
High-Speed Autonomous Obstacle Avoidance with

Pushbroom Stereo

by

Andrew J. Barry

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2016

c© Massachusetts Institute of Technology 2016. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

February 1, 2016

Certified by .
Russ Tedrake

X Consortium Associate Professor of Electrical Engineering and Computer
Science, Aeronautics and Astronautics, and Mechanical Engineering

Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Chair, Department Committee on Graduate Theses

2

High-Speed Autonomous Obstacle Avoidance with Pushbroom

Stereo

by

Andrew J. Barry

Submitted to the Department of Electrical Engineering and Computer Science
on February 1, 2016, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This thesis presents the design and implementation of a small autonomous unmanned aerial
vehicle capable of high-speed flight through complex natural environments. Using only
onboard sensing and computation, we perform obstacle detection, planning, and feedback
control in realtime. We introduce a novel stereo vision algorithm, pushbroom stereo, capable
of detecting obstacles at 120 frames per second without overburdening our lightweight pro-
cessors. Our use of model-based planning and control techniques allows us to track precise
trajectories that avoid obstacles identified by the vision system. We demonstrate a complete
working system avoiding trees at up to 14 m/s (31 MPH). To the best of our knowledge
this is the fastest lightweight aerial vehicle to perform collision avoidance in such a complex
environment.

Thesis Supervisor: Russ Tedrake
Title: X Consortium Associate Professor of Electrical Engineering and Computer Science,
Aeronautics and Astronautics, and Mechanical Engineering

3

4

Acknowledgments

A huge number of people helped me with this thesis. First, I would like to thank my

advisor, Russ Tedrake, for providing an incredible, supportive, and exciting environment

to build and learn about robotics, controls, and vision. Thank you, Russ, for supporting

me when I decided to try my hand at vision processing, and thank you for the advice and

encouragement in lab, on the running trail, and in life.

My thesis committee, Nick Roy and Bill Freeman, provided excellent advice on my thesis’s

direction and experiments. Thank you for your comments, questions, and advice.

The memebers of the Robot Locomotion Group have made my time at MIT especially

fulfilling. I owe special thanks to Ani Majumdar, Pete Florence, John Carter, Andy March-

ese, Tim Jenks, and Benoit Landry for helping me model, build, fly, and film the aircraft.

Thanks to Joe Moore for the advice on my embedded electronics and for the early morning

conversations that convinced me my slides were ready for group meeting.

I have been fortunate to collaborate with some incredible and generous people during

my thesis work. In particular, I owe thanks to Helen Oleynikova and Dominik Honegger for

risking their FPGA stereo system onboard my aircraft and to Jacob Izraelevitz for being

amazing at teaching, logistics, and avoiding angry dogs with an ornithopter. The labs

involved in the MURI program were a great inspiration and always had interesting things

to say. My thesis would have been much more difficult without everyone I worked with in

CSAIL, including Ron Wiken, Mieke Moran, Bryt Bradley, Mark Pearrow, Adam Conner-

Simons, Abby Abazorius, and Kathy Bates. I would also like to acknowledge Dave and

everyone at Westview Farms Creamery for allowing me to fly on your fields and for having

amazing food, ice cream, and cider donuts. And thanks to Juan and Cindy for just being

there.

Many of the parts of theis thesis were built with skills I learned from Dave Barrett and

Mark Chang at Olin College. To everyone in the Olin community, thank you for giving me

an amazing undergraduate education, an awesome group of lifelong friends, and for paying

my tuition through all of it. To Rhino-SCOPE, you all made sure I was laughing and smiling

5

even if my airplanes were falling out of the sky.

My time at MIT would have been much less fun, vibrant, and gratifying without East

Campus and Fourth East. I am so grateful for the memories, friends, food, and learning

that I shared with you all.

To Katya, thank you so for your support, encouragement, advice, and love. You were

with my through the successes and failures, tirelessly encouraging and supporting me. The

best part of every day is when you come home.

To my sister Jenny, thank you for the advice, be it during snack time or while running

on those bitterly cold days. No matter what, I could count on having a better answer to any

problem after discussing it with you.

Finally, my mother Sue and my father Dan have always encouraged me to follow my

dreams, be it by hiding a beam on an oscilloscope, looking at paramecium through a micro-

scope, building Robodad, or flying faster than ever before. I can not imagine my life without

you both.

6

Contents

1 Introduction 17

1.1 Contributions . 18

1.2 Related Work . 18

1.2.1 Obstacle Avoidance with Micro Aerial Vehicles 18

1.2.2 Vision-Based Techniques for MAVs 20

1.2.3 For Stabilization and Localization . 24

1.2.4 Avian Flight . 24

1.2.5 Large and Ultra-Small UAVs . 25

1.2.6 Planning Algorithms . 25

1.2.7 System Identification . 28

1.2.8 Feedback Control Algorithms . 28

1.2.9 Work Avoiding Trees . 30

1.3 Thesis Organization . 31

2 Pushbroom Stereo for High-Speed Obstacle Detection 33

2.1 Block-Matching Stereo . 33

2.2 Pushbroom Stereo . 34

2.3 Odometry . 35

2.4 Implementation . 35

2.4.1 Pushbroom Algorithm . 35

2.4.2 Hardware Platform . 37

7

2.5 Results . 38

2.5.1 Single-Disparity Stereo . 38

2.5.2 Flight Experiments . 39

2.6 Comparison to FPGA Stereo . 45

2.7 Analysis of Obstacle Avoidance Limits . 48

2.7.1 2D without Occlusions . 48

2.7.2 2D with Occlusions . 51

3 Aircraft Control 53

3.1 Aircraft Model . 53

3.1.1 Model Structure . 53

3.1.2 System Identification . 60

3.2 State Estimation . 65

3.2.1 Managing Covariance with Unbounded x and y 65

3.3 Trajectory Libraries . 66

3.3.1 Trim Conditions . 67

3.3.2 Trajectory Optimization . 68

3.3.3 Trajectories from Data . 68

3.4 Feedback Control . 69

3.4.1 Time Invariant Control for Trim Conditions 69

3.4.2 Time Varying Control . 69

3.5 Online Planning . 71

3.5.1 Online Planning Algorithm . 71

3.5.2 Point Cloud Management . 73

3.5.3 Online Planning Computation . 77

3.6 State Machine . 77

4 Experiments Near Obstacles 79

4.1 Aircraft Platform . 79

8

4.2 Experimental Setup . 81

4.2.1 Obstacles . 81

4.2.2 Takeoff and Climb . 83

4.2.3 Field Site . 83

4.3 Trajectories in Library . 84

4.4 Results . 84

4.4.1 Aggregate Analysis . 85

4.4.2 Analysis of a Single Avoidance Maneuver 87

4.5 Failure Analysis . 94

4.5.1 Control failures . 94

4.5.2 Vision failures . 98

5 Conclusion 99

Appendix A Open Source Software and External Resources 101

A.1 Software . 101

A.2 Videos . 101

Appendix B Parameters and Diagrams 103

B.1 Stereo Parameters . 103

B.2 Model Parameters . 104

B.3 State Estimator Parameters . 105

B.4 System Identification Parameters . 106

B.5 Other Parameters . 107

B.6 Diagrams . 108

Appendix C Components 111

9

10

List of Figures

1-1 Plot of related work in small UAV obstacle avoidance against speed and

amount of sensing . 19

2-1 Pushbroom stereo . 34

2-2 Pushbroom stereo overview . 35

2-3 Filter for removing self-similarity . 37

2-4 Aircraft hardware in the field . 38

2-5 Sketch of our evaluation strategy for single-disparity stereo 39

2-6 Sketch of our evaluation strategy for single-disparity stereo 40

2-7 In-flight snapshot of single-disparity stereo detections on a goalpost 41

2-8 Sequence of stills from an obstacle detection 42

2-9 Obstacle detection from Figure 2-8 rendered in a 3D visualizer 43

2-10 Results of the comparison as described in Figure 2-5 (a) 43

2-11 Results of the false-negative benchmark on flight data 44

2-12 Experimental aircraft platforms holding the pushbroom stereo system and the

FGPA stereo system . 45

2-13 Number of pixels detected while flying towards the fieldgoal obstacle 46

2-14 Results from the FPGA stereo system . 47

2-15 3D pointcloud generated from the depth map in Figure 2-14b 47

2-16 Sketch of the 2D obstacle-avoidance case showing the pushbroom detection

distance (d), the field of view (φ), and the turning radius (r). In this drawing,

d = r and φ = 90◦. 48

11

2-17 Sketches of the two other cases: d > r (left) and d < r (right). 50

2-18 The maximum width of an obstacle (excluding the aircraft’s geometry) when

d < r is W = 2
(
r −
√
r2 − d2

)
. 50

2-19 Sketch of the obstacles with occlusions case. The gray region shows the oc-

cluded area. 52

3-1 Model coordinate system. 55

3-2 Sketch of the flat plate model . 55

3-3 Measuring servo deflection for a given input 61

3-4 Linear model fitting elevon command (PWM pulse length in microseconds)

to elevon deflection in radians. 61

3-5 Thrust data with a linear fit . 62

3-6 Measuring moment of interia with a bifilar pendulum 63

3-7 CAD model . 63

3-8 Knife-edge trajectory in simulation . 68

3-9 Autonomous recovery from inverted flight 70

3-10 Tracking of a knife-edge trajectory with gains on all dynamically-relevant states 72

3-11 Control actions for the knife-edge trajectory. 73

3-12 Tracking for a left turn generated from flight data 74

3-13 Control actions for a left turn generated from flight data 75

3-14 Diagram of the online planning system . 75

3-15 State transition diagram . 78

4-1 Aircraft hardware on launcher. 80

4-2 Set of flight aircraft. 81

4-3 Experimental phases . 82

4-4 Example of an artificial obstacle (left) and natural obstacles (right). 82

4-5 Bungee launcher for the aircraft. 83

4-6 Field site for obstacle avoidance tests. 84

4-7 Onboard view of 6 different avoidance maneuvers 86

12

4-8 Chase camera view of different avoidance maneuvers 87

4-9 Graph of number of times each trajectory in the library was executed per

successful flight near trees. Level flight is executed the most, since it is the

default trajectory when there are no obstacles. 88

4-10 Autonomous obstacle avoidance from the onboard view. 89

4-11 Aircraft avoiding obstacles as viewed from a camera mounted on the tree seen

in the left of the images in Figure 4-10. 90

4-12 3D visualization (top and side views) of the flight in Figure 4-10. 91

4-13 Planned and estimated tracking for an obstacle avoidance maneuver. 92

4-14 Planned and actual control inputs for an obstacle avoidance maneuver. . . . 93

4-15 An example of a control failure . 95

4-16 Failure case where the trajectory library was insufficient to avoid the obstacle 95

4-17 Roll, yaw, and control actions during a “trajectory initial condition” failure . 97

B-1 Information flow diagram . 108

B-2 Power distribution system for the aircraft . 109

13

14

List of Tables

3.1 Notation . 54

3.2 Model parameters . 60

3.3 State estimator parameters . 66

4.1 Trajectory library used in most obstacle avoidance experiments 85

4.2 Statistics for experiments near obstacles . 85

4.3 Breakdown of system failures . 94

15

16

Chapter 1

Introduction

This thesis presents a system that is capable of high-speed flight (10-14 m/s or 22-31 MPH)

around natural obstacles. The system is fully autonomous and performs all computation

and perception on-board. We believe that flying near natural obstacles is hard for the right

reasons. In other words, algorithms capable of guiding an unmanned aerial vehicle (UAV)

through a thicket of trees have broad applicability throughout the fields of robotics, control

theory, and computer vision. By choosing this task, we are focusing on basic research

questions, not flight and vision specifics.

Concretely, a control system that can guide our aircraft through a thicket will have good

properties such as scaling with dimensionality, applicability to unknown environments, and

a realtime response rate. The systems must couple perception and control at high rate to

react quickly and effectively enough to avoid obstacles. These are the same qualities required

to guide a walking robot through rough terrain or an underactuated manipulator carrying a

heavy load.

To further our goals, we use a fixed-wing aircraft, for practical reasons (speed and payload

capacity) but also for research reasons, as the dynamics of fixed-wings are more rich than

rotorcraft such as quadcopters. Our vision is to create aggressive, provably safe flight through

challenging environments. This thesis describes sensing and control schemes capable of such

flight, but does not show verification for those systems. We provide references for potential

17

verification methods the controllers, but verification of the vision system remains an open

question.

1.1 Contributions

We present a novel stereo vision system capable of high-speed obstacle detection integrated

with a trajectory-library based flight control system that is capable of avoiding complex

natural obstacles at speed up to 14 m/s (31 MPH). The system is completely self-contained

on a small 34 inch wingspan, 664 gram aircraft, using only onboard sensing and onboard

computation while in flight. To the best of our knowledge, this is the first system weighing

under 1 kg capable of flying through these complex environments at such speed without

relying on external sensors or computation.

1.2 Related Work

There is a large body of work in the UAV field, ranging in scale from airliners to bumblebees

and in autonomy from radio-controlled to fully automatic. Here we discuss the most relevant

works for obstacle avoidance.

1.2.1 Obstacle Avoidance with Micro Aerial Vehicles

Small electric vehicles weighing under 5kg (often called MAVs) are an area of current interest,

delivering platforms that are safer and can operate in more cluttered locations than larger

UAVs, while also retaining enough payload to perform complex tasks. Stabilization and

non-aggressive maneuvering of these small vehicles is relatively well understood in open

flight environments. Simple PID (proportional, integral, derivative) controllers implemented

on low cost commodity hardware1 demonstrate good stabilization and waypoint navigation

performance on these systems.

13D Robotics, Inc. (http://3drobotics.com,) among others, provide platforms with this capability.

18

http://3drobotics.com

2 4 6 8 10 12 140

Speed (m/s)

Motion capture

Prior map

Optic flow

3D offboard

3D onboard
M

o
re

 I
n
te

g
ra

te
d
 S

e
n

si
n
g

1

5 3

2 4

8 6

7 9
?: This thesis –
1: Beyeler, 2009 [12]
2: Mellinger, 2010 [71]
3: Bry, 2012 [16]
4: Barry, 2012 [8]
5: Richter, 2013 [86]
6: Ross, 2013 [91]
7: Shen, 2013 [98]
8: Dey, 2015 [26]
9: Oleynikova, 2015 [83]

Figure 1-1: Plot of related work in small UAV obstacle avoidance examining speed and
sensor integration. The ? indicates this thesis and labels are in order of publication year.
Despite varying flight hardware, we believe speed is a good comparison metric because the
systems are limited by sensing and computation as much as wingspan or body-length.

Effectively avoiding obstacles, however, remains an open question. In pursuit of this goal,

researchers have used a wide variety of sensors, such as external motion capture, monocular

vision, stereo vision, and LIDAR to detect potential dangers. Figure 1-1 maps some of the

related work in the field based on sensor integration and speed.

In Motion Capture Environments

In motion capture environments, rotorcraft and fixed wings have shown impressive obstacle

avoidance capabilities, demonstrating accurate dynamics models and good trajectory track-

ing. Abbeel’s work on learning autonomous helicopter maneuvers [1] was an early demon-

stration of these techniques. Mellinger and Kumar demonstrate quadrotor flight through

small openings [71] and in formation [72, 52]. Quadrotors have further been shown to per-

form agressive flips [65] and interact with objects including catching and juggling a ball [14,

78], balancing a pendulum [39], cooperatively throwing a ball [87], and building structures

[63]. Variable pitch quadrotors have shown improved performance over these systems at the

cost of further complexity [23].

The dynamics of fixed wing flight have proven more difficult than quadrotors for similarly

dramatic maneuvers. On these systems, Sobolic showed automatic transition between hover

19

and level flight [103] and Cory demonstrated autonomous perching on a glider, landing on a

wire with impressive 5cm accuracy [22]. We have previously demonstrated flight through a

gap smaller than the aircraft’s wingspan [7].

Systems that have a Known Map

While impressive, the work described above relies on sets of well-calibrated cameras that

localize all relevant vehicles and objects in a relatively small volume. Performing these

maneuvers outside of motion capture environments remains a substantial barrier to the

practical use of these systems and algorithms.

Without motion capture, but using a prior map of the environment, Bry and Richter

demonstrate localization and map-based obstacle avoidance on fixed-wing and quadrotor

vehicles, respectively [16, 86]. Their work relies on a laser rangefinder to localize the aircraft

in flight, allowing it to use a prior map on the environment. Should obstacles appear between

their offline mapping and flight phases, the aircraft may collide.

Using a magnetometer to sense a powerline, Moore has extended Cory’s work to onboard

sensing of the landing wire. He has successfully demonstrated perching without the help of

motion capture [74, 76].

1.2.2 Vision-Based Techniques for MAVs

The payload of MAVs severely limits researchers’ choices for obstacle sensing. Planar laser

rangefinders (LIDAR) are heavy relative to the payload of small wingspan aircraft and give

insufficient data for three-dimensional obstacle detection. Other active rangefinders, such as

the Microsoft Kinect2, currently do not work outdoors, limiting their usefulness to indoor

navigation tasks. For these reasons, the field has focused lightweight cameras and computer

vision algorithms.

2Microsoft, Inc. https://dev.windows.com/en-us/kinect

20

https://dev.windows.com/en-us/kinect

Stereo Vision Techniques

We are by no means the first to consider stereo vision on small aircraft. For obstacle de-

tection, Byrne et al. show that augmented stereo can work on embedded flight systems [17].

Their approach is to use an image segmentation technique to reduce false-positive detec-

tions from correspondence alone. However, like many existing techniques, they are able to

run their system at only 5-10Hz, substantially slower than is required for fast flight near

obstacles. Hrabar presents a technique utilizing both optical flow and stereo, demonstrating

that the combination can outperform each individually [43]. Yang and Pollefeys, among

others, implemented stereo on GPUs for significant processing gains [115]. They also sug-

gest a method that eliminates the need for per-frame rectification, which further increases

efficiency and framerate.

