
Safety Verification of Reactive Controllers for UAV Flight
in Cluttered Environments using Barrier Certificates

Andrew J. Barry, Anirudha Majumdar, and Russ Tedrake

Abstract— Unmanned aerial vehicles (UAVs) have a so-far
untapped potential to operate at high speeds through cluttered
environments. Many of these systems are limited by their ad-
hoc reactive controllers using simple visual cues like optical
flow. Here we consider the problem of formally verifying
an output-feedback controller for an aircraft operating in
an unknown environment. Using recent advances in sums-of-
squares programming that allow for efficient computation of
barrier functions, we search for global certificates of safety
for the closed-loop system in a given environment. In con-
trast to previous work, we use rational functions to globally
approximate non-smooth dynamics and use multiple barrier
functions to guard against more than one obstacle. We expect
that these formal verification techniques will allow for the
comparison, and ultimately optimization, of reactive controllers
for robustness to varying initial conditions and environments.

I. INTRODUCTION

Imagine a UAV flying through a forest at high speeds.
Individual tree trunks fly past in fractions of a second, re-
quiring quick thinking and even faster reaction. With current
limitations in onboard instrumentation and computation, fast,
reactive controllers and fast actuators are likely essential for
staying aloft.

Designing theses types of control systems is hard. Testing
and comparing different controllers can be costly, especially
so when trees and airplanes meet unexpectedly. Here we
discuss a verification technique for reactive controllers that
enables the application of some of the rigorous tools from
optimization and robust control. We believe that efficient
verification of these controllers is the first step towards ex-
plicitly optimizing the performance and robustness of control
systems that can fly through dense, cluttered environments
at high speeds.

In particular, we are interested in verifying vision-based
control strategies, since onboard cameras have distinct ad-
vantages in terms of range, update rate, and power require-
ments. However, verifying systems with vision in the loop is
potentially difficult because these sensors are fundamentally
discrete (pixel by pixel), and often result in control systems
which are not smooth. All controllers flying through a forest
must at some point choose “left” or “right” around an
obstacle, with no options in between. Furthermore, these
feedback controllers need not have specific goals in state
space, and may only respond to the sensor readings as
necessary to avoid a crash – this makes it difficult to apply
tools for checking stability to a nominal trajectory as in [20].

The authors are with the Computer Science and Ar-
tificial Intelligence Laboratory (CSAIL) at the Mas-
sachusetts Institute of Technology, Cambridge, MA, USA
{abarry,anirudha,russt}@csail.mit.edu

X

Y ψ

Fig. 1: Example visualization of the simulator showing the
coordinate system. Blue polygons represent obstacles and the
whiskers attached to the plane represent the arc of the vision
system. ψ is the angle between the Y-axis and the aircraft
heading (the aircraft shown here has a slightly negative ψ
value.)

Thus, instead of computing regions of invariance around
trajectories of the system, we verify using a technique more
akin to the controllers’ goals: we ensure that the systems will
not enter any “unsafe” regions in state space.

II. RELATED WORK

Our approach builds directly off the work on safety
verification with barrier certificates in [13]. In that work, the
authors used sums-of-squares optimization [12] to analyze
polynomial dynamical systems. By constructing a Lyapunov-
like function, which they called a “barrier certificate” which
was positive inside every obstacle and negative in the ini-
tial conditions, and verifying that the vector field could
not cross into the positive region, they could guarantee
the safety of the system. The work that we present here
makes two primary modifications to that basic algorithm.
First, instead of searching for smooth global polynomial
barrier certificates which avoid all of the obstacles, we
use a “multiple Lyapunov function”-like approach to verify
each obstacle individually. This allows us to verify complex
environments by combining many low-degree polynomial
certificates, which has major advantages in the scaling and
numerical performance of the algorithm. Second, we extend
the analysis of polynomial dynamics to rational polynomial
dynamics, as rational polynomials are much better suited
to represent vector fields which navigate around complex



obstacles. As a result, in this paper we are able to verify
substantially more complex systems.

