

Stability of passive dynamic walking on uneven terrain

Katie Byl and Russ Tedrake

Robot Locomotion Group, MIT

Passive compass gait on uneven terrain

Is your walker stable? vs How stable is your walker?

←Left: walker #1 Right: walker #2→

Does not fall in 10+ total steps this run. t = 0.0 s

← Constant slope → (upper movies)
Periodic gaits

← Changing slope →
 (lower movies)
 Aperiodic gaits

Stability metrics for dynamic walking

- For <u>deterministic</u> systems:
 - Global stability: size and shape of deterministic (no noise) basin of attraction
 - Local stability: recovery from a single perturbation about the fixed point
- For stochastic systems: statistics of noise map to statistics of failure
 - "mean first passage time" (MFPT) For walking, this is the expected number of steps taken before falling down. [aka "mean time between failures"]

Slice of deterministic basin (left) and stochastic basin (right) for a CG

Methods: Monte Carlo simulations

CSAIL

- Example: passive compass gait on rough terrain
 - Mean value (4 deg) for downhill slope
 - Gaussian distribution; testing std's of 0.5-2.0 deg
- Set init. cond. and simulate dynamics over many trials
- Calculate "mean first passage time" (MFPT) for each particular initial condition of interest
- Below are **MFPTs for init. cond. at the fixed point** for each respective walker

	(Em)/m	a/(a+b)	MFPT	MFPT
	(.5III _h)/III		.5 deg std	1.0 deg std
Walker #1	1	.6	20	6
Walker #2	.15	.7	>>100,000	150

Methods: Monte Carlo simulations

CSAIL

- Example: passive compass gait on rough terrain
 - Mean value (4 deg) for downhill slope
 - Gaussian distribution; testing std's of 0.5-2.0 deg
- Set init. cond. and simulate dynamics over many trials
- Calculate "mean first passage time" (MFPT) for each particular initial condition of interest
- Below are **MFPTs for init. cond. at the fixed point** for each respective walker

	(.5m _h)/m	2/(24b)	MFPT	MFPT
	(.5iii _h)/iii	a/(a+b)	.5 deg std	1.0 deg std
Walker #1	1	.6	20	6
Walker #2	.15	.7	>>100,000	150

Monte Carlo method is computationally intense

- Estimating MFPT over the entire state space takes many, many trials
- We present a more direct method to calculate this distribution...

Modeling the system as a Markov chain:

step-to-step transition matrix, f

$$\mathbf{f} = \begin{bmatrix} 0.25 & 0.35 & 0.4 & 0 \\ 0 & 0.39 & 0.6 & 0.01 \\ 0.28 & 0.5 & 0.2 & 0.02 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{f}^{10} = \begin{bmatrix} 0.13915 & 0.38823 & 0.3665 & 0.10611 \\ 0.13714 & 0.38261 & 0.36118 & 0.11907 \\ 0.13655 & 0.38098 & 0.35966 & 0.12281 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Non-iterative calculation of state-dependent MFPT, m (a vector)
 - $m_i = \sum f_{ij} m_j + 1$, summed over all j s.t. $s_j \neq failed$ state
 - [I-f']m=1 (eqn above in matrix form)
 - → m=[I-f']-11 direct calculation of MFPT!
 - m is a vector giving the MFPT at each discrete state (mesh node)
 - *I* is the identity matrix
 - f' contains the non-absorbing rows and cols of f
 - 1 is the ones vector
 - Gradient in m can be used as a metric for remeshing
 - Note: for a deterministic system (no noise), m=∞ in the basin of attraction

System-wide stochastic stability

- Eigenvalue analysis of the transition matrix, f
 - Any initial condition is a weighted sum of the eigenvectors
 - Each corresponding eigenvalue shows how rapidly that part fades away
 - Look for eigenvector(s) that persist; i.e. describe long-term distribution

