
GCS*: Forward Heuristic Search on Implicit
Graphs of Convex Sets

Shao Yuan Chew Chia, Rebecca H. Jiang, Bernhard Paus Graesdal,
Leslie Pack Kaelbling, and Russ Tedrake

Massachusetts Institute of Technology, Cambridge, MA 02139, USA
{shaoyuan, rhjiang, graesdal, lpk, russt}@mit.edu

Abstract. We consider large-scale, implicit-search-based solutions to
Shortest Path Problems on Graphs of Convex Sets (GCS). We propose
GCS*, a forward heuristic search algorithm that generalizes A* search
to the GCS setting, where a continuous-valued decision is made at each
graph vertex, and constraints across graph edges couple these decisions,
influencing costs and feasibility. Such mixed discrete-continuous plan-
ning is needed in many domains, including motion planning around ob-
stacles and planning through contact. This setting provides a unique
challenge for best-first search algorithms: the cost and feasibility of a
path depend on continuous-valued points chosen along the entire path.
We show that by pruning paths that are cost-dominated over their en-
tire terminal vertex, GCS* can search efficiently while still guaranteeing
cost-optimality and completeness. To find satisficing solutions quickly,
we also present a complete but suboptimal variation, pruning instead
reachability-dominated paths. We implement these checks using polyhedral-
containment or sampling-based methods. The former implementation is
complete and cost-optimal, while the latter is probabilistically complete
and asymptotically cost-optimal and performs effectively even with min-
imal samples in practice. We demonstrate GCS* on planar pushing tasks
where the combinatorial explosion of contact modes renders prior meth-
ods intractable and show it performs favorably compared to the state-
of-the-art. Project website: shaoyuan.cc/research/gcs-star/

Keywords: Graph Search · Task and Motion Planning · Manipulation
· Convex Optimization · Algorithmic Completeness and Complexity.

1 Introduction

Many real-world planning problems involve making discrete and continuous de-
cisions jointly. Collision-free motion planning selects whether to go left or right
around an obstacle along with a continuous trajectory to do so. In Task and Mo-
tion Planning (TAMP), discrete task-level decisions about the type and sequence
of actions are intimately coupled with continuous robot motions and object con-
figurations. For example, where a robot grasps a hockey stick impacts its ability
to hook an object [13]; in the construction of a tower, the order in which materials
are assembled, as well as their geometric relationships, affect stability [8,25].

A natural representation of such a problem structure is the Graph of Convex
Sets (GCS) [15]. In a GCS, graph vertices represent these discrete choices, with

https://shaoyuan.cc/research/gcs-star/

2 S.Y. Chew Chia et al.

Static obstacle Unactuated object Actuated robot Object target region

Fig. 1: An ϵ-suboptimal solution found in 21.9s by GCS* using sampling-based
ReachesCheaper domination checks on the STACK planar pushing task. STACK is for-
mulated as a GCS problem with approximately 1.3× 109 vertices and up to 8.5× 1017 edges.

edges denoting allowed transitions. A continuous decision within each vertex is
encoded by a point constrained to lie within a convex set associated with the
vertex. For example, the free configuration space around an obstacle may be
(sometimes approximately) decomposed into a number of intersecting convex
regions in which trajectory segments can be planned. The point associated with
each vertex, which encodes the motion within the corresponding free-space re-
gion, could be, for example, a sequence of positions at a fixed number of knot
points [14]. In the case of a single knot point, the associated vertex’s convex set is
simply the corresponding convex free-space set. In the case of more knot points,
the vertex’s set would be the higher-dimensional set in which each knot point
is contained within the free-space set. In this example, intersecting free-space
regions lead to graph edges. A valid way to get around the obstacle involves a
path – a sequence of vertices – through the graph, along with a trajectory – a
sequence of continuous-valued points assigned to vertices on the path. Impor-
tantly, in such problems, there may be constraints coupling points across edges,
presenting a fundamental difference from classical graph search problems. For
example, for trajectory continuity, knot points across an edge must coincide.

While Shortest-Path Problems (SPPs) in discrete graphs can be solved in
polynomial time, SPPs in GCS are NP-hard [15]. GCS can be solved with
a Mixed-Integer Convex Program (MICP) formulation; Marcucci et al. give
a notably scalable transcription of SPPs in GCS with a tight convex relax-
ation [15]. However, these approaches become intractable as the graph grows.
Many discrete-continuous problems exhibit a combinatorial explosion of discrete
modes, e.g., in a manipulation task where contact dynamics between every pair
of bodies are considered. In TAMP, the search space is typically so large that
explicit enumeration of the search space is impractical. For such problems, we
can instead define a graph implicitly via a source vertex and a successor operator
that acts on a vertex and returns all outgoing edges. Implicit graph search algo-
rithms use this representation to solve SPPs without loading the entire graph in
memory. A* [7] is forward heuristic search algorithm which can solve the SPP on
implicit discrete graphs. However, key differences between discrete graphs and
GCS make search in GCS more challenging.

The SPP on a discrete graph has the optimal substructure property [2]: All
sub-paths of an optimal path between two vertices are themselves optimal paths
between the first and last vertices they traverse. A* (or any best-first search
algorithm) leverages this property, pruning a sub-path when its cost-to-come
is dominated by another sub-path terminating in the same vertex because it
cannot be a sub-path of any optimal path [22]. However, the SPP on a GCS lacks

GCS*: Forward Heuristic Search on Implicit Graphs of Convex Sets 3

(a) (b)

Fig. 2: An abstract discrete graph (a) and GCS (b), for example, mapping to the path planning
problem for a hopping robot tasked to hop from s to t across polygonal stepping stones. Arrows
are edges between vertices. Vertices are represented as black dots in (a) and via their (blue)
convex sets in (b). White dots are trajectory points on the GCS. Edge costs are the Euclidean
distances traversed between vertices. A discrete graph (a) has the optimal substructure prop-
erty while a GCS (b) does not. In (a), the optimal path between s and C (red) is a sub-path
of the optimal path between s and t (green), which goes through C. In (b), the optimal path
between s and C is not a sub-path of the optimal path between s and t, which goes through
C. However, each point on the green path’s trajectory is reached optimally on the green path.

the optimal substructure property. Importantly, as exemplified in fig. 2 and by
Morozov et al. [16], a sub-path of an optimal path on a GCS is not necessarily an
optimal path between that subpath’s first and last vertices. Thus, when considering
whether a partial path to the target could be a sub-path of an optimal path, it
is insufficient to ask whether it is the cheapest way to reach its terminal vertex.
As a result, a naive application of A* to GCS could prune an important sub-
path, preventing the optimal path from being returned. We leverage the key
insight that, while the optimal substructure property does not hold on the path
level in GCS, it does hold on the trajectory level: Given an optimal path and
corresponding trajectory, any sub-path is optimal to reach its own final point,
as exemplified in fig. 2 (b). That is, while an optimal path may not contain an
optimal subpath to reach each vertex it visits, its trajectory is optimal to reach
each point it visits. In order to maintain this property, we place no restrictions
on the number of times a path may revisit vertices [16]. Formally, paths that
may revisit vertices are generally referred to as “walks,” but for readability we
continue to use “path” even though this term traditionally excludes cycles.

The trajectory-level optimal substructure property holds because the optimal
way to reach a point is independent of the optimal way to continue on from it.
However, this is only true if visiting a particular vertex on the way to that point
does not exclude that vertex from being visited subsequently. It is well-known
that shortest paths on discrete graphs never revisit vertices [2]; however, this
does not hold on a GCS because a different point may be visited each time.

More severe than the loss of optimality is the loss of completeness. Because
a GCS may have constraints coupling points across edges, a path may not be
feasible even if edges connect the sequence of vertices. As a result, A* on a
GCS might prune a candidate path even though the cheaper alternate path is
infeasible for reaching the target. An example is shown in fig. 3.

