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Passive compass gait on uneven terrain

. AlL
* Is your walker stable? vs How stable is your walker? CsS
Does not fall in 10+ total steps this run. t= 0.0 5 (_Left Wal ker #1 Does not fall in 10+ total steps this run. t= 0.0 5
E\i(y/=0.0698 [4.00°]: std(y)=0.0000 [0.00°] R|g ht Wa|ker #2_) E\i(y/=0.0698 [4.00°]: std(y)=0.0000 [0.00°]
«— Constant slope —
(upper movies)
Periodic gaits
9 total steps thisrun. t= 00 5 Does not fall in 100+ total steps this run. t= 0.0 5
EViy)=0.0895 [4.00°] stdiy)=0.0175 [1.00'] EVy)=0.0895 [4.00°] stdiy)=0.0175 [1.00']
O
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«— Changing slope —
e ——— — (lower movies)
Aperiodic gaits
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Stability metrics for dynamic walking

* For deterministic systems :
» Global stability : size and shape of deterministic (no noise) basin of attraction

» |ocal stability : recovery from a single perturbation about the fixed point

CSAIL

* For stochastic systems : statistics of noise map to statistics of failure

= “mean first passage time” (MFPT) For walking, this is the expected
number of steps taken before falling down. [aka “mean time between failures’]

-
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dezldt (rad/s)

4 3 2 1 0 Above: average # of steps before falling
de,/dt (rad/s)
Slice of deterministic basin (left) and stochastic basin (right) fora CG
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Methods: Monte Carlo simulations

« Example: passive compass gait on rough terrain
— Mean value (4 deg) for downhill slope
— Gaussian distribution; testing std’s of 0.5-2.0 deg

« Set init. cond. and simulate dynamics over many trials

« Calculate “mean first passage time” (MFPT) for each
particular initial condition of interest

« Below are MFPTs for init. cond. at the fixed point for
each respective walker

MFPT MFPT
(.5m,)/m | al(a+b)
.5 deg std | 1.0 deg std
Walker #1 1 .6 20 6
Walker #2 15 g >>100,000 150
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Methods: Monte Carlo simulations

« Example: passive compass gait on rough terrain

— Mean value (4 deg) for downhill slope
— Gaussian distribution; testing std’s of 0.5-2.0 deg

« Set init. cond. and simulate dynamics over many trials

« Calculate “mean first passage time” (MFPT) for each
particular initial condition of interest
« Below are MFPTs for init. cond. at the fixed point for
each respective walker

MFPT MFPT
(.5m,)/m | al(a+b)
.5 deg std | 1.0 deg std
Walker #1 1 .6 20 6
Walker #2 15 g >>100,000 150

Monte Carlo method is computationally intense

.. 25,000 pts for this 2D
"« Slice in state space

= e

« Estimating MFPT over the entire state space takes many, many trials
« We present a more direct method to calculate this distribution...
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Modeling the system as a Markov chain: @g&

step-to-step transition matrix, f . " CSAIL
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f= fm= 0.25 0.4 |
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* Non-iterative calculation of state-dependent MFPT, m (a vector)

= mz=2fm+1, summed over all j s.t. s; # failed state

= [I-fim=1 (eqgn above in matrix form)

> m=[I-f|'1 direct calculation of MFPT!

= mis a vector giving the MFPT at each discrete state (mesh node)
= |is the identity matrix

= f’ contains the non-absorbing rows and cols of f

= 1is the ones vector

= Gradient in m can be used as a metric for remeshing
= Note: for a deterministic system (no noise), m=« in the basin of attraction
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System-wide stochastic stability
CSAIL

- Eigenvalue analysis of the transition matrix, f

- Any initial condition is a weighted sum of the eigenvectors
- Each corresponding eigenvalue shows how rapidly that part fades away
- Look for eigenvector(s) that persist; i.e. describe long-term distribution

Calculate first 3 eigenvalues and eigenvectors of (sparse matrix) f’

= A,=7 failure is an absorbing state; it persists for all time
1st eigenvector: [0,...,0,1]" shows to inevitability of a “failure” as t—«

= A, provides an estimate of “mixing time” to forget initial conditions.
“Fast” mixing implies: 1/ 7,=log(1/| A,|) << log(1/| A,| )= 1/ =,
SO (1-| /\2|) << (1-| /\3|) implies separation of time scales.