The work is also motivated by previous work on UAV
path planning in known environments. [15] uses mixed-
integer linear programs to efficiently plan paths for UAVs
through polygonal obstacles, and [3] adds the ability to
enforce chance constraints for linear Gaussian systems. Here
we consider a nonlinear aircraft model in the same polygonal
environments, and focus on reactive feedback control instead
of path planning.

The Lyapunov-like barrier certificates which we compute
here are very analogous to the constructs used in work
on motion planning for piecewise affine systems [2]. For
the piecewise affine systems, these certificates can even
guarantee the execution of linear temporal logic (LTL) spec-
ifications [8]. They are also very analogous to the Lyapunov
“funnels” computed in [19]. However, the simple reactive
controllers that we consider here are difficult to analyze
efficiently with piecewise affine analysis or with funnels
around trajectories. Instead, we compute barrier certificates
for the smooth nonlinear system around the obstacles.

III. PROBLEM FORMULATION

A. Aircraft Model

We consider the dynamics of a simple, Dubin’s-style [5],
aircraft model, which is constrained to maintain a constant
forward speed. We assume that the yaw dynamics are fast
enough that we can control the yaw rate, leading to the
following dynamics:

x =

 x
y
ψ

 , ẋ =

 ẋ
ẏ

ψ̇

 =

 −v cosψv sinψ
u

 , (1)

where ψ is aircraft yaw, v is the (constant) aircraft forward
speed, and u is the control input for ψ̇. The model’s coordi-
nate system is show in Figure 1.

In order to maintain a constant forward speed, the aircraft
must be constantly regulating the pitch and altitude. By
assigning a mass m and approximating the lift force as
L = cαv2 , where c is a constant1 and α is the angle of
attack, and assuming that the plane does not experience side-
slip, we can always back out the pitch and angle of attack.
The model is not meant to be a complete description of a full
3D aircraft, but does capture some of the essential dynamics
and provides a low dimensional state space which can be
easily visualized.

For the purposes of the analysis, we will write Equation
1 in the general form:

ẋ = f(x, u),

where x ∈ Rn is the n dimensional time-varying state and
u ∈ Rm is the m dimensional control input. For the aircraft
model n = 3 and m = 1.

1Using L = 1
2
ρv2ACL, with ρ the density of the air, A the surface area

of the wing, and CL the lift coefficient, for which we take the standard
small α approximation, CL = 2πα, we have c = ρAπ.

Our goal is to analyze the performance of a vision-based
reactive controller on this vehicle while it is navigating in
an obstacle field. As in previous work [3], [15], we will use
convex polygons to represent the obstacles.

B. Reactive Controller

We assume that the control system has no prior knowledge
(e.g. a map) of the obstacle field and that it must rely only
on local vision-based sensing. Here we will model the vision
system as a series of 101 range measurements arranged in a
+/- 50 degree arc in front of the vehicle.

The following is a simple, reactive controller which evalu-
ates the 101 range measurements and determines a yaw rate
command for the system:

Input :
r the array of ranges given by the vision system (indexed by i)
r̂ the array of unit vectors pointing in the direction of the area

viewed by each pixel (indexed by i)
x̂ the unit vector pointing in the direction of the plane’s

velocity (can be computed directly from ψ)
Ĝ the unit vector pointing towards a nominal goal far in front of

the craft
c1, c2, c3, positive constants

Output:
u, the control action

Algorithm:
for each range value , 1 through N ,

if an obstacle was detected at pixel i,
Let the ‘‘ force” Fi applied on the plane from this pixel

be:

Fi = −c1x̂ · r̂i (1−(r/c3))
2

(1+(r/c3)3)

Let FG be the ‘‘force” towards the faraway point : FG = −c2Ĝ · x̂
The output of the controller is given by: u = FG +

∑N
i=1 Fi

Listing 1: Control algorithm. Note that the controller is
reactive, and does not require the full state (complete
descriptions of obstacles and complete global position).

This simple controller performs fairly well in simulations
of the obstacle field based only on hand-tuned gains, al-
though it will occasionally crash into obstacles. It is im-
portant to note that the controller makes decisions based
on a fundamentally discrete set of sensors, which change
discontinuously with the state of the vehicle (e.g. when an
individual range sensor makes or breaks contact with an
obstacle). Therefore, the resulting closed-loop dynamics of
this system are not smooth.