In this paper, we address these challenges and generalize A* to the GCS
setting. We call our algorithm GCS* (sec. 4), leveraging two key insights. First,
to retain optimality, the algorithm must keep track of every path that reaches any
point in a set more cheaply than alternate paths. Second, to retain completeness,

4 S.Y. Chew Chia et al.

Fig. 3: A contrived example of a GCS where points spanning edges (s,A), (s,B), and (C, t)
are constrained to be vertically aligned, and points spanning (A,C) and (B,C) horizontally
aligned. For example, representing a path planning problem for a hopping robot that can
only hop in axis-aligned directions. A* prunes [s,B,C] since it has higher cost-to-come than
[s,A,C]. However, [s,A,C, t] is infeasible (red), while [s,B,C, t] is feasible (green).

the algorithm only needs to keep track of every path that reaches previously
unreached points within a set. These insights give rise to domination checks
we call ReachesCheaper and ReachesNew, respectively (sec. 4.2). Using
ReachesCheaper with an admissible heuristic makes GCS* optimal, while
using ReachesNew prunes paths more aggressively, sacrificing optimality for
speed, but retaining completeness1. We present polyhedral-containment-based
implementations of these checks and prove completeness and optimality of GCS*
(sec. 4.3). However, we achieve significant speed improvements with only mildly
suboptimal results with sampling-based implementations, under which GCS* is
probabilisitically complete and asymptotically cost optimal, i.e., complete and
optimal in the limit of infinite samples. The theoretical properties of each variant
of the algorithm are summarized in table 2.

Finally, we formulate planar pushing as a GCS problem in sec. 5 and share
GCS* results for tasks with multiple moving objects and multi-step solutions in
sec. 6. Such problems are notorious for combinatorially exploding discrete op-
tions. For example, the STACK task (fig. 1) leads to approximately 109 sets and
up to 1018 edges, making it wildly intractable for methods that require load-
ing the graph into memory, but sampling-based GCS* finds a solution in 21.9
seconds. Two key strengths of the best-first search framework extend to GCS*.
First, GCS* is able to solve huge problems that are intractable for methods
which require explicit construction of the graph. Second, search effort is pro-
portional to query difficulty. In contrast, methods that solve the problem as a
single optimization program require full effort regardless of query difficulty. Sim-
ilar to A*, GCS* also guides the search using a priority function that sums the
cost-to-come and heuristic cost-to-go. Exactly as in weighted A*, inflation of the
heuristic can be used to trade-off bounded sub-optimality with speed [21].

2 Related Work
We overview three approaches to discrete-continuous planning: sampling-based,
optimization-based, and hybrid methods that combine graph search with sam-
pling or optimization. Sampling-based methods, like Rapidly-exploring Random
Trees [12] and Probabilistic Roadmap Method [11] were developed for path

1 Similar to A* [22], GCS* is complete if a solution exists or the user defines a limit on the
length of paths that can be returned.

GCS*: Forward Heuristic Search on Implicit Graphs of Convex Sets 5

planning with obstacles and extended for contact-rich manipulation [1,19]. Un-
like nonconvex trajectory optimization, which can fail to find feasible solutions,
sampling-based methods are typically probabilistically complete. However, incor-
porating continuous differential constraints on discrete samples is challenging,
often making kinodynamic versions of these algorithms less effective [14].

To achieve both the completeness of sampling-based methods and trajec-
tory optimization’s ease of handling continuous constraints, some have proposed
posing the entire problem as a single MICP, solving a convex relaxation, and
applying a cheap rounding step to recover a feasible solution. This strategy has
been applied to motion planning around obstacles for high-dimensional robotic
systems [14] and planar pushing of a single object [6]. We extend these benefits
to the class of problems too large be posed as a single optimization program.

To solve large problems modelled implicitly, many TAMP algorithms per-
form a tree search, alternating between choosing a discrete action and sampling
continuous action parameters [5]. However, using sampling to determine feasi-
bility of a sequence of abstract actions does not provide a guaranteed answer
in finite time. Other hybrid methods combine graph search with optimization
over continuous variables. Using optimization to set path expansion priority al-
lows continuous considerations to closely inform discrete search. Logic-Geometric
Programming [25,26] uses non-linear programming (NLP) to guide the search,
but the non-convexity of NLP leads to the loss of completeness and optimal-
ity. We build on these ideas, additionally requiring a convex decomposition of
configuration space. While this can be non-trivial to generate [20,3,27], convex
optimization allows us to determine the feasibility of a path in GCS absolutely,
and perform domination checks that enable completeness and global optimality.

Recent works have proposed solving SPPs on GCS with graph search. A∗-
GCS [24] solves the convex relaxation on increasingly large sub-graphs, using
successive solutions to guide sub-graph growth. In this work, we instead itera-
tively find solutions for sub-paths rather than sub-graphs, which scales better
to larger graphs. INSATxGCS (IxG) and IxG* [18] adapt INterleaved Search
and Trajectory Optimization (INSAT) [17] for collision-free GCS motion plan-
ning [14]. These algorithms demonstrate impressive speedups over the convex
relaxation and rounding approach [14] across a range of tasks including multi-
arm assembly. However, IxG is only complete subject to the assumption that all
edge constraints along any path in the graph can be satisfied; In reality, indi-
vidually feasible edge constraints can still be jointly infeasible, as in fig. 3. Edge
constraints add significant expressivity to GCS and are heavily used, including
by Marcucci et al. [14] and Graesdal et al. [6]. While IxG* is complete with-
out this assumption, it uses IxG to generate an upper bound on the optimal
cost. Supposing IxG fails to find a feasible path, IxG* will use a trivial (infinite)
upper bound. Then IxG* will not prune any paths, rendering large problems
intractable. Furthermore, while the main search of IxG and IxG* can be done
on implicit graphs, both methods use a precomputed heuristic that requires ex-
plicit graphs. We build on the this approach, addressing the case where graphs
are too large to be explicitly constructed, e.g. the STACK task (fig. 1).

6 S.Y. Chew Chia et al.

3 Problem Formulation
In this section we present the problem of interest as a mathematical program.

Table 1: Summary of mathematical notation

G := (V, E) Directed graph with vertices V and edges E
Xv Convex set associated with vertex v
Xe Convex constraint set for edge e
s, t Source and target vertices
v Discrete path in the graph, defined as a sequence of vertices
vi The i-th vertex in the path v
vend Last vertex in the path v
Ev Set of edges traversed by path v
x Continuous trajectory
xi The i-th point on trajectory x
xi ∈ Xv The point on trajectory x associated with vertex v
c(xu,xv) Cost of the edge between vertices u and v, evaluated on trajectory x
f∗(v) Optimal cost of a solution via vertex v
g∗(x) Optimal cost-to-come from s to point x
h∗(x) Optimal cost-to-go from point x to t

f̃(v) Total cost estimate via path v

f̃(v, x) Total cost estimate via path v and point x ∈ Xvend
g̃(v, x) Optimal cost-to-come from s to point x ∈ Xvend via path v

h̃(x) Heuristic estimate of cost-to-go from point x to t

x∗(v) Optimal trajectory via path v subject to the heuristic h̃

A GCS [15] is a directed graph G := (V, E) defined by a (potentially infinite)
set of vertices V and edges E ⊂ V2, where (u, v) ∈ E if the graph allows transitions
from vertex u to vertex v, i.e., v is a successor of u. Each vertex v ∈ V is paired
with a compact convex set Xv. These sets may live in different spaces. We assume
each vertex has a finite number of successors. The graph is implicitly defined via
source vertex s ∈ V and operator Successors that, when applied to a vertex
u, returns all successors vi of u. We define a path v in graph G as a sequence of
vertices, where the bold font indicates a sequence. A subscripted index operates
on a sequence to select the element at that index: vi gives the i-th vertex in the
sequence and each vi+1 is a successor of vi. Likewise, we define a trajectory x on
path v as a sequence of points in the sets associated with v, xi ∈ Xvi

. We also
overload the indexing of x to go by vertex, such that xvi

:= xi. We denote the
last vertex in the path v as vend, and the edges traversed by v as Ev. The cost
of edge e := (u, v) is determined by a proper, closed, convex, positive, bounded-
away-from-zero function of its endpoints c(xu,xv). The bounded-away-from-zero
stipulation ensures finite optimal paths when cycles are permitted. Each edge
can additionally have constraints (xu,xv) ∈ Xe, where Xe is a closed convex set.
For source vertex s ∈ V and target vertex t ∈ V, the SPP in GCS is

minimize
v, x

∑
(u,v)∈Ev

c(xu,xv) (1a)

subject to v0 = s, vend = t, (1b)
vi+1 ∈ Successors(vi), ∀i ∈ [0, end− 1], (1c)
xv ∈ Xv, ∀v ∈ v, (1d)
(xu,xv) ∈ Xe, ∀e := (u, v) ∈ Ev. (1e)

GCS*: Forward Heuristic Search on Implicit Graphs of Convex Sets 7

The objective (1a) is to minimize the total cost of traversing the path v in
the graph. Constraint (1b) enforces that path v starts at source vertex s, and
ends at target vertex t. Constraint (1c) enforces that each edge in the path v
exists. Constraint (1d) enforces that each point on the trajectory x lies within
the convex set corresponding to its vertex. Finally, constraint (1e) enforces that
the continuous values of trajectory x satisfy all edge constraints along path v.

