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Abstract

Information-flow analysis can prevent programs from improperly
revealing secret information, and a dynamic approach can make
such analysis more practical, but there has been relatively little
work verifying that such analyses are sound (account for all flows
in a given execution). We describe a new technique for proving
the soundness of dynamic information-flow analyses for policies
such as end-to-end confidentiality. The proof technique simulates
the behavior of the analyzed program with a pair of copies of the
program: one has access to the secret information, and the other is
responsible for output. The two copies are connected by a limited-
bandwidth communication channel, and the amount of information
passed on the channel bounds the amount of information disclosed,
allowing it to be quantified. We illustrate the technique by applica-
tion to a model of a practical checking tool based on binary instru-
mentation, which had not previously been shown to be sound.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]; D.2.5 [Testing and Debugging]; E.4 [Coding and
Information Theory]

General Terms Languages, Measurement, Security, Theory, Ver-
ification

Keywords Information-flow analysis, dynamic analysis, implicit
flow

1. Introduction

An information-flow security property provides an end-to-end con-
straint on a how a program can propagate information: for instance,
requiring that it be impossible to deduce any information about the
program’s secret inputs from its public outputs. A widely held piece
of conventional wisdom is that dynamic program analyses, those
that examine only a single program execution, are unsuitable for
checking information-flow properties. (This belief is based in part
on some narrow theoretical impossibility results, discussed in Sec-
tion 5.1.) One real limitation of past work on dynamic information-
flow analysis has been a shortage of formal techniques for reason-
ing about the soundness of dynamic analyses, especially compared
to the well-known techniques for, say, proving the soundness of a
static type system.
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In many practical situations, it is expected that a program will
reveal some information. So it is useful to have a quantitative
information-flow analysis for confidentiality: one whose output is
a numeric bound, measured in bits, on the amount of information
revealed by a particular execution. In previous work, we developed
a tool that measures information flow in a program by tracking,
for each bit, whether it might contain secret information (dynamic
tainting), and that accounts for flows of information via control-
flow (implicit flows).

Our goal here is to describe a new technique for proving that
such a dynamic analysis is sound: that the actual amount of in-
formation revealed is no larger than the computed bound. The key
idea of the proof is to simulate the analyzed program by a pair
of programs connected by a limited-bandwidth channel (or pipe):
one copy of the program starts with the secret input, and the other
copy is responsible for output, so any information flow must occur
via the pipe. If the amount of information transmitted over the pipe
matches the analysis result, and the pair of programs faithfully sim-
ulates the original program, then the analysis’s bound is sound. To
illustrate this proof technique, we apply it to a formal model of our
particular analysis, obtaining the desired soundness result.

We have also built a prototype implementation of our technique,
which operates on C, C++, and Objective C programs at the binary
level using the Valgrind instrumentation framework [20]. In case
studies, this tool checked a variety of security properties on pro-
grams of up to half a million lines of code, including a property
that was violated by a previously unknown bug. These aspects of
the research are described in a technical report [14]; a revised ver-
sion of that work, including improved enclosure annotations like
those described in Section 2.2 and an additional case study, is cur-
rently under review [15]. Without the proof technique described
here, however, we were previously able to give only informal argu-
ments for our tool’s soundness.

The remainder of this paper is organized as follows. Section 2
describes a core language and the application of our analysis to
it. Section 3 describes how to simulate an analyzed program by a
pair of programs with bounded communication. Section 4 gives a
soundness proof using the simulation, in which the key lemma is
that the pair of programs faithfully simulates the original program.
Finally, Section 5 compares this work with other dynamic and
static information-flow analyses and their proofs, and Section 6
concludes.

2. Formalized analysis

In order to prove the soundness result for our technique, we formal-
ize it in the context of a simple imperative core language containing
all the features relevant to our analysis. The language includes two
features that correspond to annotations in the real system: a pre-
emptive leakage statement that identifies locations where secret in-



stmt ::= xi = xj

xi = not xj

xi = xj and xk

output xi

if xi then goto l
end
leak xi

enclose(l, n, R)
end enclose

Figure 1. Syntax for a simple imperative language described in
Section 2.1

formation has a compact representation, and enclosure regions that
isolate independent subcomputations used only for their output.