C. Safety Verification

Given the simple aircraft model and the reactive con-
troller, the goal of this paper is to efficiently evaluate the
performance of the controller, which we measure as the
volume of initial conditions in state space for which we
can prove that the system will not collide with an obstacle.
We will accomplish this by constructing a random obstacle
field and analyzing the resulting closed-loop dynamics of the
controller in state space, even though the controller does not
have any explicit notion of state. This approach allows us to
compare different reactive controllers by generating statistics
based on each controllers’ performance throughout a range
of initial conditions and environments. In this way, we hope



to ultimately formulate an optimization over the combination
of sensors and reactive controllers to maximize robustness in
a variety of environments.

IV. APPROACH

A. Global Smooth Approximation of Dynamics

The discontinuities in sensor readings, and resulting dis-
continuities of the reactive control system pose a potentially
fundamental, and realistic, challenge for safety verification.
Previous work on mobile robots operating around polyg-
onal obstacles often made use of cell decompositions and
piecewise models of the dynamics, which can lead to very
powerful and efficient planning and control algorithms [1],
[2], [8]. However, the reactive controller does not fit nicely
into a parsimonious piecewise smooth approximation; in
fact the sensor readings threaten to tessellate the space into
millions of pieces because the discontinuities can happen at
each sensor, spaced 1 degree apart in orientation.

In order to take advantage of powerful tools for verification
of smooth, polynomial dynamical systems, we will instead
derive our best smooth approximation of the resulting vector
field of the closed-loop system. In fact, the discontinuities
in the sensors prevent approximation of the vector field
through local analysis (e.g. Taylor approximation), but sam-
pling the vector field reveals that the closed-loop dynamics
are relatively smooth; the most challenging effects are in
locations where the vehicle splits between going left or right
around an obstacle. In fact, the vector field is effectively
singular at every obstacle, and on non-trivial manifolds
approaching the obstacle. Polynomial models of reasonable
degree have a very difficult time describing this behavior;
rational polynomial models, however, are better suited to
representing functions of this form.

For this reason, we approximate the dynamics of the
closed-loop system as ˆ̇x = p(x)

q(x) where p(x) and q(x) are
polynomials with optimized coefficients. We let p(x) be a
n × 1 vector of polynomials and q(x) be a single scaling
polynomial. We find the set of coefficients by minimizing the
quantity (q(xi)ẋi−p(xi))2 where xi and ẋi are the sampled
state and the resulting closed-loop dynamics respectively.
Finally, we enforce that q(x) > 0,∀x using a sums-of-
squares constraint. This class of functions was chosen so that
it supports the verification framework presented below. This
approximation is able to remain true to the system despite
the complexities of multiple homotopy classes of paths and
the dynamics’ non-smooth transitions between them.

B. Safety Verification with Barrier Certificates

Verification of nonlinear control systems has been a fertile
area of research in recent years, spurred on by advances
in computational approaches to the problem [12]. In par-
ticular, Sums-of-Squares (SOS) optimization has emerged
as a computationally tractable approach to the verification
and synthesis of nonlinear controllers [19]. SOS techniques
have been used to compute and verify Lyapunov functions
for systems governed by polynomial dynamics, guaranteeing
that the control system is stable (in the Lyapunov sense)

either to a fixed point of the system, or to a time-varying
trajectory. The technique is based on the fact that one can
check positive-definiteness of a multivariate polynomial by
expressing it as a “sum of squares”. This can be used to
check the Lyapunov conditions (V (x) is positive definite
and V̇ (x) < 0), by casting the sums-of-squares problem
as a convex optimization problem, making it accessible to
efficient solvers (such as interior point methods).

Although checking Lyapunov stability is a natural ap-
proach to follow in several settings, the method is not
well suited to controllers that are purely reactive in nature,
such as the one presented in our work. This is because
reactive controllers, which attempt to avoid obstacles while
nominally moving in some direction, do not have an explicit
notion of a goal state/trajectory that the system is being
driven to. Thus, computing Lyapunov functions for specific
“goal” states/trajectories will not yield meaningful results. A
far more natural approach is to compute Barrier functions,
which guarantee that the closed loop control system does not
collide with any obstacles. Barrier functions have been used
previously in order to verify safety for both continuous and
hybrid systems [14].