If the discrete path v is fixed, prog. (1) becomes convex and easy to solve;
we call this program ConvexRestriction. Given v, solving ConvexRestric-
tion determines its corresponding optimal cost and optimal trajectory x.

4 Approach
4.1 Graph Search Formulation

A* (alg. 1) searches over paths from the source, pruning some and expanding
others based on estimated costs of extending to reach the target, until a path
reaches the target and is returned. In particular, paths await expansion in a
priority queue Q ordered by total cost estimate f̃ (line 6). Often, instead of
specifying f̃ directly, a user equivalently provides h̃, a heuristic that estimates
costs-to-go from vertices to the target, and f̃ is computed as the sum of heuristic
h̃ and cost-to-come g̃. A path is pruned via a domination check if its cost-to-
come g̃ is greater than that of the current cheapest path reaching the same
vertex (line 10). This current cheapest path for each vertex is stored in a map S
(line 11), that maps each vertex to the current lowest-cost path. Equivalently, f̃
can be compared since paths reaching the same vertex share an h̃ value. We use
the term “domination check” generically to refer to a function that determines
whether a candidate path should be pruned or added to Q. We call a path
expanded if it has been popped from Q (line 6). We call a vertex expanded if any
path terminating at it has been expanded.

GCS* (alg. 2) proceeds similarly. The key difference is the use of a differ-
ent domination check NotDominated ∈ {ReachesCheaper,ReachesNew}
(defined in sec. 4.2). To facilitate these domination checks, GCS* maintains a
map S which maps each vertex to a set of un-pruned paths reaching the vertex.
This is in contrast to A*, which stores a single path reaching each vertex. For
any vertex v ∈ V, we define f∗(v) as the optimal cost of prog. (1) with the addi-
tional constraint that vertex v is on the path v (not necessarily as the terminal
vertex vend), i.e., v ∈ v, where path v is a decision variable in prog. (1). Let
g∗(x) be the optimal cost-to-come from source s to point x , and h∗(x) be the
optimal cost-to-go from point x to target t, both infinite if infeasible.2 If point
x ∈ Xv is on the optimal path through vertex v, we have f∗(v) = g∗(x) + h∗(x).
Note that f∗(x), g∗(x), and h∗(x) are well defined even if point x is contained
in (intersecting) sets corresponding to multiple vertices.

2 More precisely, every “function” l(x) that takes a point x as input in this paper is actually a
family of functions {lv : Xv → R | v ∈ V } defined over each vertex, as these points may lie
in different spaces. These functions are defined to agree across vertices when these vertex
sets share points, lv1 (x) = lv2 (x) ∀x ∈ Xv1 ∩ Xv2 . For clarity, we drop the subscript and
treat l(x) as a single function.

8 S.Y. Chew Chia et al.

In general, f∗, g∗, and h∗ cannot be computed without solving prog. (1). In-
stead, we define computationally viable functions f̃ , g̃ and h̃. The A* algorithm
uses a heuristic function for estimating the cost-to-go from a vertex to the tar-
get. Extending this to GCS*, we use a heuristic function h̃(x) that estimates the
cost-to-go from a point x to the target t.

Next, we define g̃ and f̃ . No longer referring to the decision variables from
prog. (1), let v be a candidate partial path to the target t such that v0 = s,
but vend is not necessarily t. Let x∗(v) denote an optimal trajectory through v
subject to the heuristic h̃ assigning the cost from the final point in the optimal
partial trajectory x∗(v)end to target t. Then g̃(v, x) for x ∈ Xvend is the optimal
cost-to-come from source s to point x via partial path v. Then, the total cost es-
timate via a partial path v is defined to be f̃(v) := g̃(v,x∗(v)end)+ h̃(x∗(v)end).

Algorithm 1 Discrete A*

Input: s, t, f̃ , g̃, Successors

Output: Path from s to t or Fail
1: v = [s]
2: S ← {s : v} ▷ Map of paths
3: Q← priority queue ordered by f̃(v)
4: Q.add(v)
5: while Q ̸= ∅ do
6: v← Q.Pop()
7: if vend = t then return v
8: for all v′ ∈ Successors(vend)

do
9: v′ = [v, v′]

10: if v′ /∈ S or g̃(v′) < g̃(S[v′])
then

11: S[v′] = v′

12: Q.Add(v′)
13: return Fail

Algorithm 2 GCS*
Input: s, t, f̃ , NotDominated,
Successors
Output: Path from s to t or Fail

1: v = [s]
2: S ← {s : {v}} ▷ Map of sets of paths
3: Q← priority queue ordered by f̃(v)
4: Q.add(v)
5: while Q ̸= ∅ do
6: v← Q.Pop()
7: if vend = t then return v
8: for all v′ ∈ Successors(vend)

do
9: v′ = [v, v′]

10: if NotDominated(v′, S[v′])
then

11: S[v′].Add(v′)
12: Q.Add(v′)
13: return Fail

To evaluate the total cost estimate for a path additionally restricted to pass
through a specific point x ∈ Xvend , we overload f̃(v, x) := g̃(v, x) + h̃(x).
ConvexRestriction can be used to evaluate g̃(v, x) and f̃(v, x) (used to evalu-
ate sample points in sec. 4.2). Additionally, if h̃ is convex3, ConvexRestriction
can be used to evaluate x∗(v) (used to return the final optimal trajectory) and
f̃(v) (used to prioritize the queue Q in alg. 2).

We assume heuristic h̃(x) is nonnegative, i.e., h̃(x) ≥ 0, ∀x. Furthermore,
heuristic h̃ must be pointwise admissible (def. 1) in order for optimality guar-
antees (sec. 4.3) to hold. We extend the classical definition of admissibility over
vertices to a pointwise definition:

3 More precisely, h̃v is convex for all v ∈ V.

GCS*: Forward Heuristic Search on Implicit Graphs of Convex Sets 9

Definition 1. A heuristic function h̃ is pointwise admissible if

h̃(x) ≤ h∗(x), ∀x ∈ Xv, ∀v ∈ V.

4.2 Domination Checks

In line 10 of alg. 2, GCS* uses one of two domination checks, ReachesCheaper
or ReachesNew. In practice, exact checks are not tractable, so we compute
approximate checks. An approximate NotDominated check is said to be con-
servative if it never returns False incorrectly, i.e., it never says a candidate path
is dominated when it is not. Under a conservative domination check, GCS* may
track more candidate paths than necessary, but never overlooks an important
path (which paths are “important” depends on the domination check being used
and will be precisely stated in this section). Using exact or conservative Reach-
esCheaper checks, GCS* is cost optimal. Satisficing solutions (solutions which
are feasible but likely suboptimal) can be found more quickly using Reaches-
New. Using exact or conservative ReachesNew checks, GCS* is complete.

x

co
st

(a) RC = False, RN = False
x

co
st

(b) RC = True, RN = True
x

co
st

(c) RC = True, RN = False

x

co
st

(d) RC = True, RN = False
x

co
st

(e) RC = False, RN = False

g̃(v, x)

g̃(v(i), x)

Not reachability dominated

Not cost dominated

Fig. 4: Scenarios showing whether a candidate path v (pink) ReachesCheaper (RC) and
ReachesNew (RN) compared to alternate paths {v(i)|i ∈ {1, 2, 3}} (blue), where the dimen-
sion of the set Xvend is 1. Green and orange lines denote points x such that eq. (2) and eq. (3)
hold, respectively. Points x for which the cost-to-come g̃(v, x) is not drawn (outside dashed
lines) are unreachable via path v due to constraints, and g̃(v, x) = ∞.