Calculate first 3 eigenvalues and eigenvectors of (sparse matrix) f^T

- λ_1 =1 failure is an absorbing state; it persists for all time 1st eigenvector: $[0,...,0,1]^T$ shows to inevitability of a "failure" as $t\to\infty$
- λ_3 provides an estimate of "mixing time" to forget initial conditions. "Fast" mixing implies: $1/\tau_2 = log(1/|\lambda_2|) << log(1/|\lambda_3|) = 1/\tau_3$, so $(1-|\lambda_2|) << (1-|\lambda_3|)$ implies separation of time scales.
- 1- $|\lambda_2| = r$; r = 1/m ("leakage rate" is the inverse of the MFPT) 2nd eigenvector renormalized (to exclude failure state) represents the quasi-stationary distribution of the stochastic basin of attraction.

System-wide stochastic stability

An elegant simplification emerges!

- For our simulations, the magnitude of λ_3 is about 0.5 (fast mixing), so walkers which have not failed will converge rapidly to a **quasi-stationary distribution of states**, which is given by the eigenvector associated with λ_2 .
- Failures (falling) occur at a slow, calculable leakage rate, $r \approx 1 |\lambda_2|$
- λ_1 =1 implies the robot will *eventually* fall, but a small leakage rate means we still expect aperiodic walking to persist for a long time before falling.

"Metastable" (i.e. long-living) states

- We should think of dynamic walking as convergence to a metastable limit cycle, with a slow leak rate, r, to an absorbing failure state (falling down).
- mfpt=1/r gives a system-wide mean first passage time. It is a scalar quantity that characterizes the stability of the system and answers the question:

"How stable is your walker?"

The End

Additional slides follow... (more video, et al)

"for a deterministic system (no noise), m=∞ in the basin of attraction"

- In other words, if you set the noise to "zero", you are calculating the basin of attraction for the DETERMINISTIC system using the step-to-step transition matrix, f; this basin is the region where MFPT (m) is "infinite".
- If you have a description of the equations of motion (to calculate the step-to-step state transition), you can identify whether or not stable limit cycles exist wout tweaking (trial and error) by hand to search for appropriate initial conditions.
- You need to take care to do appropriate (iterative) remeshing (and de-meshing) of the state space to get good resolution!! (i.e. try some mesh; calculate MFPT; then put in more mesh elements where MFPT changes drastically..., calc MFPT,...

Review:

How to answer, "how stable is your walker?"

- Monte Carlo approximation of MFPT from initial conditions
 - computationally intense
- Direct (non-iterative) calculation of vector MFPT, m, using the transition matrix, f
 - Vector *m* and its gradient can be used in refining mesh
- System-wide stability analysis, by finding the largest eigenvalues and eigenvectors of f^T .
 - scalar MFPT describes system
 - quasi-stationary distribution can be found
 - aperiodic walking can be modeled as a metastable limit cycle with a slow leakage rate.

Statistical metrics for stochastic stability

Goal: Quantify stability for a system with definable noise

New stability metrics:

- Describe statistics of failure events
- MFPT : "mean first passage time"
 - * Also called "mean time between failures" (MTBF)
 - * Longevity can also be measured in *number of steps* (rather than "time")
- MFPT = 1/r (inverse of leakage rate)
- $-P_x(t)$: probability of falling by time t
- ML (maximum likelihood) time to fall
- time at which probability of having fallen exceeds some critical limit

Direct (Matrix) Calculation of MFPT

- 1) Discretize (mesh) the state space
- 2) Create the step-to-step (Poincare) transition matrix, *f*
 - $f_{ij} = Pr(s_{n+1}=j \mid s_n=i)$, given our dynamics and noise.
 - New states, s_{n+1}, modeled by probabilistic arrival at nearby mesh nodes.
 - "Failure" (falling) is a self-absorbing state in f.
- 3) Calculate the 3 largest eigenvalues $(\lambda_1, \lambda_2, \lambda_3)$ of f^T
 - $\lambda_1 = 1$; 1st eigenvector: $[0,...,0,1]^T$ shows inevitability of a "failure" as $t \to \infty$
 - $1-\lambda_2 = r$; r = 1/mfpt (metastable "leakage rate"); 2nd eigenvector gives the quasi-stationary distribution of the metastable basin of attraction.
 - λ_3 provides an estimate of "mixing time" to forget initial conditions. "Fast" mixing implies: $1/\tau_2 = \log(1/\lambda_2) << \log(1/\lambda_3) = 1/\tau_3$, so $(1-\lambda_2) << (1-\lambda_3)$
- 4) Calculate the MFPT for each discrete node in the mesh
 - m=[I-f']-11, where f' contains the non-absorbing rows and cols of f, and 1 is the ones vector
- 5) Refine mesh where the gradient in MFPT is most significant