Formally, given a nonlinear system whose closed-loop
dynamics are described by:

ẋ = f(x)

with state x ∈ X , initial condition set X0 ⊂ X , and obstacle
set Xu,i ⊂ X (i indexes the separate obstacles), a Barrier
function, B : X 7→ R, must satisfy the following conditions:

B(x) ≤ 0,∀x ∈ X0 (2)
B(x) > 0,∀x ∈ Xu,i,∀i
Ḃ(x) ≤ 0,∀x ∈ X s.t. B(x) = 0

The search for Barrier functions can be cast as a Sums-of-
Squares optimization problem for systems with polynomial
closed loop dynamics, where one searches over a suitable
family of candidate functions (such as all polynomials in
x of degree less than or equal to d). However, in order to
do so, the conditions in (2) must be modified slightly in
order to ensure that the resulting SOS optimization problem
is convex. This can be ensured by imposing a stronger
condition on the derivative of the Barrier function: Ḃ(x) ≤
0,∀x ∈ X .

Assume that the sets X0, Xu and X are semi-algebraic
sets, described as follows:

X0 = {x|1−X0,ineq ≥ 0}
Xu,i = {x|1−Xu,i,ineq ≥ 0}
X = {x|1−Xineq ≥ 0}

where X0,ineq , Xu,i,ineq , and Xineq are polynomial ex-
pressions (note that although these define algebraic sets,
semi-algebraic sets can be defined in a similar manner by
simply imposing more than one inequality constraint in the
descriptions of the sets).

In order to check the conditions in (2) using SOS op-
timization, it is sufficient to find a polynomial Barrier



function B(x) and sums-of-squares Lagrange multipliers
L0(x), Lu,i(x), L(x) such that the following expressions are
sums-of-squares:

−B(x)− L0(x)X0,ineq

B(x)− Lu,i(x)Xu,ineq,∀i
− Ḃ(x)− L(x)Xineq

Note that, as mentioned in [14], the non-convex version of
the problem (2) can also be tackled by alternatively searching
over Barrier functions and Lagrange multipliers.

An important observation makes it possible to search for
Barrier functions over a less conservative class of barriers.
Relative to [14], we compute separate Barrier functions for
each obstacle. Thus, a separate Sums-of-Squares optimiza-
tion problem is solved for each obstacle, yielding a set of
Barrier functions, Bi(x). Then,

B(x) = max
i

Bi(x)

is a valid Barrier function that guarantees that the closed
loop system never collides with any obstacle. B(x) trivially
satisfies the first two conditions in (2). Further, even though
B(x) may not be differentiable, the condition that Bi(x) (∀i)
is decreasing along trajectories of the system ensures that
B(x) is also decreasing for all trajectories of the system.
This allows us to impose fewer conditions on each Bi(x),
hence making our final Barrier certificate less conservative.

Finally, although the approximation of our dynamics is
done through functions of the form ẋ = p(x)

q(x) , where p(x)
is a vector of polynomials and q(x) is a single sums-
of-squares polynomial (as mentioned in IV-A), it is still
possible to check the Ḃ(x) ≤ 0 condition. Since Ḃ(x) =
∂B(x)
∂x ẋ = ∂B(x)

∂x
p(x)
q(x) , we can simply multiply both sides

of the inequality Ḃ(x) ≤ 0 by q(x). Since q(x) is sums-
of-squares, this does not change the inequality. Hence, the
condition that needs to be checked becomes ∂B(x)

∂x p(x) ≤ 0.
This important observation allows us to broaden our class
of functions considerably (relative to polynomial dynamics),
allowing for better approximation of the system dynamics.

C. Barrier Functions for Verification

This powerful framework for computing Barrier functions
using SOS optimization can be applied to the verification
of output feedback controllers. Although the controller is
not aware of the full state of the system, in order to
provide guarantees for our controller, we make the full
state (including positions of the obstacles) available to the
verification procedure in order to evaluate the performance
of the controller. In this context, we find verification useful
for comparing controllers and as guidance for their design,
so as noted in Section VI-B, the requirement that the verifier
must know the full system state is not particularly taxing.