Meier et al. integrates stereo vision based obstacle detection with a full suite of IMU and

vision-based state estimation, and autonomous waypoint navigation [69]. They do not show,

however, fast navigation around obstacles as they are limited by the rate of their stereo

processing (15 fps) and only attempt to notify higher level systems of obstacles. Goldberg

demonstrates stereo processing at relatively high framerate using similar processors and

cameras to this thesis, but is still limited to 46 fps [35]. Recent work an ultra-light flapping

UAV demonstrated a 4.0 gram line-based stereo algorithm running at up to 40 Hz at 128x32

on a 168 Mhz embedded processor [25]. Honegger et al. show that stereo and optical flow

matching is possible using small, flight ready FPGA (Field Programmable Gate Array)

hardware at similar rates to our system (376x240 at 127 fps or 640x480 at 60 fps) [42, 41]

with their latest work demonstrating onboard obstacle avoidance at 5 m/s [83].

Monocular Vision

Monocular vision techniques are attractive because of their simplicity, low cost, payload

weight, and availability. In 2005, Michels et al. demonstrated a learning algorithm for high-

speed obstacle avoidance on a radio controlled car. While they were only able to process

images at 7 Hz, they found relatively low fatal errors rates (around 2%) and thus were

21

able to make the car navigate autonomously at 5 m/s in cluttered environments [73]. More

recent work has shown success learning range classifiers and computing depth in realtime

offboard. In Dey et. al.’s latest work they present flights over 100 meters in cluttered wooded

environments [26].

Optic Flow

Optical flow techniques work well, controlling stable flight, takeoff, landing [5, 11], and

obstacle avoidance [12, 116]. They allow for fast flight, have incredible framerate when

using dedicated sensors (up to 4,500 Hz) and the modules are lightweight, self-contained,

and low power. Unlike many of the other techniques described here, optic flow has been

successful enough to see commercialization on MAVs3. For our purposes, however, their

limited resolution cannot percieve the complex geometries we want to navigate, such as

deliberately flying close to certain obstacles, maneuvering to avoid particular geometries, or

approaching and flying through small gaps.

Visual Simultaneous Localization and Mapping (VSLAM)

No discussion of robotic navigation is complete without SLAM. SLAM allows a robot to

build a map of its environment and subsequently use that map for obstacle avoidance. Many

authors have suggested using VSLAM [24, 38, 100] on MAVs [50]. There are a few fundamen-

tal problems with VSLAM on MAVs, notably: (1) computational power and (2) robustness

of the navigation solution. Lee et al. attempted to address the first by adding a plane con-

straint to the system, but this limits the vehicle’s navigation to at least somewhat structured

environments [58].

Recently, researchers have begun using parallel tracking and mapping (PTAM) [51] as

an alternative to traditional SLAM methods. PTAM separates tracking and mapping, al-

lowing the mapping component to run below framerate while tracking runs at framerate,

reducing the pressing computational load. Tracking large maps, however, continues to be

3senseFly Ltd., http://sensefly.com

22

http://sensefly.com

computationally expensive.

Visual Odometry

Visual odometry is useful to track position and orientation of robotic vehicles, especially

in GPS-denied environments. In our case, visual odometry could be used to compute an

estimate of the wind speed, which without GPS, is difficult to measure. Early visual odom-

etry work started on ground vehicles, showing promise with low error rates and reasonable

framerates [82]. [95] gives a good overview of the techniques and development of the field.

Recent work with similar goals to PTAM has shown fast tracking using the same processors

used in this thesis. Semi-direct visual odometry (SVO) uses a monocular camera to track

features and build a map in realtime [31]. SVO, like PTAM, relies on a usually downward

facing camera and texture below the MAV. Both systems are not yet tested at the speeds

we fly, but show promise for monocular visual odometry approaches.

Arguing for Fast Vision

Using photorealistic ray-traced synthetic images, Handa et al. directly investigate the advan-

tages of high framerate systems. In their 3D-tracking experiment with perfect lighting, they

show substantial benefits from increasing rates up until approximately 100Hz, beyond which

tracking continues to improve but at a less substantial rate [37]. This work encourages us to

attempt these rates on our airframe. Recently, Srinivasan et al. described an algorithm for

egomotion using high frame rate (120 fps) processing [105]. Murali and Birchfield suggest

that vision data is highly redundant and that low resolution representations may allow for

fast processing with a limited reduction in performance [79]. The types of features they

extract, however, are limited in scope and are not yet capable of the detection performance

required for our task.

23

1.2.3 For Stabilization and Localization

Researchers have been using vision-based techniques for stabilization of MAVs for over a

decade [88]. Approaches range from insect-inspired non-metric [81], optical flow, and angular-

rate based techniques [104] to involved systems integrating monocular images and IMU data

[29, 93].

Vision-aided Inertial Navigation Systems (VINS)

Most monocular vision systems integrate inertial sensors from an on-board inertial navigation

system (INS) for position estimation [114, 20, 84]. These systems can benefit from predicting

feature locations in images via inertial measurement unit (IMU) sensors, reducing the search

space for features. Shen et al. have presented a combined fast-monocular and slow-stereo

VINS system to produce stable state-estimates for a slow moving quadrotor [99]. Their

monocular camera system runs at 25 Hz, with the stereo augmenting the state-estimates

at 1 Hz. Li et al. have recently demonstrated excellent tracking using online calibration

techniques and commodity phone hardware [60, 61]. They demonstrate tracking within

0.5-0.8% of distance traveled for substantial distances.

1.2.4 Avian Flight

The first question one might ask when attempting this task, is “can it be done fast?” Birds

prove that high-speed, dynamic flight through dense obstacles is possible. Lin et al. show

that pigeons are fully capable of dynamic flight through dense obstacles, easily maneuvering

to avoid closely spaced objects [62]. Biologists have given some suggestions on nature’s

techniques. For example, Carruthers et al. suggest that birds may use sensing spread across

their wings to stabilize their maneuvers. She suggests that eagles are using a leading-edge

flap [19] and fast tail movement [109] during unsteady flight such as takeoff, gust response,

and landing. Furthermore, eagles may use inputs from their covert feathers to sense the

position of flow separation, degree of stall, and instantaneous lift coefficient [18].

24

1.2.5 Large and Ultra-Small UAVs

Control of large (5-20kg) UAVs is a topic of active research that has succeeded in developing

solutions for autonomous take-off, landing [94, 46], aerobatics [34], navigation, map-making

[47], and obstacle avoidance [96]. In general, the field has had greater success with larger

UAVs, buoyed by their ability to carry substantially more sophisticated sensors and com-

puters.

Alternatively, researchers have developed small (less than 25 grams) UAVs that are capa-

ble of absorbing impacts and even exploring environments using collisions [30]. These systems

typically use optical flow sensing with simple controllers, limited by their tiny computation

capacity.

1.2.6 Planning Algorithms

Even given some notion of where obstacles are, planning a feasible path through obstacles

in real time remains a difficult task. Valid trajectories must be feasible for our aircraft to

execute, transition from the previous plan to the new one seamlessly, and, of course, avoid

impact. All computation must happen fast enough that we can perform it onboard and keep

up with high-speed flight.

This problem is well studied in the literature and a number of solutions offer good balances

of computational cost and performance. Simple systems use potential field methods which

model obstacles as electrical charges imparting a “force” on the robot [53]. These systems

suffer from becoming stuck in local minimums, rely on another system to keep the plane in

flight (they often do not reason about the flight dynamics in three dimensions), and usually

consider the obstacles and robots as points, ignoring contact geometries.

Shooting and Collocation Methods

One might consider an exhaustive search over the state and action space of the vehicle to

determine an optimal path given some cost function. For our application, the state space of

the aircraft (at least 12-dimensional) makes this search prohibitively expensive even when

25

using dynamic programming methods [27]. Shooting methods do not perform an exhaustive

simulation, but instead simulate the system forward (usually a small amount) to find a good

trajectory [13]. In contrast, collocation methods force the optimizer to find both a feasible

state and action set, as well as minimize a cost function. Specifically, direct collocation uses

cubic polynomials between discretized knot points to parameterize the trajectories [107].

Probabilistic Roadmaps (PRMs)

Probabilistic roadmaps (PRMs) generate trajectories by first, offline, building many paths

through state space. After generating paths that transit a substantial portion of the state

space, the PRM can transition to online operation. In the online mode, new initial and goal

states are queried. The PRM attempts to run a small, fast optimization to connect the initial

state to its graph of trajectories. It then performs another small optimization to branch from

the existing paths to the final state [49]. In this way, the PRM can connect states that are

far apart by using its existing “highways” to speed up the computation. PRMs can, however,

be difficult to apply to nonholonomic systems because they assume an undirected graph for

motions through state space [108]. The computation becomes more expensive, although not

infeasible, when one requires directed routes.

Rapidly-Exploring Random Trees (RRTs)

RRTs randomly explore state space through small extend operations that add to an exist-

ing tree [56]. The algorithm is biased towards expansion into unexplored areas and is not

hindered by nonholonomic systems or complex dynamics. The field has seen a plethora of

expansions on the idea, including RRT*, an RRT which rewires its internal structure to

achieve asymptotic optimality [48].

Trajectory Libraries

Another method for trajectory planning is to string together a pre-built library of small

trajectories. For example, one might have a library consisting of “fly straight,” “turn left,”

26

and “turn right.” At each time step, we choose between those options to determine where

to fly next. Atkeson first suggested using local trajectories connected together to reduce

the computational load of dynamic programming [2]. Later, he demonstrated that idea

used in a learning context for planning with humanoids [3] and again on real hardware for

navigating a marble maze [106]. In the marble maze example, the fundamental obstacles

for robust implementation are clear: trajectory generation, choice of distance function, and

dependency on model performance.

Frazzoli et. al give a detailed description of a library-based control system, showing that

it can be computationally efficient and stable [32]. They use tools from hybrid systems to

switch between maneuvers and trim trajectories, where the first are motion plans and the

second are stable regions of state space. Bachrach suggests using bundles of trajectories as

a way to represent the environment in addition to using them for control [4].

Transitioning between trajectories in libraries safely can be a difficult task. Verification

of controllers can guarantee safe transitions by ensuring that the next controller is capable

of stabilizing the ending state of the previous controller [68]. In recent work, Majumdar has

shown a full working system that uses these guarantees to aggressively avoid obstacles [67].

Differentially Flat Systems

Differential flatness has become popular as a way to reduce the computational load of creating

trajectories. A system is differentially flat if one can find a set of flat outputs from which the

full state and input vectors can be determined without integration [57, 102]. More formally,

given a system of the form ẋ = f(x,u) with x ∈ Rn and u ∈ Rm, one can find flat outputs

y = h(x,u, u̇, ü, ...,u(k)) such that the following g and g′ exist:

x = g
(
y, ẏ, ÿ, ...,y(j)

)
and

u = g′
(
y, ẏ, ÿ, ...,y(j)

)
.

27

Mellinger and Kumar demonstrated trajectory generation using this method in their well-

received work on minimum snap trajectories [70]. The primary drawback of these systems is

that for underactuated plants, such as an aircraft or quadrotor, the trajectories cannot specify

all the state variables. For example, in [70], the flat outputs are the x, y, z positions and

the yaw angle ψ. The pitch and roll of the vehicle cannot be specified using that controller,

which can make close-obstacle flight, like a knife-edge maneuver, difficult or impossible to

perform without switching between controllers.

1.2.7 System Identification

System identification, or the creation and identification of a model of the system dynamics,

can enable a large variety of powerful feedback control techniques. We identify a model

based on [103], integrating the flat plate dynamics from [22]. While there are a variety of

techniques for selecting parameters (see [45] or [112] for an overview), we use a gray-box

technique based on [64].

1.2.8 Feedback Control Algorithms

Open-loop trajectories or planned paths are insufficient for flight because they are, in general,

unstable. Modeling errors, wind gusts, and other disturbances will cause our aircraft to

deviate from the planned trajectory. Online, we must use feedback control to track our

plans.

There is a substantial body of control literature, but here we focus on nonlinear systems.

Our system is fundamentally nonlinear because, for example, as angle-of-attack (AOA) in-

creases, the wing will generate more lift until flow separation causes a stall. At that point,

increased AOA will not continue to increase lift. We want to be capable of generating plans

that push the performance envelope into these aggressive, unstable, and difficult to model

regions.

28

Linear Quadratic Regulators

The linear quadratic regulator (LQR) is a well-known technique for performing optimal

control with a linear dynamics model and quadratic cost [59]. Many of the control tasks

described above, such as [1, 87, 6, 7, 21] use LQR or variations of it.

One such variation, time-varying LQR (TVLQR) involves taking Taylor approximations

along an open-loop trajectory to generate a linear time-varying dynamics model along the

trajectory [111]. Using those approximations, LQR can be applied to nonlinear systems

about known trajectories.

Model Predictive Control

In model predictive control (MPC), we are given a model of a system and a reference tra-

jectory. We then run an optimization program, the type of which varies by model class and

robustness requirements, to generate (often optimal) inputs for the system. After applying

the first input to the plant, we observe the real system’s response and repeat the simulation

and optimization process at time t+ 1 [33]. MPC can have good robustness properties [10]

and while linear MPC can be fast (problems of our size4 can be solved in under 5ms) [113],

non-linear MPC remains intractable in many situations. Some work such as [101] suggests

that simplifications like linearization around a reference trajectory can make non-linear MPC

more tractable.

Robust Control Methods

H-infinity methods use the H∞ norm to characterize the worst-case scenario for a system

with uncertainty:

||G(s)||∞ = max
ω

σ̄(G(jω))

where σ̄ denotes the largest singular value of the frequency response and G(jω) is a frequency

response description of our system [9]. Thus, we find the maximum frequency response on

the largest singular value, characterizing the most vulnerable portion of the response to

4Our problems include about 12 states and three control inputs.

29

uncertainty. If we are sure that the system is stable in this case to a bounded uncertainty,

then we are guaranteed that no other part of the system will have a less-stable (worse)

response to uncertainty. In this way, for the linear case, we can build systems that are sure

to be stable under bounded uncertainty by analyzing the worst case and ensuring that our

bounded uncertainty is insufficient to cause instability.

Gain Scheduling

Gain scheduling aims to combine multiple controllers, often of the same type, with differ-

ent gains at different operating points. One picks a (slow moving) “scheduling variable”

that determines when to switch between the different gains [97]. This type of system can

provide substantial flexibility, easily combining multiple linear regions. With sophisticated

controllers, gain scheduling can also provide rich feedback control.

1.2.9 Work Avoiding Trees

10 years ago, Langelaan and Rock attempted to build a flight system through a forest,

but were only able to perform experiments on a ground vehicle in an artificial forest [53].

They attempted to use a vision-based bearing only (no range estimates) SLAM technique.

The system’s map building demanded substantial computation that made attempting the

experiments on flight vehicles infeasible [55, 54].

Roberts et al. have a recent take on flying through forests, estimating tree location via

vision. Their system relies on tree trunks to be vertical, potentially limiting the system to

relatively tame forests. They use optical flow to predict what portions of the images are close

to the vehicle and are therefore important to process immediately [89]. The most successful

work to date is Dey’s recent monocular vision system that estimates depth from a variety

of monocular features. They cite over 100 meter trials and present over 1 km of flight data

[26].

30

1.3 Thesis Organization

Chapter 1 introduces related work, including techniques for control, vision, and trajectory

generation. We note similar hardware platforms used, the sensors acquired, and other tech-

nqiues for flying near natural and man-made obstacles. In Chapter 2, we introduce a novel

stereo vision algorithm, pushbroom stereo, that is capable of detecting obstacles at high

framerate with a small, lightweight CPU. We detail the algorithm, present flight results, and

compare to another stereo system implemented on an FPGA. Chapter 3 presents our au-

topilot mechanism, complete with online planning, feedback control, and high-level control.

Chapter 4 presents results from the system flying near, and avoiding, natural obstacles. We

conclude with a discussion of the results and note future directions in Chapter 5.

31

32

Chapter 2

Pushbroom Stereo for High-Speed

Obstacle Detection

Our system necessitates fast vision. On a standard 30 frames-per-second (fps) system, trav-

eling at 14 m/s means that with a detection horizon of 10 meters, we would have 21 frames

to detect and avoid an obstacle. Based on these numbers, we decided to pursue fast vision,

with a goal of capturing and processing frames in less than 10ms (100+ Hz.)

2.1 Block-Matching Stereo

A standard block-matching stereo system produces depth estimates by finding pixel-block

matches between two images. Given a pixel block in the left image, for example, the system

will search through the epipolar line1 to find the best match. The position of the match

relative to its coordinate on the left image, or the disparity, allows the user to compute the

3D position of the object in that pixel block.

1Standard calibration and rectification techniques provide a line, called the epipolar line, on which the
matching block is guaranteed to appear.

33

Figure 2-1: By detecting at a single depth (dark blue) and integrating the aircraft’s odometry
and past detections (lighter blue), we can quickly build a full map of obstacles in front of
our vehicle.

2.2 Pushbroom Stereo

One can think of a standard block-matching stereo vision system as a search through depth.

As we search along the epipolar line for a pixel group that matches our candidate block, we

are exploring the space of distance away from the cameras. For example, given a pixel block

in the left image, we might start searching through the right image with a large disparity,

corresponding to an object close to the cameras. As we decrease disparity (changing where

in the right image we are searching), we examine pixel blocks that correspond to objects

further and further away, until reaching zero disparity, where the stereo base distance is

insignificant compared to the distance away and we can no longer determine the obstacle’s

location.

Given that framework, it is easy to see that if we limit our search through distance to

a single value, d meters away, we can substantially speed up our processing, at the cost of

neglecting obstacles at distances other than d. While this might seem limiting, our cameras

are on a moving platform (in this case, an aircraft), so we can quickly recover the missing

depth information by integrating our odometry and previous single-disparity results (Figure

2-1). The main thing we sacrifice is the ability to take the best-matching block as our stereo

match; instead we must threshold for a possible match.