Monte Carlo = computationally intense

- Estimating the MFPT over the state space takes many, many trials
- Motivation for efficient mathematical tools
- We present a more direct method to calculate this distribution...

MFPT over a 2D slice of (3D) state space

Case Study: Passive Compass Gait on Rough Terrain

- Once walker begins a step, it follows a deterministic trajectory until it "hits the ground"
- Thus, we can pre-calculate and save trajectories; then interpolate to look up next step's initial condition (if any!) as a function of ground slope. Examples below...

Case Study: Passive Compass Gait on Rough Terrain

- Using "acrobot" (Spong) definition for states
 - Continuous equations of motion are identical to the acrobot between the discrete impacts
 - 4 states variable: Angles X_1 and X_2 , and their derivatives (X_3 and X_4)

$$X_3 = dX_1/dt$$

Case Study: Passive Compass Gait on Rough Terrain

- Absolute mass not import: it's how the mass is distributed!
- Dimensionless inertia: I/(mL²)
- Intuitively, want low inertia swing leg. (Mass toward upper part of leg.)
- Three walkers analyzed:

	(.5mh)/ m	a/(a+b)	I/(mL²)	Lco/L
Mid-size	1	.6	.0400	.8
Low-inertia	.15	.7	.0102	.74
Beam-leg	1/3	1/3	.0833	.5

Initial walker design ("mid-size")

- Mean = 4 deg slope
- STD = 1 deg
- MFPT ≈ 6 steps

Initial walker design ("mid-size")

- Mean = 4 deg slope
- STD = 0.5 deg deg
- MFPT ≈ 12 steps

Low-inertia walker (more stable)

- Mean = 4 deg slope
- STD = 1 deg
- MFPT >= 110 steps

Low-inertia walker (more stable)

- Mean = 4 deg slope
- STD = 2 deg
- MFPT ≈ 8 steps

Beam-legged walker

CSAIL

- Mean = 4 deg slope
- STD = 1 deg
- MFPT ≈ 2 steps

Above: SD = 1 deg

Below: SD = 0 deg (even)

What (metastable) "neighborhood" in phase space is visited most often?

- Most stable walker (low-inertia version) shown here
- MFPT of about 110 steps (STD of terrain = 1 deg)
- Black points indicate post-hit states (X3,X4 and alpha)

What (metastable) "neighborhood" in phase space is visited most often?

- Same (low-inertia) walker with STD = 2 deg (double)
- MFPT of about 8 steps
- 3 trials plotted (as points) on same axes here

MFPT relates to probability of a catastrophic (n-sigma) event (?)

 As the level of noise decreases, a "failure" may essentially correspond to the probability of a single large-gamma step on the terrain...

At right:

- -MFPT recorded
- -For a given std, what value "jump" in gamma corresponds to the leakage rate, 1/MFPT?
- -Flat lines would indicate the walker is essentially waiting for a particularly bad one-time event
- -Requires more run-time to make a conclusion here

Hip-Actuated Compass Gait Robot

Robot under construction:

- CPU: PC/104, with MATLAB (Simulink)
- Single actuator (motor w/ gearbox) at "hip"
- Brake used as clutch to (dis)engage motor coupling between the legs.
- 3 rate gyros; 2 encoders; 2 accelerometers
- Reinforcement learning

Future modifications:

- Retractable (telescoping) "point" feet
- Rugged terrain
- Replace power-hungry PC/104?
- Direct drive motor!