If a candidate path v reaches some point x ∈ Xvend cheaper than any way
found yet, as in fig. 4 (b), (c), and (d), we say it ReachesCheaper:

ReachesCheaper(v, S[vend]) := ∃x ∈ Xvend

s.t. g̃(v, x) < g̃(v′, x), ∀v′ ∈ S[vend].
(2)

If ReachesCheaper(v, S[vend]) = False, path v is said to be dominated, or,
more specifically, cost-dominated. Intuitively, GCS* returns an optimal path
when it has pruned only cost-dominated paths (discussed in sec. 4.3, proven
in appendix A) because such paths cannot be subpaths of optimal paths.

If a candidate path v reaches some point x ∈ Xvend that has not yet been
reached, as in fig. 4 (b), we say it ReachesNew:

ReachesNew(v, S[vend]) := ∃x ∈ Xvend

s.t. (g̃(v, x) <∞) ∧ (g̃(v′, x) =∞, ∀v′ ∈ S[vend]) .
(3)

10 S.Y. Chew Chia et al.

If ReachesNew(v, S[vend]) = False, v is said to be dominated, or, more specifi-
cally, reachability-dominated. Where ReachesCheaper compares costs-to-come
at all points in the terminal set, ReachesNew compares feasibility of reaching
these points. Note that ReachesNew implies ReachesCheaper since the cost
of any feasible path is finite, but ReachesCheaper does not imply Reaches-
New.

Sampling-based Approximation. The simplest and fastest approach to ap-
proximating ReachesCheaper and ReachesNew queries is to check whether
sample points x ∈ Xvend meet the conditions on x in eq. (2) and eq. (3) respec-
tively, returning True if any sampled point does. These approximations are not
conservative: the candidate path not being dominated at some sampled point x
is sufficient to conclude that the candidate path is not dominated, but not nec-
essary. For example, in fig. 4 (d), sparse sampling may miss the green interval
where the cost-to-come of the candidate path g̃(v, x) is lower than the others,
leading ReachesCheaper to return False, signaling that v is dominated, when
in fact it is not. However, completeness and optimality are approached in the
limit of infinite samples; in this sense we say GCS* is probabilistically complete
and asymptotically optimal. We discuss this further in sec. 4.3.

Polyhedral-containment-based Approximation. We prove in appendix A
that conservative (necessary but not sufficient) approximations of Reaches-
New and ReachesCheaper enable completeness and optimality guarantees.
We formulate such checks via polyhedral containment queries. One source of
conservatism is that, unfortunately, these queries can check only single domina-
tion: They compare candidate path v to individual alternate paths in S[vend].
These checks can detect reachability domination like in fig. 4 (a) and (c) and
cost domination like in fig. 4 (a), in which v is dominated by a single other
path v(i). These checks cannot detect reachability domination like in (d) or (e),
or cost domination like in (e), in which the candidate path v is dominated by
several alternate paths v(i) collectively but not by any individual alternate path
v(i). Further conservatism occurs due to inability to compute exact containment
queries tractably.

We first re-define ReachesCheaper and ReachesNew in terms of set con-
tainment, before relaxing these conditions to tractable containment queries. For
a path v, we define the set in which a trajectory must reside (Pv), the set
reachable via path v (Sv), and the epigraph of the optimal cost-to-come (Cv):

Pv := {x | xv ∈ Xv ∀ v ∈ v, (xu,xv) ∈ X(u,v) ∀ (u, v) ∈ Ev}. (4a)

Sv := {x ∈ Xvend | ∃x ∈ Pv s.t. x = xend} ⊆ Xvend . (4b)

Cv := {(x, l) ∈ Xvend × R | ∃x ∈ Pv s.t. x = xend, l ≥
∑

(u,v)∈Ev

c(xu,xv)}. (4c)

We can now define the domination queries as set containment queries:

ReachesCheaper(v, S[vend]) =

Cv ⊈
⋃

v′∈S[vend]

Cv′

 , (5a)

GCS*: Forward Heuristic Search on Implicit Graphs of Convex Sets 11

ReachesNew(v, S[vend]) =

Sv ⊈
⋃

v′∈S[vend]

Sv′

 . (5b)

The union over convex sets is not generally itself convex, and we know of no
efficient way to compute these queries. Instead, we check single domination,
comparing to individual other paths. In particular, we use

∄v′ ∈ S[vend] s.t. Cv ⊆ Cv′ , (6a) ∄v′ ∈ S[vend] s.t. Sv ⊆ Sv′ , (6b)

as necessary conditions for ReachesCheaper (5a) and ReachesNew (5b) re-
spectively: if the candidate path is not dominated by the collective of other
paths, then it certainly is not dominated by any individual other path.

These single domination checks are still non-trivial because they involve com-
paring projections of convex sets, which are expensive to compute explicitly. In
our examples, vertex sets are polytopic and costs are linear, which allows us to
use Sadraddini and Tedrake’s sufficient condition for containment of affine trans-
formations of polyhedra [23], evaluated by solving a convex program. Using this
condition to check (6b) and (6a), NotDominated(v, S[vend]) is conservative:
If candidate path v is not dominated, it certainly returns True, but if candidate
path v is dominated, it may return True or False. In the case of more general
convex vertex sets and costs, Jones and Morari’s work on computing inner and
outer polytopic approximations of convex sets [10] can be used before evaluating
these containment queries.

4.3 Properties of the Algorithm

We state properties of the algorithm in this section, and include proofs in
appendix A. In particular, under conservative ReachesCheaper or Reach-
esNew checks, GCS* is complete; and under conservative ReachesCheaper
checks, GCS* is cost optimal:

Theorem 1. GCS* returns a path from s to t in finite iterations if one exists.

Theorem 2. GCS* is cost optimal: GCS* returns an optimal trajectory from
s to t in finite iterations if one exists.

Note that, like A* [22], GCS* as stated cannot be assured to terminate in
finite iterations in the case where prog. (1) is infeasible and the graph is infinite
or cycles are permitted. GCS* is made complete in the infeasible case by adding
a limit on path length to prog. (1) and placing a corresponding upper limit on
the lengths of paths that get added to S and Q in lines 11 and 12.

Efficiency. In contrast to A*, GCS* is not optimally efficient. That is, given the
heuristic information h̃, it can be shown that GCS* expands subpaths that may
not be expanded by some other hypothetical algorithm guaranteed to return
the optimal solution. Conceptually, GCS* loses this property that applies to A*
because when GCS* expands a subpath v, by considering paths through the
children of vend, GCS* now has access to potentially improved lower-bound on

12 S.Y. Chew Chia et al.

the true cost-to-go, h̃(x), for x in the reachable set of v, Sv (4b), but we do not
choose to use this information to update h̃(x). A* with a consistent heuristic
does not suffer from this inefficiency because it never expands a node twice [4],
whereas GCS* may expand many subpaths whose terminal sets contain points
in Sv.

Properties when using sampling-based domination checks. While we
have proven that GCS* is cost-optimal and complete under conservative Is-
Dominated checks, a sampling-based implementation is sometimes preferred,
as discussed in sec. 4.2. In the limit of infinite samples, the sampling-based im-
plementations of NotDominated are exact. Thus it follows from theorems 1
and 2 that sampling-based GCS* is probabilistically complete and asymptot-
ically cost-optimal. One might raise concern that the backward-reachable set
from the target in some set Xv may never be sampled, leading some important
feasible path to be pruned. However, because all Pv (4a) are compact, the sets
being checked for containment, Sv (4b), are closed. Therefore, Sv\

⋃
v′∈S[vend]

Sv′

with respect to the topology of Sv (the space being sampled) is open and thus
either empty or positive-measure. If it has positive measure, it will eventually
be sampled.

