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Abstract

Dynamic invariant detection is the identification of the likely properties about a
program based on observed variable values during program execution. While other
dynamic invariant detectors use a brute force algorithm, Daikon adds powerful opti-
mizations to provide more scalable invariant detection without sacrificing the richness
of the reported invariants. Daikon improves scalability by eliminating redundant
invariants. For example, the suppression optimization allows Daikon to delay the
creation of invariants that are logically implied by other true invariants. Although
conceptually simple, the implementation of this optimization in Daikon has a large
fixed cost and scales polynomially with the number of program variables.

I investigated performance problems in two implementations of the suppression
optimization in Daikon and evaluated several methods for improving the algorithm
for the suppression optimization: optimizing existing algorithms, using a hybrid,
context-sensitive approach to maximize the effectiveness of the two algorithms, and
batching applications of the algorithm to lower costs. Experimental results showed a
10% runtime improvement in Daikon runtime. In addition, I implemented an oracle
to verify the implementation of these improvements and the other optimizations in
Daikon.
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Chapter 1

Introduction

1.1 Dynamic invariant detection and scalability prob-

lems

Dynamic detection of likely invariants [4] is a program analysis that hypothesizes
likely program properties (invariants) based on observed values of variables dur-
ing program execution. The reported results include invariants like “at exit from
method makeProperFraction, denominator > numerator”, or “at exit from method
factorial, product 6= 0”.The technique reports as likely invariants properties that
hold over all of the observed values. As with all dynamic analysis, the accuracy of the
results depends on the quality of the test suite. However, even moderate test suites
produce relatively accurate results [13, 12] and tools exist that help develop good test
suites for invariant detection [7, 19].

Dynamic invariant detection is an important and practical problem. Dynami-
cally detected invariants have aided programmers in understanding and debugging
programs [6, 16, 10, 17, 5, 9, 20, 1], has assisted in theorem-proving [11], repairing
data structures [2], automatically generating program specifications [12], generating
test cases [14], detecting errors [8], and avoiding bugs [3]. Therefore, it is worthwhile
to improve the performance of dynamic invariant detectors, which allows invariant
detection to be applied to a wider range of programs.

Implementing dynamic invariant detection efficiently is challenging. A simple,
brute force algorithm is straightforward but fails to scale to problems of substantial
size. The simple algorithm, described in detail in section 2.2, initially creates, for
each property, a candidate invariant for each combination of variables. The algorithm
examines the samples, values for a set of variables, and removes any invariants that
are contradicted by the values.

The memory costs of the algorithm are dominated by the storage of the invariants
and its time costs are dominated by the application of samples to these invariants.
Since both time and memory vary with the number of invariants, we can discuss the
scalability of the algorithm in terms of the growth of the number of invariants.

The number of invariants depends on the number of variables examined, the num-
ber of program points, and the set of invariants examined [15]. The number of
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invariants grows polynomially with the number of variables [15]. More specifically, if
the invariants involve up to n variables, then given v variables, the number of possible
invariants is vn, which means that the algorithm takes O(vn) time and space.

Because the algorithm processes each program point independently, the number
of invariants only varies linearly with the number of program points. The algorithm
does not scale poorly with respect to the number of lines of code in a program because
the number of variables is the major factor in determining the number of invariants.

There are a variety of ways to address the scalability problems of dynamic invariant
detection. Some detectors reduce one or more of the factors influencing the running
time, by decreasing the number of variables examined, the number of program points
monitored or the set of properties checked. For example, remote program sampling
in [9] only checks a linear number of variable combinations in invariants over two
variables, rather than all v2 combinations. The Carrot detector limits the set of
invariants checked by ignoring invariants over three variables [16]. The DIDUCE tool
only checks for invariants over one variable [6]. These changes sacrifice the quality of
the output.

The Daikon invariant detector attempts to achieve good performance without re-
ducing the factors influencing runtime by adding optimizations to preserve the quality
of the results and the richness of its invariants. The optimizations, explained in detail
in section 2.3, have two purposes. They allow Daikon to avoid creating and process-
ing redundant invariants that can be inferred later from the set of created invariants.
Daikon ignores these redundant invariants during runtime and also omits them from
the final output. Ignoring these redundant invariants improves the scalability of
Daikon’s algorithm and the readability of the results for users.

Although improving the scalability of Daikon, the optimizations also introduce
problems in testing for correctness (section 1.2) and suffer from performance problems
(section 1.3). This thesis focuses on ensuring the correctness and improving the
efficiency of invariant detection optimizations.

1.2 Daikon optimizations and testing for correct-

ness

Daikon checks hundreds of properties over many variables and produces a large
amount of output. Consequently, checking the correctness of these results is diffi-
cult to do by hand. In addition, since the optimizations ignore redundant invariants
during processing and in outputting the results, thorough testing is even harder. More
specifically, an invariant that is missing from the output could be missing for several
reasons. The invariant could be correctly labeled as false and discarded or correctly
labeled as true, and ignored by the optimizations. On the other hand, the invariant
could be incorrectly labeled as false and discarded by Daikon because of a bug in the
implementation of the optimizations. The difficulty lies in differentiating between the
correctly labeled and incorrectly cases.

To prove correctness, the tester must make sure that none of the reported invari-
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ants are false by verifying that reported results are true over all of the samples. The
test must also show that all true invariants are either present in the output or can be
inferred from the reported invariants.

To accomplish this task, I use an oracle for verifying the correctness of the opti-
mizations. The method uses an easily verifiable brute force algorithm as an oracle
to generate the same output as the program with complex optimizations (Daikon).
Running the brute force algorithm produces a complete set of true invariants. In
addition, running the complex algorithm (with its optimizations) and then undoing
the work of the optimizations recovers the omitted invariants to obtain a complete
set of true invariants. Differences in the two outputs of the two algorithms indicate
potential problems.

I can use the approach not only to check the implementation of all of the opti-
mizations but also any additional optimization changes that I make to Daikon. Using
this approach, I found problems both in the implementation of the optimizations and
in code that was not the target of this approach, the invariants themselves.

1.3 Daikon optimizations and performance issues

When implementing optimizations, often there is a memory and time trade-off. A
straightforward implementation of the optimization reduces processing time but must
use up more memory to store useful information. On the other hand, in order to
save memory, the optimization has more complex processing because there is less
information.

For Daikon optimizations, memory is the more important resource because mem-
ory has a hard limit. Experimental results show that due to garbage collection and
thrashing, Daikon performance drops drastically close to the limit of physical memory
[15]. Once memory runs out, Daikon cannot produce any results. In this case, users
would probably rather run Daikon for an extra few hours to have results than to have
Daikon run out of memory and not produce any. This philosophy that memory is more
critical than time guides the decisions made when implementing the optimizations in
Daikon.

The memory and time requirements of Daikon grow with the number of invari-
ants, which grows polynomially with the number of variables. Optimizations whose
requirements grow with the number of program points or the number of variables
will use much less resources than Daikon itself. Optimizations whose requirements
grow with the number of invariants will use space and/or time at a rate similar to
Daikon. The latter set of optimizations may not be as effective because overhead in
the optimizations may be greater than their savings.

The suppression optimization in Daikon delays the creation of invariants that
are logically implied by other true invariants. For example, if A logically implies
B, as long as A is true, Daikon does not need to examine B. I focused on this
optimization because its algorithms either use space or time on the order of the
number of invariants, making this optimization less effective the other optimizations
(see section 2.3.4).
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Since the developers of Daikon prioritize memory over time, the implementation
of this optimization improves Daikon’s memory usage at the cost of time. The sup-
pression optimization is the most time intensive of all Daikon optimizations. Exper-
imentally, I found that as the number of variables grows larger, the implementation
of the optimization takes up a significant amount of running time, varying from 20
to 40% of the total running time of Daikon.

The other optimizations do not suffer from the dilemma of choosing between sav-
ing processing time and saving memory. The data structures needed for the optimal
time implementations of the optimizations grow linearly with the number of variables
(discussed in the next chapter). However, for the suppression optimization, the op-
timal time implementation needs space that grows with the number of invariants,
while the optimal space implementation needs time that also grows with the number
of invariants (see section 2.3.4).

1.4 Thesis outline

The research in this thesis divides into three parts: investigation, design, and veri-
fication. The initial part of the research focused on the current algorithms for the
suppression optimization, running experiments, and analyzing data to determine ex-
actly where the time is spent. Based on the information found, I explored ways to
enhance the current algorithms and looked for new approaches to making Daikon per-
form better. I then built an oracle to test the implementation of these enhancements
and optimizations.

The thesis is organized as follows. Chapter 2 gives background information on the
Daikon architecture, largely using the information in [15], and Chapter 3 provides
an overview of the suppression optimization. Chapters 4 and 5 detail the current
algorithms implemented for the suppression optimization. In chapter 6, I describe the
experimental data and its motivation for the design changes that I made to Daikon.
Chapter 7 shows experimental results for the various design changes. Chapter 8
details the verification method used to check the implementation of the optimizations
and the bugs found by the verification tool. I comment on some related work in
Chapter 9 and close with remarks on limitations and future work in Chapter 10.
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Chapter 2

Daikon Architecture

This chapter gives an overview of dynamic invariant detection and the Daikon archi-
tecture and is largely based on the structure and information from the incremental
invariant detection paper [15].

2.1 Dynamic invariant detection overview

Dynamic invariant detection is the conjecturing of likely program properties at pro-
gram runtime based on the values of program variables. The invariants in the
output depend on the grammar of invariants, the program variables and the pro-
gram points checked. The reported results include invariants like “at exit from
method makeImproperFraction, num > denom”, or “at entry to method divide,
denom 6= 0”. In the following sections, I introduce the basic algorithm used by Daikon
to generate invariants and the optimizations employed by Daikon to accomplish the
task efficiently.

A program point is a specific place in the program. Invariants can be generated
about program variables at any program point based on their values during program
execution. Daikon’s basic program points are procedure entry and exit points. The
reported invariants at these points correspond to the preconditions and postcondi-
tions of the method. In addition, Daikon also generates invariants over aggregate
program points. For example, Daikon generalizes over the invariants at the entry
and exit points of the public methods and the exit points of the constructors of a
class to produce the object point. The invariants at the object point correspond to
representation invariants of the class.

A variable is one of the values over which Daikon looks for invariants. These
include the values of program variables such as method parameters, return values,
global variables, and fields of classes. Daikon derives additional variables from existing
variables when applicable. For example, if an array a and the integer i are both
in scope, then the variable a[i] may be interesting even though it does not exist
explicitly in the program. Each variable has an associated type. The types are
hashcode, String, boolean, int, float, hashcode[], String[], boolean[] int[],
float[], and int[]. A hashcode is a unique ID for references or pointers to a specific
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location in memory, used for fast retrieval of the object with that hashcode. Daikon
represents the hashcode type as an integer.

A sample is the set of values associated with the key variables at a certain
program point for a given execution of the program. An example of a sample is “at
exit from method makeImproperFraction, num = 5, denom = 4”. Daikon verified
the samples against the instantiated invariants to determine if those invariants are
still true.

An invariant describes a relationship between variables in a program, e.g. x > y,
x = 0, and Ax + By + Cz = D. An invariant type refers to a specific type of
relationship such as less-than, or array-is-sorted.

An invariant in the Daikon grammar has two forms: a template form and a
concrete form. The template form is an invariant type from the invariant gram-
mar without reference to specific variables, but rather uses α, β, and γ as formal
parameters. For example, the less-than invariant template is α < β.

When Daikon instantiates the invariant template with variables at runtime, the
invariant becomes concrete. If x, y, and z are variables from the program, examples
of concrete less-than invariants are: x < y, y < z, and z < x. The invariant type of
these invariants is <.

Daikon has a predefined set of invariant templates used to create concrete invari-
ants. For the rest of the thesis, I will use the term invariant to refer to concrete
invariants and will use the term invariant template explicitly to differentiate between
the two terms. In addition, I will use x, y, and z to compose concrete invariants and
α, β, and γ to make up invariant templates.

The grammar of invariants is the set of invariant types that are instantiated
and checked over the program variables. Daikon checks for invariants over one, two
and three variables. We refer to these as unary, binary, and ternary invariants respec-
tively. The grammar of invariants is the set of predefined invariant templates used
by Daikon to create concrete invariants. Some examples of the invariant templates in
Daikon’s grammar set are: α = 0, α > β, α mod β = γ, and α ∈ β.