Thanks to Arlis Reynolds (UROP) and Stephen Proulx (staff)!

Simple Biped Models

Rimless Wheel

- Simplest "walker"
- Hybrid dynamics:
 - * continuous inverted pendulum
 - * discrete state change at impact
- Analogous to dynamics of a biped with all mass at hips

Compass Gait

- Resembles a compass
- Stable limit cycles exist for particular downhill slopes
- Idealized CG model ignores:
 - * lateral stability
 - * ignores foot scuffing (no knees)

Traditional Stability Margin for Walkers

- Standard stability margins:
 - Zero-moment point (ZMP)
- ...but a stable compass gait is always "falling forward"!

Stable compass gait on even terrain

Asimo

Robot Locomotion Group CSAIL, MIT

Lab focus:

- Robot locomotion
- Control of underactuated systems
- Reinforcement learning

Examples:

- "Toddler" (ankles actuated)
- Hip-actuated CG walkers
- Kneed walkers
- RC airplanes
- Ornithopter
- Soap film flow between filaments
- Acrobot
- DARPA "Little Dog" project

Outline

Introduce the concept of stochastic stability

- Given a particular noise input, how often (statistically) will a walker fall?
- Long-living, aperiodic gaits can be modeled as "metastable" states
- Use statistics of failure such as the "mean first passage time" (MFPT) to define the relative degree of stability for a walker that will rarely, but inevitably, fall

Discuss methods for determining failure statistics

- Monte Carlo simulations
- 2. Calculations on the (probabilistic) step-to-step transition matrix, **f**, to obtain **failure** statistics from any **particular initial condition**
- 3. Characterize stochastic stability using **system-wide** stability measures:
 - * quasi-stationary distribution of states visited in the metastable basin
 - * mixing time (to converge to basin) and system-wide failure rate

Examples using a purely passive compass gait (CG) walker

Gaussian variation in slope of terrain at each step

Modeling the system as a Markov chain:

step-to-step transition matrix, f

Iterative calculation of MFPT

- fⁿ is the n-step transition matrix
- Calculate $\sum n(f^n)_{ij}$ to get MFPT from state, i, to the failure state, j.
- Infinite sum (as n goes to ∞) can be calculated non-iteratively (below)

Non-iterative calculation of MFPT, m

- $m_i = \sum f_{ij} m_i + 1$, summed over all j s.t. $s_j \neq f$ ailed state
- [I-f']m=1 (eqn above in matrix form)

→ m=[I-f']-11 direct calculation of MFPT!

- *m* is a vector giving the MFPT at each discrete state (mesh node)
- I is the identity matrix
- f' contains the non-absorbing rows and cols of f
- 1 is the ones vector
- Gradient in m can be used as a metric for remeshing

Analysis: System-wide stochastic stability

- Eigenvalue analysis of the transition matrix, f
 - Calculate <u>first 3 eigenvalues and eigenvectors</u> of (sparse matrix) f^T
 - 1) $\lambda_1 = 1$ (failure is an absorbing state; it persists for all time) 1st eigenvector: $[0,...,0,1]^T$ shows to inevitability of a "failure" as $t \rightarrow \infty$
 - 2) $1 |\lambda_2| = r$; r = 1/m ("leakage rate" is the inverse of the MFPT) 2nd eigenvector renormalized (to exclude failure state) represents the quasi-stationary distribution of the stochastic basin of attraction.
 - 3) λ_3 provides an estimate of "**mixing time**" to forget initial conditions. "Fast" mixing implies: $1/\tau_2 = log(1/|\lambda_2|) << log(1/|\lambda_3|) = 1/\tau_3$, so $(1-|\lambda_2|) << (1-|\lambda_3|)$ implies separation of time scales.

Creating the step-to-step transition matrix

- Discretize (mesh) the state space
- For each mesh node, simulate continuous dynamics
 - Solve for post-impact state for each of many (finite) slopes
- Use interpolation to approximate each new state
 - Remesh to improve estimates

Above: **barycentric** interpolation. (Using N+1 out of the 2^N nodes in an N-dimensional box-type element.)