5 Application to Planar Pushing

Tasks involving making and breaking contact while constraining non-penetration
notoriously lead to an explosion of discrete modes, especially as the number of
bodies scales. Indeed, the naive formulation in sec. 5.1 sees this combinatorial
growth. With more careful construction of contact modes [9], or by introducing
hierarchy [1], one could greatly reduce search space for these problems. However,
additional structure can make such methods less general. Our goal with these
experiments is not to demonstrate state of the art performance on contact-rich
manipulation tasks specifically, but instead to show that our method is able to
approach such large problems.

5.1 Formulation

We implement a simplified planar pushing model with polyhedral robots and
objects that can translate but not rotate, and static obstacles. Robot-object and
object-object contact are frictionless, and motion quasi-static, where bodies’
velocities are proportional to the net forces applied to them. We enforce non-
penetration between all pairs of bodies, defining collision-free sets over robot and
object positions. We also define sets over positions and contact forces defining
the permissible physical contact behavior for each pair of bodies. Together, these
two kinds of discrete modes define the sets of the graph G. Each point xv ∈
Xv in prog. 1 is comprised of nk knot points, defining the planar positions for
each robot and object, actuation forces for each robot, and a force magnitude
for each pair of bodies in contact. The constraints defining these sets, which
we explain throughout this section, are straightforward to compose. As such,
the Successors operator can construct them on demand. In particular, the

GCS*: Forward Heuristic Search on Implicit Graphs of Convex Sets 13

successors of some vertex are defined by changing the contact state or the non-
penetration separating hyperplane (defined below) for a single pair of bodies.

All constraints are linear, leading to polyhedral sets. However, extensions of
this model to include rotations could involve semidefinite relaxations, leading to
spectrahedral sets, in a formulation similar to that of Graesdal et al. [6]. This
work could also be extended to borrow other components of the GCS formula-
tion of planar pushing from Graesdal et al., like frictional contact. We omit these
features for simplicity. However, the assumption that bodies are polyhedral is
harder to relax, as it allows for an exact polyhedral decomposition of collision-free
space. Alternative settings that require only an approximate convex decompo-
sition of the free configuration space can handle rotations and non-polyhedral
bodies [20,27,3]. However, these formulations are not conducive to making con-
tact due to incomplete coverage. As these decompositions are generally composed
offline and cannot produce new sets as quickly as our Successors operator can,
this formulation would either require building the entire graph before running
GCS* or accepting slower evaluation of Successors.

Non-penetration. We constrain that each pair of bodies do not penetrate one
another by imposing that one face of one of the two polyhedra is a separating
hyperplane: all vertices of one body lie on one side, and all vertices of the other
body lie on the other side.

Contact. Every pair of bodies may have any of the following kinds of contact:
no contact, any face of one body in contact with any face of another, or any face
of one body in contact with any vertex of another. Gathering these options over
all pairs of bodies produces a contact set. Each pair of bodies in contact in each
contact set is accompanied by a force magnitude variable, leading to variation in
dimension between sets. This force acts normal to the face in contact. Position
constraints are added to ensure the associated contact is physically feasible.
Relative sliding of features in contact is allowed within a single contact set, as
long as they remain in contact.

Quasi-static dynamics. For each object and robot, we enforce that between
consecutive knot points, translation is proportional to the sum of forces on the
body, including a robot’s actuation force. Edge constraints enforce that robot
and object positions remain the same across edges – for an edge (u, v) in eq. (1),
the positions from the last knot point in xu must equal the positions from the
first knot point in xv. As a result of this constraint, a path containing the edge
(u, v) is only feasible if there is a shared position that is feasible in both convex
sets associated with these vertices, Xu and Xv.

5.2 Implementation Details

We use nk = 2 knot points per set. Our edge cost is the L1 norm distance
between knot points, plus a constant penalty for switching modes. That is, for
v ̸= t, c(xu,xv) := 1 +

∑
i wi||piv,1 − piv,0||1, for weights wi, where piv,j gives the

position of the ith moving body (object or robot) at the jth knot point in vertex

14 S.Y. Chew Chia et al.

v. c(xu, t) = 0 (no movement in the target set). We use wi = 1 for all i. Our
sampling-based implementations can handle L2 norm or L2 norm squared edge
costs easily. However, as discussed in sec. 4.2, our containment-based implemen-
tations need modification to accommodate non-linear costs.

For simplicity, our nominal h̃ is the cost of a “shortcut” edge between the
point x and some point in the target set xt ∈ Xt chosen to minimize h̃. If an edge
does exist directly to the target, the true cost of that edge is used. Otherwise,
h̃(x)← 1 + c(x, xt), using a weight of 0.2 for robot displacements instead of the
true weights wi = 1. Because the weights do not exceed the true weights, this
yields an admissible heuristic. Note that 1 is added to c(x, xt) because we know
that a constant penalty of 1 is applied for every mode switch and there will be at
least one additional mode switch before reaching the target. For speed, we also
conduct experiments with an ϵ-suboptimal heuristic instead, where we scale h̃ by
some ϵ, h̃(x) ← ϵ · (1 + c(x, xt)), to prune more aggressively, using ϵ = 10. The
shortcut edge ignores contact dynamics, making this heuristic less informative in
some scenarios than others. h̃ can be further optimized, but this is not the focus of
this paper. Practitioners may apply domain knowledge to formulate informative
heuristics, trading off between informativeness and computational cost.

For sampling-based domination checks, we use only a single sample per check.
As we will discuss, empirically, this is sufficient. In practice, due to edge con-
straints, the reachable set for a path v, Sv ⊆ Xvend , is often low-volume within
the terminal set Xvend . As such, we sample uniformly in Xvend and then project
onto Sv.

For containment-based methods, we first perform a cheap single-sample Not-
Dominated check, and only check containment if it returns False. Additionally,
taking advantage of the unique structure of our planar pushing formulation, we
only check the domination conditions on the last position knot point instead of
all variables in the set. To reduce problem size for domination checks, we “solve
away” equality constraints by parameterizing in their nullspace.

6 Results
Table 2 presents results for three planar pushing tasks: AROUND, SQUEEZE,
and STACK shown in figs. 1 and 5. AROUND is the simplest task: its graph has
194 vertices and 8,328 edges. SQUEEZE has a larger graph with 628 vertices
and 56,806 edges. The dimensions of sets in AROUND and SQUEEZE range
from 4 to 12. STACK (fig. 1) has 5 bodies, leading to a combinatorial explosion
of approximately 1.3 × 109 sets and up to 8.5 × 1017 edges. The dimensions of
its sets range from 8 to 24. Due to the sizes of the graphs, the direct convex
optimization approach [15] cannot be used, thus we compare GCS* against IxG
and IxG* [18], the state-of-the-art for incrementally solving SPP on GCS.

For sampling-based domination checks, as we increase the number of sam-
ples per check, we approach completeness and optimality. Due to the curse of
dimensionality, such coverage demands exponentially more samples as set di-
mensions increase. However, in our tasks, we found that very sparse sampling –
in particular, a single sample per domination check – still resulted in good solu-
tion quality. This is an interesting result that enables an efficient and de facto

GCS*: Forward Heuristic Search on Implicit Graphs of Convex Sets 15

Static obstacle Unactuated object Actuated robot Object target region

(a)

(b)

Fig. 5: The ϵ-suboptimal solution trajectories found by GCS* using the sampling-based Reach-
esCheaper domination check on the AROUND Task (a) and SQUEEZE Task (b). In
SQUEEZE, in the second frame, the robot pushes the object past the obstacle to make room
for itself to maneuver around in the third frame. In the fourth, the robot uses contact with
the obstacle to slide the object vertically until the robot can fit underneath it. Videos of these
trajectories are available on the project website.

nearly optimal implementation. We understand this to be a property particular
to our problem structure, in which the condition that two paths reach the same
final knot point within the same vertex is quite restrictive. For example, the
sampling-based ReachesNew approximation asks whether any path in S can
achieve a trajectory ending at a particular sampled object position and robot
position in some contact state that can be achieved by a candidate path, calling
the candidate path dominated if so. In this event, it is likely that that path in
S can reach much of what the candidate path can, and the candidate path can
be pruned with little consequence.

Containment-based domination checks scale poorly with path length, or,
more precisely, the dimension of the full trajectory through it. This is reflected
in the solve times in the rows marked “Cont.” in table 2.

