent the curse of dimensionality as it (or any other policy

gradient algorithm) depends only on the specific parameterization of the policy and is independent

of the number of states in the system.
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Chapter 3

Optimal Control for Aerobatic

Flight

Lift and drag forces on a traditional airfoil are predominantly a function of the airspeed and of the

angle-of-attack, or angle of the airfoil chord relative to the bulk oncoming flow. As the angle-of-

attack increases from zero (leading edge above the trailing edge), the lift increases until a critical

threshold beyond which the airflow along the top of the foil separates from the boundary. For

most airfoils, this threshold occurs at 20-30 degrees [15]; if the angle-of-attack increases beyond this

threshold, the airfoil experiences a sudden loss of lift known as a ‘stall’. Beyond this threshold, the

dynamics of the airflow becomes very nonlinear, non-stationary (unsteady), and very difficult to

describe with efficient mathematical models. Stalls also result in a loss of control authority for the

actuators on the wings and tail, which rely on having attached flow in order to predictably effect

the dynamics of the aircraft.

Figure 3-1: An airfoil during: level flight (left) moderate angle of attack (middle) stalled at a high
angle of attack (right). (image taken from [16])

The advent of modern high-performance aircraft, such as fighter jets, has placed an emphasis on

the need for non-linear flight control systems that allow operation in these domains where unsteady

aerodynamic effects dominate. It is not uncommon for fighter jets to operate at the perimeter
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of their flight envelope during evasive maneuvers. These maneuvers are characterized by threats

of aerodynamic stall and other unsteady effects which could result in a dramatic loss of lift, such

as vortex bursting in low aspect ratio wings (e.g. delta wings). Conventional autopilot control

systems, however, are restricted to a much smaller flight-envelope, typically constrained to operate

between 0 and 15 degrees in angle-of-attack, where the flow around the wing stays attached and the

dynamics of the plane are nicely approximated by piecewise-linear models. Under these well behaved

conditions, aerodynamic forces and moments are approximated by linear terms in their Taylor Series

expansions, which lead to the well known stability derivative models [17]. It is important to note

that conventional stability and control derivative models along with standard force and moment

coefficient data alone fail to capture the internal state of the surrounding flow, which may contain

critical information about the future behavior of the aircraft. When applied in fighter jets at the

perimeter of their flight envelope, state-of-the-art fly-by-wire control systems have the potential of

experiencing a control ‘departure’ where the automated controller looses the ability to maintain

control of the aircraft. This can result in the aircraft entering a falling-leaf departure mode and,

depending on the severity of the situation, the pilot working with the control system may not always

be able to recover.

Due to these constraints imposed by state-of-the-art control technology, there has been very little

work on perching maneuvers for an aircraft. Recent results in reinforcement learning applied to robot

control having similarly complicated dynamics [18, 19], make this approach a strong candidate for

solving similar types of problems in aerobatic flight control.

3.1 Previous Work

Over the last fifteen years, the aeronautics community has made an effort to characterize dynamic

flight conditions through novel approaches to wind-tunnel data collection and dynamic modeling.

In this effort, Goman and Khrabrov [20] made an important contribution in their analysis of flow

separation and vortical flows. Through analysis of unsteady effects and flow seperation, their work

resulted in closed form unsteady coefficient models. These extended models captured the dependence

of aerodynamic forces and moments on motion prehistory, which in essence introduced part of the

flow characteristics into the description of the state.

A similar effort has been put forth in designing nonlinear control laws for aircraft maneuvering

in near stall regimes. A common approach described in the aeronautics literature [21],[22],[23] is

feedback linearization, otherwise known as inverse dynamics control. These methods typically make

use of complete sets of coefficient and derivative tables for a wide range of flight conditions in order to

compute aerodynamic forces and moments. Underlying assumptions then allow the control designer

to partially feedback linearize the dynamics using the available control surfaces and thrust vectors,
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where it is assumed that these inputs can arbitrarily affect roll, pitch, and yaw angular accelerations.

Cross-coupling effects must also be ignored, such as lift and side-force contributions from various

control surface deflections. As a result, this type of dynamic inversion will hold only for high enough

dynamic pressure conditions where control surface inputs requiring deflections beyond saturation

limits will not become a problem and hence keep the system controllable.