2.1 An unstructured imperative language

Because our real tool operates on programs at the machine lan-
guage level, it is appropriately modelled by a technique for a lan-
guage with unstructured control flow. Since the real technique
counts the amount of information in machine words in terms of
their bits, we restrict the language’s variables to single bits.

The syntax of the language is summarized in Figure 1. The
program’s data is stored in a finite set of variables xi indexed by
positive integers i. Each xi may take the values 0 or 1. A subset
of the variables, the secret input variables, are initialized by the
program’s secret inputs; the remaining variables are initialized by
the public inputs. Six types of statements provide the basic opera-
tions of assignment, logical negation and conjunction, output, con-
ditional branches, and a statement denoting the end of execution.
Three additional statement types correspond to program annota-
tions in our real system: one to explicitly count the information in
a variable as leaked, and two to enter and exit enclosure regions. A
program consists of a sequence of statements numbered by labels
l, which we simply take to be consecutive integers starting from 1.
In an enclose statement, l is a label referring to the corresponding
end enclose statement, n is a positive integer giving the number
of steps for which the enclosure region will execute, and R is a set
of variables that we call the results of the enclosure region. There
are three syntactic well-formedness constraints on programs: each
label l must refer to an existing statement, the last statement must
be end, and enclose and end enclose statements must match
up one-to-one according to the labels l (but their locations are not
constrained).

The purpose of an enclosure region is to isolate calculations that
occur within the region from the rest of a program: their results
are visible only via the result variables R. Enclosure regions are
a dynamic mechanism to ensure that even though a computation
may be implemented using branches and side-effects to arbitrary
memory locations, it can be reasoned about as if it were a pure
function. To achieve this, the contents of memory are recorded
when the region is entered, and, except for R, restored on exit. (In
the real system, a more efficient logging mechanism is used to the
same effect.) To prevent other side-effects and termination of the
enclosed code from being visible, the execution of the region must
end at a pre-specified label, and output and end statements are
disabled for the duration. To avoid problems of non-termination,
the enclosure region can execute for at most n steps; to make
the proof simpler, we enforce that it execute for exactly n steps,
waiting at the end enclose if necessary. (If timing were visible in
the model, fixing the execution time of enclosure regions would
also avoid a timing channel. In the real system, it seems more
practical to allow the variability and limit the channel in other
ways.) The intent is that entries to and exits from enclosure regions
should match up during execution, but with unstructured control

(pc, S, E)→ (pc′, S′, E′) where:

pc′ = l if code(pc) = “if xi then goto l” and S(i) = 1

pc′ = pc + 1 if code(pc) = “if xi then goto l” and S(i) = 0

pc′ = pc if pc = E.l and E.k > 1
pc′ = E.l if E.k = 1
pc′ = E.l if E 6= ⊥ and code(pc) = “end”

pc′ = pc + 1 otherwise

E′ = ⊥ if E.k = 0 and E.l = pc

E′ = ⊥ if code(pc) 6= “enclose(l, n, R)” and E = ⊥
E′ = (l, n, R, S) if code(pc) = “enclose(l, n, R)” and E = ⊥
E′ = (E.l,E.k − 1, E.R, E.S) otherwise

S′ = S[i← S(j)] if code(pc) = “xi = xj”

S′ = S[i← ¬S(j)] if code(pc) = “xi = not xj”

S′ = S[i← S(j) ∧ S(k)] if code(pc) = “xi = xj and xk”

S′ = S[E.R← E.S(E.R)] if E.k = 0 and E.l = pc

S′ = S otherwise

output S(i) if code(pc) = “output xi” and E = ⊥
stop if code(pc) = “end” and E = ⊥

Figure 2. Regular semantics for the language given in Section 2.1.
For brevity, we follow the convention that any condition involving
a field of E is false if E = ⊥.

flow, this cannot easily be enforced ahead of time (this difficulty
applies to the real system as well). Instead, the system simply lets
an enclosure region continue until the matching end is seen. Also,
in the real system it is convenient to allow enclosure regions to
dynamically nest, but this does not increase expressiveness, so we
omit it from the model for simplicity.