The number of paths expanded is impacted greatly by the strength of the
heuristic in the context of the particular task. In general, the “shortcut” edge
heuristic is strong for AROUND and STACK and weaker for SQUEEZE which
requires squeezing through a narrow gap then maneuvering around the object to
push it from a different direction multiple times. As expected, use of an inadmis-
sible heuristic leads to cost increase. Typically, containment-based checks lead
to more paths being expanded as compared to sampling-based checks (as seen in
table 2) because of false negatives from sampling, as well as conservatism of the
single domination criteria. However, containment-based checks could also lead
to fewer paths being expanded because important paths are not wrongly pruned,
as they might be when using sampling-based checks (not observed in table 2).

In comparison to our methods, the baselines require significant time to com-
pute heuristic values for the entire graph before starting their query phase. While
this approach can yield a stronger heuristic (as in the bottommost row, where
IxG expands fewer paths than GCS* for AROUND), for these tasks the solve

https://shaoyuan.cc/research/gcs-star/

16 S.Y. Chew Chia et al.

Table 2: Here we show the solve time, solution cost, and number of expanded paths (Exp)
for three planar pushing tasks. Our algorithm GCS* is compared to the baselines IxG* and
IxG (grey). Sampling (Sampl.) and containment (Cont.) based implementations (Impl.) of the
domination checkers (DC) ReachesCheaper (RC) and ReachesNew (RN) are shown. A
dagger (†) indicates that the property holds probabilistically or asymptotically. Some experi-
ments returned infeasible (Fail), were stopped after 10h (×), or could not be run as the graph
could not be explicitly constructed (-). The baselines required preprocessing times of 1.1m and
1.7h for AROUND and SQUEEZE respectively. Our methods require no preprocessing time.
All computation was performed on an AMD Ryzen 9 7950x 16-core 32-thread processor.

Alg. DC Impl. Heur. Com-
plete

Cost
optimal

AROUND SQUEEZE STACK
Time Cost Exp Time Cost Exp Time Cost Exp

GCS* RC Sampl. Admiss. Yes† Opt.† 26.2s 27.5 432 4m 47.80 2114 × × ×
GCS* RC Cont. Admiss. Yes Opt. 7.5h 27.5 734 × × × × × ×
IxG* N.A. N.A. Admiss. Yes Opt. × × × × × × - - -
GCS* RC Sampl. Inadm. Yes† ϵ-subopt.† 2.9s 27.5 51 38.3s 54.55 381 21.9s 67.53 57
GCS* RC Cont. Inadm. Yes ϵ-subopt. 4.6m 27.5 73 × × × × × ×
IxG* N.A. N.A. Inadm. Yes ϵ-subopt. × × × × × × - - -
GCS* RN Sampl. Inadm. Yes† Subopt. 2.5s 27.5 44 20s 57.42 259 21.8s 67.53 57
GCS* RN Cont. Inadm. Yes Subopt. 35.4s 28.5 75 20.5m 57.42 458 3.5m 67.53 64
IxG N.A. N.A. Inadm. No Subopt. 4.7s 28 31 2.3m Fail 615 - - -

times can be dominated by this pre-processing phase. When the graph is very
large, this pre-processing can become intractable (as in STACK). Because IxG*
prunes paths based on a global upper bound found by IxG, in cases where IxG
is unable to return a solution (as in SQUEEZE), or simply when an admissible
heuristic is used (as in row 3), no paths will be pruned, resulting in intractably
large search spaces. As GCS* is complete, and our domination checks do not rely
on a global upper bound, GCS* does not experience these particular limitations.

7 Conclusion

We propose GCS*, a forward heuristic search algorithm for solving large discrete-
continuous planning problems formulated as GCS. We define two domination
checks ReachesNew and ReachesCheaper, as well as containment and
sampling-based implementations of those checks that allow GCS* to be com-
plete and optimal, or have probabilistic/asymptotic versions of those properties,
respectively. GCS* provides a principled way of addressing the challenges of ap-
plying graph search to the discrete-continuous setting. We demonstrate settings
in which GCS* performs favourably compared to the state-of-the-art. For ap-
plication to real-world planar pushing tasks, further work would be required to
handle rotations [6]. Incorporating these insights into algorithms that leverage
hierarchy, factorization or learned heuristics could solve more complex problems
faster.

Acknowledgments. This work was supported by the Aker Scholarship; Amazon.com,
PO No. 2D-12585006; The AI Institute, award ID Agmd Dtd 8/1/2023; ARO grant
W911NF-23-1-0034; and The Charles Stark Draper Laboratory, Inc., where Rebecca
H. Jiang is a Draper Scholar.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

GCS*: Forward Heuristic Search on Implicit Graphs of Convex Sets 17

References

1. Cheng, X., Patil, S., Temel, Z., Kroemer, O., Mason, M.T.: Enhancing dex-
terity in robotic manipulation via hierarchical contact exploration 9(1), 390–
397. https://doi.org/10.1109/LRA.2023.3333699, https://ieeexplore.ieee.
org/abstract/document/10319720

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms.
The MIT Press, 4th edn.

3. Dai, H., Amice, A., Werner, P., Zhang, A., Tedrake, R.: Certified polyhedral
decompositions of collision-free configuration space . https://doi.org/10.1177/
02783649231201437

4. Dechter, R., Pearl, J.: Generalized best-first search strategies and the optimality of
a* 32(3), 505–536. https://doi.org/10.1145/3828.3830, https://dl.acm.org/
doi/10.1145/3828.3830

5. Garrett, C.R., Chitnis, R., Holladay, R., Kim, B., Silver, T., Kaelbling, L.P.,
Lozano-Pérez, T.: Integrated task and motion planning 4, 265–293. https://doi.
org/10.1146/annurev-control-091420-084139, https://www.annualreviews.
org/content/journals/10.1146/annurev-control-091420-084139

6. Graesdal, B.P., Chew Chia, S.Y., Marcucci, T., Morozov, S., Amice, A., Par-
rilo, P.A., Tedrake, R.: Towards tight convex relaxations for contact-rich manipu-
lation. https://doi.org/10.48550/arXiv.2402.10312, http://arxiv.org/abs/
2402.10312

7. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths 4(2), 100–107. https://doi.org/10.1109/TSSC.1968.
300136, https://ieeexplore.ieee.org/document/4082128, conference Name:
IEEE Transactions on Systems Science and Cybernetics

8. Hartmann, V.N., Orthey, A., Driess, D., Oguz, O.S., Toussaint, M.: Long-
horizon multi-robot rearrangement planning for construction assembly 39(1), 239–
252. https://doi.org/10.1109/TRO.2022.3198020, https://ieeexplore.ieee.
org/document/9868234/

9. Huang, E., Cheng, X., Mason, M.T.: Efficient contact mode enumer-
ation in 3d. vol. 17, pp. 485–501. Springer International Publishing.
https://doi.org/10.1007/978-3-030-66723-8_29, http://link.springer.
com/10.1007/978-3-030-66723-8_29, book Title: Algorithmic Foundations of
Robotics XIV Series Title: Springer Proceedings in Advanced Robotics

10. Jones, C.N., Morari, M.: Polytopic approximation of explicit model predictive con-
trollers 55(11), 2542–2553. https://doi.org/10.1109/TAC.2010.2047437, http:
//ieeexplore.ieee.org/document/5617688/

11. Kavraki, L., Svestka, P., Latombe, J.C., Overmars, M.: Probabilistic roadmaps for
path planning in high-dimensional configuration spaces 12(4), 566–580. https://
doi.org/10.1109/70.508439, https://ieeexplore.ieee.org/document/508439,
conference Name: IEEE Transactions on Robotics and Automation

12. LaValle, S.M.: Rapidly-exploring random trees: A new tool for path planning,
https://msl.cs.uiuc.edu/~lavalle/papers/Lav98c.pdf

13. Mao, J., Tenenbaum, J.B., Lozano-Perez, T., Kaelbling, L.P.: Learning reusable
manipulation strategies. In: 7th Annual Conference on Robot Learning. https:
//openreview.net/forum?id=ihqTtzS83VS