Unmanned aerial vehicle (UAV) researchers have faced similar challenges in developing agile

autopilots for small-scale hobby aircraft. One thing to note, however, is that small UAVs have the

potential of completely overpowering part of the natural dynamics of the aircraft by employing an

extremely high thrust to weight ratio. However, even with this advantage, present day autopilots are

far from matching the maneuvering skills of a human UAV pilot. Although large motors allow almost

arbitrary corrections in certain directions, the system is still underactuated, making the problem

part of a larger class of problems where control and natural dynamics are intimately related and not

properly addressed by classical control methods.

Agile maneuvering for fixed-wing UAVs was presented in reference [24]. The work proposed an

approximate inverse dynamics model for agile maneuvering where the resultant control system was

tested in simulation. However, the maneuver performed was slow and well behaved, not representa-

tive of human piloted aerobatics. Work in [4] and [5] proposes a linear control system for performing

an autonomous prop-hang, similar to the work in [3]. An autopilot capable of a variety of aerobatic

maneuvers is proposed in [25]. However, video footage shows that the time scale for performing a

given maneuver is much larger than that of a human pilot [26].

The most notable work in autonomous UAV aerobatics has been on helicopters. Feron et al. were

one of the first to achieve autonomous aerobatic flight with a hobby helicopter [27], [31]. In this work

an analytical dynamic model was derived from basic principles and force coefficients were measured

through flight experiments. Noting successful results from Raibert[32] and Pratt[33], their control

system used an intuitive control approach where state machines were used based on human pilot

control data. For example, the controller encoded the observation that the collective command used

by the human pilot during maneuvers was roughly proportional to the cosine of the angle between

the vertical and z-axis. Through use of piecewise linear commands with specified switching times,

the authors were able to perform various maneuvers. Feron’s later work added feedback through

tight angular rate controllers on the pilot’s reference trajectory [34],[35].

Work by Bagnell [36] describe a unique approach to helicopter control, namely a computational

optimal control method, similar to the methods used in this thesis, known as reinforcement learning.

The authors presented a control policy search algorithm for stabilizing slow moving trajectories.

Later work by Ng et al. [37], [18] used a similar approach for aerobatic helicopter control. The

authors first fit a stochastic nonlinear model from pilot data, i.e. a model predicting either next

state or accelerations as a function of current state and control inputs. Next, a human pilot flight

21



trajectory for a desired aerobatic maneuver was used as the baseline for an offline control policy

search algorithm. Using this approach, an autonomous helicopter achieved stable inverted hover in

addition to a few aerobatic maneuvers at slow speeds. We note that (with the exception of inverted

hovering) Ng’s and Feron’s aerobatic control systems focused on stabilizing either a human pilot’s

trajectories or a state machine inspired by these trajectories. More recent work by Feron et al [40]

presents a control architecture for helicopters landing at unusual attitudes. They use a hand designed

state-machine to execute a perching maneuver that eventually lands on a large velcro launch pad.

One notable project which shares the goal of this thesis is the perching plane project at Cornell

[41, 42]. The aim of this project is to design a morphing aircraft which rotates the body up into

a high angle-of-attack but keeps the wings in the traditions tight envelopes of attached airflow.

Similarly, the tail is actuated out of the (unsteady) wake of the body in order to ensure attached

flow. Our approach, on the other hand, uses a conventional airplane design.

3.2 Glider Aerobatics

With the increasing popularity of micro air vehicles (MAVs) in the past few years, flapping-wing

designs have become prominent due to their ability to exploit unsteady effects in the surrounding

flow at low Reynold’s numbers [43]. These vehicles present a challenging class of control problems

where temporal reasoning becomes a dominating factor. As the propulsion system becomes less

dominant over the inertial effects of the aircraft (e.g. in flapping MAVs), this temporal reasoning

problem is significantly amplified, forcing the control system to consider time dependent interactions

with the surrounding airflow. In order to understand this control problem at the most fundamental

level, we have designed our experiments using a small glider. An aerobatic glider maneuvers slower

than its powered counterpart, but forces the control system to reason about the delayed aerodynamic

effects on the response of the vehicle.