More formally, we refer to the behavior of a program (without
the dynamic information-flow analysis) as the regular semantics,
given as a state transition relation in Figure 2. The state of a
program consists of a program counter pc holding the label of
the next instruction to execute, a store S holding the values of
variables, and a structure E holding information about the current
enclosure region. E is either a distinguished value ⊥ if execution
is not in an enclosure region, or a tuple (l, k, R, S) where l is a
label, k is a nonnegative integer, R is a set of variables, and S is
a store. l is the label at which the enclosure region will end, k is a
counter decremented once per step to control how long the region
executes, R is the set of result variables, and S is a saved copy of
program variables to restore at the end of the region. The notation
S[i ← b] represents a new store in which i is bound to b, and
all other variables have the same bindings as in S; we also abuse
notation by using sets as indexes and/or values to indicate that each
i is bound to the corresponding or only value from b. Initially, pc
points to the first statement, E = ⊥, and S is populated with the
program inputs.

After most statements, execution continues with the following
statement, but an if statement causes a branch if its condition
is true, and an enclosure region jumps to its end if the counter
E.k runs out, or an end is encountered. E is initialized at the
beginning of an enclosure region and cleared at the end; when
it is present, E.k is decremented on each step. The assignment
statements modify the store in the expected way; end enclose
also restores the contents of all variables except the results of the
region. The output and end statements have the expected effects,
but they are disabled inside enclosure regions.

2.2 Analysis semantics

In the dynamic information-flow analysis, our tool counts the po-
tential propagation of secret information in two ways: a bit may
be marked as secret (like “tainted”) if it might contain secret infor-
mation, and a counter keeps track of other leaks outside the set of
variables. The secrecy status of bits is propagated conservatively: a



(pc, E, S, SS, c)→ (pc′, E′, S′, SS′, c′) where:

SS′ = SS[i← SS(j)] if code(pc) = “xi = xj”

SS′ = SS[i← SS(j)] if code(pc) = “xi = not xj”

SS′ = SS[i← (SS(j) ∨ SS(k)) ∧
(S(j) ∨ SS(j)) ∧
(S(k) ∨ SS(k))]

if code(pc) = “xi = xj and xk”

SS′ = SS[i← 0] if E = ⊥ and code(pc) = “output xi”

SS′ = SS[i← 0] if E = ⊥ and code(pc) = “if xi then goto l”

SS′ = SS[i← 0] if E = ⊥ and code(pc) = “leak xi”

SS′ = E.SS[E.R← 1] if E.k = 0 and E.l = pc

SS′ = SS otherwise

c′ = c + 1 if E = ⊥ and SS(i) and code(pc) = “output xi”

c′ = c + 1 if E = ⊥ and SS(i) and code(pc) = “if xi then goto l”

c′ = c + 1 if E = ⊥ and SS(i) and code(pc) = “leak xi”

c′ = c otherwise

E′.SS = SS if code(pc) = “enclose(l, n, R)” and E = ⊥
E′.SS = E.SS otherwise

Figure 3. Instrumented semantics describing secrecy tracking for
the core language, as described in Section 2.2. The rules for pc, E,
and S are the same as in Figure 2.

copy of a secret bit is secret, and the output of an operation is secret
if any of the inputs that contributed to it were. (But the result of an
operation on a public value and a secret value can be public if the
result does not depend on the secret value: for instance, multiplying
a public 0 by a secret number yields a public 0.) Preemptive leakage
via a leak statement erases the secrecy of a bit and simultaneously
increments the counter to compensate. Preemptively leaking infor-
mation at a point when it has a compact representation allows the
bound computed by the analysis to be more precise. To account for
implicit flows, a bit is also leaked if a secret bit is used as a branch
condition, and of course secret bits are counted as leaked if they
are output. Branches on secret data are not counted as leaks inside
an enclosure region, but to compensate, the output of an enclosure
region is always marked as secret.

