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Passive compass gait on uneven terrain
• Is your walker stable?     vs How stable is your walker?

←Left: walker #1
Right: walker #2→

← Constant slope →
(upper movies)
Periodic gaits

← Changing slope →
(lower movies)
Aperiodic gaits
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• For deterministic systems :
Global stability : size and shape of deterministic (no noise) basin of attraction
Local stability : recovery from a single perturbation about the fixed point

• For stochastic systems : statistics of noise map to statistics of failure
“mean first passage time” (MFPT) For walking, this is the expected 
number of steps taken before falling down. [aka “mean time between failures”]

Stability metrics for dynamic walking

Slice of deterministic basin (left) and stochastic basin (right) for a CG

Above: average # of steps before falling
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Methods: Monte Carlo simulations
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• Example: passive compass gait on rough terrain
– Mean value (4 deg) for downhill slope
– Gaussian distribution; testing std’s of 0.5-2.0 deg

• Set init. cond. and simulate dynamics over many trials
• Calculate “mean first passage time” (MFPT) for each 

particular initial condition of interest
• Below are MFPTs for init. cond. at the fixed point for 

each respective walker
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Methods: Monte Carlo simulations
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Monte Carlo method is computationally intense
• Estimating MFPT over the entire state space takes many, many trials
• We present a more direct method to calculate this distribution…

25,000 pts for this 2D 
slice in state space

• Example: passive compass gait on rough terrain
– Mean value (4 deg) for downhill slope
– Gaussian distribution; testing std’s of 0.5-2.0 deg

• Set init. cond. and simulate dynamics over many trials
• Calculate “mean first passage time” (MFPT) for each 

particular initial condition of interest
• Below are MFPTs for init. cond. at the fixed point for 

each respective walker
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Modeling the system as a Markov chain:
step-to-step transition matrix, f 

• Non-iterative calculation of state-dependent MFPT, m (a vector)

mi= Σfijmj+1 ,  summed over all j s.t. sj ≠ failed state 
[I-f’]m=1 (eqn above in matrix form)

m=[I-f’]-11
m is a vector giving the MFPT at each discrete state (mesh node)
I is the identity matrix
f’ contains the non-absorbing rows and cols of f
1 is the ones vector

Gradient in m can be used as a metric for remeshing
Note: for a deterministic system (no noise), m=∞ in the basin of attraction

direct calculation of MFPT!
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• Eigenvalue analysis of the transition matrix, f
- Any initial condition is a weighted sum of the eigenvectors
- Each corresponding eigenvalue shows how rapidly that part fades away
- Look for eigenvector(s) that persist; i.e. describe long-term distribution

Calculate first 3 eigenvalues and eigenvectors of (sparse matrix) f T

λ1=1 failure is an absorbing state; it persists for all time
1st eigenvector: [0,…,0,1]T shows to inevitability of a “failure” as t→∞

λ3 provides an estimate of “mixing time” to forget initial conditions.  
“Fast” mixing implies: 1/ τ2=log(1/│λ2│) << log(1/│λ3│)= 1/ τ3,

so (1-│λ2│) << (1-│λ3│) implies separation of time scales.

1-│λ2│= r ; r = 1/m ( “leakage rate” is the inverse of the MFPT) 
2nd eigenvector renormalized (to exclude failure state) represents the 
quasi-stationary distribution of the stochastic basin of attraction.

System-wide stochastic stability
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System-wide stochastic stability

• “Metastable” (i.e. long-living) states
We should think of dynamic walking as 
convergence to a metastable limit cycle, 
with a slow leak rate, r, to an absorbing 
failure state (falling down).
mfpt=1/r gives a system-wide mean first 
passage time. It is a scalar quantity that 
characterizes the stability of the system 
and answers the question:

“How stable is your walker?”
Metastable states

• An elegant simplification emerges!
For our simulations, the magnitude of λ3 is about 0.5 (fast mixing), so walkers 
which have not failed will converge rapidly to a quasi-stationary distribution of 
states, which is given by the eigenvector associated with λ2.
Failures (falling) occur at a slow, calculable leakage rate, r ≈ 1-│λ2│
λ1 =1 implies the robot will eventually fall, but a small leakage rate means we still 
expect aperiodic walking to persist for a long time before falling.
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The End

• Additional slides follow… (more video, et al)
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“for a deterministic system (no noise), 
m=∞ in the basin of attraction”

• In other words, if you set the noise to “zero”, you are 
calculating the basin of attraction for the DETERMINISTIC 
system using the step-to-step transition matrix, f ; this basin is 
the region where MFPT (m) is “infinite”.

• If you have a description of the equations of motion (to 
calculate the step-to-step state transition), you can identify 
whether or not stable limit cycles exist w/out tweaking (trial 
and error) by hand to search for appropriate initial conditions.