14. Marcucci, T., Petersen, M., von Wrangel, D., Tedrake, R.: Motion plan-
ning around obstacles with convex optimization 8(84), eadf7843. https:
//doi.org/10.1126/scirobotics.adf7843, https://www.science.org/doi/10.
1126/scirobotics.adf7843

https://doi.org/10.1109/LRA.2023.3333699
https://doi.org/10.1109/LRA.2023.3333699
https://ieeexplore.ieee.org/abstract/document/10319720
https://ieeexplore.ieee.org/abstract/document/10319720
https://doi.org/10.1177/02783649231201437
https://doi.org/10.1177/02783649231201437
https://doi.org/10.1177/02783649231201437
https://doi.org/10.1177/02783649231201437
https://doi.org/10.1145/3828.3830
https://doi.org/10.1145/3828.3830
https://dl.acm.org/doi/10.1145/3828.3830
https://dl.acm.org/doi/10.1145/3828.3830
https://doi.org/10.1146/annurev-control-091420-084139
https://doi.org/10.1146/annurev-control-091420-084139
https://doi.org/10.1146/annurev-control-091420-084139
https://doi.org/10.1146/annurev-control-091420-084139
https://www.annualreviews.org/content/journals/10.1146/annurev-control-091420-084139
https://www.annualreviews.org/content/journals/10.1146/annurev-control-091420-084139
https://doi.org/10.48550/arXiv.2402.10312
https://doi.org/10.48550/arXiv.2402.10312
http://arxiv.org/abs/2402.10312
http://arxiv.org/abs/2402.10312
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TSSC.1968.300136
https://ieeexplore.ieee.org/document/4082128
https://doi.org/10.1109/TRO.2022.3198020
https://doi.org/10.1109/TRO.2022.3198020
https://ieeexplore.ieee.org/document/9868234/
https://ieeexplore.ieee.org/document/9868234/
https://doi.org/10.1007/978-3-030-66723-8_29
https://doi.org/10.1007/978-3-030-66723-8_29
http://link.springer.com/10.1007/978-3-030-66723-8_29
http://link.springer.com/10.1007/978-3-030-66723-8_29
https://doi.org/10.1109/TAC.2010.2047437
https://doi.org/10.1109/TAC.2010.2047437
http://ieeexplore.ieee.org/document/5617688/
http://ieeexplore.ieee.org/document/5617688/
https://doi.org/10.1109/70.508439
https://doi.org/10.1109/70.508439
https://doi.org/10.1109/70.508439
https://doi.org/10.1109/70.508439
https://ieeexplore.ieee.org/document/508439
https://msl.cs.uiuc.edu/~lavalle/papers/Lav98c.pdf
https://openreview.net/forum?id=ihqTtzS83VS
https://openreview.net/forum?id=ihqTtzS83VS
https://doi.org/10.1126/scirobotics.adf7843
https://doi.org/10.1126/scirobotics.adf7843
https://doi.org/10.1126/scirobotics.adf7843
https://doi.org/10.1126/scirobotics.adf7843
https://www.science.org/doi/10.1126/scirobotics.adf7843
https://www.science.org/doi/10.1126/scirobotics.adf7843

18 S.Y. Chew Chia et al.

15. Marcucci, T., Umenberger, J., Parrilo, P., Tedrake, R.: Shortest paths in graphs
of convex sets 34(1), 507–532. https://doi.org/10.1137/22M1523790, https://
epubs.siam.org/doi/full/10.1137/22M1523790

16. Morozov, S., Marcucci, T., Amice, A., Graesdal, B.P., Bosworth, R., Parrilo, P.,
Tedrake, R.: Multi-query shortest-path problem in graphs of convex sets. In: Pro-
ceedings of the Sixteenth Workshop on the Algorithmic Foundations of Robotics

17. Natarajan, R., Choset, H., Likhachev, M.: Interleaving graph search and trajectory
optimization for aggressive quadrotor flight 6(3), 5357–5364. https://doi.org/
10.1109/LRA.2021.3067298, http://arxiv.org/abs/2101.12548

18. Natarajan, R., Liu, C., Choset, H., Likhachev, M.: Implicit graph search for plan-
ning on graphs of convex sets. In: Proceedings of Robotics: Science and Systems
2024

19. Pang, T., Suh, H.J.T., Yang, L., Tedrake, R.: Global planning for contact-rich
manipulation via local smoothing of quasi-dynamic contact models 39(6), 4691–
4711. https://doi.org/10.1109/TRO.2023.3300230, https://ieeexplore.ieee.
org/document/10225433, conference Name: IEEE Transactions on Robotics

20. Petersen, M., Tedrake, R.: Growing convex collision-free regions in configuration
space using nonlinear programming. https://doi.org/10.48550/arXiv.2303.
14737, http://arxiv.org/abs/2303.14737

21. Pohl, I.: Heuristic search viewed as path finding in a graph 1(3), 193–204. https://
doi.org/10.1016/0004-3702(70)90007-X, https://linkinghub.elsevier.com/
retrieve/pii/000437027090007X

22. Russell, S.J., Norvig, P., Chang, M.W., Devlin, J., Dragan, A., Forsyth, D., Good-
fellow, I., Malik, J., Mansinghka, V., Pearl, J., Wooldridge, M.J.: Artificial intel-
ligence: a modern approach. Pearson series in artificial intelligence, Pearson, 4th
edn., HOLLIS number: 99154334206503941

23. Sadraddini, S., Tedrake, R.: Linear encodings for polytope containment problems.
In: 2019 IEEE 58th Conference on Decision and Control (CDC). pp. 4367–4372.
IEEE. https://doi.org/10.48550/arXiv.1903.05214, http://arxiv.org/abs/
1903.05214

24. Sundar, K., Rathinam, S.: a^* for graphs of convex sets. https://doi.org/10.
48550/arXiv.2407.17413, http://arxiv.org/abs/2407.17413

25. Toussaint, M.: Logic-geometric programming: An optimization-based approach to
combined task and motion planning. In: Proceedings of the 24th International
Conference on Artificial Intelligence. pp. 1930–1936. IJCAI’15, AAAI Press

26. Toussaint, M., Lopes, M.: Multi-bound tree search for logic-geometric programming
in cooperative manipulation domains. In: 2017 IEEE International Conference on
Robotics and Automation (ICRA). pp. 4044–4051. IEEE. https://doi.org/10.
1109/ICRA.2017.7989464, http://ieeexplore.ieee.org/document/7989464/

27. Werner, P., Amice, A., Marcucci, T., Rus, D., Tedrake, R.: Approximating
robot configuration spaces with few convex sets using clique covers of visibility
graphs. https://doi.org/10.48550/arXiv.2310.02875, http://arxiv.org/abs/
2310.02875, version: 2

A Proofs of Algorithmic properties

We prove that, under conservative NotDominated or specifically Reach-
esCheaper checks, GCS* is complete or optimal, respectively: The proofs rely
on these checks being necessary but not sufficient conditions for eq. (3) and
eq. (2). Optimality also relies on h̃ being pointwise admissible (def. 1).

https://doi.org/10.1137/22M1523790
https://doi.org/10.1137/22M1523790
https://epubs.siam.org/doi/full/10.1137/22M1523790
https://epubs.siam.org/doi/full/10.1137/22M1523790
https://doi.org/10.1109/LRA.2021.3067298
https://doi.org/10.1109/LRA.2021.3067298
https://doi.org/10.1109/LRA.2021.3067298
https://doi.org/10.1109/LRA.2021.3067298
http://arxiv.org/abs/2101.12548
https://doi.org/10.1109/TRO.2023.3300230
https://doi.org/10.1109/TRO.2023.3300230
https://ieeexplore.ieee.org/document/10225433
https://ieeexplore.ieee.org/document/10225433
https://doi.org/10.48550/arXiv.2303.14737
https://doi.org/10.48550/arXiv.2303.14737
https://doi.org/10.48550/arXiv.2303.14737
https://doi.org/10.48550/arXiv.2303.14737
http://arxiv.org/abs/2303.14737
https://doi.org/10.1016/0004-3702(70)90007-X
https://doi.org/10.1016/0004-3702(70)90007-X
https://doi.org/10.1016/0004-3702(70)90007-X
https://doi.org/10.1016/0004-3702(70)90007-X
https://linkinghub.elsevier.com/retrieve/pii/000437027090007X
https://linkinghub.elsevier.com/retrieve/pii/000437027090007X
https://doi.org/10.48550/arXiv.1903.05214
https://doi.org/10.48550/arXiv.1903.05214
http://arxiv.org/abs/1903.05214
http://arxiv.org/abs/1903.05214
https://doi.org/10.48550/arXiv.2407.17413
https://doi.org/10.48550/arXiv.2407.17413
https://doi.org/10.48550/arXiv.2407.17413
https://doi.org/10.48550/arXiv.2407.17413
http://arxiv.org/abs/2407.17413
https://doi.org/10.1109/ICRA.2017.7989464
https://doi.org/10.1109/ICRA.2017.7989464
https://doi.org/10.1109/ICRA.2017.7989464
https://doi.org/10.1109/ICRA.2017.7989464
http://ieeexplore.ieee.org/document/7989464/
https://doi.org/10.48550/arXiv.2310.02875
https://doi.org/10.48550/arXiv.2310.02875
http://arxiv.org/abs/2310.02875
http://arxiv.org/abs/2310.02875