We formalize the operation of the analysis with an instrumented
semantics that extends the regular one, as shown in Figure 3. To the
state of the system, we add secrecy store SS parallel to the regular
store S, holding 1 if the corresponding bit is secret and 0 otherwise,
and an integer counter c. We also add a saved secrecy store E.SS to
the enclosure-related information. Initially, S(i) is 1 for the secret
input variables and 0 for the others, and c is zero. The most complex
rule describes the result of an and operation: the result is secret
if either input is, and neither input is a public zero. Observe that
because the instrumentation semantics are a pure addition to the
regular semantics, the behavior of an instrumented program is the
same as the behavior without analysis.

3. Simulation environment

Given an instrumented program execution under the semantics
described in Section 2, we wish to prove that at any point in
execution, the counter c is an upper bound on the number of bits of
information about the secret inputs present in the program’s output.
To do this, we construct two copies of the instrumented program,
connected by a unidirectional channel called a pipe; we call the
two copies the writer and the reader according to the way they use
the pipe. The two copies have the same program text and public
inputs, but initially only the writer has the secret input data. The two
copies execute in lockstep; on some steps, the writer writes a bit to
the pipe, and the reader reads it. The goal is that the two copies
of the program should produce the same results; this demonstrates
that the information sent via the pipe is the only potentially-secret
information needed to produce the program output.

Writer:

(pc, E,S, SS, c)→ (pc′, E′, S′, SS′, c′) where:

write(xi) if E = ⊥ and SS(i) and code(pc) = “output xi”

write(xi) if E = ⊥ and SS(i) and code(pc) = “if xi then goto l”

write(xi) if E = ⊥ and SS(i) and code(pc) = “leak xi”

Reader:

(pc, E,S, SS, c)→ (pc′, E′, S′, SS′, c′) where:

output read() if SS(i) and code(pc) = “output xi” and E = ⊥ (*)

output xi if ¬SS(i) and code(pc) = “output xi” and E = ⊥

pc′ = l if code(pc) = “enclose(l, n, R)”

pc′ = l

if SS(i) and code(pc) = “if xi then goto l” and read() = 1 (*)

pc′ = l

if ¬SS(i) and code(pc) = “if xi then goto l” and xi = 1

pc′ = pc + 1
if SS(i) and code(pc) = “if xi then goto l” and read() = 0 (*)

pc′ = pc + 1
if ¬SS(i) and code(pc) = “if xi then goto l” and xi = 0

S′ = S[i← read()] if SS(i) and code(pc) = “output xi”

S′ = S[i← read()] if SS(i) and code(pc) = “if xi then goto l”

S′ = S[i← read()] if SS(i) and code(pc) = “leak xi”

Figure 4. Modified semantics for the pipe writer and reader, as
described in Section 3. The writer rules are in addition to those
given in Figures 2 and 3. The reader rules also extend those, except
that the three rules marked (*) replace the corresponding ones from
Figure 2; the reader rules add the condition SS(i) and use read() in
place of xi. Because the reader skips directly to the end of enclosure
regions, the effect is as if each of the new reader rules included the
condition E = ⊥, but we omit it for space.

In order for the reader to simulate the writer, the reader needs
access to secret data whenever it affects control flow, or is output. In
fact, we choose to have the writer send a secret bit exactly whenever
it is leaked in the instrumented program. The writer and the reader
both maintain the same secrecy bits as the instrumented program,
which tell the reader when to use a value from the pipe. Enclosure
regions can make decisions based on secret bits without leaking
them, so the reader is unable to simulate them; instead, it simply
waits for them to complete.

The writer semantics are purely an addition to the instrumented
semantics, just as the instrumented semantics added to the regular
semantics, so the writer’s behavior is the same. By contrast, the
reader’s semantics are different; proving that the reader’s behavior
is similar is the main task of Section 4. The modified semantic rules
for the writer and reader are given in Figure 4, where the pipe
operations are represented as write(xi) and read(). (When read()
appears in the definitions of two post-state variables for a single
state transition, the intended meaning is that a single bit is read, and
used in multiple places.) As mentioned earlier, the reader does not
start with any secret information. It does not matter what its copies
of the secret input variables are initialized to, but for concreteness,
say they all start as 0.

4. Proof

Section 3 described the construction of a pair of programs intended
to give the same results as an instrumented secret-using program,
but with the use of secret data by the second (reader) program
rationed by a special channel. To use this construction to obtain a
soundness result for the analysis, we must first prove that the reader
faithfully simulates the instrumented program, and then relate the
information disclosed by the reader to the leakage count maintained
by the instrumented program.