• You need to take care to do appropriate (iterative) remeshing
(and de-meshing) of the state space to get good resolution!! 
(i.e. try some mesh; calculate MFPT; then put in more mesh 
elements where MFPT changes drastically… , calc MFPT,…
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Review:

How to answer, “how stable is your walker?”
• Monte Carlo approximation of MFPT from initial conditions

– computationally intense

• Direct (non-iterative) calculation of vector MFPT, m, using 
the transition matrix, f
– Vector m and its gradient can be used in refining mesh

• System-wide stability analysis, by finding the largest 
eigenvalues and eigenvectors of fT.
– scalar MFPT describes system
– quasi-stationary distribution can be found
– aperiodic walking can be modeled as a metastable limit cycle with a 

slow leakage rate.
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Statistical metrics for stochastic stability

• Goal: Quantify stability for a system with definable noise

• New stability metrics:
– Describe statistics of failure events
– MFPT : “mean first passage time”

* Also called “mean time between failures” (MTBF)
* Longevity can also be measured in number of steps (rather than “time”)

– MFPT = 1/r (inverse of leakage rate)
– Px(t) : probability of falling by time t
– ML (maximum likelihood) time to fall
– time at which probability of having fallen exceeds some critical limit
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Direct (Matrix) Calculation of MFPT
1) Discretize (mesh) the state space
2) Create the step-to-step (Poincare) transition matrix, f

fij = Pr( sn+1=j  | sn=i ) , given our dynamics and noise.
New states, sn+1, modeled by probabilistic arrival at nearby mesh nodes.
“Failure” (falling) is a self-absorbing state in f.

3) Calculate the 3 largest eigenvalues (λ1, λ2, λ3) of fT

λ1=1; 1st eigenvector: [0,…,0,1]T shows inevitability of a “failure” as t→∞

1-λ2= r ; r = 1/mfpt (metastable “leakage rate”) ; 2nd eigenvector gives 
the quasi-stationary distribution of the metastable basin of attraction.
λ3 provides an estimate of “mixing time” to forget initial conditions.  “Fast”
mixing implies: 1/ τ2=log(1/λ2)<< log(1/λ3)= 1/ τ3, so (1-λ2) << (1-λ3)

4) Calculate the MFPT for each discrete node in the mesh
m=[I-f’]-11 , where f’ contains the non-absorbing rows and cols of f, and 
1 is the ones vector

5) Refine mesh where the gradient in MFPT is most significant
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Monte Carlo = computationally intense
• Estimating the MFPT over the state space takes many, many trials
• Motivation for efficient mathematical tools
• We present a more direct method to calculate this distribution…

MFPT over a 2D slice of (3D) state space
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Case Study: 
Passive Compass Gait on Rough Terrain
• Once walker begins a step, it follows a deterministic 

trajectory until it “hits the ground”
• Thus, we can pre-calculate and save trajectories; then 

interpolate to look up next step’s initial condition (if any!) as 
a function of ground slope.  Examples below…
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Case Study: 
Passive Compass Gait on Rough Terrain
• Using “acrobot” (Spong) definition for states

– Continuous equations of motion are identical to the acrobot between 
the discrete impacts

– 4 states variable: Angles X1 and X2, and their derivatives (X3 and X4)
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Case Study: 
Passive Compass Gait on Rough Terrain
• Absolute mass not import: it’s 

how the mass is distributed!
• Dimensionless inertia: I/(mL2)
• Intuitively, want low inertia 

swing leg. (Mass toward upper 
part of leg.)

• Three walkers analyzed:
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a/(a+b) I/(mL2) Lco/L

Mid-size

Low-inertia

Beam-leg

1 .6 .0400 .8

.15 .7 .0102 .74

1/3 1/3 .0833 .5
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Initial walker design (“mid-size”)
• Mean = 4 deg slope
• STD = 1 deg
• MFPT ≈ 6 steps
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Initial walker design (“mid-size”)
• Mean = 4 deg slope
• STD = 0.5 deg deg
• MFPT ≈ 12 steps
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Low-inertia walker (more stable)
• Mean = 4 deg slope
• STD = 1 deg
• MFPT >= 110 steps
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Low-inertia walker (more stable)
• Mean = 4 deg slope
• STD = 2 deg
• MFPT ≈ 8 steps
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Beam-legged walker
• Mean = 4 deg slope
• STD = 1 deg
• MFPT ≈ 2 steps

Above: SD = 1 deg
Below: SD = 0 deg (even)
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What (metastable) “neighborhood” in 
phase space is visited most often?

• Most stable walker (low-inertia version) shown here
• MFPT of about 110 steps (STD of terrain = 1 deg)
• Black points indicate post-hit states (X3,X4 and alpha)
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What (metastable) “neighborhood” in 
phase space is visited most often?