. 1-| /\2| =r;r=1/m( “leakage rate” is the inverse of the MFPT)

2nd eigenvector renormalized (to exclude failure state) represents the
quasi-stationary distribution of the stochastic basin of attraction.
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System-wide stochastic stability

CSAIL
 An elegant simplification emerges!
= For our simulations, the magnitude of A, is about 0.5 (fast mixing), so walkers

which have not failed will converge rapidly to a quasi-stationary distribution of
states, which is given by the eigenvector associated with A.,.

= Failures (falling) occur at a slow, calculable leakage rate, r = 1-| A2|

= A, =1implies the robot will eventually fall, but a small leakage rate means we still
expect aperiodic walking to persist for a long time before falling.

« “Metastable” (i.e. long-living) states
= We should think of dynamic walking as

convergence to a metastable limit cycle, U(x) /\k_
with a slow leak rate, r, to an absorbing
failure state (falling down). S e e G A

= mfpt=1/r gives a system-wide mean first
passage time. It is a scalar quantity that
characterizes the stability of the system
and answers the question:

“How stable is your walker?”

o, Metastable states
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The End @—fg&

CSAIL
« Additional slides follow... (more video, et al)
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“for a deterministic system (no noise), ﬁ_ﬁﬁj%

m=« in the basin of attraction” CSAIL

 In other words, if you set the noise to “zero”, you are
calculating the basin of attraction for the DETERMINISTIC
system using the step-to-step transition matrix, f; this basin is
the region where MFPT (m) is “infinite”.

« If you have a description of the equations of motion (to
calculate the step-to-step state transition), you can identify
whether or not stable limit cycles exist w/out tweaking (trial
and error) by hand to search for appropriate initial conditions.

* You need to take care to do appropriate (iterative) remeshing
(and de-meshing) of the state space to get good resolution!!
(i.e. try some mesh; calculate MFPT; then put in more mesh
elements where MFPT changes drastically... , calc MFPT,...
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Review: @g&

CSAIL
How to answer, “how stable is your walker?”

 Monte Carlo approximation of MFPT from initial conditions
— computationally intense

* Direct (non-iterative) calculation of vector MFPT, m, using
the transition matrix, f
— Vector m and its gradient can be used in refining mesh

« System-wide stability analysis, by finding the largest
eigenvalues and eigenvectors of 7.
— scalar MFPT describes system
— quasi-stationary distribution can be found

— aperiodic walking can be modeled as a metastable limit cycle with a
slow leakage rate.

MIT Computer Science and Artificial Intelligence Laboratory



Statistical metrics for stochastic stability @,’I&
CSAIL

« Goal: Quantify stability for a system with definable noise

* New stability metrics:
— Describe statistics of failure events

— MFPT : “mean first passage time”
* Also called “mean time between failures” (MTBF)
* Longevity can also be measured in number of steps (rather than “time”)

— MFPT = 1/r (inverse of leakage rate)

— P,(t) : probability of falling by time t

— ML (maximum likelihood) time to fall

— time at which probability of having fallen exceeds some critical limit
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Direct (Matrix) Calculation of MFPT {@g&

: : CSAIL
1) Discretize (mesh) the state space

2) Create the step-to-step (Poincare) transition matrix, f

= f;=Pr(s,.,+= | s,=i), given our dynamics and noise.
- New states, s,.{, modeled by probabilistic arrival at nearby mesh nodes.
= “Failure” (falling) is a self-absorbing state in .

3) Calculate the 3 largest eigenvalues (A, A, A;) of 7
= A,=17; 1st eigenvector: [0,...,0,1]" shows inevitability of a “failure” as t—

= 1-A,=r; r=1/mfpt (metastable “leakage rate”) ; 2nd eigenvector gives
the quasi-stationary distribution of the metastable basin of attraction.

= A, provides an estimate of “mixing time” to forget initial conditions. “Fast”
mixing implies: 1/ T,=log(1/A,)<<log(1/A;)= 1/ T;, so (1-A,) <<(1-A,)

4) Calculate the MFPT for each discrete node in the mesh

= m=[I-f’71 , where f contains the non-absorbing rows and cols of f, and
1 is the ones vector

5) Refine mesh where the gradient in MFPT is most significant
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Monte Carlo = computationally intense {@g&

CSAIL
- Estimating the MFPT over the state space takes many, many trials

* Motivation for efficient mathematical tools
 We present a more direct method to calculate this distribution...