4.1 Simulation lemma

To relate the behavior of the writer and the reader, we define a
relation ∼ between states of the writer and states of the reader.
The definition captures the intuition that the writer and reader
should generally run in lockstep, but that the contents of secret store
locations may be different in the reader, and the correspondence is
broken while executing enclosure regions. For convenience, we use
subscripts of W and R to distinguish the state variables of the writer
and reader. Two states are related by ∼ if all the following hold:

• The program counters are the same: pcW = pcR

• The secrecy bits are the same: ∀i, SSW(i) = SSR(i)

• The store contents that are public are the same: ∀i,¬SSW(i)⇒
SW(i) = SR(i)

• The writer is not in an enclosure region: EW = ⊥

Given this definition of ∼, the key simulation lemma states that
each writer state for which EW = ⊥ is related to the corresponding
(simultaneous) reader state by ∼. We prove this by induction over
the execution history of the programs. Clearly the initial states are
related by ∼: the program counters are both 1, both programs are
outside enclosure regions, and except for the reader’s missing secret
bits (for which SSR(i) = SSW(i) = 1), their initial store contents
are the same.

For the inductive step, suppose that the current states are related
by∼, and let primed state variables represent the next states. (Note
we can omit the subscripts on pc, SS, and E without ambiguity.)
We take one case for each of the potential next statement types:

• xi = xj : Only the value stored at location i is modified, so we
must check that it is either the same or secret in both post-states.
If SS(j) = 0, then SW(j) = SR(j), and so S′

W(i) = S′

R(i). On
the other hand if SS(j) = 1, then SS′

W(i) = SS′

R(i) = 1.

• xi = not xj : Similarly, if SS(j) = 0, then SW(j) = SR(j), and
so S′

W(i) = ¬SW(j) = ¬SR(j) = S′

R(i). On the other hand if
SS(j) = 1, then SS′

W(i) = SS′

R(i) = 1.

• xi = xj and xk: Here there are three kinds of cases. If both
values are public, SS(j) = SS(k) = 0, then both arguments are
the same by assumption, SW(j) = SR(j) and SW(k) = SR(k),
so the results are also the same: S′

W(i) = SW(j) ∧ SW(k) =
SR(j) ∧ SR(k) = S′

R(i). If either argument is public and zero,
say SS(j) = 0 and SW(j) = SR(j) = 0, then both results must
be zero, and so equal: S′

W(i) = 0∧SW(k) = 0 = 0∧SR(k) =
S′

R(i). Otherwise, at least one argument is secret, and neither
argument is both public and zero, so all three of the conjuncts
in the rule for SS′ are true, and SS′

W(i) = SS′

R(i) = 1.

• output xi: If SS(i) = 0, then the state is unchanged. Other-
wise, note that E = ⊥, so the writer writes a bit b which is read
by the reader. SS′

W(i) = SS′

R(i) = 0, but S′

W(i) = S′

R(i) = b.
Also, observe that the writer and reader output the same bit in
either case.

• if xi then goto l: As in the output case, the branch condition
is either the same by assumption if it’s public, or if it’s secret,
the same because it is written by the writer and read by the
reader. Thus, either pc′W = l = pc′R if the branch is taken, or
pc′W = pc + 1 = pc′R if not.

• end: Note that E = ⊥, so both programs stop and this case is
satisfied vacuously.

• leak xi: Also like the output case, if SS(i) = 0, then the state
is unchanged. Otherwise, E = ⊥, so the writer writes a bit b
which is read by the reader, and S′

W(i) = S′

R(i) = b.

• enclose(l, n, R): Uniquely in this case, it is not the next states
that are related by ∼, but the next non-enclosed states, n + 1
steps later. Because end is disabled in an enclosure region, there
are sure to be such subsequent states: when the countdown E.k
reaches zero, control will have reached the end enclose at l,
so the next states have pc referring to the next statement after
that. Using primes for this state, we clearly have E′

W = E′

R =
⊥. The secrecy store in this state consists of the saved secrecy
store SS, with all of the locations in R marked as secret, but R
is the same for both programs, so SS′

W = SS′

R. For the regular
store, locations not in R were saved and restored, so match the
values in SW and SR, which are either equal or secret by the
induction hypothesis. Values in R are marked as secret, so may
be different, but ∼ holds.