34

StereocamerasInertialsensorsPitottubeBarometricaltimeter

Single-depthstereo
Stateestimator

Transform/accumulate 3D Pointcloud

Figure 2-2: Pushbroom stereo overview. Note that the system does not require GPS.

We give this algorithm the name “pushbroom stereo” because we are “pushing” the

detection region forward, sweeping up obstacles like a broom on a floor (and similar to

pushbroom LIDAR systems [80]). We note that this is distinct from a “pushbroom camera,”

which is a one-dimensional array of pixels arranged perpendicular to the camera’s motion

[36]. These cameras are often found on satellites and can be used for stereo vision [40].

2.3 Odometry

Our system requires relatively accurate odometry over short time horizons. This requirement

is not particularly onerous because we do not require long-term accuracy like many map-

making algorithms. In our case, the odometry is only used until the aircraft catches up to

its detection horizon, which on many platforms is 5-10 meters away. We demonstrate that

on aircraft, airspeed measurement (from a pitot tube) is sufficient. On a ground robot, we

expect that wheel odometry would be adequate.

2.4 Implementation

2.4.1 Pushbroom Algorithm

Like other block-matching algorithms, we use sum of absolute differences (SAD) to detect

pixel block similarity. In addition to detecting matching regions, we score blocks based on

35

their abundance of edges. This allows us to disambiguate the situation where two pixel

blocks might both be completely black, giving a good similarity score, but still not providing

a valid stereo match. To generate an edge map, we use a Laplacian with an aperture size

(ksize) of 3. We then take the summation of the 5x5 block in the edge map and reject any

blocks below a threshold for edge-abundance.

After rejecting blocks for lack of edges, we score the remaining blocks based on SAD

match divided by the summation of edge-values in the pixel block:

S =

Sum of absolute differences (SAD)︷ ︸︸ ︷
5x5∑
i=0

|p(i)left − p(i)right|

5x5∑
i=0

L (p(i)left) + L (p(i)right)

where p(i) denotes a pixel value in the 5x5 block and L is the Laplacian. We then threshold

on the score, S, to determine if there is a match.

We have deliberately chosen a design and parameters to cause sparse detections with few

false positives. For obstacle avoidance, we do not need to see every point on an obstacle

but a false positive might cause the aircraft to take unnecessary risks to avoid a phantom

obstacle.

All two-camera stereo systems suffer from some ambiguities. With horizontal cameras,

we cannot disambiguate scenes with horizontal self-similarity, such as buildings with grid-like

windows or an uninterrupted horizon. These horizontal repeating patterns can fool stereo

into thinking that it has found an obstacle when it has not.

While we cannot correct these blocks without more sophisticated processing or addi-

tional cameras, we can detect and eliminate them. To do this, we perform additional block-

matching searches in the right image near our candidate obstacle. If we find that one block in

the left image matches blocks in the right image at different disparities, we conclude that the

pixel block exhibits local self-similarity and reject it. While this search may seem expensive,

in practice the block-matching above reduces the search size so dramatically that we can run

36

Detections on horizon
(a) Without horizontal invariance filter. (b) With horizontal invariance filter.

Figure 2-3: All stereo systems suffer from repeating textures which cannot be disambiguated
with only two cameras. Here, we demonstrate our filter for removing self-similarity. Detected
pixel blocks are marked with squares. Note that the filter removes all self-similar regions
including those on obstacles, limiting our ability to detect untextured, horizontal obstacles.

this filter online. Figure 2-3 demonstrates this filter running on flight data.

2.4.2 Hardware Platform

We implemented the pushbroom stereo algorithm on a quad-core 1.7Ghz ARM, commercially

available in the ODROID-U3 package, weighing under 50 grams2. Our cameras’ resolution

and stereo baseline can support reliable detections out to approximately 5-10 meters, so we

use 4.8 meters as our single-disparity distance in this experiment. We detect over 5x5 pixel

blocks, iterating through the left image with 8 parallel threads.

We use two Point Grey Firefly MV3 cameras, configured for 8-bit grayscale with 2x2 pixel

binning, running at 376x240 at 120 frames per second. A second ODROID-U3, communi-

cating over LCM [44], runs our state-estimatator (a Kalman filter from [16]) and connects

to our low-level interface, a firmware-modified APM 2.54, which provides access to our servo

motors, barometric altimeter, pitot tube airspeed sensor, and 3-axis accelerometer, gyro-

scope, and magnetometer suite. Further information about our flight platform (Figure 2-4)

2Hardkernel co., Ltd. http://hardkernel.com
3Point Grey Research, Inc. http://www.ptgrey.com
43D Robotics, Inc. http://3drobotics.com/

37

http://hardkernel.com
http://www.ptgrey.com
http://3drobotics.com/

Figure 2-4: Aircraft hardware in the field. We use a small catapult for consistent launches
near obstacles.

is in Chapter 4.

2.5 Results

2.5.1 Single-Disparity Stereo

To determine the cost of thresholding stereo points instead of using the best-matching block

from a search through depth, we walked with our aircraft near obstacles and recorded the

output of the onboard stereo system with the state-estimator disabled5. We then, offline,

used OpenCV’s [15] block-matching stereo implementation (StereoBM) to compute a full

depth map at each frame. We then removed any 3D point that did not correspond to a

match within 0.5 meters of our single-disparity depth to produce a comparison metric for

the two systems.

With these data, we detected false-positives by computing the Euclidean distance from

5Our state-estimator relies on the pitot-tube airspeed sensor for speed estimation, which does not perform
well below flight speeds.

38

OpenCV StereoPushbroom StereoObstacleComputed Distance

false-positive

Figure 2-5: Sketch of our evaluation strategy for single-disparity stereo. We detect false-
positives by computing the distance from single-disparity stereo’s output (red) to the nearest
point from OpenCV’s StereoBM (white). False positives stand out with large distances
(labeled box).

each single-disparity stereo coordinate to the nearest point produced by the depth-cropped

StereoBM (Figure 2-5). Single-disparity stereo points that are far away from any Stere-

oBM points may be false-positives introduced by our more limited computation technique.

StereoBM produces a large number of false negatives, so we do not perform a false-negative

comparison on this dataset (see Section 2.5.2 below.)

Our ground dataset includes over 23,000 frames in four different locations with varying

lighting conditions, types of obstacles, and obstacle density. Over the entire dataset, we find

that single-disparity stereo produces points within 0.5 meters of StereoBM 60.9% and within

1.0 meters 71.2% of the time (Figure 2-6). For context, the aircraft’s wingspan is 0.86 meters

and it covers 0.5 meters in 0.03 to 0.07 seconds.

2.5.2 Flight Experiments

To test the full system with an integrated state-estimator, we flew our platform close to

obstacles (Figure 2-7) on three different flights, recorded control inputs, sensor data, camera

images, and on-board stereo processing results. Figures 2-8 and 2-9 show on-board stereo

39

0 2 4 6 8 No Match
0

1000

2000

3000

4000

5000

6000

7000

Minimum separation (meters)

N
u

m
b

e
r

o
f

p
ix

e
l
g

ro
u

p
s

Figure 2-6: Results of the false-positive benchmark described in Figure 2-5 on 23,000+
frames. No Match indicates single-disparity points where there was no matching StereoBM
point on the frame. We find that 8.2% of detected pixels fall into this category.

detections as the aircraft approaches an obstacle.

During each flight, we detected points on every obstacle in real time. Our GPS-denied

state estimate was robust enough to provide online estimation of how the location of the

obstacles evolved relative to the aircraft. While these flights were manually piloted, we

present fully autonomous flights in Chapter 4.

To benchmark our system, we again used OpenCV’s block-matching stereo as a coarse,

offline, approximation of ground truth. At each frame, we ran full block-matching stereo,

recorded all 3D points detected, and then hand-labeled regions in which there were obstacles

to increase StereoBM’s accuracy.

We compared those data to pushbroom stereo’s 3D data in two ways. First, we performed

the same false-positive detection as in Section 2.5.1, except we included all 3D points seen

and remembered as we flew forward. Second, we searched for false-negatives, or obstacles

pushbroom stereo missed, by computing the distance from each StereoBM coordinate to the

nearest 3D coordinate seen and remembered by pushbroom stereo (Figure 2-11a).

Figures 2-10 and 2-11b show the results of the false-positive and false-negative bench-

marks on all three flights respectively. Our system does not produce many false-positives,

40

Figure 2-7: In-flight snapshot of single-disparity stereo detections on a goalpost (blue boxes)
and past detections integrated through the GPS-denied state estimate and reprojected back
on the image (red dots). Overlay includes relevant flight data such as airspeed in MPH (left)
and altitude in feet (right).

41

Time

↓

Figure 2-8: Sequence of stills from an obstacle detection. Each image is 0.02 seconds (20ms)
after the previous. The entire set captures 0.16 seconds. Here, the fieldgoal is detected in
the first frames (blue boxes). Afterwards, the position of those detections is estimated via
the state estimator and reprojected back onto the image (red dots).

42

Figure 2-9: Obstacle detection from Figure 2-8 rendered in a 3D visualizer. While we do
not endeavor to build maps, our system outputs pointclouds providing compatibility with
many existing planning, visualization, and control tools.

0 2 4 6 8 No Match
0

100

200

300

400

500

600

Minimum separation (meters)

N
u

m
b

e
r

o
f

p
ix

e
l
g

ro
u

p
s

Figure 2-10: Results of the comparison as described in Figure 2-5 (a). Our system produces
few outliers (74.8% and 92.6% within 0.5 and 1.0 meters respectively), even as we integrate
our state estimate, and the obstacle positions, forward. No Match indicates points that
pushbroom stereo detected but there were no block-matching stereo detections on that frame.

43

false-nega
tives

(missed t
hese)

(a) Comparison
technique.

0 2 4 6 8 No Match
0

2000

4000

6000

8000

10000

12000

Minimum separation (meters)

N
u
m

b
e
r

o
f
p
ix

e
l
g
ro

u
p
s

(b) False-negative comparison.

Figure 2-11: Results of the false-negative benchmark on flight data. In this comparison,
we compute distance from each StereoBM point (white) to the nearest pushbroom stereo
coordinate (red). False-negatives stand out with large distances. Pushbroom stereo performs
well, detecting an obstacle within 2.0 meters of StereoBM 91.3% of the time.

with 74.8% points falling within 0.5 meters and 92.6% falling less than one meter from

OpenCV’s StereoBM implementation. For comparison, a system producing random points

at approximately the same frequency gives approximately 1.2% and 3.2% for 0.5 and 1.0

meters respectively.

As Figure 2-11 shows, pushbroom stereo detects most of the points on obstacles that

StereoBM sees, missing by 1.0 meter or more 32.4% of the time. A random system misses

approximately 86% of the time by the same metric. For context, the closest our skilled pilot

ever flew to an obstacle in this experiment was about two meters.

These metrics demonstrate that the pushbroom stereo system scarifies a limited amount

of performance for a substantial reduction in computational cost, and thus a gain in speed.

Finally, we note that all data in this thesis use identical threshold, scoring, and other pa-

rameters, despite changing the detection distance, lens focal length, and camera calibration

between Chapters 2 and 4.

44

FPGA

Stereo

Pushbroom

Stereo

Figure 2-12: Experimental aircraft platforms holding the pushbroom stereo system (back)
and the FGPA stereo system (front). Cameras are mounted on the front of the wings at the
same baseline (14 inches) on both airframes. Covers over the electronics were removed for
this photograph.

2.6 Comparison to FPGA Stereo

We compare the above system to a Field Programable Gate Array (FPGA) stereo imple-

mentation which computes a dense depth map at every frame in hardware. We run both

systems at 120 frames per second at 376x240 pixel resolution, on duplicate flight platforms

(Figure 2-12) flying at over 13 m/s (29 MPH).

The FPGA system, created and built by Dominik Honegger and Helen Oleynikova, uses

a modified version of semi-global matching (SGM) [40] for stereo processing and is detailed

in [41]. We flew the FPGA system in the same flight pattern as detailed above and recorded

results for comparison.

Figure 2-13 demonstrates the primary difference between the two systems. The FPGA

system (blue dots) produces many matches, increasing in number as the distance to the

obstacle decreases. The pushbroom system detects nothing until the threshold distance

(4.8 meters), around which it finds matches (green stars). Past that distance, there are no

additional detections, but past detections remain in memory (red crosses).

The FPGA system produces dense stereo data, giving depth on almost the entire obstacle

(Figure 2-14a). The pushbroom stereo system is tuned to reject almost all outliers, so all

detections can be treated as obstacles without further processing. The dense data delivers

45

02468
0

1000

2000

3000

4000

5000

Distance to Obstacle (m)

N
u

m
b

e
r

o
f

P
ix

e
ls

 FPGA Stereo

Pushbroom Stereo

Past Pushbroom

Figure 2-13: Number of pixels detected while flying towards the fieldgoal obstacle. The
FPGA system produces an increasing number of detections as the obstacle nears (blue dots),
while the pushbroom system only detects the obstacle around the set distance of 4.8 meters
(green stars). Past that, pushbroom detections (red crosses) remain in memory for avoidance.
Note that the x-axis is reversed allowing time to flow left-to-right.

more information about nearby obstacles, but also requires more intelligent filtering for

autonomous operation (Figures 2-14b and 2-15). Finally, pushbroom stereo is substantially

easier to replicate since all of its components are off-the-shelf and camera/CPU independent.

For example, [85] uses a substantially less powerful processor, different cameras, and controls

a boat, but is able to perform online reactive obstacle avoidance using pushbroom stereo.

46

(a) FPGA produced grayscale
depthmap (top) compared with
raw image (bottom).

(b) Depth output from the FPGA system overlaid
on the right camera image. Depth ranges from red
(close) to blue (far).

Figure 2-14: Results from the FPGA stereo system. Note that the FPGA system produces
substantially more dense depth estimates than the pushbroom system.

10
15

20

−4
−2

0
2

−1

0

1

2

X (m)Y (m)

Z
 (

m
)

Figure 2-15: 3D pointcloud generated from the depth map in Figure 2-14b. False colored by
height ranging from blue (low) to red (high).

47

Figure 2-16: Sketch of the 2D obstacle-avoidance case showing the pushbroom detection
distance (d), the field of view (φ), and the turning radius (r). In this drawing, d = r and
φ = 90◦.

2.7 Analysis of Obstacle Avoidance Limits

2.7.1 2D without Occlusions

In this section we present an analysis of what types of obstacle fields an aircraft equipped with

pushbroom stereo could theoretically fly through. First, we make the following simplifying

assumptions:

• 2D, static environment

• Aircraft moves along arcs with a minimum radius r

• Obstacles do not occlude other obstacles

• Pushbroom stereo detects objects in a line at distance d.

The analysis depends on three parameters (Figure 2-16):

1. minimum turning radius, r

2. pushbroom stereo distance, d

3. field of view, φ

48

The relevant ratio in this case is between the sensing range, d, and the minimum turning

radius, r. There are three cases to consider: d = r, d > r, and d < r.

Case I (d = r): If d = r and φ = 90◦, the aircraft can always see obstacles at the edge of

its minimum turning radius, so it will never crash because it failed to see an obstacle. Given

that the aircraft starts at least d distance from obstacles, it will be able to avoid any obstacle

field that has objects spaced at least 2r apart. This is easy to see because the system can

choose a minimum radius turn and make a 180◦ turn along the circle with diameter 2r.

If φ > 90◦, the system is capable of seeing areas it cannot reach, so no limits are improved

or reduced. Clearly, the aircraft could reach those regions with multiple future maneuvers,

but we discount that case since pushbroom stereo removes past obstacles from memory

relatively quickly. If, however, φ < 90◦, the system will not be able to see the full path for

it’s minimum radius turn. The result is that it can only avoid limited-width obstacles, as

detailed in Case III below.

Case II (d > r): The second case occurs when d > r, or when the pushbroom detection

region is farther than the minimum radius turn (Figure 2-17, left). In this case, the user

should change d or r in software so that d = r. Otherwise, there is a possibility of missing

obstacles that the aircraft is capable of turning into.

Case III (d < r): Finally, d < r occurs when the detection horizon is short compared to

the minimum turning radius. In this case, the system will always see everything in its path,

but might be unable to avoid collision with obstacles. For example, if the plane is heading

at a wall, the system will not know until even a minimum radius turn cannot save it from

collision.

In the d < r case, we can determine the maximum width of obstacles that the system is

capable of avoiding. Figure 2-18 shows the relation, which is the maximum turn the aircraft

can take as soon as it detects the obstacle. The width of the obstacle (ignoring the aircraft’s

own geometry) is W = 2
(
r −
√
r2 − d2

)
, derived from the change in x coordinate as the

aircraft moves forward along a circle. Clearly, as d increases or r decreases, the maximum

width improves.

49

Figure 2-17: Sketches of the two other cases: d > r (left) and d < r (right).

Figure 2-18: The maximum width of an obstacle (excluding the aircraft’s geometry) when

d < r is W = 2
(
r −
√
r2 − d2

)
.

In this case, the minimum φ required for W is easily computed from the system’s geom-

etry: φ = 2 tan−1

(
W

2d

)
. If φ is less than that, it will further limit W with the following

relation: W = 2d tan
φ

2
. We can combine these results to find an expression for W :

W = min

[
2
(
r −
√
r2 − d2

)
, 2d tan

φ

2

]

The system described in Chapter 4 has d = 10m and φ = 92◦. For the real aircraft using

the trajectory library also detailed below, rnominal = 70.8m when turning without losing

altitude and raggressive = 7.7m when losing altitude. We note that the aircraft is capable of

50

even tighter turns, but those were not included in our trajectory library. In practice, when

flying close to obstacles, maintaining altitude is a primary concern, so the online planning

system will limit its execution of altitude-losing turns. If altitude was not an issue, reducing

d would be advantageous, but with that concern, d < r, so we want to maximize d, up to

70.8m.