Invariant templates may be valid only over certain variable types. For example, in
the invariant α > β, α and β must be of the same type and cannot be hashcodes (it
does not make sense to compare unique IDs numerically), in the invariant α mod β =
γ, all of the variables must be integers, and in the invariant α ∈ β, β must be a
collection and the elements in β should have the same type as α.

2.2 Invariant detection algorithm overview

A simple algorithm for invariant detection is:

At each program point:

1. Instantiate invariant templates in the grammar over all combinations of vari-
ables. For example, if the grammar consists of the invariant types “prime” and
“=”, and the integer variables are x, y, and z, then the algorithm instantiates
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the invariants prime(x), prime(y), prime(z), x = x, y = y, z = z, x = y, y = z,
x = z.

2. For each sample, check the sample values against each invariant, mark the
invariants contradicted by the sample as false. Remove the falsified invariants.
For example, the sample (3, 4, 3) falsifies the invariants prime(y), x = y, and
y = z.

3. Report the invariants that remain after all samples have been processed. These
are the true invariants since they still exist after all samples have been checked.
The true invariants in the example are: prime(x), prime(z), x = x, y = y,
z = z, and x = z.

The algorithm uses space to store the list of invariants that have not been con-
tradicted by a sample. As described in section 1.1, this space grows polynomially
with the number of variables. With v variables, p program points and s samples, the
memory requirement for Daikon is O(v3 ∗ p). In addition, the algorithm spends most
of its time applying samples to the list of true invariants. The time requirement is
O(v3 ∗ p ∗ s).

2.3 Optimizations

In this section, I show how Daikon optimizes the simple algorithm by reducing the
number of invariants that are instantiated without affecting correctness. The invari-
ants that are not instantiated by Daikon are redundant because they can be inferred
from the other invariants.

2.3.1 Dynamic constants

A dynamic constant variable is one that maintains the same value at each sample.
The invariant x = a (for some constant a) makes all other unary invariants over the
variable x redundant. For example, x = 2 implies even(x) and x > −5. Likewise,
for combinations of variables, x = 2 and y = 5 together imply x < y and x = y − 3.
Daikon takes advantage of this observation by not creating invariants over constant
variables and only storing their values, which is sufficient information to create the
invariants if necessary.

Daikon maintains a list of the constant variables and their values. At each sample,
Daikon walks through the list, and for each variable, compares the value in the list
with the value in the sample and creates invariants over the variables that change
values. The optimization uses v time and space to store and walk through the list.

2.3.2 Equality sets

If two or more variables are always equal, meaning they have the same values at each
sample, then any invariant that is true for one of the variables is true for each of
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Figure 2-1: Example of the variable point hierarchy optimization. An invariant that
is true at all entry and exit points of public methods and the exit points of the
constructors of the class must also be true about the object point.

the other variables. More generally, for any invariant f , when x = y , f(x) implies
f(y). For example, if x = y, then x > 5 implies that y > 5. Daikon capitalizes on
this observation by putting the equal variables in an equality set and only creating
invariants over the leader of the equality set.

Daikon stores all of the variables in the equality sets, including their leaders and
non-leaders, and only instantiates invariants over the leaders. At each sample, Daikon
checks that each non-leader still has the same value as the leader. If the value of a
non-leader deviates, Daikon breaks up the equality set by making two equality sets,
copies the invariants of the leader’s set to the set containing the changed variable,
and verifies that the copied invariants still hold for the changed variable.

For v variables, Daikon, at most creates v separate equality sets and uses v time
to examine the values in each sample.

2.3.3 Variable point hierarchy

Some variable values affect invariants at multiple program points. For example, an
invariant appearing at the object point implies that the invariant must be true at all
entry and exit points of public methods and the exit points of the constructors in the
class (see figure 2-1).

For two program points A and B, if all samples that appear at B also appear at
A, then true invariants at A will also appear at B, and thus are redundant at B.
In this case, we say that A is higher in the hierarchy than B. For example, if the
invariant x > y is true at all entry and exit points of public methods and at the exit
points of the constructor, then the invariant is true at the object point.
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Daikon uses the hierarchy to avoid creating the invariants at A, and just gathering
the information from its children in the hierarchy (B). Daikon only processes the
leaves of the hierarchy and then infers invariants at the upper points by merging
results from the level below. An invariant is true at an upper point if and only if it is
true at each child of that point. Daikon infers the invariants in the upper levels after
processing all of the samples at the lower levels.

Daikon uses a data structure that relates the variables at different hierarchies.
With v variables, Daikon only needs to store the v variables and its relationships.
Time-wise, Daikon does no work at each sample and only propagation at the end of
processing the samples, which varies with v.

2.3.4 Suppressions

Some invariants are logically implied by other invariants. For example, if A logically
implies B, then as long as A is true, B does not need to be examined. For example,
the invariant x > y implies x ≥ y, therefore checking a sample that satisfies x > y
will mean that the sample also satisfies x ≥ y. Thus, at runtime, Daikon does not
check the invariant x ≥ y until x > y becomes false.

There are two approaches to implementing the suppressions optimization: one is
efficient with time and inefficient with memory, and the other is efficient with memory
and inefficient with time.

The optimal time approach stores information about the validity of the antecedents
of each implied invariant and hence knows exactly when Daikon needs to create the
implied invariant. However, the approach needs a data structure that grows with the
number of invariants (v3) and actually uses more memory than creating the implied
invariants.

The optimal space approach stores no state information about the implied invari-
ants and their antecedents, but the lack of state complicates processing. With this
approach, Daikon has to find all of the implied invariants and check whether they are
still implied, making processing time grow with the number of invariants (v3).

Since the developers of Daikon prioritize memory over time, its current implemen-
tation of the optimization uses the optimal space approach. I discuss the suppression
optimization in more detail in chapter 3.

2.3.5 Time and space cost comparison

The first three of the four optimizations are special cases of the suppressions opti-
mization (the fourth). All of the optimizations defer creating and checking invariants
that can be logically inferred from instantiated invariants. In these special cases, the
three optimizations improve on the suppressions optimization’s v3 space and time
requirement by only using linear or constant memory and space. In addition, these
three optimizations only add minimal overhead, guaranteeing that the benefits of
the optimizations will outweigh any costs when compared to the v3 time and space
requirements of Daikon.
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In contrast to the special case optimizations, the suppression optimization tries
to solve the general problem of processing implied invariants. The optimal space
implementation uses v3 time, which is comparable to that of Daikon, but does have
the benefit of constant memory use over Daikon’s v3 requirement. The optimization
does have non-trivial overhead (discussed in chapter 4). Given the time costs and
overhead of the suppressions optimization, the logical step is to investigate further to
understand its performance issues.

2.3.6 Determining the truth of an invariant

While the optimizations do improve the scalability of Daikon, they also complicate
the method Daikon uses to determine whether a concrete invariant in its grammar set
is true during processing. Since the simple algorithm instantiates all possible concrete
invariants in the grammar set at the beginning and removes the concrete invariants
as they become falsified by samples, the presence of an invariant implies that the
invariant is true while the absence of an invariant signifies that the invariant is false.

With the addition of the optimizations however, Daikon does not create some true
invariants in its grammar set because they are implied by invariants that are created
by Daikon. Consequently, while the existence of an invariant does imply it is true,
the absence of the invariant does not imply that it is false. Instead, Daikon must
perform several checks to determine whether a concrete invariant in its grammar set
is true:

1. Check for the existence of the invariant. If the invariant exists, it is true.

2. Check to see if all of the variables in the invariant are constants. If so, check
the values of the constant variables against the invariant to determine if the
invariant is true.

3. Check to see if the variables are the non-leaders of equality sets. If so, check for
the invariant over the leaders of the equality sets. If the invariant exists over
the leaders of the corresponding invariant variables, then the invariant is true.

4. Check to see if the invariant is true at a higher program point. If so, then the
invariant is true. Since Daikon processes at the leaves of the tree, this problem
does not come into play until processing is complete.

5. Check to see if the invariant is the consequent of a suppression. If so, check if
the antecedent of the invariant is true. If the invariants in the antecedent are
true, then the invariant is true.

6. If all of the above checks fail, then the invariant must be false.
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Chapter 3

Suppression Optimization

This chapter explains some terminology used in the rest of the thesis and discusses
the data structures and approach used by Daikon to implement the suppression op-
timization.

3.1 Overview

Recall that in the simple algorithm, Daikon must instantiate all of the invariant tem-
plates in the grammar over each possible combination of variables and check each
invariant against every sample. The suppression optimization states that invariants
that are logically suppressed by other invariants do not need to be created or checked
by Daikon. For example,

x > y =⇒ x ≥ y,
x = y =⇒ x ≥ y, and
0 ≤ x < y and z = 0 =⇒ x div y = z (div refers to integer division).

3.2 Problem definition

As a simple example, suppose that a program point has the true invariants x = y and
x ≥ y, and Daikon knows that x = y =⇒ x ≥ y. Using the suppression optimization,
Daikon only creates and checks samples against x = y. Daikon sees and applies the
samples (1,1), (2,2) and x = y is still true. Daikon then sees and applies the sample
(2,1) which conflicts with x = y, so x = y no longer describes the program point.
Daikon invalidates x = y, and checks if the suppressed x ≥ y is true. The invariant
x ≥ y is still true, so Daikon creates that invariant and checks all subsequent samples
against the invariant x ≥ y.

The goal of the suppression optimization is to neither instantiate nor check sup-
pressed invariants. The two approaches to implementing the optimization sacrifice
either time or space (section 2.3.4).

Using the example above, the optimal time approach may create all of the true
invariants and store a link between the invariants x = y and x ≥ y. The approach
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avoids checking the implied invariant x ≥ y, until x = y becomes false and is removed
from the data structure by Daikon. However, Daikon must create and store both
the implied invariants and the relationship. This approach fails on the goal of not
instantiating suppressed invariants.

The optimal space approach does not build this relationship data structure. In-
stead the optimal space approach must search for these implied invariants during
suppression processing using information variable information from the falsified in-
variants to figure out which suppressed invariants may be no longer implied. This
approach satisfies the goal of neither instantiating nor checking suppressed invariants.

I discussed the decision to prioritize saving memory over time in section 1.3, which
led to the decision to use the optimal space approach.

3.3 Invariants and suppressions

Like definition of invariant in section 2.1, all of the following terms have a template
and concrete form. Since invariants are the building blocks for the following terms,
the template form of each term exists when I use invariant templates and the concrete
form of each term exists when I use concrete invariants in the thesis.

Recall that for the rest of the thesis, I will use the term invariant to refer to
concrete invariants and will use the term invariant template explicitly to differentiate
between the two terms. In addition, I will use x, y, and z to compose concrete invari-
ants and α, β, and γ to make up invariant templates. Similar to the differentiation
of the two forms of the invariant, when I use the following terms by themselves, the
concrete adjective is implicit and I will explicitly say template when refering to the
template form.

An antecedent term is a single term in a logical implication. An antecedent
term is an invariant from Daikon’s invariant grammar. A conjunction of one or more
antecedent terms makes up the antecedent, the left side of a logical implication. Each
of the antecedent terms in the antecedent must be true in order for the antecedent to
be true.

For example, the antecedent term templates (boxed)

(α < β) ∧ (α ≥ 0) ∧ (γ = 0) =⇒ (α div β = γ)

make up the antecedent template

(α < β) ∧ (α ≥ 0) ∧ (γ = 0) =⇒ (α div β = γ)

The consequent refers to the right side of the implication. A consequent is also
an invariant from Daikon’s invariant grammar, and in this case the consequent tem-
plate is:

(α < β) ∧ (α ≥ 0) ∧ (γ = 0) =⇒ (α div β = γ)

24



(α < β) =⇒ (α ≤ β)

(α > β) =⇒ (α ≥ β)
(α = β) =⇒ (α ≥ β)

(α > 0) =⇒ (α ≥ 0)

(α < β) ∧ (α ≥ 0) ∧ (γ = 0) =⇒ (α div β = γ)
(α = β) ∧ (β 6= 0) ∧ (γ = 1) =⇒ (α div β = γ)

Figure 3-1: These suppression sets will be used to set up examples in chapters 4 and
5.