Xy = dX

- 1 III Ill .|. | = 0
° j-4 35 3 25 -2 e i &

x; éd;wdt
MFPT over a 2D slice of (3D) state space
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Case Study:

Passive Compass Gait on Rough Terrain

 Once walker begins a step, it follows a deterministic
trajectory until it “hits the ground”

i

CSAIL

 Thus, we can pre-calculate and save trajectories; then
interpolate to look up next step’s initial condition (if any!) as

a function of ground slope. Examples below...
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Case Study: {@g&

Passive Compass Gait on Rough Terrain CSAIL

« Using “acrobot” (Spong) definition for states

— Continuous equations of motion are identical to the acrobot between
the discrete impacts

— 4 states variable: Angles X, and X,, and their derivatives (X5 and X,)

X,=dX,/dt

t=0.00 sec

X,=dX /dt
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Case Study:

Passive Compass Gait on Rough Terrain

Absolute mass not import: it's

how the mass is distributed!

Dimensionless inertia: 1/(mL?2)

Intuitively, want low inertia

swing leg. (Mass toward upper
part of leg.)

Three walkers analyzed:

(.5mh)/ | al(a+b) | l/(mL?) | LcolL
Mid-size T .6 .0400 .8
Low-inertia | 15 g .0102 .74
Beam-leg 1/3 1/3 .0833 .5
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Initial walker design (“mid-size”)

 Mean = 4 deg slope
« STD =1 deg
* MFPT = 6 steps

MFPT [steps)
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7 total steps thisrun. t= 005
Eviy/=0.0698 [4.00°]; stdivi=0.0175 [1.00°]
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Initial walker design (“mid-size”)

i Mean - 4 deg Slope 8 total steps thisrun. t=00 5
Ev(y)=0.0698 [4.00]; stdfy)=0.0087 [0.50]
« STD = 0.5 deg deg
O
 MFPT =12 steps
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Low-inertia walker (more stable)

¢ Mean — 4 deg Slope Does not fall in 20+ total steps thisrun t=00 5
EV(y)=0.0698 [4.00]; stdiy/=0.0175 [1.00]

« STD =1 deg

« MFPT >= 110 steps

———————

-------

o (deg)
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Low-inertia walker (more stable)

o Mean - 4 deg SIOPe 10 total steps thisrun t=00s
Ev(y)=0.0698 [4.00]; stdfy)=0.0343 [2.007]

« STD =2 deg

« MFPT = 8 steps
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Beam-legged walker

 Mean = 4 deg slope
« STD =1 deg
« MFPT = 2 steps

....................................
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A total stepsthisrun. t= 005
Ev/(y}=0.0698 [4.00°]; std{y}=0.0087 [0.50']

O

Above: SD = 1 deg
Below: SD = 0 deg (even)

9 total steps thisrun. t= 005
Eviy)=0.0698 [4.00°]; stdivi=0.0000 [2.00]

o

&







What (metastable) “neighborhood” in @jﬂj}%
phase space is visited most often? CSAIL

* Most stable walker (low-inertia version) shown here
 MFPT of about 110 steps (STD of terrain = 1 degq)
« Black points indicate post-hit states (X3,X4 and alpha)

--------

g0
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What (metastable) “neighborhood” in %&
phase space is visited most often? CSAIL

« Same (low-inertia) walker with STD = 2 deg (double)
« MFPT of about 8 steps
3 trials plotted (as points) on same axes here

--------

Bo--E
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MFPT relates to probability of a
catastrophic (n-sigma) event (?)

i

CSAIL

« As the level of noise decreases, a “failure” may essentially
correspond to the probability of a single large-gamma step

on the terrain...

At right:
-MFPT recorded

-For a given std, what value
‘jlump” in gamma
corresponds to the leakage
rate, 1/ MFPT?

-Flat lines would indicate
the walker is essentially
waiting for a particularly
bad one-time event

corresponding A gamma (deg) to fall (given 1/MFPT rate)

-Requires more run-time to

—— G deg
-~ 5 deg
—— 4 deq
—— 3 deg
. Zdeg.

make a conclusion here 035
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Hip-Actuated Compass Gait Robot @—fgﬂ&!

« Robot under construction:
— CPU: PC/104, with MATLAB (Simulink)
— Single actuator (motor w/ gearbox) at “hip”

— Brake used as clutch to (dis)engage motor
coupling between the legs.

— 3 rate gyros; 2 encoders; 2 accelerometers
— Reinforcement learning

* Future modifications:
— Retractable (telescoping) “point” feet
— Rugged terrain
— Replace power-hungry PC/104?
— Direct drive motor!