• Same (low-inertia) walker with STD = 2 deg (double)
• MFPT of about 8 steps
• 3 trials plotted (as points) on same axes here
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MFPT relates to probability of a 
catastrophic (n-sigma) event (?)
• As the level of noise decreases, a “failure” may essentially 

correspond to the probability of a single large-gamma step 
on the terrain…

At right:
-MFPT recorded
-For a given std, what value 
“jump” in gamma 
corresponds to the leakage 
rate, 1/MFPT?
-Flat lines would indicate 
the walker is essentially 
waiting for a particularly 
bad one-time event
-Requires more run-time to 
make a conclusion here
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Hip-Actuated Compass Gait Robot

• Robot under construction:
– CPU: PC/104, with MATLAB (Simulink)
– Single actuator (motor w/ gearbox) at “hip”
– Brake used as clutch to (dis)engage motor 

coupling between the legs.
– 3 rate gyros; 2 encoders; 2 accelerometers
– Reinforcement learning

• Future modifications:
– Retractable (telescoping) “point” feet
– Rugged terrain
– Replace power-hungry PC/104? 
– Direct drive motor!

• Thanks to Arlis Reynolds (UROP) and Stephen Proulx (staff) !
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Simple Biped Models
• Rimless Wheel

– Simplest “walker”
– Hybrid dynamics: 

* continuous inverted pendulum
* discrete state change at impact

– Analogous to dynamics of a biped 
with all mass at hips

• Compass Gait
– Resembles a compass
– Stable limit cycles exist for 

particular downhill slopes
– Idealized CG model ignores: 

* lateral stability
* ignores foot scuffing (no knees)
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Traditional Stability Margin for Walkers

[mini-movie 
of two close 
CG states?]

• Standard stability margins :
– Zero-moment point (ZMP)

• …but a stable compass gait 
is always “falling forward”!

Asimo
Stable compass gait on even terrain
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Robot Locomotion Group
CSAIL, MIT

• Lab focus:
Robot locomotion
Control of underactuated systems
Reinforcement learning

• Examples:
“Toddler” (ankles actuated)
Hip-actuated CG walkers
Kneed walkers
RC airplanes
Ornithopter
Soap film flow between filaments
Acrobot
DARPA “Little Dog” project
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Outline

• Introduce the concept of stochastic stability
– Given a particular noise input, how often (statistically) will a walker fall?
– Long-living, aperiodic gaits can be modeled as “metastable” states
– Use statistics of failure such as the “mean first passage time” (MFPT) to define 

the relative degree of stability for a walker that will rarely, but inevitably, fall

• Discuss methods for determining failure statistics
1. Monte Carlo simulations
2. Calculations on the (probabilistic) step-to-step transition matrix, f, to obtain failure 

statistics from any particular initial condition
3. Characterize stochastic stability using system-wide stability measures:

* quasi-stationary distribution of states visited in the metastable basin
* mixing time (to converge to basin) and system-wide failure rate

• Examples using a purely passive compass gait (CG) walker
– Gaussian variation in slope of terrain at each step
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Modeling the system as a Markov chain:
step-to-step transition matrix, f 

• Iterative calculation of MFPT
f n is the n-step transition matrix
Calculate Σn(f n)ij to get MFPT from state, i, to the failure state, j.
Infinite sum (as n goes to ∞) can be calculated non-iteratively (below)

• Non-iterative calculation of MFPT, m
mi= Σfijmj+1 ,  summed over all j s.t. sj ≠ failed state 

[I-f’]m=1 (eqn above in matrix form)

m=[I-f’]-11
m is a vector giving the MFPT at each discrete state (mesh node)
I is the identity matrix
f’ contains the non-absorbing rows and cols of f
1 is the ones vector

Gradient in m can be used as a metric for remeshing

direct calculation of MFPT!
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• Eigenvalue analysis of the transition matrix, f
Calculate first 3 eigenvalues and eigenvectors of (sparse matrix) f T

1) λ1=1 (failure is an absorbing state; it persists for all time)
1st eigenvector: [0,…,0,1]T shows to inevitability of a “failure” as t→∞

2) 1-│λ2│= r ; r = 1/m ( “leakage rate” is the inverse of the MFPT)
2nd eigenvector renormalized (to exclude failure state) represents the 
quasi-stationary distribution of the stochastic basin of attraction.

3) λ3 provides an estimate of “mixing time” to forget initial conditions.  
“Fast” mixing implies: 1/ τ2=log(1/│λ2│) << log(1/│λ3│)= 1/ τ3,

so (1-│λ2│) << (1-│λ3│) implies separation of time scales.

Analysis: System-wide stochastic stability
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Creating the step-to-step transition matrix

• Discretize (mesh) the state space
• For each mesh node, simulate continuous dynamics

– Solve for post-impact state for each of many (finite) slopes
• Use interpolation to approximate each new state

– Remesh to improve estimates

Above: barycentric interpolation. 
(Using N+1 out of the 2N nodes in an 
N-dimensional box-type element.)