A suppression defines a single logical implication. Using the antecedent and
consequent examples earlier, the suppression template is:

(α < β) ∧ (α ≥ 0) ∧ (γ = 0) =⇒ (α div β = γ)

Multiple suppressions with the same consequent form a suppression set. If any
of the suppressions in a suppression set is true, the consequent is implied. Here is an
example of a suppression set template:

(α < β) ∧ (α ≥ 0) ∧ (γ = 0) =⇒ (α div β = γ)
(α = β) ∧ (β 6= 0) ∧ (γ = 1) =⇒ (α div β = γ)

Written in disjunctive normal form, the above suppression set template would look
like:

[(α < β) ∧ (α ≥ 0) ∧ (γ = 0)] ∨ [(α = β) ∧ (β 6= 0) ∧ (γ = 1)] =⇒ (α div β = γ)

Daikon has a predefined set of these suppression set templates that are used during
suppression processing. From the templates, Daikon builds a map from each invariant
type to the suppression set templates that contain the invariant type in any of its
antecedent terms. From the suppression set templates shown in figure 3-1, Daikon
builds the map show in figure 3-2.

Since these are templates, the amount of memory does not vary with the number
of concrete invariants or with the number of implied concrete invariants. Processing,
on the other hand, becomes more complex because Daikon must fit concrete invariants
to these templates during runtime.

3.4 Approach

Recall that Daikon ignores suppressed redundant invariants during processing to save
space, but as samples falsify invariants which are potential antecedents, Daikon needs
an algorithm to identify when it needs to unsuppress and create an implied invariant.

The approach of the algorithms used by Daikon is simple: after applying a sample
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to the invariants, Daikon looks for the concrete consequent invariants that are no
longer implied. In these consequent invariants, one or more antecedents were true
prior to this sample and each of those antecedents was falsified by this sample. In
order to find these consequents, Daikon needs to find suppressions where one or more
of the antecedent terms has been falsified. The consequents of these suppressions are
candidates for being instantiated by Daikon. Daikon has the following information
available:

1. a list of predefined suppression set templates

2. a list of all instantiated invariants

3. a list of all instantiated invariants falsified by the sample

4. a list of predefined invariant templates

5. a map from invariant type to relevant suppression sets

6. the current sample

The next two chapters present two algorithms currently used by Daikon to find
the invariants that should be unsuppressed. Then chapter 6 describes how I used the
two algorithms to improve the performance of Daikon.

26



Invariant type Relevant suppression sets

α < β
(α < β) =⇒ (α ≤ β)

(α < β) ∧ (α ≥ 0) ∧ (γ = 0) =⇒ (α div β = γ)
(α = β) ∧ (β 6= 0) ∧ (γ = 1) =⇒ (α div β = γ)

α = β
(α > β) =⇒ (α ≥ β)
(α = β) =⇒ (α ≥ β)

(α < β) ∧ (α ≥ 0) ∧ (γ = 0) =⇒ (α div β = γ)
(α = β) ∧ (β 6= 0) ∧ (γ = 1) =⇒ (α div β = γ)

α > β
(α > β) =⇒ (α ≥ β)
(α = β) =⇒ (α ≥ β)

α > 0
(α > 0) =⇒ (α ≥ 0)

α ≥ 0
(α < β) ∧ (α ≥ 0) ∧ (γ = 0) =⇒ (α div β = γ)
(α = β) ∧ (β 6= 0) ∧ (γ = 1) =⇒ (α div β = γ)

γ = 0
(α < β) ∧ (α ≥ 0) ∧ (γ = 0) =⇒ (α div β = γ)
(α = β) ∧ (β 6= 0) ∧ (γ = 1) =⇒ (α div β = γ)

β 6= 0
(α < β) ∧ (α ≥ 0) ∧ (γ = 0) =⇒ (α div β = γ)
(α = β) ∧ (β 6= 0) ∧ (γ = 1) =⇒ (α div β = γ)

γ = 1
(α < β) ∧ (α ≥ 0) ∧ (γ = 0) =⇒ (α div β = γ)
(α = β) ∧ (β 6= 0) ∧ (γ = 1) =⇒ (α div β = γ)

Figure 3-2: Daikon uses the predefined suppression templates to build a map from
each invariant type to the suppression set templates that have at least one antecedent
term template with that invariant type.
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Chapter 4

Antecedents Algorithm

One algorithm for supporting suppressions is the antecedents algorithm. Recall that
the goal is to find the invariants that were implied prior to this sample but are no
longer implied. The antecedents algorithm achieves this goal by finding all of the
concrete suppressions with at least one falsified invariant in the antecedent. The
consequents of these suppressions are the candidate consequents that may need to be
created by Daikon. The consequent should be instantiated if it is not suppressed by
a different suppression.

The following sections detail the implementation of the antecedents algorithm. In
preparation, the algorithm reverses the dynamic constants optimization and creates
all invariants over constant variables (section 4.2). Then, for each suppression tem-
plate in the predfined suppression templates, Daikon finds the list of invariants that
match the invariant type of each antecedent term in that suppression (section 4.3).
After finding the lists, Daikon systematically selects an invariant from each list and
checks to see if the combination produces a non-conflicting suppression, by verifying
the bindings to the variables in the suppression template (section 4.4). Finally, when
Daikon finds a complete suppression, it creates the consequent if no other suppression
for the consequent still holds (section 4.5). Figure 4-1 provides the pseudocode for
the outline of the algorithm, more detailed pseudocode appear in the section detailing
each step in the algorithm.

4.1 Running example

Using the suppression sets templates and concrete invariants shown in 4-2, I will
demonstrate the antecedents algorithm. Figure 4-2 shows the state of the invariants
before Daikon applies a sample to the current set of true invariants. After applying
the sample, some invariants get falsified by the sample (see figure 4-3). Now, Daikon
must find the implied consequents that are affected by these falsified invariants.
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Information available:
1. a list of predefined suppression templates (suppression templates[])
2. a list of all instantiated invariants (invs[])
3. a list of all instantiated invariants falsified by the sample (false[])
4. a list of predefined invariant templates (inv templates[])
5. a map from invariant type to relevant suppression sets (M(i,s))
6. the current sample

Algorithm:
1. create the invariants over the constant variables

2. organize invariants by invariant type

3. for suppression template s in suppression templates[]:

a. match invariants to antecedent term templates in s
b. perform the cross product of invariants

to find concrete suppressions

c. check the consequents of the suppressions for resuppression

Output: a list of the concrete invariants unsuppressed by the sample

Figure 4-1: Pseudocode for the antecedents algorithm.

4.2 Finding all of the true invariants

The antecedents algorithm works by finding all of the concrete suppressions where at
least one of the invariants is falsified. To find all of the suppressions, the algorithm
enumerates all possible concrete suppressions using the set of true invariants, and this
work requires that all true invariants be present in order to check the suppressions.
More specifically, all true invariants that are potential antecedent terms must be
present. The requirement creates a complication because Daikon does not create
redundant invariants because of the optimizations.

Two of the optimizations, variable hierarchy and equality sets, do not affect this
step. The variable hierarchy optimization relates invariants at different program
points, so it does not affect invariant processing at a particular program point. For
the equality set optimization, the equality set leaders represent the elements in their
sets at all times. Any antecedent applicable to the leader is also also applicable to
its non-leaders and any unsuppressed consequents over the leaders will apply to the
non-leaders. Thus, Daikon does not need to create the invariants over the non-leaders
for the antecedents algorithm.

The dynamic constants optimization does affect the antecedents algorithm be-
cause the invariants of constant variables can be potential antecedent terms. The
antecedents algorithm does not use the method described in section 2.3.6 to deter-
mine the truth of invariants over constants because in cases where Daikon needs to
check the constant variable value against the same invariant (e.g. x = 1) several
times, Daikon does redundant work. In these cases, it is more efficient for Daikon
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Suppression Sets:

Suppression A: (α > 0) =⇒ (α ≥ 0)

Suppression B: (α < β) ∧ (α ≥ 0) ∧ (γ = 0) =⇒ (α div β = γ)
Suppression C: (α = β) ∧ (β 6= 0) ∧ (γ = 1) =⇒ (α div β = γ)

Variables:

int x, int y, int z, int q, int r

Sample:

x = 2, y = 1, z = 5, q = 0, r = 0

Invariants:

y > z (true)
x < y (true)
r < y (true)
x = 0 (true)
y 6= 0 (true)
x > 0 (true)
y > 0 (true)
r = 0 (true)
q = 0 (true)
r = q (true)

Figure 4-2: Running example for the antecedents algorithm (before applying sample)

just to create all of the invariants over constant variables (pseudocode shown below).

1. create the invariants over the constant variables

a. for variable vi in variables of program point

i. create unary invariants over vi from inv templates[]

b. for variable vi in variables of program point

i. for variable vj in variables of program point

create binary invariants over vi, vj from invs templates[]

The antecedents algorithm first creates all unary and binary invariants from the
Daikon grammar set over the constant variables (ternary invariants are never an-
tecedent terms). Thus, invariants q = 0, r = 0, r = q in the running example, are not
present before suppression processing. Daikon creates these invariants over constants
specifically for suppression processing and discards them afterwards.

The suppressions optimization also affects the antecedents algorithm. A chain
suppression is a set of two or more suppressions where the antecedent term of one
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Suppression Sets:

Suppression A: (α > 0) =⇒ (α ≥ 0)

Suppression B: (α < β) ∧ (α ≥ 0) ∧ (γ = 0) =⇒ (α div β = γ)
Suppression C: (α = β) ∧ (β 6= 0) ∧ (γ = 1) =⇒ (α div β = γ)

Variables:

int x, int y, int z, int q, int r

Sample:

x = 2, y = 1, z = 5, q = 0, r = 0

Invariants:

y > z (falsified)
x < y (falsified)
r < y (falsified)
x = 0 (falsified)
y 6= 0 (true)
x > 0 (true)
y > 0 (true)
r = 0 (true)
q = 0 (true)
r = q (true)

Figure 4-3: Running example for the antecedents algorithm (after applying sample)

suppression is also the consequent of another suppression. The antecedents algo-
rithm requires that all true invariants that are potential antecedent terms be present,
including the implied invariants.

In the example, the antecedent term template (α ≥ 0) of Suppression B, appears
as the consequent template of Suppression A. A problem arises if Daikon incorrectly
creates a concrete invariant from the consequent template (α div β = γ) because the
concrete invariant over α ≥ 0 is not present to suppress the consequent when the
antecedents algorithm runs.

The problem of creating suppressed invariants when they are still implied does
not apply to creating invariants over constant variables because those invariants are
temporary and discarded at the end of suppression processing. The problem only
applies to the invariants that are no longer implied and get created by Daikon during
suppression processing. In the problem mentioned above, these newly created invari-
ants should not be created by Daikon because they are still implied by other true
invariants.
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There are several ways to solve the problem of chain suppressions. One possibility,
similar to the solution to the constants problem, is to create all of the suppressed
invariants. This solution is both memory and time intensive because Daikon must
create, store and process all of these suppressed invariants. A second solution is to
use the method described in section 2.3.6, verifying the truth of the antecedents of an
invariant that is a potential antecedent term. This solution is time intensive, because
Daikon must perform this verification for all absent invariants encountered in the
process of checking whether an invariant is implied by other true invariants.

In order to save memory and making processing simple, Daikon solves the problem
by automatically propagating chain suppressions in template form before any sup-
pression processing, hence making the implicit suppressions explicit. The pseudocode
for this process is shown below. Note that all propagations are done in template form.

Available information used:
1. a list of predefined suppression set templates (suppression templates[])
2. a map from invariant type to relevant suppression sets (M(i,s))

for each suppression set s in suppression templates[]:

1. find s.consequent
2. suppression sets v[] = M(i,s).get(s.consequent.inv type)

3. if v[] == null, end (//the invariant is not an antecedent term)

4. if v[] != null:

for each suppression set t in v[]:
a. find the suppression x in t with s.consequent

as an antecedent term

b. for each suppression y in s:
i. make a new suppression in t, substituting y.antecedent

for s.consequent in x

Since Daikon expands the suppressions in template form, memory usage is still
constant. The propagation has the added benefit that any algorithm using the tem-
plates already has the solution. If the solution were built into the algorithm itself,
then each algorithm would need to create its own solution. In the example above,
Daikon would add suppression D to the set:

Suppression A: (α > 0) =⇒ (α ≥ 0)

Suppression B: (α < β) ∧ (α ≥ 0) ∧ (γ = 0) =⇒ (α div β = γ)
Suppression C: (α = β) ∧ (β 6= 0) ∧ (γ = 1) =⇒ (α div β = γ)
Suppression D: (α < β) ∧ (α > 0) ∧ (γ = 0) =⇒ (α div β = γ)

By rolling out the chain suppressions, Daikon does not need to trace back and
look for the antecedents of antecedent terms because all possible antecedents of the
consequent will exist in template form.
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4.3 Matching invariants to antecedent terms

Daikon first builds a mapping from each invariant type to all of the invariants of that
type. Daikon can prune the map by removing invariant types that do not appear in
antecedent terms. When Daikon needs the invariants of an antecedent term template,
it looks up the list in the map. The pseudocode for building this mapping is shown
below.