Optimal control and its computational counterpart, reinforcement learning, have already shown

strong promise in systems having similarly complicated dynamics [18, 19]. In particular, these control

approaches have the ability to reason about the temporal consequences of taking action u in state x,

i.e. it solves the temporal credit assignment problem that plays a crucial role in most underactuated

control problems. More importantly, however, is that this approach takes into strong consideration

the natural dynamics of the system, exploiting couplings and nonlinearities where most classical

control techniques fail.
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Chapter 4

Perching with Fixed Wings

4.1 Problem Description

Perching is representative of any dynamic aerobatic maneuver that requires an agile and robust

control system with the capability of planning well into the future. The problem is described as

follows: A glider is launched 3.5m away from a perch at approximately 6m/s. What control policy

must the elevator follow in order to make a point landing on the perch with negligible velocity in a

fraction of a second? There are a number of implications that follow from executing such a maneuver:

1) the only way to induce such a dramatic drop in speed in such a short period of time is to orient

the aircraft to be almost perpendicular to the direction of travel, making use of the tremendous drag

generated by stalling the wings 2) the control system must reason about the dynamics well into the

future, before loosing all control authority as it approaches the perch 3) the control system must be

able to react to disturbances during the execution of the maneuver in real-time.

Instead of redesigning our aircraft in order to make traditional, linear control solutions effective,

we will start by designing an advanced control system for a conventional fixed-wing aircraft. In

the spirit of the Wright Brothers, whose eventual success in powered flight came from their deep

practical understanding of unpowered gliders, the experiments presented here are based on a small

unpropelled glider with a single actuator at the elevator launched in a controlled laboratory setting.

These machines are capable of perching, so long as the feedback system is capable of reasoning about

the complicated dynamics and intermittent loss of control authority on the control surfaces. We use

an optimal control framework whose properties are well known to handle temporal credit assignment

problems (i.e. reason about the consequences of an action well into the future). Moreover, this

framework gives us the tools for designing a full-state feedback control system, capable of responding

to disturbances in real time.
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4.2 Indoor experimental setup

Figure 4-1: Vicon Motion Capture Environment. The Vicon motion capture setup makes use of 16
infrared cameras to track small reflective markers along the body and control surface of the glider.
These marker positions allow the system to reconstruct the position and orientation of the glider
with high accuracy.

The task of landing on a perch is potentially filled with many rich and interesting subproblems

that require careful consideration in an integrated control system. Localizing (or even identifying)

a perch with noisy sensors in a natural gusty outdoor environment is itself a challenging task. In

order to study the core motor control problem, we have designed an indoor experimental facil-

ity which mitigates many of the complications including sensing, computation, and repeatability.

Our facility is equipped with a Vicon MX motion capture system consisting of 16 cameras, which

provides real-time sub-millimeter tracking of the vehicle and its control surface deflections (Figure

4-4 right), as well as the perch location. The basic setup is cartooned in Figure 4-1. Our indoor

setup has a capture volume of approximately 27m3 with hardware communicating new state in-

formation at approximately 120 frames per second, with 116ms total loop delay (including ground

station communication). This indoor flight environment providing off-board sensing, computation,

and control has proven to be an extremely effective experimental paradigm. In addition to still air

experiments, this environment allows us to consider artificially generated atmospheric disturbances

and flow visualizations in the future.
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Figure 4-2: Cartoon of a feasible perching trajectory for a fixed-wing glider. This trajectory was
actually taken from the flight data described in the preliminary results section.

Our vehicle is launched into the motion capture environment from a small custom launching

device at speeds of approximately 6m/s and at Reynolds numbers ranging from 14,000-53,000 over

the entire perching trajectory. Once the motion capture system locks onto the glider, a ground-

station obtains real-time tracking information, implements the feedback policy, then sends commands

back to the vehicle over a standard radio-link interface. The task of the feedback loop is to bring

the vehicle to rest at the known perch location, which is approximately 3.5m from the location at

which the motion capture cameras lock onto the vehicle. The vehicle grabs the perch with a passive

mechanical one-way latch mounted just below the center of mass. The basic maneuver is cartooned

in Figure 4-2.