While it might seem that barrier functions would ideally
be local around each obstacle, we find that this is almost
never the case. Consider, for example, a smooth vector field
that passes both to the left and to the right of an obstacle,
such as the one show in Figure 2. By the intermediate

6 7 8 9 10 11 12
1

1.5

2

2.5

3

3.5

4

4.5

5

x

y

 

 Nonlinear dynamics

Approximated dynamics

Fig. 2: Comparison of approximated (red) and true dynamics
(blue) around obstacles. To create this plot, we take a slice of
the state space at ψ = 0 and compute the system dynamics
at each sample point. We then recompute ẋ by simulating the
dynamics forward for a small time with ψ̇ held constant to
its value at the sample point. Note that if we did not simulate
forward, ẋ would always be 0 since ψ = 0 for all points in
our slice.

value theorem, the field that points to the left and to the
right must somewhere point directly at the obstacle. Rightly
so, the barrier function will not verify that region as safe.
Unfortunately, as we move further from the obstacle, the
same requirement remains, and we are forced to conclude
that the barrier function cannot be both completely local and
verify two paths around an obstacle.

We note, however, that a quartic parameterization of the
barrier function will allow the 0-level set to extend to infinity
in some directions, so while it will not be local, a quartic
function can still provide a region of safety near the obstacle.
Thus, in practice with multiple barrier functions, we expect
to find “channels” of safety between obstacles.

V. RESULTS

A. Approximate Dynamics

We use YALMIP [10] and SeDuMi [18] to compute
approximate dynamics using 5th and 4th order polynomials
for p(x) and q(x) respectively in the approximate dynamics
ẋ = p(x)

q(x) , resulting in a vector field that captures the nuances
of the closed-loop dynamics. Importantly, the approximation
captures the the system’s ability to travel around the obstacles
using multiple different paths (Figure 2).

B. Controller Verification

The performance of the controller described in III-B was
verified using the Barrier function approach described in IV-
B for two different scenarios. The first scenario, depicted in
Figure 3 contains a forest of three polygonal obstacles. For
the sake of illustration, we evaluate the Barrier function at



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3

4

5

x

y

Obstacles

Obstacle

Barrier function 0−level set

Initial
Conditions

Fig. 3: Barrier function for the controller operating in a
“forest” with three obstacles. The figure shows the 0-level set
in the ψ = 0 “slice” of the Barrier function (black), which
successfully separates the set of initial conditions from the
unsafe regions. Also shown in cyan, green, and purple are the
individual barrier functions for each obstacle. The obstacles
are shown in blue.

ψ = 0, allowing us to plot the zero-level set of the “slice”
of the Barrier function (corresponding to ψ = 0). As the
figure demonstrates, the Barrier function provides us with a
certificate of non-collision with the obstacles, for the given
set of initial conditions. Note that the zero-level set of the
Barrier function is not differentiable. This is because our
Barrier function is evaluated by computing the maximum of
three functions, as described in Section IV-B.

Figure 4 shows similar results for a scenario where the
plane is navigating an “Infinite Corridor”. Again, we plot
the 0-level set in the ψ = 0 “slice” of the Barrier function.
As before, the 0-level set guarantees the safety of the closed-
loop dynamics for the given set of initial conditions. As one
would expect, the Barrier function is symmetric about the
y-axis for the ψ = 0 slice.

Figure 5 provides another perspective of the Barrier func-
tion in the “Infinite Corridor” scenario by plotting the zero-
level set along a slice of the function at a given value of y.
The vector field along the zero level set is plotted, demon-
strating that it points inwards everywhere, thus guaranteeing
that one never leaves the region. An interesting feature that
the plot also illustrates is that the zero-level set is asymmetric
about the x = 0 axis. This corresponds with intuition, as one
would expect it to be safer when the plane is close to the right
edge of the corridor and pointed left than it is if the plane
were pointed right. Hence, when x is positive, the zero-level
set extends closer to the obstacle when ψ is positive (recall
from Figure 1 that ψ > 0 when the plane is turned towards
the left).