• end enclose: The usual situation of the end of an enclosure
region was described in the previous case. Here, E = ⊥; if an
end enclose is encountered outside an enclosure region, it has
no effect.

This completes the induction. As a corollary, observe that writes
to and reads from the pipe are always made on the same step by
both programs, so there are never any left-over bits or blocking.
Also, on each output statement, the bits output by the two pro-
grams are the same.

4.2 Final result

To obtain the final soundness result, we argue that the reader pro-
duces the output using only the information sent on the pipe as
secret input. It is here that our notion of “information” must be de-
fined, though in fact the argument is not sensitive to details of that
definition. The key property is that a closed system cannot create
information: the amount of information it its outputs is at most the
information in its inputs. We use a definition of information leakage
based on entropy, specialized to embody conservative assumptions
about information not available to the analysis.

We define the amount of information leaked by a program to be
the entropy of the program’s outputs as a distribution over the possi-
ble values of the secret inputs, with the public inputs held constant.
This definition is used by Clark et al. [4] and is analogous to other
information-theoretic measures used in the literature (e.g., [18]).
For a deterministic program like we consider, it is equivalent to the
conditional mutual information between the output and the secret
inputs, given the public inputs. It is also roughly the logarithm of
the effort that knowledge of the output would save an attacker at-
tempting to guess the secret by brute force [13]. Non-interference
corresponds to an entropy of 0.

Entropy is defined with respect to a probability distribution of
possible secret inputs, but only a single input is available when a
program is analyzed. Therefore, we make a conservative assump-
tion that the distribution is chosen to maximize the information re-
vealed. This corresponds to assuming at every step that a bit of data
represents a full bit of information (entropy). Note that this does
not mean assuming that the input is uniformly distributed: for in-
stance, a negative response from a password checker conveys very
little information if the password is randomly distributed over a
large space, but it conveys a full bit if the password is apple with
probability 1/2 and banana with probability 1/2.

THEOREM 4.1. Suppose that a program has run for some number
of steps under the instrumented semantics, the value of the counter
c is k, and the output is a bit string b0b1 . . . bn. Then the number of
bits of information about the secret input in b0b1 . . . bn is at most
k.

Proof: Consider an execution of the same program by the writer
and reader described above. Since the semantics of the writer are



an extension of those of the instrumented program, its output will
also be b0b1 . . . bn. By the simulation lemma, each of the output
states of the reader will be related by ∼ to the output states of the
reader, so the reader’s output will also be b0b1 . . . bn. In the writer
semantics, a bit is written to the pipe on exactly those steps when
the counter is incremented, so the number of bits written to the pipe
is also k. Since the reader reads only the bits written by the writer,
the number of bits read from the pipe is k as well. Because the data
sent on the pipe consisted of k bits, it can contain at most k bits of
information. Because the text of the program and the public inputs
are public, the only secret data read by the reader is the bits from the
pipe. The amount of secret information in the output of the reader
cannot be greater than the amount of information in its inputs (by
the Data Processing Theorem of information theory [16]). Thus the
amount of secret information in the output is at most k bits.

5. Related work

Next we compare our work to other techniques for information-
flow tracking, and what is known about their soundness. Dynamic
techniques like ours have a long history, but have less often been
treated formally, perhaps because of some seeming impossibility
results. Static techniques, which make guarantees about any possi-
ble execution, have recently been more popular, but are not easily
combined with quantitative measurement of leakage.

5.1 Dynamic analyses

Schneider [21], following McLean [17], proves that information-
flow is not a property that can be checked by a class of techniques
called “execution monitoring” (EM). Two features of our technique
put it outside Schneider’s class EM. First, it depends not only on the
inputs and outputs of a program, but on the program text. Second,
like a static information-flow analysis, it is conservative. Because
tainting is only an approximation of secrecy, there is no guarantee
that when the bound produced by the technique is non-zero, the
output will contain secret information.