4.3 Glider design

Figure 4-3: Electronics and
components: (clockwise from
top) hobby servo, motion cap-
ture marker, battery, micro
receiver.

Experiments with our traditional fixed-wing glider (Figure 4-4 (left))

are designed to promote a paradigm-shift in aircraft control - proving

that it is possible to control a conventional vehicle through unsteady

flow regimes and intermittent losses of control authority, so long as

the control system is sufficiently advanced. Our design was largely

inspired by commercially available aerobatic hobby airplanes. The

glider is made of laser-cut 2.8mm thick Dapron foam sheets, carries

a GWS four channel micro receiver, an HS-55 Hitech hobby servo,

and a Full River 250mah 2-cell lithium polymer battery (see Figure

4-3), giving a total combined weight of 77g. For ease of fabrication,

the wings are a symmetric foam flat plate (i.e. no camber) with a

carbon fiber reinforced leading edge having a 98mm mean chord (≈ 3% thickness-to-chord ratio), a

8:3 aspect ratio, with a maximum lift to drag ratio of approximately 3.5 (at zero elevator angle). The

wings are slightly tapered (113mm root chord, 83mm tip chord), and have a 20◦ dihedral for passive

lateral stability. The total surface area of all lifting surfaces (including the fuselage) is 0.1022m2 for

a total wing/surface loading of 0.7534 kg
m2 . Four 10mm reflective markers placed along the fuselage

and four on the elevator control surface allow motion capture reconstruction (Figure 4-4 (right)).
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Figure 4-4: (left) Our experimental glider with a 20◦ dihedral on the wings for passive lateral
stability. Reflective markers are placed along the body and the elevator in order to reconstruct
absolute position and orientation using the Vicon motion capture system. (right) Reconstructed
vicon motion capture glider model.

The most basic trajectory of a glider landing on a perch can be sufficiently described by the

glider’s longitudinal dynamics. During this maneuver, these dynamics are mostly controlled by

the elevator (controlling pitch) and minor corrections must be made by the ailerons and rudder

for deviations outside the longitudinal plane, i.e. roll and yaw. However, given that our glider

is unpropelled during flight, the extra drag induced by these control surface deflections create a

non-negligible loss in speed early in the glider’s trajectory. A fixed vertical stabilizer and our wing

dihedral were intended to produce the same lateral corrective forces without the added aerodynamic

drag.

4.4 Unsteady Aerodynamic Model Identification

Running learning trials on the physical glider can potentially be a tedious and time consuming pro-

cess, depending on the noise and stochasticity of the environment. Having a compact (even coarsely

approximated) ODE representation of the system dynamics provides a way to circumvent much of

the startup cost involved in learning a control policy by allowing a bulk of the computation to be per-

formed offline. Deriving (approximate) ODE models from first principles requires incredible domain

knowledge (vortex theory, etc.), and detailed unsteady fluid simulations based on the Navier-Stokes

equations are highly sensitive to the accuracy of boundary conditions, and are too computationally

expensive to be used in combinatorial optimization packages. Therefore our focus was to identify a

computationally efficient ODE model of the glider dynamics using established methods in supervised

machine learning and system identification.

4.4.1 Dimensional Analysis

The Buckingham Pi Theorem [44] is a useful tool widely used in the aerodynamics community for

expressing the forces and moments acting on a body under given flow conditions and proved to be an
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important source of domain knowledge for identifying the aerodynamic model. Using this approach,

here we include a simplified derivation (see [45]) of the equations used to parameterize our model.

For a fixed angle of attack (and a fixed body shape) we assume that the total force F is a function

of the five variables shown in Table 4.1.