GCS*: Forward Heuristic Search on Implicit Graphs of Convex Sets 19

Completeness. We show that if prog. (1) is feasible, GCS* returns a feasible
path in finite iterations. However, like A* [22], GCS* as stated cannot be assured
to terminate in finite iterations in the case where prog. (1) is infeasible and the
graph is infinite or cycles are permitted. GCS* is made complete in the infeasible
case by adding a limit on path length to prog. (1) and placing an upper limit on
the lengths of paths that get added to S and Q in lines 11 and 12.

Lemma 1. For any path v in Q, GCS* either expands v after a finite number
of iterations or returns a feasible path to the target first.

Proof. Path v has some finite estimated total cost f̃(v). Because all edge costs
are positive and bounded away from zero, there exist a finite number of paths
v′ with cost-to-come that do not exceed f̃(v), g̃(v′) ≤ f̃(v). As f̃(v′) ≥ g̃(v′)
for any v′, there are a finite number of paths v′ ever added to Q such that
f̃(v′) ≤ f̃(v). As GCS* always expands the path in Q with the lowest f̃ value,
GCS* will eventually exhaust all such paths and expand v, unless it terminates
with a feasible path to the target first.

Lemma 2. If target t is reachable from source s, then some path that reaches it
is added to Q in finite iterations.

Proof. Suppose, for contradiction, that t is reachable from s, but no path that
reaches it is added to Q in finite iterations. There is some feasible path v where
vstart = s, vend = t, and some feasible trajectory x ∈ Pv. Let j be the largest
index such that there exists a path v′ (which may or may not be a subpath
of v) terminating in vj (v′

end = vj) and reaching xj , that ever gets added to
Q. Such a j ≥ 0 exists because Q is initialized with the path containing just
s. By lemma 1, v′ is expanded in finite iterations, unless a path reaching t is
returned first. If a path reaching t is returned first, we achieve contradiction
trivially. Consider instead the case where v′ is expanded in finite iterations. By
assumption, vj+1 is a successor of vj , and so the extended path [v′,vj+1] must
be added to Q when v′ is expanded. We can be sure it is added to Q instead
of being rejected by NotDominated in line 10 because (xj ,xj+1) ∈ X(vj ,vj+1),
making xj+1 reachable via the extended path [v′,vj+1], and, by assumption, no
path terminating in vj+1 and reaching xj+1 has been added to Q prior, and thus
nor has it been added to S[vj+1], as S is only added to in conjunction with Q.
However, the extended path [v′,vj+1] is now a path in Q terminating in vj+1

and reaching xj+1, creating a contradiction with the definition of j.

Theorem 1. GCS* returns a path from s to t in finite iterations if one exists.

Proof. By lemma 2, a feasible path from s to t is added to Q in finite iterations
if one exists. By lemma 1, either this path is expanded in finite iterations (in
which case it is immediately returned), or another such feasible path from s to t
is returned first. In both cases, a path from s to t is returned in finite iterations.

20 S.Y. Chew Chia et al.

Cost-optimality. In this section, we assume NotDominated is an exact or
conservative check for ReachesCheaper.

Lemma 3. Suppose prog. (1) is feasible and v is an optimal path from s to t.
If t is unexpanded, there is a path v′ in Q with v′

end = vi for some i, such that
v′ attains the optimal cost-to-come to x∗(v)i, g̃(v′,x∗(v)i) = g∗(x∗(v)i).

Proof. If GCS* has not completed one iteration, the lemma holds trivially via the
path containing only s, vs := [s] ∈ Q. Suppose instead vs has been expanded. Let
v be any optimal path from s to t, and let x := x∗(v) be an optimal trajectory
through v. Let i be the largest index for which there exists an expanded path v′

such that vi = v′
end, with optimal cost-to-come to xi, g̃(v′,xi) = g∗(xi). That is,

the ith vertex on v has been expanded on some path v′ which may or may not
be a subpath of v but attains the same (optimal) cost-to-come to xi. Since s has
been expanded, and t has not, i ∈ [0, end − 1]. Because (xi,xi+1) ∈ X(vi,vi+1)

(we know this because the optimal trajectory x traverses this edge via these
points), the extended path [v′,vi+1] reaches xi+1 with optimal cost-to-come
g∗(xi+1) = g∗(xi) + c(xi,xi+1).

We now argue that once v′ was expanded, there must have been, at some
point present or prior, a path added to Q terminating at vi+1 and reaching xi+1

with optimal cost-to-come. Then, we argue that it is still in Q. When v′ was
expanded, the extended path [v′,vi+1] was placed on Q unless it was rejected by
ReachesCheaper returning False in line 10. If ReachesCheaper returned
False, then another path was already in S[vi+1] that terminated at vi+1 and
reached xi+1 with optimal cost-to-come. Paths are added to S only when added
to Q, so this path was added to Q. By the definition of i, whichever such path
was at any point in Q has not been expanded and is still in Q.

Corollary 1. Suppose prog. (1) is feasible, and v is an optimal path from s to
t. If alg. 2 has not terminated, there is some v′ in Q such that v′

end ∈ v and the
estimated total cost for v′ does not exceed the true optimal cost, f̃(v′) ≤ f∗(s).

Proof. As alg. 2 terminates only when t is expanded, t is unexpanded under
these assumptions. By lemma 3, there is an unexpanded search path v′ in Q
with v′

end = vi for some i and an optimal cost-to-come to x∗(v)i.
We know f̃(v′) ≤ f̃(v′,x∗(v)i) because, more generally speaking, a path

constrained to go through v′ is estimated to be at least as cheap as a path
additionally constrained to go through any particular point. Then,

f̃(v′,x∗(v)i) = g̃(v′,x∗(v)i) + h̃(x∗(v)i) (By definition of f̃)

= g∗(x∗(v)i) + h̃(x∗(v)i) (By lemma 3)

≤ g∗(x∗(v)i) + h∗(x∗(v)i) (By h̃ pointwise admissibility)
= f∗(s) (Since x∗(v)i is on an optimal trajectory).

Thus, we have f̃(v′) ≤ f∗(s).

GCS*: Forward Heuristic Search on Implicit Graphs of Convex Sets 21

Theorem 2. GCS* is cost optimal: GCS* returns an optimal trajectory from
s to t in finite iterations if one exists.

Proof. By theorem 1, GCS* returns a feasible path v′ from s to t in finite itera-
tions. Suppose for contradiction that the cost-to-come to t through v′ is subopti-
mal, g̃(v′,x∗(v′)end) > f∗(s). By admissibility, h∗(x) = h̃(x) = 0 ∀x ∈ Xt. Thus,
f̃(v′) = g̃(v′,x∗(v′)end) > f∗(s). By corollary 1, just before termination, there
existed a path v in Q with f̃(v) ≤ f∗(s) < f̃(v′). However, alg. 2 always pops
the path in Q with the lowest f̃ value, and returns a path only after popping it.
This contradicts the assumption that v′ was returned.

	GCS*: Forward Heuristic Search on Implicit Graphs of Convex Sets