Some of the earliest proposed systems for enforcing confiden-
tiality policies on programs (including implicit flows) were based
on run-time checking: Fenton discovered the difficulties of implicit
flows in a tainting-based technique [7], and Gat and Saal propose
reverting writes made by secret-using code [8] much as our tech-
nique does. Compared to our technique, these approaches do not
support permitting acceptable flows or measuring information leak-
age. Fenton [7] proves a soundness theorem for a counter machine
whose counters have static secrecy classes.

Recent dynamic tools to enforce confidentiality policies have
a more practical focus, but do not scalably account for all im-
plicit flows. Most similar to our system is Chow et al.’s whole-
system simulator TaintBochs [3], which traces data flow at the in-
struction level to detect copies of sensitive data such as passwords.
Because it is concerned only with accidental copies or failures to
erase data, TaintBochs does not track all implicit flows. The RI-
FLE project [24] is an architectural extension that tracks direct
and indirect information flow with compiler support. The authors
demonstrate promising results on some realistic small programs,
but their technique’s dependence on sound and precise alias anal-
ysis leaves questions as to whether it can scale to programs that
store secrets in dynamically allocated memory. The RIFLE authors
discuss soundness issues similar to those that apply to our tool, but
sketch a soundness result only in broad outline.

The TightLip system [26] is a practical information-leak check-
ing tool whose implementation is similar to the duplication we use
only as a proof technique. TightLip runs a program in parallel with
a copy whose inputs are scrubbed (e.g., have secret bits replaced
with zeros): if the two copies’ outputs are different, the program
has leaked information. TightLip has been used so far only to check

policies that exclude any information flow, but it might be extended
to allow certain flows by copying that information to the replica,
analogously to the treatment of preemptive leakage in our proof.

5.2 Static analyses

Static checking aims to check the information-flow security of pro-
grams before executing them [5]. The most common technique is
to add information-ownership annotations to a type system; then
if a program type checks, a soundness result guarantees that the
program satisfies some security property [25]. For instance, non-
interference is the property that for any given public inputs to pro-
gram, the public outputs will be the same no matter what the secret
inputs were [9]. Information-flow extensions have been proposed to
several general-purpose languages [19, 22, 11], with safety proofs
given for some smaller subsets. Of course, the form of a soundness
(or safety) proof is different for a static system; in a static system,
the analysis produces a single result, which is sound if it bounds any
possible execution. By contrast, a dynamic system like ours might
give a different result for each program input, but the technique is
sound if each result bounds its corresponding execution.

Quantitative measurements based on information theory have
often been used in theoretical definitions of information-flow se-
curity [10, 6, 12], but quantification of leakage is more difficult
in static systems, since programs generally leak different amounts
of information when given different inputs. Clark et al.’s system
for a simple while language [4] is the most complete static quan-
titative information flow analysis for a conventional programming
language. Recent work on a formula giving precise per-iteration
leakage bounds for loops [13] provides a sound basis for estimating
information-flow, but the construction of a practical static analysis
on top of it remains an open problem.

The idea of using two copies of a program appears in a
static information-flow security proof technique known as self-
composition [1, 2, 23]. For instance, to prove that P satisfies non-
interference, self-composition considers a program P ;P ′ where P ′

is a copy of P with distinct low inputs and state variables, and asks
whether there are any inputs for which the program results are dif-
ferent. Thus self-composition reduces an information-flow property
to a safety property more amenable to standard proof techniques,
analogously to how our proof technique reduces information-flow
to behavioral equivalence. However, self-composition has been
used to prove particular programs secure (together with a tool such
as a theorem prover), whereas our technique proves the soundness
of an analysis algorithm.

6. Conclusion

We have described a novel proof technique for checking that a
dynamic information-flow analysis gives sound quantitative flow
bounds. The proof technique represents a bound on a program’s
information usage by giving a simulation of the program by a pair
of program replicas, one of which may only access secret data via
a channel whose bandwidth is bounded. If this pair of programs
can faithfully simulate the original one, then the original program
used only as much information in producing its output as passed
through the channel. By applying the proof technique to a core
language and analysis, we verified for the first time the soundness
of a previously-described practical flow-checking tool based on
binary instrumentation.
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