Physical Quantity Description Dimensions
F force ml/t2

V∞ velocity l/t
ρ∞ density m/l3

S surface l2

a∞ free stream speed of sound l/t
µ∞ viscosity m/lt

Table 4.1: Dimensional Parameters

In Table 4.1, the subscript ∞ denotes a free stream value. We can then assume a functional form

for the aerodynamic force as:

F = kV a
∞ρb

∞Sdae
∞µf

∞ (4.1)

where k is some dimensionless constant. Equating dimensions we get:

ml

t2
=

(
l

t

)a (m

l3

)b

(l2)d

(
l

t

)e (m

lt

)f

(4.2)

Equating exponents for like dimensions gives us the result:

F = k(V∞)2−e−fρ1−f
∞ S1−f/2ae

∞µf
∞ (4.3)

= kρ∞V 2
∞S

(
a∞
V∞

)e

︸ ︷︷ ︸
Mach no.−1

(
µ∞

ρ∞V∞S1/2

)f

︸ ︷︷ ︸
Re−1

(4.4)

We now throw all source of uncertainty into a single force coefficient Cf and can write

Cf = 2k

(
1

M∞

)e (
1

Re

)f

(4.5)

F =
1
2
ρ∞V 2

∞SCf (4.6)

where M∞ is the free stream mach number and Re is the Reynolds Number. We again note that this

holds for a fixed angle-of-attack, which therefore makes Cf a function of angle of attack in addition

to the variables in 4.5.
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4.4.2 Approximating Force and Moment Coefficients

Contrary to conventional wind tunnel techniques used for steady aerodynamic model identifica-

tion, we trained a (coarsely approximated) unsteady aerodynamic model using supervised learning

methods applied to real flight data. The representation of our dynamic model exploits standard

relationships between aerodynamic forces/moments and their corresponding non-dimensionalized

coefficients, which allows the model to generalize well beyond the limits of our data. The identified

model approximates lift, drag, and moment coefficients as functions of angle of attack and elevator

deflection angle.

We logged approximately 240 trials of real flight data over unsteady regimes of the flight envelope,

including stall and post-stall configurations, in our motion capture environment. Our trials swept

a representative set of flight trajectories for the perching maneuver and the data was processed

and used to compute instantaneous forces and moments using the standard equations F = ma and

τ = Iα, where F represents the linear force vector, m is mass, a is the linear acceleration vector, I is

the inertia about the glider’s center of gravity, and α is the rotational acceleration. The force vector

was decomposed into lift and drag components and was then used to compute the instantaneous

force and moment coefficients as:

CL =
2FL

ρV 2S
CD =

2FD

ρV 2S
CM =

2M

ρV 2Sc
(4.7)

where CL, CD, and CM represent lift,drag, and moment coefficients, respectively. The collected co-

efficient data was used to model the (averaged) unsteady aerodynamic force and moment coefficients

as functions of angle of attack and elevator angle using a linear barycentric function approximator

[46] with nonlinear features of the inputs.

C = WΦ(X) (4.8)

where C is the coefficient data, W represent the unknown parameter matrix, X is the input data

consisting of angle of attack and elevator angle, and Φ(X) represents the nonlinear features of the

input data. The parameter matrix was estimated using standard least squares ridge regression:

Ŵ = (ΦT Φ + λI)−1ΦT W (4.9)

where

Ŵ = argmin
W

tr[(C−WΦ)T (C−ΦW) + λWT W] (4.10)

where we used Φ as shorthand for Φ(X). Ridge regression shrinks the parameters by imposing

a penalty on their size, eliminating large parameter magnitudes in regions where data was sparse
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Figure 4-5: Scatter plots showing the general trend of the computed coefficients from flight data.
Shown are lift and drag coefficients with their respective flat plate theory predictions.

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
−1.5

−1

−0.5

0

0.5

1

1.5

Cd

C
l

 

 
Glider Data
Flat Plate Theory

Figure 4-6: Lift to Drag polar plots and its respective flat plate theory prediction.

(typically at the boundaries of the approximation). Our data was post-processed (down-sampled

at 30Hz) with a recursive outlier detection scheme that removed data points outside five standard

deviations of the current best fit. The model was re-fit until no outliers were found.