2. organize invariants by invariant type

a. make map m of inv type → invariant[]

b. for inv in invs[]

ii. m.put(inv.inv type, map.get(inv.inv type).add(inv))

For each antecedent term template in each suppression template, Daikon finds all
of the invariants of the same type as the antecedent term template. After examining
all of the invariants, Daikon checks to see that each antecedent term template has a
non-empty list of invariants. In order for a consequent to be suppressed, there must
be an invariant matching each of the antecedent term templates in the suppression
template. Otherwise, the implication cannot hold. Thus, if an antecedent term tem-
plate has no matching invariants, then no concrete consequent can be unsuppressed.
In addition, there must be at least one falsified invariant in all of the lists of invari-
ants of the antecedent term templates. If all of the invariants are true, no concrete
consequent can be unsuppressed. The pseudocode for the matching of invariants to
antecedent term templates is shown below.

3a. match invariants to antecedent term templates

for each antecedent term template t in suppression template s
i. find t.inv type

ii. (inv type → invariant[]).get(t.inv type)

Starting with the available invariants:

y > z, x < y, r < y, y 6= 0, x > 0, y > 0, r = 0, q = 0, r = q,

Daikon classifies each invariant according to invariant type and then for each
suppression template, looks up the invariants of each antecedent term template by
invariant type. Figure 4-4 shows the results of organizing the invariants by invariant
type. Below are the results of matching for suppression templates A through D. Sup-
pression A has no falsified invariants in the invariants of its antecedent term template,
so it can not unsuppress any consequents. Suppressions B and C has antecedent term
templates with no matching invariants, so no consequent can be unsuppressed using
these suppressions. Thus Daikon only processes suppression D.
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Invariant type α > 0 α < β α ≥ 0 α = 0 α = β β 6= 0 γ = 1

Invariants x > 0 x < y x = 0 r = q y 6= 0
y > 0 r < y q = 0

r = 0

Figure 4-4: Organization of available invariants by invariant type

Antecedent terms (α > 0)

Invariants x > 0 (true)
y > 0 (true)

Results of matching antecedent term templates to invariants in Suppression A.

Antecedent terms (α < β) (α ≥ 0) (γ = 0)

Invariants x < y (false) x = 0 (false)
r < y (true) q = 0 (true)

r = 0 (true)

Results of matching antecedent term templates to invariants in Suppression B.

Antecedent terms (α = β) (β 6= 0) (γ = 1)

Invariants q = r(true) y 6= 0 (true)

Results of matching antecedent term templates to invariants in Suppression C.

Antecedent terms (α < β) (α > 0) (γ = 0)

Invariants x < y (false) y > 0 (true) x = 0 (false)
r < y (true) x > 0 (true) q = 0 (true)

r = 0 (true)

Results of matching antecedent term templates to invariants in Suppression D.

4.4 Taking the cross product of antecedent term

invariants to find potential consequents

Using the results of matching, Daikon takes the cross product between the invariants
from each antecedent term template and checks for potential unsuppressed conse-
quents (see pseudocode below). If there is a suppression with n antecedent terms,
and each term has m matching invariants, there would be mn n-dimensional products.
Daikon potentially must examine all mn combinations but does save work through
early pruning. Going through the list of antecedent terms templates, Daikon takes
an invariant from the list of matching invariants for a particular antecedent term
template and determines if the currently selected invariant can be used as part of the
suppression based on the previously invariants selected.
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3b. perform the cross product of invariants to find concrete

suppressions

i. enumerate the cross product of invariants from each

antecedent term template

ii. for each combination of invariants in the cross product

- check that the combination is valid

(no variable binding conflicts)

Not all combinations of invariants will be valid because the variables in the sup-
pression templates form constraints on the program variables that can be bound to
them. For example, the appearance of α in two antecedent term templates of a
suppression template constrains the same program variable to be bound to the free
variable α. When Daikon selects an invariant from the invariant list of an antecedent
term template, it binds the concrete invariant variables are bound to the free variables
of that antecedent term template.

Invalid combinations occur when two different program variables must be bound
to the same free variable. In addition, when the same program variable must be
bound to two different free variables, Daikon ignores these combinations and treat
them as conflicts because these invariants are not interesting and often degenerate
into a simpler invariant. For example, the invariant α ∧ β = γ (logic and) reduces to
the invariant α = γ when α and β are bound to the same variable. Variable conflicts
allow for early pruning and saves time because Daikon does not need to check not all
variable combinations.

In the following sequence, we continue to simulate Daikon on the running ex-
ample by performing the cross product on Suppression D. The currently selected
invariants are shown in bold. In step 1, as shown below, Daikon looks at the first
antecedent term template in the suppression template and selects the first invariant
in the matching list, x < y. In order for the term template and invariant to match, α
must be bound to x and β must be bound to y. No conflict arises, so Daikon continues.

Step 1:
Antecedent
terms (α < β) (α > 0) (γ = 0) Bindings
templates

Invariants x < y (false) y > 0 (true) x = 0 (false) (α, x); (β, y)
r < y (false) x > 0 (false) q = 0 (true)

r = 0 (true)

In step 2, Daikon chooses the first matching invariant, y > 0, for the second
antecedent term template. In order for the variables to match between the term tem-
plate and the invariant, α must be bound to y, which causes a conflict because α is
already bound to x from the previously selected invariant. Thus, this combination
of invariants cannot form a consistent suppression. Here we see an example of early
pruning: Daikon does not check any more invariants in the rest of the antecedent
term templates with the invariants x < y and y > 0 in combination.
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Step 2:
Antecedent
terms (α < β) (α > 0) (γ = 0) Bindings
templates

Invariants x < y (false) y > 0 (true) x = 0 (false) (α, x); (β, y);
r < y (true) x > 0 (false) q = 0 (true) (α, y) – Conflict

r = 0 (true)

Since there are more invariants matching the second antecedent term template, in
step 3, shown below, Daikon tries a different invariant from the same list, x > 0. The
invariant forces α to be bound to x, which does not conflict with previous bindings,
so Daikon advances to the next antecedent term template.

Step 3:
Antecedent
terms (α < β) (α > 0) (γ = 0) Bindings
templates

Invariants x < y (false) y > 0 (true) x = 0 (false) (α, x); (β, y)
r < y (true) x > 0 (false) q = 0 (true) (α, x)

r = 0 (true)

In step 4, Daikon selects x = 0, which forces γ to be bound to x. However, that
conflict arises because x cannot be bound to both α and γ (the invariant is not in-
teresting), so Daikon concludes that this set of invariants does not form a complete
suppression.

Step 4:
Antecedent
terms (α < β) (α > 0) (γ = 0) Bindings
templates

Invariants x < y (false) y > 0 (true) x = 0 (false) (α, x); (β, y);
r < y (true) x > 0 (false) q = 0 (true) (α, x); (γ, r)

r = 0 (true) – Conflict

Since Daikon saw a conflict in the previous step, in step 5, Daikon moves on to the
next invariant in the antecedent term template’s list of matching invariants, selecting
q = 0. The selection binds γ to q, and no conflict arises.

Step 5:
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Antecedent
terms (α < β) (α > 0) (γ = 0) Bindings
templates

Invariants x < y (false) y > 0 (true) x = 0 (false) (α, x); (β, y);
r < y (true) x > 0 (false) q = 0 (true) (α, x); (γ, q)

r = 0 (true) – Complete

Since Daikon reaches the end of the list of antecedent term templates and finds no
conflicts with the currently selected group of invariants, the suppression is complete.
In this example, Daikon finds:

x < y ∧ x > 0 ∧ q = 0 =⇒ x div y = q

If we continue with the example and complete the rest of the cross product, the
following steps will occur. We need to continue even after finding the first match
because other combinations of invariants may create complete suppressions.

Step 6:
Antecedent
terms (α < β) (α > 0) (γ = 0) Bindings
templates

Invariants x < y (false) y > 0 (true) x = 0 (true) (α, r); (β, y);
r < y (true) x > 0 (false) q = 0 (true)

r = 0 (true)

Step 7:
Antecedent
terms (α < β) (α > 0) (γ = 0) Bindings
templates

Invariants x < y (false) y > 0 (true) x = 0 (true) (α, r); (β, y);
r < y (true) x > 0 (false) q = 0 (true) (α, y) - Conflict

r = 0 (true)

Step 8:
Antecedent
terms (α < β) (α > 0) (γ = 0) Bindings
templates

Invariants x < y (false) y > 0 (true) x = 0 (true) (α, r); (β, y);
r < y (true) x > 0 (false) q = 0 (true) (α, x) - Conflict

Since there are no more invariants to try in the α > 0 column, Daikon stops.

38



4.5 Creating the consequent

After finding a complete concrete suppression, Daikon checks the state of each invari-
ant. If all are true, then the antecedent is still true and suppresses the consequent. If
any are false, then this suppression is no longer valid and Daikon may need to create
the corresponding consequent (in our example, x div y = q). The inclusion of one or
more falsified invariants means that this suppression was true previous to this sample
but is false now. The pseudocode for this step is shown below.

3c. check the consequents of the suppressions for resuppression

i. check that at least one invariant in the suppression

is in false[]

ii. check that the concrete consequent invariant is valid

over the variables in the bindings

iii. check that no other suppression in the

suppression set of the concrete consequent is valid

iv. check that the sample satisfies the consequent invariant

v. if all checks pass, create the consequent invariant

Daikon verifies three other things before actually creating the consequent. First,
Daikon checks that the consequent invariant is valid over the variables in the bind-
ings. Second, Daikon checks to see if the consequent is still suppressed by another
suppression in the suppression set. Daikon checks this fact by seeing if a set of true in-
variants form a valid suppression for the consequent. If such a set exist, then Daikon
knows that the consequent can still be deduced from true invariants and does not
need to create it. Third, Daikon checks whether the current sample will falsify the
invariant. There is no value in creating an invariant that gets falsified immediately.
If the consequent passes all three tests, then Daikon creates the newly unsuppressed
invariant.

4.5.1 Checking for valid variable types

Daikon verifies that the invariant is applicable over the variables in the bindings
by checking the valid variable types of the invariant template against the types of
the variables. In the example, the consequent passes the test because the invariant
template α div β = γ is valid over integers, and the variables x, y, and q are also
integers.

4.5.2 Checking the consequent for resuppression

In the continuing example, since Daikon is processing Suppression D and has found a
complete suppression, it must check that other concrete suppressions in the suppres-
sion set are not valid, namely those defined by suppression templates B and C:

B: (α < β) ∧ (α ≥ 0) ∧ (γ = 0) =⇒ (α div β = γ)
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C: (α = β) ∧ (β 6= 0) ∧ (γ = 1) =⇒ (α div β = γ)

more specifically, given the variable bindings of the complete suppression: (α, x), (β,
y), and (γ, q)

B: (x < y) ∧ (x ≥ 0) ∧ (q = 0) =⇒ (x div y = q)
or

C: (x = y) ∧ (y 6= 0) ∧ (q = 1) =⇒ (x div y = q)

must be true to suppress the consequent x div y = q.
In the concrete suppression formed from suppression template B, the invariants

x ≥ 0 and q = 0 are true but x < y is false, so suppression B is not able to suppress
the consequent.

In the concrete suppression formed from suppression template C, the invariant
y 6= 0 is true, but not q = 1 and x = y. Suppression C is cannot suppress the
consequent. The consequent passes the test.

4.5.3 Applying sample to consequent

Applying the sample (x = 2, y = 1, z = 5, q = 0, r = 0), to the consequent
x div y = q falsifies the consequent. Daikon does not create the invariant.