 Thanks to Arlis Reynolds (UROP) and Stephen Proulx (staff) !
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Simple Biped Models

CSAIL

* Rimless Wheel
— Simplest “walker”

step - 1

— Hybrid dynamics: _ time - 0
* continuous inverted pendulum . -
* discrete state change at impact — o —— .

— Analogous to dynamics of a biped
with all mass at hips

32 total steps this run. t= 0.0 : EVi}=0.0698 [4.00°]; std(y}=0.0087 [0.507]

« Compass Gait
— Resembles a compass

— Stable limit cycles exist for
particular downhill slopes

— lIdealized CG model ignores:
* lateral stability
* ignores foot scuffing (no knees)

=283" 23,32
F=3.3 o
+=3.08° =4 55°
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Traditional Stability Margin for Walkers ﬁ%

CSAIL

« Standard stability margins :
— Zero-moment point (ZMP)

- ...but a stable compass gait
is always “falling forward”!

Does not fallin 10+ total steps this run. t=0.0 5
EV(y)=0.0698 [4.007]; stdiy}=0.0000 [0.00°]

Stable compass gait on even terrain
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Robot Locomotion Group
CSAIL, MIT

« Lab focus:
= Robot locomotion
= Control of underactuated systems
= Reinforcement learning

« Examples:
= “Toddler” (ankles actuated)
= Hip-actuated CG walkers
= Kneed walkers
= RC airplanes
= Ornithopter
= Soap film flow between filaments
= Acrobot
= DARPA “Little Dog” project
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Outline
CSAIL

* Introduce the concept of stochastic stability
— Given a particular noise input, how often (statistically) will a walker fall?
— Long-living, aperiodic gaits can be modeled as “metastable” states

— Use statistics of failure such as the “mean first passage time” (MFPT) to define
the relative degree of stability for a walker that will rarely, but inevitably, fall

« Discuss methods for determining failure statistics

1. Monte Carlo simulations

2. Calculations on the (probabilistic) step-to-step transition matrix, f, to obtain failure
statistics from any particular initial condition

3. Characterize stochastic stability using system-wide stability measures:
* quasi-stationary distribution of states visited in the metastable basin
*  mixing time (to converge to basin) and system-wide failure rate

« Examples using a purely passive compass gait (CG) walker
— Gaussian variation in slope of terrain at each step
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Modeling the system as a Markov chain: @g&
step-to-step transition matrix, f CSAIL

* lterative calculation of MFPT

= f"is the n-step transition matrix
= Calculate 2n(f"); to get MFPT from state, /, to the failure state, .
* |nfinite sum (as n goes to «) can be calculated non-iteratively (below)

 Non-iterative calculation of MFPT, m

= m=2f;m+1, summed over all js.t. s; # failed state

= [I-FIm=1 (eqn above in matrix form)

> m=[I-F}'1 direct calculation of MFPT!

= mis a vector giving the MFPT at each discrete state (mesh node)
= | is the identity matrix
= f’ contains the non-absorbing rows and cols of f
= 1is the ones vector

= Gradient in m can be used as a metric for remeshing
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Analysis: System-wide stochastic stability @g&
AlL

- Eigenvalue analysis of the transition matrix, f

= Calculate first 3 eigenvalues and eigenvectors of (sparse matrix) f’

1) A,=1 (failure is an absorbing state; it persists for all time)
1st eigenvector: [0,...,0,1]" shows to inevitability of a “failure” as t—

2) 1-| A2| =r; r=1/m (“leakage rate” is the inverse of the MFPT)

2nd eigenvector renormalized (to exclude failure state) represents the
quasi-stationary distribution of the stochastic basin of attraction.

3) A, provides an estimate of “mixing time” to forget initial conditions.
“Fast” mixing implies: 1/ 7,=log(1/| A,| ) <<log(1/| A;| )= 1/ =,
so (1-| A,| ) <<(1-| A;|) implies separation of time scales.
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Creating the step-to-step transition matrix

* Discretize (mesh) the state space

 For each mesh node, simulate continuous dynamics
— Solve for post-impact state for each of many (finite) slopes

« Use interpolation to approximate each new state

— Remesh to improve estimates
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CSAIL

(1.0

w=0

Above: barycentric interpolation.
(Using N+1 out of the 2N nodes in an
N-dimensional box-type element.)