The general trend of the coefficient data is shown in figure 4-5. Notice that the trend of the

coefficient data shows high agreement with that predicted by flat plate theory [47]. Figures 4-8

through 4-10 show the approximated lift and drag coefficient models with overlays of the actual data

points. Note that the domain knowledge allowed us to effectively generalize the model beyond the

configurations found in the training data. The model was trained on real flight data ranging from

Reynold’s numbers of approximately 14,000 to 53,000, and therefore the accuracy of the model is

subject to a flight envelop contained within the blue region of figure 4-7. We could easily have added

a Reynold’s number dependency in the approximation, but because we were interested in accurately

approximating the behavior of our glider within this specific flight envelope, we considered this a

reasonable estimate of our task dynamics. The identified model also exhibits some potential evidence

of unsteady effects. Figure 4-7 show low frequency oscillations on the order of 12 Hz present in the

coefficient data, which may have a possible connection with flat plate vortex shedding (e.g. see [48]).
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Our future work will consider flow visualization to elucidate the nature of such of effects.
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Figure 4-7: (left) Reynold’s numbers for the perching task. (right) Possible evidence of unsteady
effects. The low frequency oscillations in the coefficient data is on the order of 12 Hz may suggest
unsteady effects related to vortex shedding (e.g. see [48]).
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Figure 4-8: (left) Learned lift coefficient model overlayed with real flight data points. (right) 2D
projection of lift curves for varying elevator angles.

Figure 4-11 shows the lift to drag characteristics of our glider. Note that because our design was

largely inspired by that of an aerobatic propeller driven model airplane, our lift to drag characteristics

are low, having a max value of approximately 4.5. This was completely satisfactory for our perching

experiments, requiring high maneuverability and short glide distances (that exploit stalling effects).

4.4.3 Nonlinear ODE Simulation

The learned coefficient models were successfully used in developing a fully nonlinear high angle of

attack (including stall and post-stall) ODE simulation of our glider. The simulator includes a second

order linear actuator model for the elevator servo, which incorporates the 116ms loop delay present
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Figure 4-9: (left) Learned drag coefficient model overlayed with real flight data points. (right) 2D
projection of drag coefficient curves for varying elevator angles.
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Figure 4-10: (left) Learned moment coefficient model overlayed with real flight data points. (right)
2D projection of moment coefficient curves for varying elevator angles.
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Figure 4-11: (left) Polar plot for Cl vs. Cd. (right) L
D ratio.

in the online control system. Figure 4-12 shows a snapshot sequence of the simulator (bottom) vs.

the real glider (top) executing the perching maneuver. Although our ODE model was based on a

far simpler representation than that of Navier-Stokes, the level of agreement between real data and

simulation was incredibly high. At the submission of this thesis, we were currently quantifying the
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fidelity of our model.

Figure 4-12: High Speed Perching (real vs simulated). The real sequence was generated by a
hand tuned state machine. Consequently, this approach only works for a very limited set of initial
conditions.
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Chapter 5

An Autopilot that Lands On a

Perch

For our simplified two dimensional problem we have an eight dimensional state vector and a one

dimensional action vector given by

x =
[

y z θ ψ ẏ ż θ̇ ψ̇
]T

and u = elevator command (5.1)

where (y, z) are cartesian position coordinates w.r.t. the perch location, θ is the glider pitch angle

with respect to the floor, and ψ represents the elevator deflection angle w.r.t. the glider.

5.1 Acquiring a Direct Policy

Acquiring a policy directly has important advantages over complete state-space search methods.

In particular, direct policy search algorithms are independent of the dimensionality of the problem

and instead depend on the specific parameterization being used. The control approach described

here was inspired by a hand tuned state-machine controller that was used to execute the perching

maneuver. Figure 4-12 (bottom) shows the results of this state machine controller. However, this

controller works only from a very limited set of initial conditions. Our goal here was to broaden the

basin of attraction for the same parameterization using a policy gradient approach, based on the

algorithm described in section 2.1.

5.1.1 Optimizing Parameters by Weight Perturbation

If we assume that most of the variability in cost comes from the variability in initial launching

conditions then we can restrict our class of policies to those that map initial conditions to control
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actions. Namely, we can have our policy output two parameters for a given initial condition which

define: 1) a coordinate defining a transition into a high angle of attack (this coordinate is distance

relative to the perch) and 2) the magnitude of this deflection in terms of elevator angle. The policy

is a nonlinear function Θ of the parameterization vector w and nonlinear features φ taken over the

set of initial conditions drawn from real trials.