2.7.2 2D with Occlusions

Next we consider obstacles that occlude each other. Assume that we have two obstacles L

meters apart and in line with the aircraft’s flight path. The first obstacle will occlude the

second at the pushbroom detection distance with a “shadow” that has width S =
O · d
d− L

,

where O is the width of the occluding obstacle. For the shadow to occlude the second

obstacle, the system must have decided not to turn away from the first obstacle at its earliest

detection, since pushbroom stereo will always detect a closer obstacle before a further one

along the direction of flight. We note that this differs from the analysis above, where the

aircraft immediately turns away from obstacles to ensure safety.

In the worst case, we assume that there is some set of non-occluded obstacles, such as a

gap between trees, that requires the aircraft to fly the path of minimum deviation around

the first obstacle (Figure 2-19). It then must maneuver to avoid the second obstacle and

the shadowed region. If the second obstacle was completely in the shadowed region (had

width less than S), the system would never detect it. Even so, however, the system could

reason about the shadowed region and avoid the danger. If S > W (neglecting the small

deviation from O), however, the shadowed region would be too large for the aircraft to

avoid, potentially causing a collision. Thus, to ensure safety the following must be true for

all obstacles:
O · d
d− L

< min

[
2
(
r −
√
r2 − d2

)
, 2d tan

φ

2

]
.

51

Figure 2-19: Sketch of the obstacles with occlusions case. The gray region shows the
occluded area.

52

Chapter 3

Aircraft Control

We use a model-based control system consisting of trajectories selected from a library in real-

time based on a pointcloud produced by the pushbroom stereo vision system. Model-based

control allows us to use sophisticated planning techniques and, soon, perform verification

of our system. Each open-loop trajectory has a precomputed time-varying linear quadratic

regulator (TVLQR) associated with it for closed-loop control. The control is performed with

the full state estimate of the vehicle produced by the onboard state estimator running in

the loop. This chapter details the aircraft model, trajectory library generation, control, and

integration with the vision system.

3.1 Aircraft Model

3.1.1 Model Structure

We use a 12-state model of the aircraft with 3 control inputs. The state variables are:

x =
[
x y z φ θ ψ U V W P Q R

]T
which are defined in Table 3.1. The coodinate system is defined in Figure 3-1.

We use a flat-plate model inspired by Cory’s work on his fixed-wing glider [22]. We model

53

x state vector
u control vector
x position on the x-axis
y position on the y-axis
z position on the z-axis
φ roll
θ pitch
ψ yaw
U forward velocity in the body frame (x-axis)
V velocity to the right in body frame (y-axis)
W downwards velocity in body frame (z-axis)
P angular rotation about the x-axis
Q angular rotation about the y-axis
R angular rotation about the z-axis
ẋ time derivative of x
αw angle of attack of the wing
αe angle of attack of an elevon
αl angle of attack of a winglet
vex x-component of the velocity of an elevon
ρ density of air

Table 3.1: Notation

the aircraft with three fixed flat plates representing the wing and winglets and two smaller

moving flat plates for the elevons (Figure 3-2). We model the propeller as a thrust-generating

element, but ignore its aerodynamic drag, blade flapping, and other higher order effects.

Following Cory (but modifying for 3D), we model the coefficient of lift (F L) and drag

(FD) as:

CL = 2 sin(α) cos(α) (3.1)

CD = 2 sin2(α) (3.2)

54

X
Y

Z
Figure 3-1: Model coordinate system.

Figure 3-2: Sketch of the flat plate model with a single flat plate for the wing, two flat plate
elevons, two flat plate winglets, and a thurst model.

55

where α is the wing’s angle of attack. Given standard lift and drag forces:

F L =
1

2
ρ|v|2CLS (3.3)

FD =
1

2
ρ|v|2CDS (3.4)

where v =
[
U V W

]T
, ρ is the air density, v is the wing’s velocity in the x- and z-axes,

and S is the flat plate’s area.

Combining equations 3.1–3.4 we find:

F L = ρ|v|2 cos(α) sin(α)S (3.5)

FD = ρ|v|2 sin2(α)S (3.6)

Note that the lift force is perpendicular to the aircraft’s velocity in the positive z direction

and the drag force is anti-parallel to the velocity [21]. To account for this, we rotate the lift

and drag forces based on the angle of attack to find the wing force, F w.

F w =


− cos(α) 0 sin(α)

0 0 0

− sin(α) 0 − cos(α)



FD

0

F L

 (3.7)

Computing Angle-of-Attack

We start with computing the angle of attack for the main wing:

αw = tan−1

(
W

U

)
(3.8)

To compute α for the elevons, we must account for any additional velocity from the

aircraft’s pitching motion (because the airframe does not pitch about the center of the

elevons):

56

xe =


eax +

ec
2
− ec

2
cos(ue)

eay

−ec
2

sin(ue)

 (3.9)

where xe is the elevon’s position, eax is the distance from the aircraft’s center to the elevon’s

center along the x-axis, ec is the elevon’s chord, ue is the control input for the elevon, and eay

is the distance from the aircraft’s center to the elevon’s center along the y-axis. For velocity:

ve = v +


P

Q

R

× xe (3.10)

With the velocity of the elevon, we can compute its angle of attack:

αe = tan−1(vez/vex) (3.11)

where vex and vez index the x and z components of the elevon’s velocity (ve) respectively.

Finally, we compute the forces from the elevons:

F e =


− cos(αe) 0 sin(αe)

0 0 0

− sin(αe) 0 − cos(αe)



FD

0

F L

 (3.12)

being careful to substitute ve for v and αe for α in equations 3.5 and 3.6.

Unlike the aircraft’s main wing, which is centered at the aircraft’s center of mass, the

elevons produce a moment:

M e = xe × F e (3.13)

The angle of attack on the winglets is similar, but rotated 90◦. We again start by

computing the flat plate’s velocity:

57

vl = v +


P

Q

R

× xl (3.14)

In this case, xl, the position of the winglet, is a constant, so it is easy to measure on the

aircraft, giving:

αl = tan−1(vly/vlx) (3.15)

Note that here we use vly in the numerator because the winglet is rotated compared to the

main wing or the elevons. We compute the winglet force, F l, by substituting the apporpriate

terms in equation 3.7.

Computation of the winglet’s moment follows simply:

M l = xl × F l (3.16)

Other Terms

The model accounts for body drag in the forward direction:

F body drag =


−1

2
sign(U)bdxρU

2

0

0

 (3.17)

The gravity vector needs to be rotated into the body frame:

F gravity =


cycp cyspsr − sycr cyspcr + sysr

sycp syspsr + cycr syspcr − cysr
−sp cpsr cpcr


T 

0

0

mg

 (3.18)

where s and c are shorthand for sin and cos, and the subscripts, r, p, and y are shorthand

for roll, pitch, and yaw respectively.

58

Input Models

We use a linear model for each servo that maps servo command to elevon deflection:

el = mlul + l0

er = mrur + r0

(3.19)

where el is the deflection of the left control surface in radians, ml and l0 are measured

parameters that are different for each airframe, and ul is the length of the servo control

signal pulse in micro-seconds (ranging from 1000 to 2000).

We model the motor and propeller’s thrust as a linear function of control input as well:

F thrust =


kmum + k0

0

0

 (3.20)

where km, k0, are coefficients fit experimentally and um is the bounded control input. In this

model, we choose to ignore torque produced by the propeller.

Combining the above forces and torques, we can write the dynamics:

mẍ = F w + F eL + F eR + F lL + F lR + F thrust + F body drag + F gravity (3.21)

and the total moments:

Iω̇ = M eL + M eR + M lL + M lR + M rate dependent (3.22)

where M rate dependent is a parameter (see Table 3.2).

59

Parameter Value (units) Identification Method
Mass (m) 0.648412 kg Measured
Wing span (ws) 0.8636 m2 Measured
Wing chord (wc) 0.2097 m Measured
Elevon span (es) 0.31115 m2 Measured
Elevon chord (ec) 0.0402 m Measured
Elevon moment arm (X) (eax) 0.12495 m Measured
Elevon moment arm (Y) (eay) 0.276225 m Measured
Winglet area (tarea) 0.01944076 m2 Measured
Linear component, left servo (ml) 0.002195 (rad/µs) Measured
Affine component, left servo (l0) -3.017 (rad) Measured
Linear component, right servo (mr) -0.0019 (rad/µs) Measured
Affine component, right servo (r0) 2.811 (rad) Measured
Linear component, thrust (km) 0.01004 µs/N Experiment
Affine component, thrust (k0) 12.17 N Experiment
Moment of inertia (Jx) 0.0153 kg ·m2 CAD and Experiment
Moment of inertia (Jy) 0.0052 kg ·m2 CAD and Experiment
Moment of inertia (Jz) 0.0184 kg ·m2 CAD and Experiment
Elevon lift factor 1.30 Fit
Elevon drag factor 0.101 Fit
x-axis body drag factor (bdx) 0.0443 Fit
x-axis rate-dependent moment (MP) -0.0740 Fit
y-axis rate-dependent moment (MQ) -0.1150 Fit
z-axis rate-dependent moment (MR) 0 Fit

Table 3.2: Model parameters, their values, and the identification method used to find them.

3.1.2 System Identification

The model described above has 23 parameters we need to identify. Some are easily measured,

like the aircraft’s mass, and others are more difficult, such as the body’s drag coefficient.

Table 3.2 shows every model parameter, its identified value, and the identification method.

Elevon Deflection

We measure the deflection of the elevons by hand (Figure 3-3) and fit a simple linear model

(Equation 3.19 and Figure 3-4). We also note the minimum and maximum command and

deflection for each elevon and ensure the controller does not exceed these bounds. In practice,

the parameters are relatively constant between airframes.

60

Figure 3-3: Measuring servo deflection for a given input.

1000 1200 1400 1600 1800 2000
−1

−0.5

0

0.5

1

1.5

Command (us)

D
e
fl
e
c
ti
o
n
 (

ra
d
)

Airplane #2, Elevon Left

Data

Linear Fit

1000 1200 1400 1600 1800 2000
−1

−0.5

0

0.5

1

Command (us)

D
e
fl
e
c
ti
o
n
 (

ra
d
)

Airplane #2, Elevon Right

Figure 3-4: Linear model fitting elevon command (PWM pulse length in microseconds) to
elevon deflection in radians.

61

1000 1200 1400 1600 1800
−1

0

1

2

3

4

5

6

Command (us)

T
h

ru
s
t

(N
)

Data

Fit

Figure 3-5: Thrust data (blue) with a linear fit (red). The x-axis shows the commanded
pulse length in mirco-seconds to the speed controller. Clearly the linear model is not valid
below 1250 µs because the system can not generate neagtive thrust.

Thrust Force

We fit a linear thrust model using a simple apparatus to measure thrust force when stationary.

The setup placed the aircraft pointing straight down, suspended by a scale. The weight of

the was recorded with the motor off. We then increased throttle, recording the additional

weight of the plane, along with the throttle setting, until reaching 100%. A more accurate

model would be obtained by performing the same experiment in a wind tunnel at flight speed

but we deemed that unnecessary. Figure 3-5 shows the measured values and accompanying

linear fit for the model.

Moments of Inertia

We determined the moments of inertia using the average of two techniques. First, we built

an accurate CAD model (Figure 3-7) of the vehicle and numerically computed moments of

inertia for that model. Second, we used a bifilar pendulum setup to measure the moment of

inertia about each axis. Figure 3-6 demonstrates this setup, which produced results within

13% of the CAD estimate on all three axes and on stock material of a known, simple, shape.

62

Figure 3-6: Measuring the moment of inertia with a bifilar pendulum (roll, pitch, and yaw
axes respectively). The technique involves measuring the period of oscillations about the
axis in quesiton.

Figure 3-7: CAD model used to estimate moments of inertia.

63

Parameter Fitting

We use a gray-box fitting technique to identify the values of parameters that are difficult to

measure directly. With the aircraft model above, we optimized the parameters designated

as “Fit” in Table 3.2 using MATLAB’s System Identification Toolbox [64].

Since we do not have ground-truth data from a motion capture system, we are forced to

rely on data from our state estimator. That limits our ability to fit data for global x and

y coordinates, so we restrict the optimization to fitting roll, pitch, yaw, and airspeed. We

use a prediction-error minimization framework (PEM) in which computes total error over a

segment of data (as opposed to one-step acceleration error like equation-error methods).

This optimization is sensitive to a number of factors. Firstly, one must estimate the delay

in the system carefully. To do this, we used a motion capture system1 with a known delay

(3 ms) and placed a marker on one of the elevons. We then commanded a movement and

recorded the input time and delay until the motion capture system measured a movement

on the control surface. In our system, the closed-loop delay was 20 ms.

Secondly, PEM is relatively sensitive to initial conditions. To address this, we used the

System Identification Toolbox to simultaneously fit initial conditions on every state other

than roll, pitch, yaw, and airspeed when performing the optimization. To ensure that this

method did not cause us to over-fit our data, we set the optimization to run on data sets

between 0.5 and 1.5 seconds. We found that shorter lengths would cause the system to use

the selection of initial conditions to over-fit the data, giving useless parameter estimates.

Longer segments, however were sensitive to errors in the initial condition and limits of the

model class, so could not fit the data well. Overall, our limited ability to measure states

other than the rotation angles and airspeed were significant limiting factors in obtaining

an accurate model of the system’s dynamics. While the model presented here is sufficient

for control, we expect future work could improve it, starting with a more careful use of

the state estimator’s angular-rate outputs for initial conditions and extending lift and drag

estimates beyond a flat plate, perhaps by using radial basis functions similar to [77] or an

1Northern Digital Inc. 3D Investigator. http://www.ndigital.com/msci/products/3d-investigator

64

http://www.ndigital.com/msci/products/3d-investigator

airfoil simulation environment like [28].

3.2 State Estimation

Estimating the state of the aircraft online is critical to robust, stable control. This experi-

ment exclusively uses onboard sensors, ruling out any possibility of motion capture or other

external state estimation apparatus. Furthermore, GPS can be unreliable in the presence of

dense obstacles, so we exclude it from consideration2.

Reliable and stable GPS-denied state estimation with inertial sensors is currently an open

problem. In this case, however, we do not need good long-term estimates of our position.

Pushbroom stereo only requires relative position estimates that are accurate for 1-2 seconds,

which we can achieve using existing techniques and onboard sensing. In particular, with

a 3-axis accelerometer and gyroscope, we can reliably estimate roll, pitch, yaw, and their

derivatives using the Kalman filter from [16]3. By integrating a barometric altimeter for

absolute measurement of altitude, we can measure z. With a pitot tube airspeed sensor for

forward velocity and a zero side-slip assumption, we have reliable estimates of U , V = 0,

and W (recall that U , V , and W are the x, y, and z velocities in the body frame). Thus

we have reliable estimates for all state variables excepting x and y and can use pushbroom

stereo. Remarkably, we did not need to modify the default parameters for most of the state

estimator’s gains (Table 3.3).

3.2.1 Managing Covariance with Unbounded x and y

Without reliable, global estimates of position, the state estimator, rightly, reports a rapid

and unbounded growth in covariance for those variables. Over long periods of time, this

growth causes the estimator to become unreliable in the other states as slight abnormalities

2The aircraft does have a GPS onboard for logging and debugging purposes, but it is never used in the
state estimator or control systems. The author notes that some flights were flown with the GPS disconnected
to prove that this was the case.

3Available as Pronto with changes from this thesis integrated at: https://github.com/ipab-slmc/

pronto-distro

65

https://github.com/ipab-slmc/pronto-distro
https://github.com/ipab-slmc/pronto-distro

Parameter Value (units) Selection Method
sigma0 vb 0.15 m/s Default
sigma0 chi xy 3.0 deg Default
sigma0 chi z 3.0 deg Default
sigma0 delta xy 0.5 m Default
sigma0 delta z 1.0 m Default
sigma0 gyro bias 0.0 ◦/s Disabled
sigma0 accel bias 0.0 m/s2 Disabled
q gryo 0.5 ◦/s Default
q accel 0.2 m/s2 Default
q gyro bias 0.0 ◦/s2 Disabled
q accel bias 0.0 m/s2/s Disabled
timestep dt 140 Hz IMU rate
airspeed r 15 m/s Trial and Error
altimeter r 5.0 m Trial and Error
sideslip r 5.0 m/s Trial and Error

Table 3.3: State estimator parameters.

accelerations and other measurements are explained with large changes in position. To

limit this growth, we artificially reset the covariance for x and y at the beginning of each

trajectory. In this way, we accept that we are measuring relative position from the start of

the trajectory, instead of a global position. For convenience, we do not force the estimator

to actually reset its estimate of x and y, just the covariance. Section 3.4.2 explains how

we move trajectories into relative position coordinates. When executing a time-invariant

trajectory, such as straight and level flight, we reset the position covariance on a schedule.

To preserve the maximum amount of information in the estimator, when the estimator

is already running, we only modify the two rows and two columns corresponding to x and y

in the covariance matrix. If the estimator is previously offline or for some other reason has

never reported its state, we are forced to completely reset its covariance matrix.

3.3 Trajectory Libraries

Our system relies on trajectories computed offline and then selects a trajectory to execute

online, similar to [32]. We rely on two methods to build individual open-loop trajectories:

66

trajectory optimization and a direct-from-data approach. We then apply time varying linear

quadratic regulators (TVLQR) to the open-loop trajectories for create a feedback system

which we execute online.