4.6 Early pruning

While I have described the basic implementation of the antecedents algorithm, there is
a nuance that should be addressed. When taking the cross product of the invariants,
as described in section 4.4, Daikon can terminate early on a certain branch if it finds
conflicts in variable bindings.

Daikon developers facilitate early pruning by ordering the antecedent term tem-
plates in the suppression templates. Since Daikon checks the antecedent term tem-
plates in the order that they appear in the suppression template, Daikon developers
arrange the antecedent term templates such that Daikon checks the terms involving
more variables first and binds those variables. More specifically, Daikon will select
binary invariants and binds their variables before those of unary ones. The more vari-
ables involved in the invariant, the higher the likelihood of a conflict with previous
assignments.
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Chapter 5

Sequential Algorithm

Another algorithm for supporting suppressions is the sequential algorithm. Recall
that the goal is to find the invariants that were suppressed previous to the sample
and not suppressed after applying the sample. The sequential algorithm’s approach
is to process the falsified invariants one by one and look for suppressions where the
falsified invariant is one of the antecedent terms and all of the other antecedent
terms are true. This ensures that the suppression was valid previously and is invalid
now. The consequent should be instantiated if it is not suppressed by a different
suppression.

The following sections detail the implementation of the sequential algorithm. In
the first step, since only falsified invariants can unsuppress consequents, the algorithm
looks for the suppression sets that contain an antecedent term of the same invariant
type as the falsified invariant. Next, using the templates for the consequent in these
suppression sets, the algorithm creates the candidate concrete consequents by using
the variables from the falsified invariant (5.2), similar to using variable bindings to
create the consequents in the antecedents algorithm. Lastly, the algorithm creates
the consequent if no other suppression for the consequent still holds and the falsified
invariant is the only antecedent term in the antecedent that is false (5.3). Figure 5-1
provides the pseudocode for the algorithm.

5.1 Running example

Using the suppression sets templates and concrete invariants shown in 5-2, I will
demonstrate the sequential algorithm. Figure 5-2 shows the state of the invariants
before Daikon applies a sample to the current set of true invariants. After applying
the sample, some invariants get falsified by the sample (see figure 5-3). Now, Daikon
must find the implied consequents that are affected by these falsified invariants.
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Information available:
1. a list of predefined suppression templates (suppression templates[])
2. a list of all instantiated invariants (invs[])
3. a list of all instantiated invariants falsified by the sample (false[])
4. a list of predefined invariant templates (inv templates[])
5. a map from invariant type to relevant suppression sets (M(i,s))
6. the current sample

Algorithm:
for each invariant inv in false[]:

1. look for the relevant suppression sets

s[] = (M(i,s)).get(inv.inv type)

2. for each relevant suppression set x in s[]:
a. use concrete variables from inv to compose concrete x.consequent
b. check the concrete x.consequent for resuppression

End: a list of the concrete invariants unsuppressed by the sample

Figure 5-1: Pseudocode for the sequential algorithm.

5.2 Finding relevant suppressions and variable sets

to identify potential consequents

The sequential algorithm processes each falsified invariant one at a time. Since only
falsified invariants may unsuppress invariants, the algorithm first looks for the sup-
pression set templates that are relevant to these invariant types. Recall that Daikon
has a map from the invariant type to the suppression sets that have an antecedent
term of that type. Using this map (shown in figure 3-2, Daikon can immediately
narrow down the possible consequents that may be unsuppressed by the falsified in-
variant. In the running example, we will focus on the invariant x < y. Looking in the
map, Daikon finds the suppression set templates that contain the antecedent term
template (α < β):

Suppression A: (α < β) =⇒ (α ≤ β)

Suppression B: (α < β) ∧ (α ≥ 0) ∧ (γ = 0) =⇒ (α div β = γ)
Suppression C: (α = β) ∧ (β 6= 0) ∧ (γ = 1) =⇒ (α div β = γ)

Using the suppression sets, the algorithm then finds the concrete consequents that
can be unsuppressed by the falsified invariant. Since only a template exists in the
suppression set, Daikon uses the program variables from the falsified invariant to
construct the concrete consequent.

For the first suppression set,
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Suppression Sets:

Suppression A: (α < β) =⇒ (α ≤ β)

Suppression B: (α < β) ∧ (α ≥ 0) ∧ (γ = 0) =⇒ (α div β = γ)
Suppression C: (α = β) ∧ (β 6= 0) ∧ (γ = 1) =⇒ (α div β = γ)

Suppression D: (α > β) =⇒ (α ≥ β)

Variables:

int x, int y, int z, int q

Sample:

x = 0, y = −5, z = 5, q = 0

Invariants:

y > z (true)
x < y (true)
z < y (true)
y ≤ 0 (true)
x ≤ 0 (true)
y 6= 0 (true)
x = 0 (true)
q = 0 (true)
x = q (true)

Figure 5-2: Running example for the sequential algorithm (before applying sample)

Suppression A: (α < β) =⇒ (α ≤ β)

Daikon finds that in order for the invariant x < y to fit the antecedent term tem-
plate α < β, the template variables α and β must be bound to x and y respectively.
Applying these bindings to the consequent template, the concrete consequent that
may be unsuppressed is x ≤ y. At this point, Daikon will move on to the next step
in the algorithm for first suppression set, but let us follow this stage for the second
suppression set:

Suppression B: (α < β) ∧ (α ≥ 0) ∧ (γ = 0) =⇒ (α div β = γ)
Suppression C: (α = β) ∧ (β 6= 0) ∧ (γ = 1) =⇒ (α div β = γ)

Daikon again finds that in order for the invariant x < y to fit into the suppression
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Suppression Sets:

Suppression A: (α < β) =⇒ (α ≤ β)

Suppression B: (α < β) ∧ (α ≥ 0) ∧ (γ = 0) =⇒ (α div β = γ)
Suppression C: (α = β) ∧ (β 6= 0) ∧ (γ = 1) =⇒ (α div β = γ)

Suppression D: (α > β) =⇒ (α ≥ β)

Variables:

int x, int y, int z, int q

Sample:

x = 0, y = −5, z = 5, q = 0

Invariants:

y > z (falsified)
x < y (falsified)
z < y (falsified)
y ≤ 0 (falsified)
x ≤ 0 (true)
y 6= 0 (true)
x = 0 (true)
q = 0 (true)
x = q (true)

Figure 5-3: Running example for the sequential algorithm (after applying sample)

template, the template variables α and β must be bound to x and y respectively.
Applying these bindings to the consequent template, the concrete consequent that
may be unsuppressed is

x div y = γ

In this case, there is a free variable in the consequent template. Daikon binds all
possible program variables to the free variable and notes each set of resulting variable
bindings as a possible consequent. Since the variables x, y, z and q are available,
Daikon notes the consequent invariants x div y = x, x div y = y, x div y = z and
x div y = q as possible consequents. Daikon eliminates the consequents x div y = x
and x div y = y immediately because invariants with repeated variables are not
interesting (see section 5.4.2).
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5.3 Creating the consequent

Before creating the consequents, the checks made by the sequential algorithm are
almost exactly the same as the steps taken in the antecedents algorithm in section
4.5. However, checking for valid variable types in the consequent, suppression of the
consequent by another suppression, falsification of consequent by the current sample
(described in section 4.5), is not sufficient for deciding whether the consequent should
be created by the sequential algorithm.

Because the sequential algorithm processes the falsified invariants one by one, a
problem occurs when the same sample falsifies two invariants from the same sup-
pression. Take for example, the concrete suppression (suppose that it is the only
suppression in the suppression set):

(a < b) ∧ (a ≥ 0) =⇒ (a div b = 0)

If the sample only falsifies one invariant, e.g. a < b, the process is simple. The
algorithm checks to see if the other invariant (a ≥ 0) is true or false. If the invariant
is true, then the algorithm knows that a < b is the only falsified antecedent term, so it
should create the consequent. If the invariant a ≥ 0 is false, then the algorithm does
not create the consequent because the algorithm already considered the consequent
when a sample falsified the antecedent term (a ≥ 0).

However, consider the case when the sample falsifies both invariants in the an-
tecedent, a < b and a ≥ 0. When the algorithm processes, a < b, it considers whether
to create the consequent a div b = 0. Daikon sees that the invariant in the suppres-
sion, a ≥ 0, is false and does not create the consequent. Similarly, when Daikon
processes the invariant a ≥ 0, it does not create the consequent because Daikon mis-
takenly thinks that it already considered the consequent when a < b was falsified
by a sample. As a result, Daikon never creates the consequent. This problem is a
correctness issue.

Daikon solves the problem by treating the unprocessed falsified invariants as true.
The change solves the problem because Daikon now sees the first falsified invariant in
the antecedent to be processed as the only falsified antecedent term in the antecedent
and creates the consequent. When Daikon processes the second falsified invariant in
the antecedent, it correctly rejects the consequent because the first antecedent term
is false (Daikon discards the falsified invariants after they have been processed).

With the change, even if the same sample falsifies the invariants a < b and a ≥ 0,
Daikon correctly considers the consequent. Daikon first processes the invariant a < b,
creates the consequent a div b = 0, and then removes the falsified invariant a < b.
When Daikon now processes the invariant a ≥ 0, it recognizes that a ≥ 0 is not the
only falsified antecedent term in the antecedent because the invariant a < b is also
false.

In the running example, Daikon needs to create the concrete consequents x ≤ y,
x div y = z and x div y = q. In the following sections, I will not explain the checks
that are common to both the antecedents and sequential algorithm, but will instead
refer to the applicable sections in the antecedents algorithm chapter. I will just show

45



the application of the checks to the three candidate consequents.

5.3.1 Checking for valid variable types

See section 4.5.1.

Consequent: x ≤ y
The variables x and y are integers, which is valid for comparison using ≤, so the

consequent passes the test.

Consequent: x div y = z
The variables x, y, and z are integers, which is valid for the integer division in-

variant, so the consequent passes the test.

Consequent: x div y = q
The variables x, y, and q are integers, which is valid for the integer division in-

variant, so the consequent passes the test.

5.3.2 Checking the consequent for resuppression

See section 4.5.2.

Consequent: x ≤ y
There is only one suppression in the suppression set, so the consequent passes the

test.

Consequent: x div y = z
Since there is another suppression in the suppression set, Daikon must check that

whether the other suppression is valid:

(α = β) ∧ (β 6= 0) ∧ (γ = 1) =⇒ (α div β = γ),

more concretely

(x = y) ∧ (y 6= 0) ∧ (z = 1) =⇒ (x div y = z)

Since the invariant x = y is not true, the suppression is not valid. Thus, the
consequent passes the test.

Consequent: (x div y = q)
Since there is another suppression in the suppression set, Daikon must check that

whether the other suppression is valid:
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(α = β) ∧ (β 6= 0) ∧ (γ = 1) =⇒ (α div β = γ),

more concretely

(x = y) ∧ (y 6= 0) ∧ (q = 1) =⇒ (x div y = q)

Since the invariant x = y is not true, the suppression is not valid. Thus, the
consequent passes the test.

5.3.3 Checking the suppression for the only falsified antecedent
term

For the running example, let us suppose that Daikon processes the invariant x < y
first. The other falsified invariants in the example do not actually participate in the
suppressions relevant to x < y.

Consequent: x ≤ y
Since there is only one antecedent term in the antecedent of the suppression, the

falsified invariant trivially is the only falsified antecedent encountered by the algo-
rithm. Thus, the consequent passes the test.

Consequent: x div y = z
Daikon must check that the other suppression has the falsified invariant as the

only false invariant. Thus, in the suppression (α < β) ∧ (α ≥ 0) ∧ (γ = 0) =⇒
(α div β = γ), Daikon checks whether x ≥ 0 and z = 0 are true. Since z = 0 is false,
Daikon already considered the consequent when processing z = 0. The consequent
fails the test and Daikon discards it.

Consequent: x div y = q
Now, Daikon must check that the other suppression has the falsified invariant as

the only false invariant. Thus, in the suppression (α < β) ∧ (α ≥ 0) ∧ (γ = 0) =⇒
(α div β = γ), Daikon needs to check that (x ≥ 0) and (q = 0) are true and they are,
so the consequent (x div y = q) fails the test because a valid suppression still exists
for the consequent. Daikon discards the consequent.