πw(x,xic) = Θ

(
x,

∑

i

wiφi(xic)

)
(5.2)

where xic is an initial condition state vector. The parameterization gives us two control variables

as follows:


 ydef

emag


 = K


I +


 tanh

(∑N
i=1 w1,iφi(xic)

)

tanh
(∑N

i=1 w2,iφi(xic)
)





 (5.3)

where ydef is the y coordinate that specifies the point at which to deflect the elevator (to cause a nose

up moment), emag is the magnitude of this elevator deflection, and K is a diagonal gain matrix. We

use an offset tanh function to make the control variables positive and smooth w.r.t. the parameter

vector w. The policy is then given by:

un = πw(xn,xic) = ξ(yn − ydef)emag︸ ︷︷ ︸
Θ

(5.4)

where ξ is the Heaviside or unit step function given by

ξ(c) =
{

0 c < 0

1 c ≥ 0
(5.5)

A learning trial consists of launching the glider at the given initial condition (in simulation), executing

the current policy, and making a policy gradient update at the end of the trial, which happens when

the glider hits the floor. The cost-to-go is defined as

J(x, n) = min
xm

[(xm − xdes)T Q(xm − xdes),m = n, . . . , N ] (5.6)

where xdes represents the desired state for a successful perch (where the perch coordinates are

assumed to be (y, z) = (0, 0)) and is chosen as xdes = [0 0 π
4 NA 0 − 1 − 1 NA]. Here position is

given in meters, angles in radians, and NA indicates that the elevator state is not penalized. This

cost translates to penalizing at the ‘best’ point in the trajectory in terms of squared error. In practice

Q changes about z = 0, where we penalize states ending below the perch more so than those that

end above, essentially giving the cost a non-quadratic form. This introduces a slight discontinuity
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into the cost function, but in practice it never presented a problem for the optimization process.

However, although Eq.(5.6) is intuitively simple to understand, it is not a conventional additive

cost function (e.g. Eq.(2.2)). Instead the total cost depends on the entire state trajectory and the

time horizon N varies and is dependent on the policy being followed (depending on the policy, the

glider will hit the floor at different times and ∂N/∂w 6= 0). This makes exact gradient calculations

a little more difficult (e.g. as needed by backpropogation through time [14]) and was one of our

motivations for using model-free weight perturbation. Using the weight perturbation algorithm (see

sec. 2.1) we were able to acquire a policy offline using our identified dynamic model. The set of

initial conditions seen from trial data was discretized into a five dimensional mesh over the five

state variables describing the initial condition of the launch xic = [z θ ẋ ż θ̇]T , the other three

state variables were assumed to be always known and invariant. The algorithm optimized the policy

parameters for every initial condition in the mesh (approximately 1024 points) using a distributed

computing cluster. Fig(5-1) shows the cost landscape for one set of nominal initial conditions and the

corresponding gradient descent trajectory. The landscape in Fig(5-1) was computed exhaustively for

that particular initial condition vector. Computing the entire landscape for every initial condition

would take approximately four days on our distributed cluster, while weight perturbation achieved

the same (local) optimization in approximately six hours.

5.1.2 Optimizing Parameters by True Gradient Descent

If we assume a fixed time horizon, then we can optimize the policy parameters by true gradient

descent using the plant and cost gradients. The plant gradients can be computed using the identified

dynamic model, and an analytical form of the cost function makes its gradients a straight forward

calculation. However, using an intuitive cost function such as Eq.(5.6) makes the problem somewhat

difficult to manage, as the time horizon will depend on the policy being followed. Hence, we’ve

left this policy-dependent time horizon problem as the subject of future work, and instead focus on

acquiring a policy for a fixed time horizon. The simplest approach is to parameterize the policy

solely on time (i.e. an openloop policy), making the control action itself the parameter that will be

optimized

un = πw(n) = wn (5.7)

As any other policy gradient approach, the goal then becomes to find the gradient of the total cost

w.r.t. the parameters
∂J(0)
∂u

(5.8)

where J(0) represents the cost at n = 0 and u is the vector of control actions (containing one element

for every time step) over the entire time horizon. The gradients can be computed through a straight
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Figure 5-1: Cost landscape for a given initial condition and the corresponding policy gradient tra-
jectory(red)

forward calculation

∂J(0)
∂uN−1

=
∂J(N − 1)