3.3.1 Trim Conditions

Flight conditions with zero acceleration are considered trim conditions. Ignoring battery

capacity, these conditions, such as straight and level flight, constant velocity climbs, and

gentle turns are stable forever. Using the model above, we can set up a feasibility search to

find trim conditions. Recall that the time derivative of our state vector has six acceleration

terms. In the global frame:

ẋ =
[
ẋ ẏ ż φ̇ θ̇ ψ̇ ︸ ︷︷ ︸

accelerations

ẍ ÿ z̈ φ̈ θ̈ ψ̈
]T

We can search for a trim condition by setting those terms to zero and searching over both

the state and control:

find x,u

s.t.

accelerations = 0, ⇐ 6 nonlinear contstraints

u ≥ umin, ⇐ 3 linear contstraints

u ≤ umax ⇐ 3 linear contstraints

In practice, the particular result will depend on the initial guess, but any result will be a

trim condition of the model for straight and level flight. This problem solves in under 0.1

seconds. By constraining ż > 0 or ψ̇ > 0, one can search for a climb or turn respectively.

67

Figure 3-8: Knife-edge trajectory optimized and simulated in Drake.

3.3.2 Trajectory Optimization

To build trajectories with non-zero, time-varying accelerations directly from the aircraft

model, we use a direct-collocation method like [107] implemented in Drake [110]. Each

trajectory requires a hand-designed (but not particularly complicated) set of constraints or

cost function to generate the desired result. In other words, one might add a constraint on

the final position to design a trajectory that climbs, dives, or turns. Figure 3-8 shows a

knife-edge trajectory, with a roll contraint of 90◦ at t = tF/2, being optimized.

3.3.3 Trajectories from Data

Building trajectories from data involves flying the aircraft by hand along the desired tra-

jectory. The advantage of this method is that the open-loop path is correct (does not have

errors introduced by the model), up to the accuracy of the state estimator. Obviously, it

can be difficult to fly the exact trajectory required, but in practice we found that a small

number of attempts was sufficient. To control the trajectory online, we use our model to

build a TVLQR controller around the flight states.

68

3.4 Feedback Control

3.4.1 Time Invariant Control for Trim Conditions

Errors in the model, disturbances such as wind, state estimation error, etc., require feedback

control to keep the aircraft flying along the desired path. To stabilize trim conditions, we

can use a standard, time invariant LQR controller:

First, we define error coordinates:

x̄ = x︸︷︷︸
current state

− x0︸︷︷︸
trim state

ū = u︸︷︷︸
current input

− u0︸︷︷︸
trim input

where x̄ gives the error in the state vector and ū gives the additional control action beyond

that specified by the trim condition. Next, we can linearize about the trim condition resulting

in a linear model of the standard form ˙̄x = Ax̄ +Bū.

Given that linearizion, we can apply LQR to produce K, a gain matrix that stabilizes

the trim condition online. In practice, this system is very capable. Figure 3-9 shows the

system recovering from inverted flight.

3.4.2 Time Varying Control

To provide feedback control for time-varying trajectories, we use a time varying linear

quadratic regulator (TVLQR) as in [111]. This controller uses the same error coordinates as

above, but we discretize along the trajectory to produce a time-varying linear model of the

form ˙̄x = A(t)x̄ + B(t)ū. By building an LQR controller at each discretization point along

the trajectory, we can build a time-varying gain K(t). We compute the additional control

action online with this gain: ū = −K(t)x̄, giving a total control of u = u0(t)−K(t)x̄.

We take advantage of the fact that the aircraft’s dynamics are invariant to x, y, z, and ψ

(yaw), substantially reducing the number of trajectories required in a library. Thus, when a

69

Time (s)

378 379 380 381

R
o

ll
(d

e
g

)

-100

-50

0

50

100

150

200

Actual

Planned

Time (s)

378 379 380 381

P
it
c
h

 (
d

e
g

)

-40

-30

-20

-10

0

10

20

30

40

Actual

Planned

Figure 3-9: Top: roll and pitch traces for autonomous recovery from inverted flight. The
controller is enabled at the black vertical line. Bottom: Onboard view at the beginning and
end of the recovery.

70

trajectory is selected online, we record those four initial states and transform the trajectory

along those coordinates.

Time Varying Control Results

To analyze the tracking of this system, we flew the aircraft away from obstacles, activated

trajectories manually, and recorded the states. Note that since all experiments were per-

formed in the field while traveling at substantial speed, we do not have ground truth or

motion capture data for these flights. The plots below are based on the state estimator.

Figure 3-10 shows the system’s tracking of a knife-edge maneuver. The tracking is not

perfect and likely could be improved with further system identification and careful tuning.

In practice, it tracks sufficiently well for complicated obstacle avoidance maneuvers. Other

trajectories are shown in Chapter 4.

Control Results for Trajectories from Data

Figures 3-12 and 3-13 present tracking for a left turn trajectory that was built by replaying

flight data online. The tracking in this case is worse than that from above when using the

same controller and gains. Since these control gains were not tuned for this case, we expect

that we could improve tracking without substantial effort. Regardless, both systems are

capable of generating trajectories useful for obstacle avoidance.

3.5 Online Planning

3.5.1 Online Planning Algorithm

Given a trajectory library as described in Section 3.3 and a point cloud from pushbroom

stereo (Chapter 2), we chose trajectories online to avoid obstacles. This selection process

need not be optimal, but must run in realtime on embedded hardware. To that end, we

discretize each trajectory in time, check distance to each point in the point cloud, and

chose the trajectory that maximizes the closest encounter to the obstacles (maximizes the

71

Time (s)

170 170.5 171 171.5

X
 (

m
)

-115

-110

-105

-100

-95

-90

Actual

Planned

Time (s)

170 170.5 171 171.5

Y
 (

m
)

-200

-195

-190

-185

-180

-175

Actual

Planned

Time (s)

170 170.5 171 171.5

Z
 (

m
)

75

80

85

Actual

Planned

Time (s)

170 170.5 171 171.5

R
o

ll
(d

e
g

)

-50

0

50

100

150

Actual

Planned

Time (s)

170 170.5 171 171.5

P
it
c
h

 (
d

e
g

)

-40

-30

-20

-10

0

10

20

30

40

Actual

Planned

Time (s)

170 170.5 171 171.5

Y
a

w
 (

d
e

g
)

0

50

100

150

200

Actual

Planned

Figure 3-10: Tracking of a knife-edge trajectory with gains on all dynamically-relevant
states. The knife-edge trajectory starts and ends at the dashed vertical lines. Figure 3-11
shows the control actions associated with this trajectory.

72

Time (s)

170 170.5 171 171.5

L
e

ft
 c

o
n

tr
o

l
s
u

rf
a

c
e

 d
e

fl
e

c
ti
o

n
 (

d
e

g
)

-50

0

50

Actual

Planned

Time (s)

170 170.5 171 171.5

R
ig

h
t

c
o

n
tr

o
l
s
u

rf
a

c
e

 d
e

fl
e

c
ti
o

n
 (

d
e

g
)

-40

-20

0

20

40

60

Actual

Planned

Figure 3-11: Control actions for the knife-edge trajectory.

minimum distance). Figure 3-14 outlines the system and Listing 1 shows the trajectory

selection algorithm.

3.5.2 Point Cloud Management

To enable fast nearest-neighbor searches through a potentially large point cloud, we use an

octree structure implemented in PCL [92]. Pushbroom stereo relies on our state estimate

which is not accurate in position over long time horizons. Thus, the obstacle information we

collect is local, and we should avoid accumulating it in the octree for long periods of time. To

address this issue, we build two octrees simultaneously, and seamlessly swap between them

on a clock. In the implementation described here, an octree lives for 4 seconds before being

discarded. To ensure that we never miss a potentially dangerous obstacle when discarding

an octree, we never swap octrees unless the new one has been accumulating points for at

least half of its nominal life (2 seconds in this case). Based on our stereo range (10 meters),

the stall speed of the aircraft (7-8m/s), and its limited turning radius, the aircraft will have

flown well past any obstacles detected prior to 2 seconds earlier.

73

Time (s)

117 117.5 118

X
 (

m
)

150

155

160

165

170

175

180

185

Actual

Planned

Time (s)

117 117.5 118

Y
 (

m
)

-130

-125

-120

-115

-110

Actual

Planned

Time (s)

117 117.5 118

Z
 (

m
)

47

47.5

48

48.5

49

49.5

Actual

Planned

Time (s)

117 117.5 118

R
o

ll
(d

e
g

)

-100

-80

-60

-40

-20

0

20

40 Actual

Planned

Time (s)

117 117.5 118

P
it
c
h

 (
d

e
g

)

-25

-20

-15

-10

-5

0

5

Actual

Planned

Time (s)

117 117.5 118

Y
a
w

 (
d
e
g
)

-40

-20

0

20

40

60

80

100

120

140
Actual

Planned

Figure 3-12: Tracking for a left turn generated from flight data, using the same TVLQR
controller and gains as the trajectories generated from trajectory optimization. Clearly
there is some delay in the execution of the roll, but the yaw tracking (the most important
for avoidance) tracks well enough for obstacle avoidance maneuvers. Figure 3-13 shows the
control actions associated with this trajectory.

74

Time (s)

117 117.5 118

L
e

ft
 c

o
n

tr
o

l
s
u

rf
a

c
e

 d
e

fl
e

c
ti
o

n
 (

d
e

g
)

-40

-20

0

20

40

60

Actual

Planned

Time (s)

117 117.5 118

R
ig

h
t

c
o

n
tr

o
l
s
u

rf
a

c
e

 d
e

fl
e

c
ti
o

n
 (

d
e

g
)

-40

-30

-20

-10

0

10

20

30

40

Actual

Planned

Figure 3-13: Control actions for a left turn generated from flight data. The gains are
the same as in Figure 3-11, but could clearly be optimized for this case. Regardless, the
trajectory executes sufficiently well for obstacle avoidance.

Straight
and level

flight

Execute
trajectory

Obstacle
in path?

Trajectory
selection

(Listing 1)

yes

no

Figure 3-14: Diagram of the online planning system. An obstacle is deemed to be in the path
if the minimum distance between the trajectory and the point cloud is below a threshold.

75

input :
L trajectory library
P point cloud
d current trajectory’s distance to point cloud
m minimum improvement to switch trajectories
s safety distance

output:
Li, selected trajectory

foreach trajectory Ti in L do
// compute the distance between this trajectory and the point cloud

Di = min(distance(T , P))
if Di > s and Di - d > m then

return Ti // this trajectory is safe, so use it

end

end
// no trajectories were completely safe

i = IndexOfMaximum(D)
if Di - d > m then

return Ti // found a better trajectory than we had before

else
return 0 // do not change trajectories

end
Algorithm 1: Trajectory selection algorithm.

76

3.5.3 Online Planning Computation

To test the online planning system in isolation, we flew the aircraft in free space and triggered

the presence of virtual obstacles manually. The virtual obstacles are triggered by a switch on

the safety pilot’s remote and reported via the same mechanism pushbroom stereo uses. In

these experiments, with 10 trajectories in the library, system chooses a trajectory an average

of 18.9 ms after the report of an obstacle and takes a control action within 0.5 ms of that

(N = 12 executions over 2 flights). Further results and analysis are presented in Chapter 4.

3.6 State Machine

The aircraft control system uses a state machine to manage the initial takeoff, climb to curs-

ing altitude, and triggering transitions between trajectories. The state machine’s transition

diagram (implemented with SMC4) is shown in Figure 3-15.

4State Machine Compiler by Charles W. Rapp http://smc.sourceforge.net

77

http://smc.sourceforge.net

W
aitForTakeoff

Entry/

SetN
extTrajectoryB

yN
um

ber;

R
equestN

ew
Trajectory;

SendStateM

sg;

Im
uU

pdate/
A

utonom
ousM

ode/

SetN
extTrajectoryB

yN
um

ber;

R
equestN

ew
Trajectory;

A
rm

ForTakeoff/

LargeA
ccel1

Entry/

SendStateM
sg;

A
utonom

ousM
ode/

SetN

extTrajectoryB
yN

um
ber;

R

equestN
ew

Trajectory;

R
unSingleTrajectory

Entry/

R
equestN

ew
Trajectory;

SendStateM

sg;

Im
uU

pdate/

TakeoffN
oThrottle

Entry/

SetN
extTrajectoryB

yN
um

ber;

R
equestN

ew
Trajectory;

SetTakeoffTim

e;

SetTakeoffB
earing;

SendStateM

sg;

SendA
ltitudeR

esetM
sg;

Im
uU

pdate/
A

utonom
ousM

ode/

C
lim

b

Entry/

SetN
extTrajectoryB

yN
um

ber;

R
equestN

ew
Trajectory;

SendStateM

sg;

Im
uU

pdate/
A

utonom
ousM

ode/

ExecuteTrajectory

Entry/

R
equestN

ew
Trajectory;

SendStateM

sg;

Im
uU

pdate/
A

utonom
ousM

ode/

A
rm

ForTakeoff

IsT
akeoff

A
cceleration

IsT
akeoff

A
cceleration

C
learedC

able
&

&
A

tFlightSpeed

R
eachedC

rusingA
ltitude

T
rajectoryE

xpired

SingleT
rajectoryR

equest

SingleT
rajectoryR

equest

A
rm

ForT
akeoff

!IsT
akeoff

A
cceleration

C
learedC

able
&

&
!A

tFlightSpeed

A
utonom

ousM
ode

B
etterT

rajectoryA
vailable

N
orm

al T
ransition

D
ebug T

ransition

F
igu

re
3-15:

S
tate

tran
sition

d
iagram

.
T

h
e

sy
stem

starts
in

th
e

W
a
i
t
F
o
r
T
a
k
e
o
f
f

state,
tran

sition
s

th
rou

gh
L
a
r
g
e
A
c
c
e
l
1
,
T
a
k
e
o
f
f
N
o
T
h
r
o
t
t
l
e
,

an
d
C
l
i
m
b

b
efore

ru
n
n
in

g
th

e
m

ain
au

ton
om

ou
s

state,
E
x
e
c
u
t
e
T
r
a
j
e
c
t
o
r
y
.

T
h
e

R
u
n
S
i
n
g
l
e
T
r
a
j
e
c
t
o
r
y

state
is

p
rov

id
ed

for
d
eb

u
ggin

g
an

d
testin

g.
T

ran
sition

s
activated

b
y

th
e

u
ser

for
d
eb

u
ggin

g
are

m
arked

w
ith

d
otted

lin
es.

78

Chapter 4

Experiments Near Obstacles

We built a highly-dynamic aircraft to test the above algorithms in the field. The airframe

exhibits a roll-rate of over 300 degrees per second and a top diving speed of 22+ m/s (50+

MPH), requiring precise and fast control systems.

4.1 Aircraft Platform

Our hardware (Figure 4-1) is based on a Team Black Sheep Caipirinha1, modified to carry

a substantial sensing, vision, and computation platform. We use two ODROID-U32 single-

board computers, each with a quad-core ARM Cortex-A9 running at 1.7Ghz with 2GB

of RAM and 64GB of eMMC solid state hard disk. Our IMU platform is a firmware-

modified APM 2.53,4 providing a MPU-6000 based 3-axis accelerometer, 3-axis gyroscope, 3-

axis magnetometer suite with an additional pitot tube airspeed sensor, barometric altimeter,

uBlox GPS (unused for control or estimation), and radio/servo I/O. The aircraft has a 2-cell

7.4V LiPo 2000mAh battery, supporting approximately 15 minutes of flight time, and has a

takeoff weight of 664 grams. Appendix C has a complete list of components.

1Team Black Sheep, http://team-blacksheep.com/products/prod:tbscaipirinha
2Hardkernel Co. Ltd, http://hardkernel.com
33D Robotics, Inc. http://3drobotics.com/
4Firmware available: https://github.com/andybarry/ardupilot/tree/arduread

79

http://team-blacksheep.com/products/prod:tbscaipirinha
http://hardkernel.com
http://3drobotics.com/
https://github.com/andybarry/ardupilot/tree/arduread

Figure 4-1: Aircraft hardware on launcher.

The stereo system is based on two Point Grey Firefly MV cameras5 connected via USB

2.0 to one of the ODROID-U3s. The cameras are configured to use 2x2 pixel binning, giving

120 frame-per-second (fps) grayscale video at 376x240 resolution6. The cameras are not

hardware synchronized, but instead rely on USB to stay in sync. We note that it is not

possible to achieve both hardware synchronization and 120fps on these cameras.

We built a total of three nearly identical aircraft, all of which were flight tested and have

a stall speed of approximately 7-8 m/s (15 MPH) and a top speed of around 22 m/s (50

MPH). All test flights utilize an onboard self-spooling 250 meter safety tether.

5Part #FMVU-03MTC-CS. http://www.ptgrey.com
6This mode is no longer listed in the current datasheet of the Firefly MV camera but does still exist on

newly purchased cameras.

80

http://www.ptgrey.com

Figure 4-2: Set of flight aircraft. Numbers 1 and 3 are equipped for autonomous flight.

4.2 Experimental Setup

In addition to the experiments described above, we performed an obstacle-avoidance experi-

ment near trees in an outdoor environment. The experiment is fully autonomous, including

an automatic takeoff, climb, flight, and obstacle avoidance. We manually land the aircraft

after the experiment is complete7. Figure 4-3 shows a diagram of the experiment’s flight

phases.

4.2.1 Obstacles

We present results from both artificial and natural obstacles. The artificial obstacles are

approximately 15 ft high poles in a small PVC apparatus to hold them vertical. The natural

obstacles are trees located at our field site (Figure 4-4). We avoid a variety of trees, including

a number of fully grown trees and one large dead tree.

7We have performed successful autonomous landings, but it proved experimentally easier to land manually.

81

Takeoff from
catapult
launcher

Control
(no throttle) Clear cable Climb

Cruise
/ avoid

Manual
landing

Figure 4-3: Experimental phases. Autonomous modes are labeled in blue. Section 3.6
presents the state machine responsible for these actions.

Obstacles avoided

Figure 4-4: Example of an artificial obstacle (left) and natural obstacles (right).