5.3.4 Applying sample to consequent

Daikon applies the sample (x = 0, y = −5, z = 5, q = 0) tot he remaining candidate
consequent.

Consequent: (x ≤ y)
The sample falsifies the consequent so Daikon does not create the consequent.
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5.4 Interaction with Daikon optimization and early

pruning of variable combinations

I have described the basic implementation of the sequential algorithm, but there are
a couple of nuances that I should address.

5.4.1 Interaction with the dynamic constants optimization

Similar to the antecedents algorithm, the dynamic constants optimization (see sec-
tion 2.3.1) also affects the sequential algorithm. The sequential algorithm needs the
invariants over the constant variables because it must check whether true invariants
are still suppressing the consequent before creating the consequent. To determine
whether an invariant over constant variables is true, in section 5.3, Daikon explicitly
checks the constant values of the variables against the invariant to determine whether
the invariant holds (see section 2.3.6).

5.4.2 Early pruning of variable combinations

As mentioned in section 5.2, when finding the concrete consequent that may be sup-
pressed by the falsified invariant, Daikon must try all possible program variables as
a binding for any free variables in the consequent template. In the running example,
since the variables x, y, z and q are available, Daikon checks the consequent invariants
(x div y = x), (x div y = y), (x div y = z) and (x div y = q).

Before going through the more expensive checks in section 5.3, Daikon also checks
whether the set of variables makes a valid and interesting combination. In examining
the validity of a set, Daikon checks whether the combination of variables can be part
of an invariant.

For example, in Daikon’s grammar, there is no invariant between a variable of
type hashcode and a variable of type String. In addition, variable combinations
with repeated variables, such as binding the concrete variables x, y, and x to the free
variables α, β, and γ respectively in an invariant, are not interesting because they
often degenerate to a simpler form. For example, the invariant α ∧ β = γ (logic and)
reduces to the invariant α = γ when α and β are bound to the same variable.

5.5 Comparison to the antecedents algorithm

The antecedents and sequential algorithm are similar in that once they find the con-
crete consequents that may be unsuppressed, the process of checking whether Daikon
needs to create the consequents is the same. Daikon identifies a concrete consequent
as a set of variable bindings and a suppression template. The two algorithms differ
in the method used to find these variables bindings. The antecedents method cre-
ates these bindings exclusively from invariants while the sequential method uses the
the variables from the falsified invariants and supplements with available program
variables when necessary.
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In addition, the algorithms each have one serious disadvantage that makes the al-
gorithm not ideal. The sequential algorithm has the disadvantage of doing redundant
work when invariants involved in the same concrete suppression are falsified by the
same sample. In the running example involving the suppression

(α < β) ∧ (α ≥ 0) ∧ (γ = 0) =⇒ (α div β = γ),

because a sample falsifies the invariant x < y, Daikon checks the concrete conse-
quent x div y = z. If the same sample falsifies the invariant x ≥ 0, then the sequential
algorithm will check the concrete consequent x div y = z again (Daikon binds x to α
and substitutes all possible program variables for y and z).

In addition, the sequential algorithm will check invariants over constant variables,
like z = 0, twice. The antecedents algorithms avoids checking the consequent multiple
times by taking the invariants in combination and avoids checking the same invariants
over constants by creating all of the invariants over constants once.

However, the creation of the invariants over constant variables turns into a disad-
vantage for the antecedents algorithm when a sample only falsifies a small number of
invariants. The antecedents algorithm requires that all true invariants be present at
the beginning of the algorithm and creating these invariants is time consuming due to
the number of invariant templates and constant variables. The sequential algorithm
avoids this work because the algorithm does not use these invariants to create the
variable bindings in the concrete consequent. When the sequential algorithm does
need to check whether an invariant over constant variables exists, the algorithm al-
ready has the specific variables and can look up a specific invariant easily. Thus, the
sequential algorithm avoids the work of creating all invariants over constant variables
by only looking up invariants over constants when necessary.

The advantages and disadvantages of each algorithm suggest that the sequential
algorithm performs better there is a small number of falsified invariants and the an-
tecedents algorithm is more advantageous when the sample falsifies a large number of
invariants. In the case of few falsified invariants, the sequential algorithm avoids the
antecedents algorithm’s work of creating all of the invariants over constant variables.
When there are many falsified invariants, the sequential algorithm avoids the sequen-
tial algorithm’s redundant work by processing the falsified invariants in combination
and creating the invariants over constants only once.
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Chapter 6

Performance Improvements

6.1 Overview

My research had two focuses: understanding the algorithms currently available for
processing suppressions and exploring ways to enhance the algorithms to improve the
overall performance of Daikon. I ran experiments to determine where the majority
of the time is spent when processing suppressions. In the following sections, I will
explain some of the observations that I made while running the experiments, and how
these observations led to the enhancements that I designed to improve the overall
performance of Daikon.

I considered three ways of improving performance:

1. Improve the current algorithm for processing suppressions (antecedents algo-
rithm)

2. Use the existing algorithms in the best context possible (hybrid algorithm)

3. Explore a new approach for processing suppressions (batching algorithm)

In section 5.5, I discussed some of the observations that motivated much of the
design changes made to the current algorithms. The key observations are that the
antecedents algorithm has a large fixed cost because Daikon must create the invariants
over constant variables and that the sequential algorithm does redundant work when
there are many falsified invariants.

Based on these observations, I explored improving performance via three methods:

1. I reduced the absolute amount of overhead in the antecedents algorithm.

2. I utilized the hybrid approach, which avoided using the antecedents algorithm
with its large overhead under certain conditions and substituting with the se-
quential algorithm which performed well only under those conditions.

3. I queued up the results from multiple samples and processed them in single
batch. Batch processing can reduce the overhead per sample and takes ad-
vantage of the antecedent algorithm’s efficiency in processing many falsified
invariants.
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Constant creation Total suppression processing Constant creation %

bzip2 2.467 s 4.163 s 59.26%
svm-light 5.672 s 7.386 s 76.79%
flex 88.323 s 447.485 s 19.74%

Figure 6-1: Constant invariants creation time compared to total suppression process-
ing time on the three sample programs. Time is measured in seconds. The third
column shows the constant creation time as a percentage of total suppression pro-
cessing time. Daikon spends the rest of suppression time primarily on performing the
cross product of invariants.

6.2 Improving the antecedents algorithm

The first part of my design focuses on improving the antecedents algorithm. Daikon’s
implementation of the algorithm spend a large amount of time creating invariants
over constant variables during suppression processing. Figure 6-1 shows the amount
of time that constant creation takes as a percentage of total suppression processing
time. The percentage varies from 16% to 66%.

Daikon creates these invariants, uses them in suppression processing, and then
discards them. There are a large number of invariants due to the grammar of in-
variants and the number of constants. Daikon instantiates constant invariants over
168 unary and binary invariant templates and in the program points studied, the
number of constant leaders (see equality set optimization in 2.3.2) range from 50 to
100. The no-filter column in Table 6-2 shows the large number of constant invari-
ants that Daikon creates. Thus, reducing the number of constant invariants created
has the potential to significantly reduce the overhead of the algorithm. In addition,
a reduction in the number of constant invariants also reduces the number of cross
products that need to be done by the antecedents algorithm.

I considered all of the invariants that Daikon creates over constants and whether
or not all of these invariants were necessary. I considered the types of the invariants,
the types of the variables, and the number of variables and which ones are relevant to
the suppression optimization. The implementation already optimizes for the number
of variables since Daikon only creates unary and binary invariants over constants
because ternary invariants never appear in the antecedent of any suppression. In the
following sections I will explain how I discovered the relevancy of these factors and
my response in making the improvements.

6.2.1 Reducing the number of invariants using invariant type
information

I examined the relevant invariant types to the suppression optimization. In con-
stant invariant creation, the only relevant invariant types are those that appear as
antecedent term templates in a suppression template. Daikon, however, creates all
unary and binary invariants regardless of their invariant type. This is inefficient
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# of distinct constants # of invariants (no filter) # of invariants (filter)

bzip2 54 2933 1084
svm-light 47 2447 865
flex 109 14438 9255

Figure 6-2: The number of invariants created over constant variables by Daikon
before and after applying the invariant type filter. The number of distinct constants
is the number of leaders in the equality sets over constant variables. The number of
constants selected is the lowest number of distinct constant variables observed at the
program point.

Constant creation (no filter) Constant creation (filter) Improvement %

bzip2 2.467 s 0.968 s 61.76%
svm-light 5.672 s 2.033 s 64.15%
flex 88.323 s 44.313 s 49.82%

Figure 6-3: Comparison of constant invariants creation time before and after applying
the invariant type filter in the three programs. Time is measured in seconds.

because Daikon creates these invariants for invariant types that do not appear in
any antecedent, never uses them, and then discards them at the end of suppression
processing.

For example, the invariant type of the invariant template A ∗ α + B ∗ β = C
(for constants A, B, and C) never appears as an antecedent term template. Thus,
Daikon can safely ignore invariants of this type. Daikon can generate the list of
invariant templates relevant to suppression dynamically because it has a map from
each invariant type to the suppression set templates that contain an antecedent term
template with that invariant type. I enhanced Daikon to generate a list of suppression
related invariant templates from the map and use this list when creating the invariants
over constant variables.

Before my enhancement, Daikon creates invariants from a list of 168 invariant
templates. After applying the invariant type filter, Daikon reduced the list to 66 tem-
plates, a 60% improvement in the number of templates. Table 6-2 shows the number
of invariants created by Daikon before and after Daikon applies the filter at one pro-
gram point in the test programs (see section 7.2 for a detailed description of the test
programs). I studied program points where Daikon spends a large amount of time on
processing suppressions. Table 6-3 shows the improvements in the constant invariant
creation time after applying the invariant type filter to the invariant templates. Both
the bzip2 and svm-light programs show slightly more than a 60% improvement in the
number of invariants created by Daikon and the time spent by Daikon in creating
these constant invariants . Flex does not show as a large improvement, which may
be because of the large number of constants at the program point.
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Number of suppressions (recursion applied)

α one of {} 0
(α 6= 0) 578
α = β 1034
Combined hashcode 1296
Total 1931

Figure 6-4: Tally of the number of suppression templates that involve the 3 hash-
code invariants. The “combined” number of suppressions is the number of distinct
suppressions that contain the 3 invariant types (i.e. suppressions that contain two
or more of the hashcode types only count once). The total is the number of the
suppression templates (recursion applied) that Daikon has.

6.2.2 Reducing the number of invariants using variable type
information

I then examined each of the possible variable types to find the ones relevant to sup-
pressions. I discovered that the hashcode type (see section 2.1 is a valid type for
invariants templates in the antecedents of suppression templates, but is never a valid
type for invariants in the consequent. This is an artifact of the fact that Daikon
represents both integers and hashcodes as integers. Daikon uses the same invariant
type (for example, α 6= 0) for both types. Since each concrete variable that appears
in an antecedent also appears somewhere in the consequent, and no consequent con-
tains a hashcode variable, then invariants over hashcodes cannot be antecedents. For
example, consider the suppression:

(α = 0) ∧ (β 6= 0) =⇒ (α % β == 0)

The antecedent term template (β 6= 0) is valid over hashcodes, but the invariant
template of the consequent is not. Since the invariant template of the consequent is
not valid over hashcodes, it will never be created by Daikon and the suppression is
not relevant to hashcodes.

Even though only 3 invariant types in Daikon’s grammar are valid over hashcodes
(α one of {}, α 6= 0, and α = β), these types appear in some of the most popular
antecedent terms. Table 6-4 shows the breakdown of the suppressions that include
each of the three hashcode invariant types. The hashcode invariants are very common
antecedent term templates and account for more than half the total number of sup-
pression templates. In addition, there are usually a fair number of pointer variables
in programs so these invariants are very common.

I updated Daikon to ignore variables of hashcode type when creating invariants
over constants. In some programs, hashcode variables produced many invariants (see
figure 6-5). Figure 6-6 shows the improvement to the constant invariant creation
after applying the hashcode filter. The improvement in time does correlate with the
number of invariants ignored, with flex and svm-light showing more improvement in
the constant invariant creation times as they have many more hashcode variables.
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# of hashcode variables # of invariants (no filter) # of invariants (filter)

bzip2 6 25 0
svm-light 15 120 0
flex 54 1024 0

Figure 6-5: The number of invariants created over constant variables by Daikon before
and after applying the hashcode type filter. The number of hashcode variables is the
number of constant variables that has the type hashcode. I observed and averaged
the number of hashcode variables at three program points in each program.