x

y

−4 −3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

4

5

Initial Conditions

Corridor Edge Corridor Edge

Barrier Function 0−level set

Fig. 4: Barrier function for the controller operating in an
“infinite corridor”. The figure shows the 0-level set in the
ψ = 0 “slice” of the Barrier function. As the figure shows,
the Barrier function successfully guarantees the safety of the
controller for the given set of initial conditions.

x

Ψ
 (y

aw
)

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Barrier zero 
level set

Fig. 5: Validation of the Barrier function for the “infinite
corridor” case. The plot shows the vector field in the ψ −
x plane, sampled along the 0-level set of the barrier. As
the figure demonstrates, the vector field is pointing inwards
everywhere along the level set.

VI. DISCUSSION

A. Limitations of Approximating Dynamics Using Rational
Functions

As mentioned in Section IV-A, our model of the closed
loop dynamics is of the form ẋ = p(x)/q(x), where p(x)
is a 3× 1 vector of polynomials and q(x) is a single sums-
of-squares polynomial. Although this approximation works
reasonably well for our system, other approaches to this
problem may yield better approximations. The main diffi-
culty in approximating the dynamics is that the vector field
changes sharply close to an obstacle. Although our model
captures most of this sharp variation through q(x) when there
are a small number of obstacles, it requires increasingly high



6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11
0

1

2

3

4

5

6

7

8

x

y

 

 
Nonlinear dynamics

Approximated dynamics

Fig. 6: Global rational approximation with three obstacles.
Note that while the approximation is good in most of the
space, it degrades near the obstacles. Fitting with a higher
order rational function would help mitigate this issue, but
would also cause the search for barrier functions to become
numerically more difficult. We again show a slice at ψ = 0
as described in Figure 2.

order rational functions as more obstacles are added, as can
been seen in Figure 6. It is conceivable that a better approach
would be to have piecewise polynomial approximations of
the dynamics. However, the difficulty with this method is that
the approximation would have to automatically break up the
space into pieces where the polynomial approximations are
good. Further, it would be difficult to ensure that the resulting
(global) vector field is differentiable, which is necessary for
us to check that Ḃ(x) ≤ 0.

B. Reactive Control

Reactive controllers have enjoyed a lot of success in
robotic applications and continue to be among the most pop-
ular control techniques for navigation tasks [4] [6] [11]. The
main advantage to reactive control is that the agent (UAV in
our case) needs to extract only a limited amount of informa-
tion from the environment in order to carry out the task. This
reactive framework seems to be nature’s preferred method
for insect navigation and has inspired several biomimetic
control strategies [11]. Further, an explicit plant model is
not required in order to carry out this output feedback
control. However, it is often the case that different reactive
controllers are difficult to compare (even when applied to
the same task scenario). The framework for the verification
of reactive controllers via Barrier functions presented in this
paper allows one with a good method for comparing reactive
controllers. In particular, one can run the controllers in a
given obstacle field and compare the resulting barriers. For
each controller (and for a given obstacle field), one can try
to maximize the size of the initial condition set such that the
controller does not fail (i.e. does not result in a collision

with the obstacle). The controller that is most robust to
variations in initial conditions is more desirable than others.
The computationally efficient SOS verification allows one
to run the controllers for different obstacle distributions and
thus compile statistics for the performance of the different
controllers.

The success and intuitive appeal of reactive controllers
notwithstanding, reactive controllers often fail because of
their short-sighted nature. A different approach is to create
longer terms motion plans for the robot. Motion planning
has been the subject of significant research in the robotics
literature and has given rise to a set of very powerful tools
that have enjoyed success in varied application domains [17]
[16]. Algorithms like the RRT [9] and RRT? [7] can handle
large state space dimensions and can handle differential
constraints. More recently, the LQR-Tree algorithm [19] has
combined these randomized motion planning algorithms with
tools from control theory and sums-of-squares programming
in order to generate motion plans that exploit the natural
dynamics of the system and augment them with feedback
controllers.