82

Figure 4-5: Bungee launcher for the aircraft.

4.2.2 Takeoff and Climb

The system launches from a commercial bungee launcher8 (Figure 4-5) and performs stabi-

lization control until it has cleared the launch cable (t = 0.8 s). It then starts the motor and

climbs. We automatically detect a launch event with a simple acceleration-based filter (See

Section 3.6 for more information about aircraft states). As a safety precaution, the aircraft

will not engage the throttle unless the airspeed indicates that it is moving over 8.0 m/s (17.9

MPH). Once the motor is running, the aircraft autonomously climbs to a specified cruising

altitude and transitions to a sense-and-avoid state using data from pushbroom stereo.

4.2.3 Field Site

All flights near trees were performed at Westview Farms Creamery in Monson, MA with

permission of the field’s owner. The location features a number of large mowed fields in

addition to some trees. Figure 4-6 shows an airiel view of the field site.

8Fan Jets USA http://www.rc-electric-jets.com/

83

http://www.rc-electric-jets.com/

Figure 4-6: Field site for obstacle avoidance tests. The trees above the red marker are the
trees avoided in the experiments below. Imagery c© 2015 Google, map data c© 2015 Google.

4.3 Trajectories in Library

For most of the experiments near obstacles, we used a trajectory library with only seven

trajectories (Table 4.1). Surprisingly, this library was sufficient for most of our flights, al-

though we do not deny that a larger library could have improved performance (see Chapter

5). Despite the fact that, in this table, no time-varying trajectories produced via trajec-

tory optimization are present, the aircraft was able to track those trajectories (see Section

3.4.2). Experimentally, it proved easier to manually fly the limited number of time-varying

trajectories by hand.

4.4 Results

Over one field season, starting in March 2015 and ending in October, we performed 20 days

of field testing in Monson, MA, starting with basic flight control and ending with obstacle

avoidance near trees. In eight of those twenty days we tested near obstacles, starting with

84

Number Description Type Length (sec) Produced via
1 Straight TI ∞ Model
2 Climb TI ∞ Model
3 Takeoff (no throttle) TI ∞ Model
4 Gentle left TI ∞ Model
5 Gentle right TI ∞ Model
6 Left jog TV 2.45 Flight data
7 Right jog TV 2.49 Flight data

Table 4.1: Trajectory library used in most obstacle avoidance experiments. TI stands for
“time-invariant,” which indicates the trajectory is at a trim condition (see Section 3.4.1).
TV stands for “time varying” (see Section 3.4.2).

artificial poles and moving on to trees. In all, we flew the planes on approximately 136 flights.

We performed 16 flights where the aircraft autonomously avoided an obstacle at flight speed.

To put that in perspective, each one of those flights had the potential to destroy the aircraft

in the event of a failure. Over the course of flight testing, we lost one airframe due to a

tether malfunction that was unrelated to the obstacle avoidance system. The system failed

to avoid an obstacle on 9 flights. Section 4.5 details the types of failures and suggests future

work for their mitigation.

4.4.1 Aggregate Analysis

Obstacle type Total flights Successes Success ratio
Artificial 4 4 100%
Pair of trees 4 4 100%
Many trees 18 8 44%

Table 4.2: Statistics for experiments near obstacles.

On 16 successful flights (Table 4.2), the aircraft flew over 1.5km, detected 7,951 stereo

matches, executed 163 trajectories and spent 131 seconds flying in autonomous mode with

an average speed of 12.1 m/s (27 MPH). Figure 4-9 presents the distribution of trajectories

executed when flying near natural obstacles (see Table 4.1 for the trajectory library.) Figure

4-7 demonstrates the aircraft’s onboard view during six of these avoidance maneuvers and

Figure 4-8 shows a chase-camera view.

85

Figure 4-7: Onboard view of 6 different avoidance maneuvers. The red voxels show detected
obstacles and the green squares show the planned trajectory as it is being executed. The
top left view shows an artificial obstacle and the remaining 5 are trees.

86

Figure 4-8: Chase camera view of the autonomous aircraft avoiding a tree.

Table 4.2 presents statistics for our system in 3 different obstacle fields. The first, artificial

obstacles, are approximately 15ft high poles. We placed one or two poles in the middle of

an open field and flew the aircraft at them. The second, a pair of tress, was one live and one

dead tree next to each other. We flew the aircraft at these trees and succeeded at avoiding

them by going around or between them. Finally, we flew the aircraft at the same two trees

but from a different angle, where there was an additional tree on the right and more trees

in the path behind the initial two.

4.4.2 Analysis of a Single Avoidance Maneuver

In this section we analyze a single flight and avoidance maneuver in depth. In this maneuver,

the aircraft avoided a small tree on the aircraft’s right by choosing a maneuver to the left,

then it saw a large tree on the left and avoided to the right, going between the two obstacles.

While rolling, it detected a horizontal branch on the larger tree and chose a trajectory that

avoided that branch by flying under it. Finally it cleared the two obstacles and flew into free

space. Once in free space, the safety pilot switched the aircraft to manual mode and landed

87

0

1

2

3

4

Le
ve

l fli
gh

t
Clim

b
Glide

Gen
tle

 le
ft

Gen
tle

 rig
ht

Le
ft j

og

Righ
t jo

g

Trajectory

N
um

be
r o

f E
xe

cu
tio

ns
 p

er
 F

lig
ht

Figure 4-9: Graph of number of times each trajectory in the library was executed per
successful flight near trees. Level flight is executed the most, since it is the default trajectory
when there are no obstacles.

it. The aircraft covered 104.5 meters in autonomous mode, identified 459 stereo matches, flew

at an average speed of 12.3 m/s (27.5 MPH), and experienced a maximum acceleration of 7.9

Gs on launch. Figure 4-10 shows this sequence of maneuvers from the onboard camera’s view,

Figure 4-11 shows an offboard view, Figure 4-12 presents the trajectories and obstacles in a

3D visualizer, and Figures 4-13 and 4-14 show the flight’s planned trajectories and estimated

tracking for position rotation, and control.

88

Time

↓

Figure 4-10: Autonomous obstacle avoidance from the onboard view. Time progresses
down in columns and red voxels mark detected obstacles. The current trajectory is plotted
as green boxes. Each frame is 0.0833 seconds (83.3ms) apart (1/10 actual framerate). The
entire sequence in this figure lasts for 1.166 seconds and is sampled from a set of 140 frames.

89

Figure 4-11: Aircraft avoiding obstacles as viewed from a camera mounted on the tree seen
in the left of the images in Figure 4-10. Each snapshot is 0.083 seconds apart and the total
sequence spans 1.4 seconds.

90

Obstacles

Estimated path

Trajectories

Flight direction

Obstacles

Figure 4-12: 3D visualization (top and side views) of the flight in Figure 4-10. Red boxes
represent obstacles in the pointcloud, blue lines represent executed trajectories (including
roll). The lighter solid line is the estimated path of the aircraft. The triad near the left
represents the state of the aircraft near the end of the maneuver.

91

Time (s)

85 85.5 86 86.5 87 87.5

X
 (

m
)

80

85

90

95

100

105

110

Actual

Planned

Time (s)

85 85.5 86 86.5 87 87.5

Y
 (

m
)

-150

-140

-130

-120

-110

-100

Actual

Planned

Time (s)

85 85.5 86 86.5 87 87.5

Z
 (

m
)

0

2

4

6

8

10

Actual

Planned

Time (s)

85 85.5 86 86.5 87 87.5

R
o

ll
(d

e
g

)

-40

-20

0

20

40

60

80

Actual

Planned

Time (s)

85 85.5 86 86.5 87 87.5

P
it
c
h

 (
d

e
g

)

-40

-30

-20

-10

0

10

Actual

Planned

Time (s)

85 85.5 86 86.5 87 87.5

Y
a

w
 (

d
e

g
)

-160

-140

-120

-100

-80

-60

Actual

Planned

Figure 4-13: Planned and estimated tracking for an obstacle avoidance maneuver. Vertical
dashed lines indicate a trajectory change. The first obstacle detection happens at t = 85.15
seconds. Notice the significant turn at t = 86 seconds where the aircraft dramatically alters
its yaw angle to avoid an obstacle.

92

Time (s)

85 85.5 86 86.5 87 87.5

L
e

ft
 c

o
n

tr
o

l
s
u

rf
a

c
e

 d
e

fl
e

c
ti
o

n
 (

d
e

g
)

-40

-20

0

20

40

60

Actual

Planned

Time (s)

85 85.5 86 86.5 87 87.5

R
ig

h
t

c
o

n
tr

o
l
s
u

rf
a

c
e

 d
e

fl
e

c
ti
o

n
 (

d
e

g
)

-10

-5

0

5

10

15

20

25

30

Actual

Planned

Figure 4-14: Planned and actual control inputs for an obstacle avoidance maneuver. The
first obstacle detection happens at t = 85.15 seconds. We omit throttle here since it is
commanded at, and runs at, approximately 100% throughout the entire maneuver.

93

Failure Type Occurrences Percentage of Failures (%)
Vision failures 5 50%

Failed to see obstacle 1 10
Poor calibration 2 20
No video data / unknown vision failure 2 20

Control failures 5 50%
Insufficiently rich maneuver library 2 20
Trajectory initial state 2 20
Loss of control 1 10

Total 10 100%

Table 4.3: Breakdown of system failures.

4.5 Failure Analysis

We pushed the system until it started to fail in the most complicated case. These failures

provide insight into the shortcomings of the sensing, planning, and control framework. Over-

all, the failures break down into two main categories: failures of control and failures of the

vision system (Table 4.3).

4.5.1 Control failures

A control failure is characterized by a situation where the vision system indicates that the

aircraft is about to hit an obstacle, but the control system does not take appropriate action

in time. Figure 4-15 presents an onboard view of this case.

In these data, control failures were caused by two primary issues: (1) an insufficiently

rich maneuver library, and (2) trajectory initial state. The first is rather easy to understand.

In some cases the maneuver library used was insufficient to avoid the obstacle. Figure 4-16

demonstrates a case where the aircraft approached the canopy of a tree. The best maneuver

is likely to completely change direction, either by turning left or right at maximum rate. In

this case, the maneuver library did not have such a maneuver, so the aircraft attempted to

go through the canopy and failed.

The second case, trajectory initial state, requires more analysis. In these cases, the system

correctly identifies an obstacle ahead, plans to execute a reasonable trajectory around the

94

Figure 4-15: An example of a control failure. The vision system has clearly marked the dead
tree ahead as an obstacle (red voxels), but the control system has failed to take appropriate
corrective action in time. In this particular flight, the aircraft clipped its right wing but
stabilized itself and continued flying.

Figure 4-16: Failure case where the trajectory library was insufficient to avoid the obstacle.
The left image shows the first frame where an obstacle is detected. The right image shows
the aircraft about halfway through the tree’s canopy and 0.2 seconds from impact.

95

obstacle, and then fails to fly the planned path. In this case, the problem lies with a

limitation in our trajectory library framework. In particular, our trajectory library only has

trajectories that start in one state (straight and level flight). Thus, if the aircraft begins a

trajectory away from that state, we rely on the TVLQR controller to bring it progressively

closer to the trajectory. In most cases, this strategy works well, but there are some that are

troublesome.

In particular, in one flight the aircraft was rolled to the left when it saw an obstacle.

The realtime planning system chose an aggressive left turn as an avoidance maneuver in

response. As soon as the trajectory begin executing the aircraft rolls right. This happens

because the controller is attempting to bring the starting state of the aircraft (rolled left) to

the trajectory’s starting state (level). Then, as the trajectory begins rolling left, the aircraft

begins to stop its roll to the right, but it is already too late. Having taken the wrong initial

action, the online planner detected that a climb trajectory had more clearance, and the

aircraft attempted a climb. In this case, the aircraft’s right wingtip clipped an obstacle, but

the control system was able to recover and remain flying. In the other case, the aircraft hit

the obstacle directly and was damaged. Figure 4-17 shows the various state variables and

control actions during this flight.

Overall, a trajectory library with only one starting state worked surprisingly well in

the field. There is clearly great potential for success with small trajectory libraries moving

forward. To add robustness, however, more sophisticated handling of the starting condition

is required. Our results are encouraging since they suggest that the number of starting states

required for good performance may be quite small. The fatal situation is one in which the

control action required is opposite of that initiated at the beginning of the trajectory. Thus,

one might need starting states for left and right turns, climbs and dives, and level flight, but

not for thousands of states in between.

96

Time (s)
125.5 126 126.5 127 127.5

R
ol

l (
de

g)

-40

-20

0

20

40

60

Actual
Planned

Incorrect action
at trajectory start

Recovery from
impact

Time (s)
125.5 126 126.5 127 127.5

Ya
w

 (d
eg

)
-100

-50

0

50

100

150
Actual
Planned

Impact with obstacle

Time (s)
125.5 126 126.5 127 127.5

Le
ft

co
nt

ro
l s

ur
fa

ce
 d

ef
le

ct
io

n
(d

eg
)

-40

-30

-20

-10

0

10

20

30

40

Actual
Planned

Incorrect action
at trajectory start

Impact event

Time (s)
125.5 126 126.5 127 127.5

R
ig

ht
 c

on
tro

l s
ur

fa
ce

 d
ef

le
ct

io
n

(d
eg

)

-10

-5

0

5

10

15

20

25

30
Actual
Planned

Incorrect action
at trajectory start

Impact event

Figure 4-17: Roll, yaw, and control actions during a “trajectory initial condition” failure.
In the top left (roll) the large discrepancy at the beginning of the trajectory is apparent,
along with the incorrect control action taken (bottom plots). At approximately t = 126.5
the aircraft’s right wingtip collides with an obstacle, producing a substantial yaw (about
74◦), but the controller is able to recover and continue flying.

97

4.5.2 Vision failures

In all but one flight where the vision system failed and we had recorded data, post-flight

analysis shows that poor stereo calibration was at fault. We note, however, that on two

of the five flights with vision failures, the system lost power before transferring the video

recording from RAM to disk, and thus it is difficult to determine why the vision system

failed during those flights. The flight where pushbroom stereo failed to see the obstacle was

headed directly at a tree canopy. The leaves in the canopy offer less contrast than trunks

and branches, so the system has more difficultly detecting them.

A more secure mounting technique for the cameras, especially one that rigidly connected

them together would improve reliability. Furthermore, a system that could detect or even fix

minor calibration errors without the need for a full calibration would be useful. This second

one would not need to run online, but could be something that ran on every system boot.

98

Chapter 5

Conclusion

We have presented a complete, working system for outdoor obstacle avoidance with no prior

knowledge of the environment and all sensing and processing done onboard the aircraft. To

the best of our knowledge, this system can navigate complex natural environments faster

than any previous MAV to date.

Pushbroom stereo enables the system to detect obstacles with stereo cameras at 120

frames-per-second, which allows us to perform obstacle avoidance at up to 14 m/s (31 MPH).

Critically, pushbroom stereo can achieve this framerate on a lightweight processor allowing

us to build a completely self-contained obstacle avoidance unit.

There are a number of weaknesses in our approach that have clear solutions with potential

to improve the reliability and performance of the system. In this work, we never explored

searching for stereo matches at multiple depths (beyond checking for horizontal invariance,)

but the potential for self-correcting estimates and reliability checks for false positive and

false negative situations is clear. This multi-depth check is possible with a surprisingly

small improvement in processing power because the preprocessing steps of rectification and

edge filtering need not be repeated for additional depth checks. Moreover, new lightweight

processors offer GPU tools not previously available, so a GPU implementation of pushbroom

stereo could further increase framerate or resolution.

Secondly, a trajectory library with multiple starting states would improve control perfor-

99

mance. Our aircraft collided with obstacles because of this limitation, which again, would

not require much (in any) improvement in the onboard hardware. With multiple precom-

puted trajectory libraries starting in different states, a system could immediately eliminate

any trajectories that did not have nearby starting states. Thus, main cost of searching over

the pointcloud would not be increased.

In addition, verification of the controllers for each trajectory could provide insight and

even safety guarantees when choosing trajectories from the library. Using sums-of-squares

programming we can build “funnels” such as those presented in [75] and expanded in [66]

that would give us guarantees about when it was safe to switch trajectories, preventing

some of the failures described in Section 4.5.1. Majumdar has even shown these techniques

working in flight [67]. Our data suggests that the required number of initial conditions are

low, but verified funnels would give a more satisfying and complete answer.

Even with verified controllers, however, we could not effectively guarantee safety of the

system. Some type of verification for the pushbroom stereo system, be it from statistics,

high-fidelity simulation, or other means, is required to build safety metrics for the closed-loop

autopilot. Natural features, lighting conditions, calibration error, lens flare, etc. must all be

addressed to build metrics that we might ultimately need to be confident when deploying

autonomous obstacle avoidance systems in critical or dangerous applications.

This thesis presents the fastest autonomous MAV avoiding complex natural obstacles to

date. We hope that others will build on this work to create new, sophisticated autopilots

capable of even higher performance and utility in the future.