Constant creation (no filter) Constant creation (filter) Improvement %

bzip2 2.467 s 2.277 s 7.70%
svm-light 5.672 s 1.542 s 72.81%
flex 88.323 s 56.305 s 63.75%

Figure 6-6: Comparison of constant invariants creation time before and after applying
the hashcode type filter in the three programs. Time is measured in seconds.

6.3 Hybrid approach

The antecedents and sequential algorithms perform best under different conditions.
The hybrid algorithm takes advantage of this by deciding dynamically which algo-
rithm to use depending on the context. In comparing the two algorithms (section 5.5),
I mentioned that the antecedents algorithm has a large fixed cost because Daikon must
create the invariants over constant variables when processing each sample and that the
sequential algorithm does redundant work when there are many falsified invariants.

Experiments that compare the processing time of the two algorithms with different
number of falsified invariants appear to support this observation. Figure 6-7 shows
the experimental results for the program svm-light. Because the shapes of the graphs
for the other two programs (flex and bzip2) are similar, throughout the section, I will
use svm-light as the example program for simplicity.

Based on the graph, in general, for less than 5 falsified invariants, the sequential
algorithm performs better than the antecedents algorithm. As the number of falsified
invariants grows, the processing time of the sequential algorithm grows much faster
than the antecedents algorithms. For example, the graph shows that in a sample
that falsified 16 invariants, the sequential algorithm took 250 milliseconds while the
antecedents algorithm took about 60 milliseconds.

To use a context sensitive approach, I need to figure out exactly when to use
each algorithm. Based on the observations that I made, I decided to use a simple
threshold to decide when to use each algorithm. After reaching this decision, two
questions arise. Which feature should the hybrid approach split on and what is the
ideal threshold?
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Figure 6-7: Comparison of the suppression processing time of the antecedents and
sequential algorithms with respect to different number of falsified invariants on a
single program point in the svm-light program. Time is measured in milliseconds.

6.3.1 Exploring features

I evaluated three candidate features experimentally for the hybrid approach: the num-
ber of falsified invariants in the sample, the number of suppression templates relevant
to the falsified invariants, and the total number of antecedent terms templates in the
relevant suppression templates. The number of suppression templates to be processed
is the total number of suppression templates triggered by the falsified invariants. I
obtained this number by looking at the map from invariant type to suppression set
templates and summing up the associated suppression templates for each falsified
invariant. The number of antecedent term templates is the total number of terms in
all of the suppression templates triggered by the falsified invariants.

I evaluated the three candidate features by comparing the time spent in suppres-
sion processing by the two algorithms for different values of each feature. Figures 6-7,
6-8, and 6-9 show the performance of the antecedents and sequential algorithm with
respect to the number of falsified invariants, suppression templates, and antecedent
term templates, respectively.

Based on the graphs, the best thresholds are 5, 2000, and 7500 for the invariants,
suppression templates and antecedents term templates features respectively. However,
the suppression templates and antecedents term templates split the data much better
than the falsified invariants feature. At 5 falsified invariants, there is no clear division
in the data although there is some indication that the sequential algorithm performs
better for smaller numbers while the antecedents algorithms is better for a larger
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number. In the other two features, the division is much clearer.
Figure 6-10 shows a close up of the lower range of figure 6-8, from 0 to 2000.

This range is exactly the range in which the sequential algorithm should perform
better than the antecedents algorithm. In the figure, except for about 5 samples,
the sequential algorithm does perform better than the antecedents algorithm. In
the figure 6-8, beyond 2000 suppression templates, the antecedents algorithm clearly
performs better than the sequential algorithm.

I investigated why the falsified invariants feature did not split the data well by
looking at samples where a small number of falsified invariants unexpectedly prompted
the sequential algorithm to perform worse than the antecedents algorithm. I found
that in these anomalies, the small number of falsified invariants are among the most
common antecedent terms in the suppression templates. These invariants trigger
many relevant suppressions. The result suggests that the number of suppression
templates, rather than the number of falsified invariants, is a more accurate measure
of suppression processing time. The number of falsified invariants is less reliable
because because one falsified invariant may trigger one suppression template or one
hundred suppression templates.

I originally conjectured that the complexity of a suppression template may be
a factor because suppression templates with more antecedent term templates may
takes longer to process. However, the shape of the antecedent term templates graph
follows that of the number of suppression templates, suggesting that the total number
of antecedent term templates is closely correlated with the total number of suppression
templates.

6.3.2 Selecting the threshold

Since the performance of the suppression templatess and antecedent term templates
features was similar, I picked the suppression templates feature because the feature
is faster to calculate at runtime. To determine the splitting threshold, I examined
the experimental graphs to find search range for the threshold. For example, in the
number of suppression templates feature, I ran experiments for thresholds ranging
from 1000 to 400 at increments of 500. I ran Daikon on all 3 three programs using
the selected range and compared the total result by summing up the times from the
three programs at each threshold. I chose the threshold that yielded the lowest total
time.

6.4 Batch algorithm

I explored new approaches for improving the performance of the suppression process-
ing algorithm. In my observations, I found that compared to the sequential algorithm,
the antecedents algorithm works relatively well for a large number of falsified invari-
ants, but triggers a large number of suppressions. Although there is a large fixed
cost of creating invariants over constant variables, the cost pales next to the cost of
running through the cross product with so many falsified invariants.
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Figure 6-8: Comparison of the suppression processing time of the antecedents and
sequential algorithms with respect to different number of suppression templates on
the program svm-light (single program point). Time is measured in milliseconds.

In my experiments, I looked at the processing time per falsified invariant used
by the antecedents algorithm. I found that the time drops rapidly as the number of
falsified invariants increases (see figure 6-11). The graph shows that by processing
more falsified invariants together, the average cost goes down because the fixed over-
head of the algorithm is spread over more falsified invariants. The idea is to batch
those samples that falsified one or two invariants and wait until a certain threshold
to process them. In addition, since many of the invariants in the cross product will
be the same between samples (not many invariants are falsified by each sample), the
algorithm can also spread the overhead of the cross product over more samples.

Similar to the hybrid approach, I needed to pick the criteria for determining when
a batch is ready for processing. In my design, I batched on the number of falsifying
samples. The batch algorithm stores the samples that falsified invariants and does not
remove falsified invariants. The algorithm keeps that samples that falsified invariants
because it needs to apply these samples to unsuppressed consequents to determine
whether the consequent is false see section 4.5.2). The algorithm does not need to
keep samples that do not falsify any invariants: since the samples do not falsify the
potential antecedent invariants, they can not falsify any consequents.

Once the number of falsifying samples reaches the threshold for a particular pro-
gram point, then Daikon uses the antecedents algorithm to process the suppressions
and applies the stored samples to the newly created consequents. After the an-
tecedents algorithm has processed the suppressions, Daikon discards the stored sam-
ples and all falsified invariants. Similar to the hybrid algorithm experiments, I se-
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Figure 6-9: Comparison of the suppression processing time of the antecedents and
sequential algorithms with respect to different number of antecedent terms on a single
program point in the svm-light program. Time is measured in milliseconds.

lected a potential range for the threshold and ran Daikon on all 3 programs, picking
the threshold that yielded the lowest total Daikon running time.

Figure 6-12 shows that the number of runs of the antecedents algorithm decreased
by 30-50% in the three test programs. However, the approach did not improve the
running time of Daikon as dramatically as suggested in figure 6-11.

A possible explanation for this result is that Daikon stores redundant falsifying
samples. For example, two samples may falsify the same invariant and Daikon stores
both of these samples and applies them to the consequents. Take for example the
suppression

x > y =⇒ x ≥ y

The samples (x = 1, y = 2) and (x = 2, y = 3) both falsify the antecedent
invariant x > y and will also falsify the consequent x ≥ y. In this first case, the
samples are redundant. However, in the second case, the samples (x = 1, y = 2) and
(x = 2, y = 2) are not redundant because one of them will falsify the consequent
x ≥ y but the other will not. It is difficult to distinguish between the two cases
without creating the consequent and applying the sample.

In combination with the batching threshold, redundant samples is a problem.
Since a sufficient number of samples triggers the batching algorithm, redundant sam-
ples inadvertently contribute to the accumulating threshold count, and may trigger
the batching algorithm earlier than the predicted goal. Ideally each falsifying sample
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Figure 6-10: Comparison of the suppression processing time of the antecedents and
sequential algorithms with respect to different number of suppression templates on
a single program point in the svm-light program. This graph zooms in on the lower
ranges of figure 6-8. Time is measured in milliseconds.

stored falsifies at least 1 new invariant, so the number of falsified invariants at the
time of processing the batch should be greater than or equal to the threshold value.

Figure 6-13 shows the number of “under threshold” runs in the batching algorithm.
These runs account for 25 to 50% of the total runs of the antecedents algorithm. In
these runs, there are less falsified invariants than falsifying samples, which means that
some samples falsified the same invariant. Some of those samples must be redundant
and the extra calls to the antecedents algorithm force Daikon to use the expensive
constant invariant creation code more often than necessary and apply these redundant
samples to the consequents.
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Figure 6-11: The average cost of processing a falsified invariant in the antecedents
algorithm varying with the number of falsified invariants. Time is measured in mil-
liseconds.

Control (antecedents) Batching

bzip2 87 41
svm-light 142 59
flex 1279 396

Figure 6-12: Improvement in the number of calls of the antecedents algorithm in the
three programs using the batching algorithm.

< threshold ≥ threshold

bzip2 15 41
svm-light 32 59
flex 107 396

Figure 6-13: Below the threshold means that the number of falsified invariants pro-
cessed was less than the number of falsifying samples (threshold). Above the threshold
means equal or above the number of samples.
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Chapter 7

Observations and Evaluation

7.1 Data collection and observations

Since the research is performance driven, I collected most of the data by running
Daikon on the test programs and using the system clock to profile the code of interest.
I initially used the Java HPROF to profile Daikon, but found the tool to be inadequate
for my needs. The tool does not report aggregate time over a particular method, and
can not report the time for a few lines of code in a method. By manually using the
system clock to profile, I have more control over the code that gets profiled and can
easily aggregate the times that I need. In addition, by instrumenting Daikon directly,
I can control the information reported.

To ensure accurate times, I ran experiments only when my experiments took up
at least 90% of the CPU. Using these times, I could pinpoint the pieces of code that
took a large proportion of the running time and respond accordingly in my implemen-
tation of the enhancements. Using this data, I gained better understanding of the
antecedents and sequential algorithms. I described most of these observations in the
design section, as they motivated the enhancements that were proposed. In addition,
I found that the number of invariants created over constants in the antecedents algo-
rithm and the large number of suppressions that need to be processed contributed to
the large amount of time spent in suppression processing.

I used the data to confirm assumptions about the algorithms. This step was
essential in discovering the hashcode type filter to the antecedents algorithm (section
6.2.2). In addition, I used the data to discover and investigate anomalies. The data
was important in discovering which feature is most relevant in the hybrid algorithm
(section 6.3).

7.2 Framework

To evaluate the enhancements, I measured the total Daikon running time on three test
programs. I chose these programs because the suppression processing algorithm takes
from 20 to 40% of the total Daikon running time in these programs (see figure 7-1).
These programs are good markers for whether the performance enhancements show
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Equality sets Suppression time Daikon time

bzip2 31 3.203 s 12.544 s
svm-light 30 4.92 s 28.635 s
flex 65 416.169 s 956.225 s

Figure 7-1: Comparison of suppression processing time compared to total Daikon
running time on the three test programs. Time is measured in seconds. The number
of equality sets is the average number of equality sets at the program points and
corresponds to the size of the program since it is the number of distinct variables in
the program.

bzip2 svm-light flex

control (antecedents) 14.209 s 30.154 s 996.698 s
improved antecedents 13.189 s 27.930 s 880.928 s
hybrid (3000 suppressions) 13.101 s 28.782 s 965.444 s
improved hybrid 12.865 s 27.294 s 880.695 s
batching (5 samples) 13.125 s 27.552 s 1061.066 s
improved batching 12.629 s 26.206 s 967.576 s
best algorithm improved improved improved

batching batching hybrid

Figure 7-2: Comparison of the different performance enhancements as measured by
the total Daikon running time (in seconds) on the the three test programs. The
hybrid algorithm splits on 3000 suppressions. The batching algorithm batches on 5
falsifying samples. The improved hybrid and batching algorithms use the improved
antecedents algorithm.

any improvement. The three programs are written in C: the flex lexical analyzer
(part of the standard Linux distribution), bzip2 (a freely available data compressor),
and svm-light (an implementation of support vector machines). In the experiments, I
compared the running time of Daikon on the three programs before and after turning
on the enhancements. I used a computer with 3.6GHz processing speed and 4GB of
memory.