While reactive control and motion planning seem at first
glance to be conceptually at odds with each other, we
believe that a combination of tools from the two areas is
necessary in the domain of UAV flight through cluttered
environments. The long-term planning algorithms can be
used to guide the general trajectory of the path that the robot
follows while a lower level reactive control layer can be
used to avoid obstacles. The tools presented in this paper
could be used to allow for such a combination of planning
and reactive control. One could envision having a library
of reactive controllers that one pre-computes off-line. Each
controller in the library can be tuned to handle a particular
local distribution of obstacles. For each controller (and the
corresponding obstacle field), one could compute barrier
functions that provide guaranteed regions of safety. Then,
at runtime, a higher level planner can go through sequences
of possible reactive control switching strategies and find a
sequence that is safe by looking up the corresponding barrier
functions. In this manner, one avoids being too short-sighted
by planning ahead, while still retaining the benefits of having
reactive controllers.

C. Dealing with Bounded Uncertainty

The controller verification method using Barrier certifi-
cates can be easily extended to deal with uncertainties in both
the perception system and dynamics model. In particular,
suppose that due to perceptual uncertainty, we only have
an imprecise estimate of the position of each obstacle, but
that we can bound the uncertainty in the position. Then,
one can leave the positions of obstacles as free variables
that are constrained to lie within the limits imposed by
the uncertainty bound. These constraints can be added to
the SOS program presented in IV-B. The resulting barrier
functions will verify the controller for all possible positions
of the obstacles. A similar procedure can be used to handle
model uncertainties and is presented in [14].



D. Barrier Function Optimization

Finally, we propose to optimize the size of the barrier
functions. Our current work finds valid barriers, but does
not attempt to maximize the volume of those solutions. One
natural way to do this would be to fix the value of the barrier
function to be zero at some point (x0) in the initial condition
set and greater than β inside the obstacles. Then, we can ask
for the derivative of the barrier function to be negative on the
β level set (instead of the zero level set) and maximize β.
Following the notation of Section IV-B, the sums-of-squares
program is:

maximize
β,B,L0,L,Lu,i

β (3)

subject to B(x0) = 0

B(x)− β − Lu,i(x)Xineq ≥ 0

− Ḃ(x)− L(x)(β −B(x)) ≥ 0

Lu,i ≥ 0

A few things are worthy of note here. First, the barrier
function needs to be normalized somehow in order to pre-
vent β from being artificially maximized by increasing the
coefficients of B(x). One way to do this would be to fix
the value of B(x) at two points inside the initial condition
set instead of just one. Second, this optimization program
is bi-linear in the decision variables and cannot be solved
using a single sums-of-squares program. One has to alternate
between searching over L(x) and the rest of the decision
variables. This is similar to the case where we want to ensure
that the derivative of the barrier function is negative only on
the zero-level set (as described in [14]). Finally, we should
note that increasing β is only a surrogate for increasing the
“size” of the zero-sublevel set of the barrier function. Other
measures may provide better results and should be adopted
as necessary.

VII. CONCLUSION

In this paper, we have presented a method for applying
formal tools from Sums-of-Squares optimization in order to
verify reactive controllers for UAV flight through cluttered
environments. In particular, given a nonlinear control system
with a perceptual model, we search for polynomial Barrier
functions that verify that the closed-loop dynamics do not
result in collisions with obstacles. The efficiency of the
Sums-of-Squares optimization methods allow us to compare
different reactive controllers for different distributions of
obstacles. These methods can be extended in order to deal
with uncertainties in both the plant model and the perception
system. We believe that the introduction of these tools to
UAV control will help tap the as yet unexploited potential
for UAVs to operate at high speeds through cluttered envi-
ronments.

VIII. ACKNOWLEDGEMENTS

This work was supported by ONR MURI grant N00014-
09-1-1051. Andrew Barry is partially supported by the
National Science Foundation Graduate Research Fellowship.

Anirudha Majumdar is supported by the MIT Intelligence
Initiative.

REFERENCES

[1] H. Ayanian and V. Kumar. Abstractions and controllers for groups of
robots in environments with obstacles. In 2010 IEEE International
Conference on Robotics and Automation (ICRA), pages 3537–3542.
IEEE, 2010.

[2] C. Belta, V. Isler, and G. Pappas. Discrete abstractions for robot motion
planning and control in polygonal environments. IEEE Transactions
on Automatic Control, 21(5):864–874, 2005.