∂uN−1
=

∂g(xN−1, uN−1)
∂uN−1

+
∂g(xN )
∂xN

∂xN

∂uN−1
(5.9)

where we observe that the instantaneous cost g(xn, un) for n = 0, . . . , j − 1 does not depend on the

command uj . In a similar fashion, we can compute the other gradients and find the backward pass

recursion

∂J

∂uN−k
=

∂gN−k

∂uN−k
+

∂J

∂xN−k+1

∂fN−k

∂uN−k
(5.10)

∂J

∂xN−k
=

∂gN−k

∂xN−k
+

∂J

∂xN−k+1

∂fN−k

∂xN−k
(5.11)

This approach, commonly known as the backpropogation through time algorithm [14], plays out

a trajectory using the current policy, then makes a backward pass to compute the update to the

control parameters. Using this approach, we were able to obtain an openloop policy for the perching

task in simulation for a single initial conditon, and used those results as part of our basis for our

parameterization chosen in section 5.1. Another approach would be to generate a full state feedback
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policy based on time as well as state using the backpropogation through time algorithm. This would

require a mesh over time and space that is rather large, requiring 8+ N
dt dimensions (8 state variables

and N
dt time steps), consequently bearing no advantage over methods such as dynamic programming.

Therefore, a more clever parameterization would be required and is the subject of future work.
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Chapter 6

Conclusions and Future Work

Controlling a glider in unsteady airflow conditions provides a benchmark task for understanding

the basic principles of maneuverable flight. Studying gliding flight allows us to study the perching

problem at its core, stripping the problem down to its most fundamental level. Leveraging new

motion capture technology, we were able to identify a dynamic model within the flight envelop of

the perching task using methods in supervised learning and system identification. This has provided

not only a way to circumvent the high startup cost of online learning, but also invaluable task-specific

domain knowledge that will be useful as we move towards perching with flapping-wings. The next

step of this work will be to evaluate the results presented here on the real glider, where model-free

learning will close the gap between the controller optimized in simulation and the one that will

provide successful results on the real glider.

6.1 Outdoor Sensing and Control

Performing a perching maneuver in an outdoor setting would truly illustrate the high level of ro-

bust intelligence in any control solution. To this end, we have already designed and built a fully-

instrumented autonomous sail plane capable of carrying a 440g instrumentation payload, shown in

Figure 6-1. This sailplane has already shown the ability to fly completely under computer control.

The payload includes an on-board Pentium based PC104 computer running real-time Matlab, a

3DM-GX1 sensor package combining three 1200◦/sec angular rate gyros with three orthogonal DC

accelerometers and magnatometers, and an on-board Ethernet bridge providing Wi-Fi communica-

tion with a ground station. Our next step in our outdoor experiments will be to introduce a number

of sensors onto the aircraft in order to facilitate the detection of a perch and successful execution of

the point landing in spite of gusty wind conditions. The aircraft’s perch detection suite will incorpo-

rate differential GPS along with stereo vision (all processed on board) in combination with contact

sensors that will detect a successful landing. Local air flow sensors along the body and along the
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span of the wings will provide partial information about the ambient air flow conditions and used

as part of the policy parameterization for outdoor learning trials.

Figure 6-1: Our computerized sailed plane capable of autonomous flight.

6.2 Extensions to Flapping-Wing Flight

We have already designed and built a fully-instrumented initial version of a computerized ornithopter

with a 2m wingspan capable of carrying a 440g instrumentation payload (Figure 6-2). These flapping-

wing machines have the ability to develop a more intimate interaction with the air flow through higher

degrees of actuation and passive dynamic design. Figure 6-3 shows a snapshot sequence during a

successful manual test flight of the ornithopter at MIT’s Killian Court. Our control approaches will

be inspired by those investigated in this thesis.

Figure 6-2: Our initial design of a fully instrumented computerized ornithopter. The robot has a
2m wingspan and is capable of carrying a 440g instrumentation payload. Design by Zack Jackowski.
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Figure 6-3: Manual test flight of our fully-instrumented autonomous ornithopter.
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