100

Appendix A

Open Source Software and External

Resources

A.1 Software

• Flight code and pushbroom stereo: https://github.com/andybarry/flight

• Simulation and system idenfitication: https://github.com/andybarry/simflight

• Drake simulation environment: http://drake.mit.edu

• State estimator: https://github.com/ipab-slmc/pronto-distro

• APM Firmware: https://github.com/andybarry/ardupilot/tree/arduread

A.2 Videos

• High-speed obstacle avoidance:

– https://www.youtube.com/watch?v=_qah8oIzCwk

– https://www.youtube.com/watch?v=iksfHQkkq88

• Pushbroom stereo:

– https://www.youtube.com/watch?v=cZE01bJIgvQ

101

https://github.com/andybarry/flight
https://github.com/andybarry/simflight
http://drake.mit.edu
https://github.com/ipab-slmc/pronto-distro
https://github.com/andybarry/ardupilot/tree/arduread
https://www.youtube.com/watch?v=_qah8oIzCwk
https://www.youtube.com/watch?v=iksfHQkkq88
https://www.youtube.com/watch?v=cZE01bJIgvQ

102

Appendix B

Parameters and Diagrams

B.1 Stereo Parameters

Parameter Value Comments

Block size 5 Size of pixel blocks to match

Laplacian aperture size 3 Laplacian ksize

Interest operator limit 860 Threshold for discarding pixel regions based on Lapla-

cian filtering

Horizontal invariance mul-

tiplier

0.5 Scaling for how much more likely a horizontal-

invariance check will match. Set to 1 for equal like-

lyhood, set to 0.5 for 2x decrease in score (higher score

means worse match)

Score threshold 54 Threshold to consider a pixel block a match

103

B.2 Model Parameters

Parameter Value (units) Identification Method

Mass (m) 0.648412 kg Measured

Wing span (ws) 0.8636 m2 Measured

Wing chord (wc) 0.2097 m Measured

Elevon span (es) 0.31115 m2 Measured

Elevon chord (ec) 0.0402 m Measured

Elevon moment arm (X) (eax) 0.12495 m Measured

Elevon moment arm (Y) (eay) 0.276225 m Measured

Winglet area (tarea) 0.01944076 m2 Measured

Linear component, left servo (ml) 0.002195 (rad/µs) Measured

Affine component, left servo (l0) -3.017 (rad) Measured

Linear component, right servo (mr) -0.0019 (rad/µs) Measured

Affine component, right servo (r0) 2.811 (rad) Measured

Linear component, thrust (km) 0.01004 µs/N Experiment

Affine component, thrust (k0) 12.17 N Experiment

Moment of inertia (Jx) 0.0153 kg ·m2 CAD and Experiment

Moment of inertia (Jy) 0.0052 kg ·m2 CAD and Experiment

Moment of inertia (Jz) 0.0184 kg ·m2 CAD and Experiment

Elevon lift factor 1.30 Fit

Elevon drag factor 0.101 Fit

x-axis body drag factor (bdx) 0.0443 Fit

x-axis rate-dependent moment (MP) -0.0740 Fit

y-axis rate-dependent moment (MQ) -0.1150 Fit

z-axis rate-dependent moment (MR) 0 Fit

104

B.3 State Estimator Parameters

Parameter Value (units) Selection Method

sigma0 vb 0.15 m/s Default

sigma0 chi xy 3.0 deg Default

sigma0 chi z 3.0 deg Default

sigma0 delta xy 0.5 m Default

sigma0 delta z 1.0 m Default

sigma0 gyro bias 0.0 ◦/s Disabled

sigma0 accel bias 0.0 m/s2 Disabled

q gryo 0.5 ◦/s Default

q accel 0.2 m/s2 Default

q gyro bias 0.0 ◦/s2 Disabled

q accel bias 0.0 m/s2/s Disabled

timestep dt 140 Hz IMU rate

airspeed r 15 m/s Trial and Error

altimeter r 5.0 m Trial and Error

sideslip r 5.0 m/s Trial and Error

105

B.4 System Identification Parameters

Parameter Value Comments

Closed loop delay 20 ms measured (see Section 3.1.2)

Block length 0.5 - 1.5 s Varies depending on run

Elevon lift min/max 0 / 5

Elevon drag min/max 0 / 5

M P factor min/max -10 / 0 Roll damping moment

M Q factor min/max -10 / 0 Pitch damping moment

M R factor min/max -10 / 0 Yaw damping moment

PEM regularization λ 0.01

PEM regularization R diag(0.01)

Roll weight 1

Pitch weight 85

Yaw weight 0.75

Airspeed weight 0.01 Requires low airspeed weight since these data are

much more noisy.

106

B.5 Other Parameters

Parameter Value (units)

Transformation from camera frame to body frame rpy = [-90, 0, -90] deg

Octree —

Octree life 4.0 s

Filter distance threshold 1.0 m

Filter points required 3

Ground saftey distance 3.0 m

Bearing controller —

Bang-bang tolerance 0.175 rad

Takeoff —

Acceleration (x-axis) threshold 45.0 m/s2

Acceleration max (y-axis) for rejection of takeoff 15 m/s2

Acceleration max (z-axis) for rejection of takeoff 15 m/s2

Airspeed minimum for throttle 8.0 m/s

Time to clear launch cable 0.8 s

Obstacle Avoidance —

Distance for trajectory to be considred safe 5.0 m

Required improvement to switch trajectories 0.1 m

107

B.6 Diagrams

APM
power

monitor

ODROID-U3 ODROID-U3

Speed
controller

Motor

Servo

GPS
(debug only)

Airspeed

Camera

Camera

RC
radio

APM
2.5

IMU

WiFiLaptop
(debug only)

Safety pilot's
controller

USB

Ethernet

USB

USB

Servo

PWM

Analog

Figure B-1: Information flow diagram for the aircraft.

108

7.4V
2000mAh
battery

APM
power

monitor

5V converter

ODROID-U3 ODROID-U3

Speed
controller

Motor

Servo

Servo

5V

Internal 5V
converterMotor arm switch

APM

7.4V

Figure B-2: Power distribution system for the aircraft. Note that the computers operate on
an isolated 5V bus so they are insulated from the noise generated by the motor and servos.

109

110

Appendix C

Components

Summary Description / Part

Number

Supplier Quantity Price Total

Mechanical

TBS Caipirinha - Team Black Sheep 1 $99.95 $99.95

Winglets - Team Black Sheep 2 $0.00 $0.00

Motor / speed controller ”Servos, Motor, ESC and

Prop”

Team Black Sheep 1 $129.95 $129.95

Motor mount - Team Black Sheep 1 $0.00 $0.00

Graupner E-Prop 8x5 - Team Black Sheep 1 $6.45 $6.45

Hyperion Atlas Servos DS 09 GMD RC Super Sales 2 $29.65 $59.30

Servo horns - RC Super Sales 2 $0.00 $0.00

Foam cover - RC Foam 1 $20.00 $20.00

Launcher Jetapult Complete Sys-

tem

FanJets 1 $76.98 $76.98

Launcher hook - FanJets 1 $0.00 $0.00

Launcher hook mount - FanJets 1 $0.00 $0.00

Teflon tubing, ”0.040”” Teflon

Sheathing (yellow)

4 ft.” CST Sales 1 $1.65 $1.65

Thread Natural Cotton Thread

273 Yards-Red

Amazon 1 $3.77 $3.77

Numbers decals mambiSTICKS Themed

Stickers, Upper Case

Alphabet and Numbers,

Black

Amazon 1 $6.92 $6.92

Tiny zip ties 298-1037-ND Digikey 1 $17.10 $17.10

CA glue Super-Gold Odorless .5oz

CA Adhesive Glue

Amazon 1 $10.49 $10.49

111

Computation

ODROID-U3 - Hardkernel 2 $74.95 $149.90

64GB hard drive 64GB eMMC Module U

Linux

Hardkernel 2 $79.95 $159.90

U3 fans Cooling Fan Hardkernel 2 $4.95 $9.90

USB WiFi adapter WiFi Module 2 Hardkernel 1 $8.00 $8.00

WiFi antenna New A Pair of Laptop

Notebook Wifi Bluetooth

WWAN Broadband In-

ternal Antenna

Amazon 1 $9.99 $9.99

Angle USB cables StarTech.com 1 ft Micro

USB Cable - A to Left

Angle Micro B

Amazon 1 $4.89 $4.89

DC connectors for ODROIDs CP-012-ND Digikey 2 $1.12 $2.24

USB A jacks AE10637-ND Digikey 3 $0.45 $1.34

USB mini jacks H2958-ND Digikey 2 $0.89 $1.78

Sensors and embedded

3DR APM 2.5 - 3D Robotics 1 $45.85 $45.85

Pitot tube Airspeed Kit with

MPXV7002DP

3D Robotics 1 $0.00 $0.00

Pitot tube sensor - 3D Robotics 1 $74.85 $74.85

Battery monitor APM Power Module 3D Robotics 1 $24.99 $24.99

GPS 3DR uBlox GPS 3D Robotics 1 $79.99 $79.99

Spektrum AR6115E RX - HorizonHobby 1 $49.99 $49.99

Electrical

BEC RMRC 5A Power Reg-

ulator - 5 to 6 VOLT

(UBEC) RMRC5AUBEC

ReadyMadeRC 1 $9.99 $9.99

Lost model beeper HobbyKing Discovery

Buzzer

Amazon 1 $6.99 $6.99

Micro deans connectors WS Deans Micro 2R, Red

Polarized WSD1222

Amazon 1 $3.95 $3.95

RJ 45 connectors 100 pcs Cat6, Cat5E

Crimp Connectors

Amazon 1 $5.54 $5.54

JST connectors NEEWER Battery Plug

JST Connector 10 Pairs

Amazon 1 $4.05 $4.05

Batteries Turnigy nano-tech

2000mAh 2S1P 20 40C

Lipo Receiver Pack

Hobbyking 5 $12.99 $64.95

Cameras

Cameras FMVU-03MTC-CS Point Grey 2 $275.00 $550.00

112

M12 lens adapters ACC-01-5000 Point Grey 2 $4.00 $8.00

3.6 mm lenses ”3.6mm 92 Degree Wide

Angle CCTV Camera IR

Board Lens Focal for

1/3”” CCD”

Amazon 2 $6.90 $13.80

Total $1,723.44

113

114

Bibliography

[1] Pieter Abbeel. “An Application of Reinforcement Learning to Aerobatic Helicopter

Flight”. In: Proceedings of the Neural Information Processing Systems (NIPS ’07).

Vol. 19. 2006.

[2] Christopher G Atkeson. “Using Local Trajectory Optimizers to Speed Up Global Op-

timization in Dynamic Programming”. In: Advances in neural information processing

systems (1994), pp. 663–663.

[3] Christopher G Atkeson and Jun Morimoto. “Nonparametric representation of policies

and value functions: A trajectory-based approach”. In: Advances in Neural Informa-

tion Processing Systems 15 (2003), pp. 1611–1618.

[4] Abraham Galton Bachrach. “Trajectory Bundle Estimation for Perception-Driven

Planning”. PhD thesis. Massachusetts Institute of Technology, 2013.

[5] D Blake Barber. “Autonomous landing of miniature aerial vehicles”. In: Journal of

Aerospace Computing, Information, and Communication 4.5 (2007), pp. 770–784.

[6] Andrew J. Barry. “Flying Between Obstacles with an Autonomous Knife-Edge Ma-

neuver”. MA thesis. Massachusetts Institute of Technology, 2012.

[7] Andrew J. Barry. “Flying Between Obstacles with an Autonomous Knife-Edge Ma-

neuver”. In: Proceedings of the 2014 IEEE International Conference on Robotics and

Automation (ICRA), Video Track. 2014.

115

[8] Andrew J. Barry, Anirudha Majumdar, and Russ Tedrake. “Safety Verification of

Reactive Controllers for UAV Flight in Cluttered Environments using Barrier Certifi-

cates”. In: Proceedings of the 2012 IEEE International Conference on Robotics and

Automation (ICRA). 2012.

[9] Declan Bates and Ian Postlethwaite. Robust multivariable control of aerospace sys-

tems. Delft University Press, 2002. isbn: 90-407-2317-6.

[10] Alberto Bemporad and Manfred Morari. “Robust model predictive control: A survey”.

In: Robustness in identification and control. Ed. by A. Garulli and A. Tesi. Vol. 245.

Lecture Notes in Control and Information Sciences. 10.1007/BFb0109870. Springer

Berlin / Heidelberg, 1999, pp. 207–226.

[11] Antoine Beyeler, Jean-Christophe Zufferey, and Dario Floreano. “optiPilot: control

of take-off and landing using optic flow”. In: Proceedings of the 2009 European Micro

Air Vehicle conference and competition (EMAV ’09). 2009.

[12] Antoine Beyeler, Jean-Christophe Zufferey, and Dario Floreano. “Vision-based control

of near-obstacle flight”. In: Autonomous robots 27.3 (2009), pp. 201–219.

[13] H.G. Bock and K.J. Plitt. “A multiple shooting algorithm for direct solution of opti-

mal control problems”. In: Proceedings 9th IFAC World Congress Budapest. Pergamon

Press. 1984, pp. 243–247.

[14] Patrick Bouffard, Anil Aswani, and Claire Tomlin. “Learning-based model predic-

tive control on a quadrotor: Onboard implementation and experimental results”. In:

Proceedings of the 2012 IEEE International Conference on Robotics and Automation

(ICRA). IEEE. 2012, pp. 279–284.

[15] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software Tools (2000).

[16] Adam Bry, Abraham Bachrach, and Nicholas Roy. “State estimation for aggressive

flight in gps-denied environments using onboard sensing”. In: Proceedings of the 2012

IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2012,

pp. 1–8.

116

[17] Jeffrey Byrne, Martin Cosgrove, and Raman Mehra. “Stereo based obstacle detec-

tion for an unmanned air vehicle”. In: Proceedings of the 2006 IEEE International

Conference on Robotics and Automation (ICRA). IEEE. 2006, pp. 2830–2835.

[18] Anna C. Carruthers, Adrian L.R. Thomas, and Graham K. Taylor. “Automatic aeroe-

lastic devices in the wings of a steppe eagle Aquila nipalensis”. In: Journal of Exper-

imental Biology 210.23 (2007), pp. 4136–4149.

[19] Anna C Carruthers. “Use and Function of a Leading Edge Flap on the Wings of

Eagles”. In: AIAA Paper 43 (2007), p. 2007.

[20] Girish Chowdhary. “GPS-denied Indoor and Outdoor Monocular Vision Aided Nav-

igation and Control of Unmanned Aircraft”. In: Journal of Field Robotics (2013).

[21] Rick Cory. “Supermaneuverable Perching”. PhD thesis. Massachusetts Institute of

Technology, 2010.

[22] Rick Cory and Russ Tedrake. “Experiments in Fixed-Wing UAV Perching”. In: Pro-

ceedings of the AIAA Guidance, Navigation, and Control Conference. AIAA. 2008,

pp. 1–12.

[23] M. Cutler. “Comparison of Fixed and Variable Pitch Actuators for Agile Quadrotors”.

In: AIAA Guidance, Navigation, and Control Conference (GNC). (AIAA-2011-6406).

Portland, OR, 2011.

[24] Andrew J Davison. “MonoSLAM: Real-time single camera SLAM”. In: Pattern Anal-

ysis and Machine Intelligence, IEEE Transactions on 29.6 (2007), pp. 1052–1067.

[25] C De Wagter. “Autonomous flight of a 20-gram flapping wing mav with a 4-gram

onboard stereo vision system”. In: Proceedings of the 2014 IEEE/RSJ Int. Conf. on

Robotics and Autonomous Systems (ICRA). Hong Kong, China, 2014.

[26] Debadeepta Dey. “Vision and Learning for Deliberative Monocular Cluttered Flight”.

In: Field and Service Robotics (FSR). 2015.

[27] Moritz Diehl. “Fast direct multiple shooting algorithms for optimal robot control”.

In: Fast motions in biomechanics and robotics. Springer, 2006, pp. 65–93.

117

[28] M. Drela and H. Youngren. “XFOIL 6.94 User Guide”. In: (2001).

[29] Jakob Engel, Jurgen Sturm, and Daniel Cremers. “Camera-based navigation of a

low-cost quadrocopter”. In: Proceedings of the International Conference on Intelligent

Robots and Systems (IROS), 2012 IEEE/RSJ. IEEE. 2012, pp. 2815–2821.

[30] Dario Floreano. “Aerial Locomotion in Cluttered Environments”. In: Proceedings of

the 15th International Symposium on Robotics Research. 2011.

[31] Christian Forster, Matia Pizzoli, and Davide Scaramuzza. “SVO: Fast Semi-Direct

Monocular Visual Odometry”. In: Proceedings of the IEEE International Conference

on Robotics and Automation. 2014, pp. 15–22.

[32] Emilio Frazzoli, Munther A Dahleh, and Eric Feron. “Robust hybrid control for au-

tonomous vehicle motion planning”. In: Proceedings of the 39th IEEE Conference on

Decision and Control, 2000. Vol. 1. IEEE. 2000, pp. 821–826.

[33] Carlos E Garcia, David M Prett, and Manfred Morari. “Model predictive control:

theory and practicea survey”. In: Automatica 25.3 (1989), pp. 335–348.

[34] Vladislav Gavrilets. “Control Logic for Automated Aerobatic Flight of a Miniature

Helicopter”. In: AIAA Guidance, Navigation and Control Conference. 2002.

[35] Steven B Goldberg and Larry Matthies. “Stereo and IMU Assisted Visual Odometry

on an OMAP3530 for Small Robots”. In: Proceedings of the 2011 IEEE Computer So-

ciety Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

IEEE. 2011, pp. 169–176.

[36] Rajiv Gupta and Richard I Hartley. “Linear pushbroom cameras”. In: IEEE Trans-

actions on Pattern Analysis and Machine Intelligence 19.9 (1997), pp. 963–975.

[37] Ankur Handa. “Real-Time camera tracking: when is high frame-rate best?” In: Com-

puter Vision–ECCV 2012. Springer, 2012, pp. 222–235.

[38] Christopher G Harris and JM Pike. “3D positional integration from image sequences”.

In: Image and Vision Computing 6.2 (1988), pp. 87–90.

118

[39] Markus Hehn and Raffaello D’Andrea. “A flying inverted pendulum”. In: Proceedings

of the 2011 IEEE International Conference on Robotics and Automation (ICRA).

IEEE. 2011, pp. 763–770.

[40] Heiko Hirschmuller. “Accurate and efficient stereo processing by semi-global matching

and mutual information”. In: Proceedings of the IEEE Computer Society Conference

on Computer Vision and Pattern Recognition. Vol. 2. IEEE. 2005, pp. 807–814.