[3] L. Blackmore, H. Li, and B. Williams. A probabilistic approach to
optimal robust path planning with obstacles. In American Control
Conference, 2006, page 7 pp., june 2006.

[4] V. Braitenberg. Vehicles: Experiments in Synthetic Psychology. The
MIT Press, 1984.

[5] L. Dubins. On curves of minimal length with a constraint on average
curvature, and with prescribed initial and terminal positions and
tangents. American Journal of Mathematics, 79(3):497–516, 1957.

[6] A. M. Johnson, M. T. Hale, G. C. Haynes, and D. E. Koditschek.
Autonomous legged hill and stairwell ascent, November 2011.

[7] S. Karaman and E. Frazzoli. Incremental sampling-based optimal
motion planning. submitted to Robotics: Science and Systems, 2010.

[8] M. Kloetzer and C. Belta. A fully automated framework for control of
linear systems from temporal logic specifications. Automatic Control,
IEEE Transactions on, 53(1):287–297, 2008.

[9] J. Kuffner and S. Lavalle. RRT-connect: An efficient approach to
single-query path planning. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 995–1001,
2000.

[10] J. Lofberg. Pre- and post-processing sum-of-squares programs in
practice. IEEE Transactions On Automatic Control, 54(5):1007–, May
2009.

[11] T. Neumann and H. Bulthoff. Behavior-oriented vision for biomimetic
flight control. In Proceedings of the EPSRC/BBSRC international
workshop on biologically inspired robotics, pages 196–203, 2002.

[12] P. A. Parrilo. Structured Semidefinite Programs and Semialgebraic
Geometry Methods in Robustness and Optimization. PhD thesis,
California Institute of Technology, May 18 2000.

[13] S. Prajna. Barrier certificates for nonlinear model validation. Auto-
matica, 42(1):117 – 126, 2006.

[14] S. Prajna, A. Papachristodoulou, P. Seiler, and P. A. Parrilo. SOS-
TOOLS: Sum of Squares Optimization Toolbox for MATLAB Users
guide, 2.00 edition, June 1 2004.

[15] A. Richards and J. How. Aircraft trajectory planning with collision
avoidance using mixed integer linear programming. In Proceedings of
the 2002 American Control Conference, volume 3, pages 1936–1941.
IEEE, 2002.

[16] P. Sermanet, M. Scoffier, C. Crudele, U. Muller, and Y. LeCun.
Learning maneuver dictionaries for ground robot planning. In Proc.
39th International Symposium on Robotics (ISR08), 2008.

[17] A. Shkolnik. Sample-Based Motion Planning in High-Dimensional
and Differentially-Constrained Systems. PhD thesis, MIT, February
2010.

[18] J. F. Sturm. Using SeDuMi 1.02, a Matlab toolbox for optimization
over symmetric cones. Optimization Methods and Software, 11(1-
4):625 – 653, 1999.

[19] R. Tedrake, I. R. Manchester, M. M. Tobenkin, and J. W. Roberts.
LQR-Trees: Feedback motion planning via sums of squares verifica-
tion. International Journal of Robotics Research, 29:1038–1052, July
2010.

[20] M. M. Tobenkin, I. R. Manchester, and R. Tedrake. Invariant funnels
around trajectories using sum-of-squares programming. Proceedings
of the 18th IFAC World Congress, extended version available online:
arXiv:1010.3013 [math.DS], 2011.


	I Introduction
	II Related Work
	III Problem Formulation
	III-A Aircraft Model
	III-B Reactive Controller
	III-C Safety Verification

	IV Approach
	IV-A Global Smooth Approximation of Dynamics
	IV-B Safety Verification with Barrier Certificates
	IV-C Barrier Functions for Verification

	V Results
	V-A Approximate Dynamics
	V-B Controller Verification

	VI Discussion
	VI-A Limitations of Approximating Dynamics Using Rational Functions
	VI-B Reactive Control
	VI-C Dealing with Bounded Uncertainty
	VI-D Barrier Function Optimization

	VII Conclusion
	VIII Acknowledgements
	References