7.3 Results

Figure 7-2 shows that although all of the enhancements show an improvement over the
control (original antecedents algorithm), the improved batching and hybrid algorithms
using the improved antecedents algorithm have the best results. While the improved
batching algorithm does have a faster time than the improved hybrid on two of the
programs, the difference is very small.

Overall, the improved hybrid performed the best on all 3 programs. Using the
improved hybrid algorithm, in flex, the running time of Daikon improved by about
2 minutes, a 12% improvement. The improved hybrid algorithm provided only a
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small improvement over the improved antecedents algorithm in all three programs.
The batching algorithm performed well on the bzip2 and svm-light programs, but
poorly on flex, which could be due to differences in program sizes (number of distinct
variables).
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Chapter 8

Verifying Implementation
Correctness via an Oracle

8.1 DaikonSimple: an overview

Verifying the implementation of a program is very difficult in programs that produce
a large amount of output because checking the results by hand is not feasible. The
problem is even harder when the program filters its output via optimizations to make
the program run faster and make the results more useful for users. This problem
applies to the optimizations implemented for Daikon. The optimizations described
in section 2.3 and the new enhancements detailed in the design section both ignore
redundant invariants during processing and in the output in order to improve per-
formance and the readability of the results for the readers. This situation presents a
tester with two difficulties: making sure that reported results are correct, and making
sure that no desired results are missing.

In order to verify the implementation of both the optimizations and the enhance-
ments made to Daikon, I address the two difficulties by using an oracle. The approach,
illustrated in figure 8-1 uses an easily verifiable brute force algorithm as an oracle to
generate the same output as the algorithm with complex optimizations. Running
the brute force algorithm produces a set of unfiltered results. In addition, running
the complex algorithm (with its optimizations) and then reversing the optimizations
of the complex algorithm to recover the filtered output produces a complete set of
results. Differences in the two outputs (brute force and complex with optimization
reversal) indicate potential problems in the implementation.

The verification method should identify errors at lower cost than developing ex-
haustive test cases. Using such a verification method, I can be more confident about
the overall correctness of the code. This approach is complementary to regression
tests because I can use the slow oracle to ensure that the goal output of the regres-
sion tests is correct and then use the faster regression tests to maintain the correctness
of the code.
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Figure 8-1: Visualization of the oracle approach to verification.

8.2 Brute force approach: simple algorithm

The verification approach first obtains the complete results via the brute force al-
gorithm. I implemented the simple algorithm described in section 2.2 and named
this tool DaikonSimple. To focus on implementing the actual invariant detection al-
gorithm, I reused classes from Daikon. The code shared by the implementations of
the two algorithms (Daikon and DaikonSimple) are the parts of Daikon that are not
the object of this testing approach. The approach tests the complex optimizations
and not the the classes relating to the program points, invariants, variables, samples,
reading input and formatting output. The code not tested by this approach is more
straightforward to test and largely covered by the Daikon unit tests. For example,
the actual invariant classes have their own unit tests.

8.3 Reverse optimizations

The verification approach then from the target program, Daikon, procures the same
complete results as the oracle. In order to obtain complete results, I implemented
methods for reversing all of the four optimizations detailed in section 2.3. In several
cases, Daikon already had a method that performed that task needed, but Daikon
used these methods in a different context. I recycled these methods to save time.
Daikon uses each of these methods at the end of processing all of the samples to
recover the filtered invariants and obtain a complete list of true invariants.

To reverse the dynamic constants optimization, Daikon needs to recover the invari-
ants over constant variables. Daikon can obtain these invariants by explicitly creating
them after processing all of the samples. These invariants are almost exactly the ones
that are created during suppression processing by the antecedents algorithm. The
antecedents algorithm only creates the unary and binary invariants over constant
variables, but the optimization reversal method creates all ternary invariants over
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constant variables in addition to the unary and binary ones.
To reverse the equality sets optimization, Daikon must find the invariants over

the non-leaders of each equality set. Daikon can get these invariants by copying the
invariants of the leaders to the non-leaders of each equality set. These invariants are
exactly the ones that are created by Daikon when a variable breaks away from an
equality set (see section 2.3.2), so I was able to reuse the code that performed the
copying.

To reverse the variable point hierarchy optimization, Daikon must recover the
invariants at the lower points. Daikon can obtain these invariants by keeping the
invariants at the lower points even when they are propagated by Daikon to the higher
points. Keeping the invariants at the lower points is already the default option in
Daikon.

To reverse the suppressions optimization, Daikon can recover the implied invari-
ants by creating all of the consequents that are implied by the true invariants. Daikon
already has the option of using the cross product of the antecedents algorithm to find
and create all of the suppressed consequents.

8.4 Alternative approaches

Another way to verify the optimizations would be to filter the output of the brute force
algorithm using the same optimizations as the optimized algorithm. This method
does not yield the same effect as the proposed approach. Although this alternative
approach eliminates the need to reverse the optimizations, the approach does not
test the implementation of these optimizations. A bug in the optimizations would
eliminate the same output from both algorithms. Thus the approach does not address
the difficulty of verifying that no desired results are missing.

Another approach would be to simply test all of the reported invariants against
all of the samples to ensure that they are really true. Again, this approach addresses
the first problem (verifying that reported results are true) but would miss the second
requirement: no desired output is missing.

In addition, the idea of turning off the optimizations in Daikon and comparing
the results to the output of the brute force algorithm does not achieve the desired
effect. Turning off the optimizations defeats the purpose of the approach: testing the
implementation of the optimizations.

8.5 Evaluation

8.5.1 Framework

To evaluate the effectiveness of DaikonSimple, I ran Daikon and DaikonSimple on
the regression tests for Daikon. These programs are written in C and Java, mostly
data structure classes, ranging from stack and queue implementations to map finding
classes. I compared the results of Daikon and DaikonSimple, and investigated each
difference in the results.
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Figure 8-2: Number of optimization related and other bugs found

8.5.2 Results

Figure 8-2 shows the types of bugs found by the verification approach. The approach
was effective in finding bugs in both the implementation of the optimizations and
surprisingly also in the invariant processing code that is shared by both Daikon and
DaikonSimple. The bugs found in the suppression optimization code were all caused
by corner cases missing in the predefined suppression templates. For example, a con-
crete suppression with program variables x, y, and z states:

(x == y) ∧ (y < z) =⇒ x = y % z

However, the sample (1, 1, 0) breaks the suppression because modulo 0 is unde-
fined. In addition, the sample (-1, -1, 2) breaks the suppression because in Java, -1
mod 2 yields 1. Thus, the concrete suppression should actually be:

(x == y) ∧ (y < z) ∧ (z 6= 0) ∧ (x ≥ 0) =⇒ x = y % z.

Surprisingly, the oracle approach also found bugs in code which is shared by
Daikon and DaikonSimple. Daikon and DaikonSimple differ in the algorithm used
to find the true invariants; the actual invariant classes are shared by both programs.
The bugs ranged from math errors to inconsistent labeling of variables. For example,
the oracle found a math bug in the code of a ternary invariant that tries to fit a plane
over the three variables, i.e. A∗x+B∗y+C ∗z = D, where A, B, C, D are constants.
For positive numbers, because

(x < y) =⇒ (x2 < y2)

is true, the developers of the invariant code wrongly assumed that:

(x + y + z < u + v + w) =⇒ (x2 + y2 + z2 < u2 + v2 + w2)

is true. Since exponentiation is not distributive over addition, the assumption fails in
the sample where x = 1, y = 17, z = 18, u = 18, v =

√
75, and w =

√
147.
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Chapter 9

Related Work

9.1 Theorem provers

Theorem provers work on logical formulas and have no limitations on the number
of variables used [11]. Using a set of logical statements as the antecedent and an
arbitrary consequent, the theorem prover applies a set of logic rules to determine
whether the implication is true.

A suppression in the form of (a < b ∧ b 6= 0) =⇒ a/b = 0 is only one instance of
a logic statement that a theorem prover can prove, i.e. suppressions are a low-level
enumeration of the statements that a theorem prover can prove. The suppression
takes the form of inputs to the theorem prover, namely a set of logical statements
that make up the antecedent and a consequent. However, a theorem prover can not
replace the suppression processing algorithm in Daikon. The antecedents algorithm
finds the invariants that needs to be created because they are not suppressed anymore,
but a theorem prover can only say yes or no to an actual implication. In order to use
the theorem prover, both the antecedent and consequent must be present, but the
consequent is not present precisely to save memory.

9.2 Verification via bounded exhaustive testing

Previously, researchers have used formal specifications for the target program

1. to automatically generate a bounded exhaustive test suite as test cases for the
target program and

2. to derive an oracle designed to verify the output of the target program on the
generated test cases [18].

Rather than using the specifications to generate test inputs, I use the current
regression tests as test cases utilized by the verification method. In addition, I use the
brute force algorithm as an oracle rather than the formal specification. The approach
offers the advantage of turning pre-existing regression tests into valuable test cases for
the program. The approach differs from the method in [18] in that, rather than using
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the specifications for the program to generate a bounded exhaustive test suite and
an oracle, it tests the behavior of the target program by using the current regression
tests and a brute force algorithm.

The other approach is difficult to apply to Daikon because the optimizations are
too complicated for reasonable specifications. Even if the optimizations could be
specified, Daikon as a whole could not. The oracle approach is more applicable to
complex code that is part of a larger whole. In addition, a brute force algorithm is
often easy to implement.
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Chapter 10

Limitations, Future Work,
Contributions

10.1 Limitations

There are several limitations to my work. In evaluating the hybrid and batching
algorithms, the hardest part was picking a threshold for the two algorithms for split-
ting and batching respectively. There is no ideal number since the ideal number will
vary from program to program. I picked a number that yielded the best results for
the three programs collectively, but it is difficult to say if the three programs are
representative. Lastly, DaikonSimple was an effective way to find bugs in Daikon,
but since it only implements the simple algorithm, it runs into scalability problems.
Consequently, there is a size limit on the input files for this verification approach. In
addition, a human must trace the differences in the two outputs, which was a tedious
task at times. This difficulty is generally associated system test suites because while
system tests provide the benefit of testing the entire code base, it is much harder to
pinpoint the bug to a particular method in the code.

10.2 Future work

In the future, more time can be spent exploring other ways to improve suppression
processing algorithm. For example, currently, I batch on a set number of falsifying
samples in the batching algorithm. As noted in design section 6.4, it is difficult to
identify redundant samples so batching on the number of falsifying samples makes
the problem worse by triggering the antecedents algorithm too early. Similar to the
features in the hybrid algorithm, the batch algorithm may benefit from batching on
the number of accumulated falsified invariants or relevant suppressions. In addition,
we may be able to further reduce constant invariant creation time in the antecedents
algorithm by using an idea from the sequential algorithm: only create the constant
invariants for the invariant types in the suppressions triggered by the falsified invari-
ants.
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10.3 Contributions

In this research, I investigated and gained better understanding about two algorithms
that optimize dynamic invariant detection. Using this knowledge, I designed and
implemented enhancements to improve the runtime of Daikon. In addition, I built an
oracle to verify the implementation of all optimizations in Daikon. I improved total
Daikon runtime by 10% on the test programs.

In the process of the research, I learned the importance of verifying assumptions
via experiments and investigating rather than ignoring anomalies. The two were
important in gaining insight into the algorithms, and discovering potential optimiza-
tions. When evaluating the feasibility of new algorithms (e.g. the batch algorithm),
I should think more carefully about the costs, not just the benefits, as the cost could
outweigh the benefits. In addition, the hybrid algorithm is an interesting solution
to the performance problem. I used my own feature selection methods to decide on
the threshold of the hybrid algorithm. Lastly, the oracle approach for verification is
applicable to other algorithms.
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