[41] Dominik Honegger, Helen Oleynikova, and Marc Pollefeys. “Real-time and Low La-

tency Embedded Computer Vision Hardware Based on a Combination of FPGA

and Mobile CPU”. In: International Conference on Intelligent Robots and Systems.

IEEE/RSJ. Chicago, Illinois, USA, 2014.

[42] Dominik Honegger. “Real-time velocity estimation based on optical flow and dispar-

ity matching”. In: Proceedings of the 2012 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). IEEE. 2012, pp. 5177–5182.

[43] Stefan Hrabar. “Combined optic-flow and stereo-based navigation of urban canyons

for a UAV”. In: Proceedings of the 2005 IEEE/RSJ International Conference on In-

telligent Robots and Systems. IEEE. 2005, pp. 3309–3316.

[44] Albert S. Huang, Edwin Olson, and David C. Moore. “LCM: Lightweight Commu-

nications and Marshalling”. In: International Conference on Intelligent Robots and

Systems (IROS), 2010 IEEE/RSJ (2010), pp. 4057–4062.

[45] Kenneth W Iliff. “Parameter Estimation for Flight Vehicles”. In: Journal of Guidance,

Control, and Dynamics 12.5 (1989), pp. 609–622.

[46] Andrew Johnson, James Montgomery, and Larry Matthies. “Vision guided landing

of an autonomous helicopter in hazardous terrain”. In: Proceedings of the 2005 IEEE

International Conference on Robotics and automation, 2005. ICRA 2005. IEEE. 2005,

pp. 3966–3971.

119

[47] Takeo Kanade, Omead Amidi, and Qifa Ke. “Real-time and 3D vision for autonomous

small and micro air vehicles”. In: Proceedings of the 43rd IEEE Conference on Deci-

sion and Control (CDC). Vol. 2. IEEE. 2004, pp. 1655–1662.

[48] Sertac Karaman and Emilio Frazzoli. “Incremental Sampling-based Optimal Motion

Planning”. In: Robotics: Science and Systems (2010).

[49] L.E. Kavraki. “Probabilistic roadmaps for path planning in high-dimensional con-

figuration spaces”. In: IEEE Transactions on Robotics and Automation 12.4 (1996),

pp. 566–580.

[50] Jong-Hyuk Kim and Salah Sukkarieh. “Airborne simultaneous localisation and map

building”. In: Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA). Vol. 1. IEEE. 2003, pp. 406–411.

[51] Georg Klein and David Murray. “Parallel tracking and mapping for small AR workspaces”.

In: Proceedings of the 6th IEEE and ACM International Symposium on Mixed and

Augmented Reality (ISMAR). IEEE. 2007, pp. 225–234.

[52] Aleksandr Kushleyev, Vijay Kumar, and Daniel Mellinger. “Towards A Swarm of

Agile Micro Quadrotors.” In: Robotics: Science and Systems. 2012.

[53] Jack Langelaan and Steve Rock. “Towards autonomous uav flight in forests”. In: Proc.

of AIAA Guidance, Navigation and Control Conference. 2005.

[54] Jack W Langelaan. “State estimation for autonomous flight in cluttered environ-

ments”. In: Journal of Guidance, Control, and Dynamics 30.5 (2007), pp. 1414–1426.

[55] Jacob Willem Langelaan. “State Estimation for Autonomous Flight in Cluttered En-

vironments”. PhD thesis. Stanford University, 2006.

[56] S. LaValle. Rapidly-exploring random trees: A new tool for path planning. Tech. rep.

98–11. Iowa State University, Dept. of Computer Science, 1998.

[57] Steven M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

120

[58] Gim Hee Lee, Friedrich Fraundorfer, and Marc Pollefeys. “Mav visual slam with plane

constraint”. In: Proceedings of the 2011 IEEE International Conference on Robotics

and Automation (ICRA). IEEE. 2011, pp. 3139–3144.

[59] FL Lewis and VL Syrmos. Optimal control. Second. John Wiley & Sons, 1995. isbn:

0-471-03378-2.

[60] M. Li and A.I. Mourikis. “3-D Motion Estimation and Online Temporal Calibration

for Camera-IMU Systems”. In: Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA). Karlsruhe, Germany, 2013.

[61] M. Li, B. Kim, and A.I. Mourikis. “Real-time Motion Tracking on a Cellphone using

Inertial Sensing and a Rolling Shutter Camera”. In: Proceedings of the IEEE Interna-

tional Conference on Robotics and Automation (ICRA). Karlsruhe, Germany, 2013.

[62] Huai-Ti Lin, Ivo G Ros, and Andrew A Biewener. “Through the eyes of a bird:

modelling visually guided obstacle flight”. In: Journal of The Royal Society Interface

11.96 (2014).

[63] Quentin Lindsey, Daniel Mellinger, and Vijay Kumar. “Construction with quadrotor

teams”. In: Autonomous Robots 33.3 (2012), pp. 323–336.

[64] L. Ljung. “System Identification Toolbox for Use with MATLAB”. In: (2007).

[65] Sergei Lupashin. “A simple learning strategy for high-speed quadrocopter multi-flips”.

In: Proceedings of the 2010 IEEE International Conference on Robotics and Automa-

tion. IEEE. 2010, pp. 1642–1648.

[66] Anirudha Majumdar, Amir Ali Ahmadi, and Russ Tedrake. “Control and Verification

of High-Dimensional Systems with DSOS and SDSOS Programming”. In: Proceedings

of the 53rd Conference on Decision and Control (CDC). 2014.

[67] Anirudha Majumdar and Russ Tedrake. “Funnel Libraries for Robust Realtime Feed-

back Motion Planning”. In: In preparation (2016).

121

[68] Anirudha Majumdar and Russ Tedrake. “Robust Online Motion Planning with Re-

gions of Finite Time Invariance”. In: Proceedings of the Workshop on the Algorithmic

Foundations of Robotics. Cambridge, MA, 2012, p. 16.

[69] Lorenz Meier. “PIXHAWK: A micro aerial vehicle design for autonomous flight using

onboard computer vision”. In: Autonomous Robots 33.1-2 (2012), pp. 21–39.

[70] D. Mellinger and V. Kumar. “Minimum snap trajectory generation and control for

quadrotors”. In: Proceedings of the 2011 IEEE International Conference on Robotics

and Automation (ICRA). IEEE. 2011, pp. 2520–2525.

[71] D. Mellinger, N. Michael, and V. Kumar. “Trajectory Generation and Control for

Precise Aggressive Maneuvers with Quadrotors”. In: Proceedings of the 12th Interna-

tional Symposium on Experimental Robotics (ISER 2010). 2010.

[72] Daniel Mellinger. “Cooperative grasping and transport using multiple quadrotors”.

In: Proceedings of the International Symposium on Distributed Autonomous Robotic

Systems. 2010.

[73] Jeff Michels, Ashutosh Saxena, and Andrew Y Ng. “High speed obstacle avoidance

using monocular vision and reinforcement learning”. In: Proceedings of the 22nd In-

ternational Conference on Machine Learning. ACM. 2005, pp. 593–600.

[74] Joseph Moore. “Robust Post-Stall Perching with a Fixed-Wing UAV”. PhD thesis.

Massachusetts Institute of Technology, 2014.

[75] Joseph Moore and Russ Tedrake. “Control Synthesis and Verification for a Perching

UAV using LQR-Trees”. In: Proceedings of the IEEE Conference on Decision and

Control. Maui, Hawaii, 2012, p. 8.

[76] Joseph Moore and Russ Tedrake. “Magnetic Localization for Perching UAVs on Pow-

erlines”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS) (2011).

122

[77] Joseph Moore, Rick Cory, and Russ Tedrake. “Robust Post-Stall Perching with a

Simple Fixed-Wing Glider using LQR-Trees”. In: Bioinspiration and Biomimetics

9.2 (2014), p. 15.

[78] M. Muller, S. Lupashin, and R. D’Andrea. “Quadrocopter ball juggling”. In: Pro-

ceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). IEEE. 2011, pp. 5113–5120.

[79] Vidya N Murali and Stanley T Birchfield. “Autonomous exploration using rapid per-

ception of low-resolution image information”. In: Autonomous Robots 32.2 (2012),

pp. 115–128.

[80] Ashley Napier, Peter Corke, and Paul Newman. “Cross-calibration of push-broom

2D LIDARs and cameras in natural scenes”. In: Proceedings of the 2013 IEEE In-

ternational Conference on Robotics and Automation (ICRA). IEEE. 2013, pp. 3679–

3684.

[81] Thomas Netter and Nicholas Francheschini. “A robotic aircraft that follows terrain

using a neuromorphic eye”. In: Intelligent Robots and Systems, 2002. Vol. 1. IEEE.

2002, pp. 129–134.

[82] David Nistér, Oleg Naroditsky, and James Bergen. “Visual Odometry”. In: Proceed-

ings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, 2004. CVPR 2004. IEEE. 2004, pp. 652–659.

[83] Helen Oleynikova, Dominik Honegger, and Marc Pollefeys. “Reactive Avoidance Us-

ing Embedded Stereo Vision for MAV Flight”. In: Proceedings of the 2015 IEEE

International Conference on Robotics and Automation (ICRA). IEEE. 2015, pp. 50–

56.

[84] Liam O’Sullivan, Peter Corke, and Robert Mahoney. “Image-based visual navigation

for mobile robots”. In: Proceedings of the 2013 IEEE International Conference on

Robotics and Automation. IEEE. 2013.

123

[85] Nathan Pilbrough. High Speed Reactive Collision Avoidance on an Unmanned Surface

Vehicle. Honours Thesis, Department of Electrical Engineering, University of Cape

Town. 2015.

[86] Charles Richter, Adam Bry, and Nicholas Roy. “Polynomial Trajectory Planning

for Aggressive Quadrotor Flight in Dense Indoor Environments”. In: International

Symposium of Robotics Research (ISRR). Singapore, 2013.

[87] Robin Ritz. “Cooperative quadrocopter ball throwing and catching”. In: Proceedings

of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). IEEE. 2012, pp. 4972–4978.

[88] Jonathan M Roberts, Peter I Corke, and Gregg Buskey. “Low-cost flight control

system for a small autonomous helicopter”. In: Proceedings of the of the 2003 IEEE

International Conference on Robotics and Automation (ICRA). Vol. 1. IEEE. 2003,

pp. 546–551.

[89] Richard Roberts. “Saliency detection and model-based tracking: a two part vision

system for small robot navigation in forested environment”. In: Proceedings of SPIE.

Vol. 8387. 2012.

[90] I Michael Ross. A primer on pontryagin’s principle in optimal control. Collegiate

Publishers, 2009.

[91] Stéphane Ross. “Learning Monocular Reactive UAV Control in Cluttered Natural En-

vironments”. In: Proceedings of the 2013 IEEE International Conference on Robotics

and Automation (ICRA). IEEE. 2013, pp. 1765–1772.

[92] Radu Bogdan Rusu and Steve Cousins. “3D is here: Point Cloud Library (PCL)”.

In: Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA). Shanghai, China, 2011.

[93] Inkyu Sa. “Monocular Vision Based Autonomous Navigation for a Cost-Effective

MAV in GPS-Denied Environments”. In: Proceedings of the 2013 IEEE/ASME In-

124

ternational Conference on Advanced Intelligent Mechatronics (AIM). IEEE. 2013,

pp. 1355–1360.

[94] Srikanth Saripalli, James F Montgomery, and Gaurav S Sukhatme. “Vision-based

autonomous landing of an unmanned aerial vehicle”. In: Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA). Vol. 3. IEEE. 2002,

pp. 2799–2804.

[95] Davide Scaramuzza and Friedrich Fraundorfer. “Visual odometry [tutorial]”. In: Robotics

& Automation Magazine, IEEE 18.4 (2011), pp. 80–92.

[96] Sebastian Scherer. “Flying Fast and Low Among Obstacles”. In: Proceedings of the

2007 IEEE International Conference on Robotics and Automation. IEEE. 2007, pp. 2023–

2029.

[97] Jeff S Shamma and James R Cloutier. “Gain-scheduled missile autopilot design using

linear parameter varying transformations”. In: Journal of Guidance, Control, and

Dynamics 16.2 (1993), pp. 256–263.

[98] S. Shen. “Vision-Based State Estimation and Trajectory Control Towards Aggressive

Flight with a Quadrotor”. In: Robotics: Science and Systems. Berlin, Germany, 2013.

[99] Shaojie Shen. “Vision-Based State Estimation for Autonomous Rotorcraft MAVs in

Complex Environments”. In: Proceedings of the 2013 IEEE International Conference

on Robotics and Automation (ICRA). IEEE. 2013.

[100] Robert Sim. “Vision-based SLAM using the Rao-Blackwellised particle filter”. In:

IJCAI Workshop on Reasoning with Uncertainty in Robotics. Vol. 14. 2005, pp. 9–16.

[101] Leena Singh and James Fuller. “Trajectory generation for a UAV in urban terrain,

using nonlinear MPC”. In: Proceedings of the 2001 American Control Conference.

Vol. 3. IEEE. 2001, pp. 2301–2308.

[102] Hebertt Sira-Ramı́rez and Sunil K. Agrawal. Differentially Flat Systems. Control En-

gineering. Marcel Dekker, 2004. isbn: 0-8247-5470-0.

125

[103] Frantisek Michal Sobolic. “Agile Flight Control Techniques for a Fixed-Wing Air-

craft”. MA thesis. Cambridge MA: Massachusetts Institute of Technology, Depart-

ment of Aeronautics and Astronautics, 2009.

[104] MV Srinivasan. “An overview of insect-inspired guidance for application in ground

and airborne platforms”. In: Proceedings of the Institution of Mechanical Engineers,

Part G: Journal of Aerospace Engineering 218.6 (2004), pp. 375–388.

[105] Natesh Srinivasan, Richard Roberts, and Frank Dellaert. “High Frame Rate Egomo-

tion Estimation”. In: Computer Vision Systems. Springer, 2013, pp. 183–192.

[106] M. Stolle and C.G. Atkeson. “Policies based on trajectory libraries”. In: Proceedings

of the International Conference on Robotics and Automation (ICRA). IEEE. 2006.

[107] Oskar von Stryk. “Numerical solution of optimal control problems by direct collo-

cation”. In: Optimal Control, (International Series in Numerical Mathematics 111).

1993, pp. 129–143.

[108] Petr Švestka and Mark H. Overmars. “Motion planning for car-like robots using a

probabilistic learning approach”. In: The International Journal of Robotics Research

16.2 (1997), pp. 119–143.

[109] Graham K. Taylor. “Flight Control Mechanisms in Birds of Prey”. In: 45th AIAA

Aerospace Sciences Meeting and Exhibit. Ed. by AIAA. AIAA. 2007.

[110] Russ Tedrake. Drake: A planning, control, and analysis toolbox for nonlinear dynam-

ical systems. http://drake.mit.edu. 2014.

[111] Russ Tedrake. “LQR-Trees: Feedback motion planning on sparse randomized trees”.

In: Proceedings of Robotics: Science and Systems (RSS). 2009, p. 8.

[112] Mark M. Tobenkin. “Robustness Analysis for Identification and Control of Nonlinear

Systems”. PhD thesis. Massachusetts Institute of Technology, 2014.

[113] Yang Wang and Stephen P Boyd. “Fast Model Predictive Control Using Online Opti-

mization”. In: International Federation of Automatic Control World Congress. Vol. 17.

2008, pp. 6974–6979.

126

http://drake.mit.edu

[114] Stephan Weiss. “Real-time onboard visual-inertial state estimation and self-calibration

of mavs in unknown environments”. In: Proceedings of the 2012 IEEE International

Conference on Robotics and Automation (ICRA). IEEE. 2012, pp. 957–964.

[115] Ruigang Yang and Marc Pollefeys. “Multi-resolution real-time stereo on commodity

graphics hardware”. In: Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition. Vol. 1. IEEE. 2003.

[116] Jean-Christophe Zufferey, Antoine Beyeler, and Dario Floreano. “Near-obstacle flight

with small UAVs”. In: Proceedings of the International Symposium on Unmanned

Aerial Vehicles. Orlando, FL, 2008.

127

	Introduction
	Contributions
	Related Work
	Obstacle Avoidance with Micro Aerial Vehicles
	Vision-Based Techniques for MAVs
	For Stabilization and Localization
	Avian Flight
	Large and Ultra-Small UAVs
	Planning Algorithms
	System Identification
	Feedback Control Algorithms
	Work Avoiding Trees

	Thesis Organization

	Pushbroom Stereo for High-Speed Obstacle Detection
	Block-Matching Stereo
	Pushbroom Stereo
	Odometry
	Implementation
	Pushbroom Algorithm
	Hardware Platform

	Results
	Single-Disparity Stereo
	Flight Experiments

	Comparison to FPGA Stereo
	Analysis of Obstacle Avoidance Limits
	2D without Occlusions
	2D with Occlusions

	Aircraft Control
	Aircraft Model
	Model Structure
	System Identification

	State Estimation
	Managing Covariance with Unbounded x and y

	Trajectory Libraries
	Trim Conditions
	Trajectory Optimization
	Trajectories from Data

	Feedback Control
	Time Invariant Control for Trim Conditions
	Time Varying Control

	Online Planning
	Online Planning Algorithm
	Point Cloud Management
	Online Planning Computation

	State Machine

	Experiments Near Obstacles
	Aircraft Platform
	Experimental Setup
	Obstacles
	Takeoff and Climb
	Field Site

	Trajectories in Library
	Results
	Aggregate Analysis
	Analysis of a Single Avoidance Maneuver

	Failure Analysis
	Control failures
	Vision failures

	Conclusion
	Appendix Open Source Software and External Resources
	Software
	Videos

	Appendix Parameters and Diagrams
	Stereo Parameters
	Model Parameters
	State Estimator Parameters
	System Identification Parameters
	Other Parameters
	Diagrams

	Appendix Components

