Directed Test Generation using Symbolic Grammars-

Rupak Majumdar

Ru-Gang Xu

CS Department, UC Los Angeles
rupak@cs.ucla.edu, rxu@cs.ucla.edu

ABSTRACT

We present CESE, a tool that combines exhaustive enumer-
ation of test inputs from a structured domain with symbolic
execution driven test generation. We target programs whose
valid inputs are determined by some context free grammar.
We abstract the concrete input syntax with symbolic gram-
mars, where some original tokens are replaced with symbolic
constants. This reduces the set of input strings that must be
enumerated exhaustively. For each enumerated input string,
which may contain symbolic constants, symbolic execution
based test generation instantiates the constants based on
program execution paths. The “template” generated by enu-
merating valid strings reduces the burden on the symbolic
execution to generate syntactically valid inputs and helps
exercise interesting code paths. Together, symbolic gram-
mars provide a link between exhaustive enumeration of valid
inputs and execution-directed symbolic test generation.

Preliminary experiments with CESE show that the combi-
nation achieves better coverage than both pure enumerative
test generation and pure directed symbolic test generation,
in orders of magnitude less time and number of generated
inputs. In addition, CESE is able to automatically generate
inputs that achieve coverage within 10% of manually con-
structed tests.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging
General Terms: Reliability, Verification

Keywords: symbolic grammars, grammar based testing,
random testing, concolic execution, testing C programs

1. INTRODUCTION

We consider the problem of automatic and comprehen-
sive test input generation for large software programs where
valid inputs to the system come from some structured do-
main. Examples of such software systems are compilers or

*This research is sponsored in part by the NSF grants CCF-
0427202, CCF-0546170, CCF-0702743, and CNS-0720881.

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ASE’07, November 4-9, 2007, Atlanta, Georgia, USA.

Copyright 2007 ACM 978-1-59593-882-4/07/0011 ...$5.00.

command processors, which accept inputs that form valid
strings in some context free language, or business applica-
tions which process input described by some XML schema.
There are two predominant ways to automatically generate
test inputs for such systems: enumerative and symbolic. In
enumerative test generation, all inputs satisfying a certain
input specification (e.g., , grammar for a parser or an XML
schema) are enumerated (up to some bounded size), and the
program is executed on all the inputs [9, 22]. In symbolic
test generation [8, 21, 36, 3, 16], the program is executed
on symbolic rather than (or in addition to [16, 32]) con-
crete inputs, and a set of constraints on the symbolic inputs
is collected along an execution trace. A constraint solver
is then used to generate test inputs that satisfy the sym-
bolic constraints. The resulting test inputs are guaranteed
to force the program execution along the path chosen by the
symbolic execution.

Specification-based exhaustive enumeration is guaranteed
to provide wvalid inputs to the program. This ensures that
the application goes beyond the parsing and input sanitiz-
ing phase and executes along deeper paths. Unfortunately,
exhaustive enumeration does not distinguish between dif-
ferent observable behaviors produced by the inputs. Thus,
a large set of redundant tests may be generated, each of
which has exactly the same execution behavior on the pro-
gram. Also, for almost all nontrivial programs, the set of
possible valid inputs is too large to completely enumerate,
and in practice, one explores a random sampling of the in-
put space, through some form of random or biased test input
generation. This is not comprehensive: very often, the prob-
ability that random testing exercises program corner cases,
where many bugs lurk, is astronomically small. In summary,
specification-based exhaustive enumeration, while selective,
in that it generates test inputs from the program’s expected
input domain, is not directed, in that the actual execution
paths are not considered in the test generation.

In contrast, test generation based on symbolic execution
is directed, exploiting path equivalences, and systematically
exploring new paths. However, most symbolic execution im-
plementations are not selective: they start with an unstruc-
tured buffer of symbolic variables, and hope to extract the
structure of the input by looking at the tests executed along
the path. While theoretically complete, symbolic techniques
are expensive, and ultimately limited by the capacity of the
symbolic engine. In practice, a symbolic test generator for a
compiler stays “forever” within the many paths of the parser,
generating incorrect inputs one after another, but exploring
only novel parse error paths!

We present a test input generation algorithm that com-
bines the advantages of selective enumerative test generation
and directed symbolic test generation. There is a tension
between the two techniques. For any single input, program
execution is orders of magnitude faster than symbolic explo-
ration, hence one should push as much work to enumerative
testing as possible. On the other hand, the number of possi-
ble inputs to be enumerated is astronomical, so one should
push as much work as possible to the symbolic engine to ex-
plore only non-redundant computations. Our solution is the
use of symbolic grammars that balance the two competing
requirements. Our test generation algorithm (1) transforms
a grammar specifying input format into a symbolic gram-
mar, (2) enumerates the set of valid strings in the symbolic
grammar using enumerative techniques, and (3) runs sym-
bolic test generation on the symbolic strings enumerated.

Take a grammar G for arithmetic expressions (numbers,
or the sum or difference of two arithmetic expressions):

exp = num|exp+ exp |exp — exp
num = [0—9]

For an input of size 3, enumerative techniques will gener-
ate all 210 valid strings of the form 0, ..., 9 (for integer
constants), and 0+0,0—-0,0+1,0—-1,...,9+9,9-0.
Symbolic techniques will start with three symbolic variables,
and generate a large set of invalid inputs (e.g., “+00”, “+-—
”) to explore (the large number of) character-by-character
comparisons in the lexer and error paths in the parser. In
contrast, a symbolic grammar G’ for G can replace the pro-
duction of num with

num i=— «

where « is a symbolic constant whose value is instantiated
during symbolic exploration based on comparisons in the
code. With this transformation, the number of possible valid
strings of length 3 are o, « + a, and o — . At this point,
we can run symbolic execution on the three inputs where
symbolic constants are instantiated with respect to unique
program paths.

Symbolic grammars enable several orders-of-magnitude
decrease in the number of strings to be enumerated, and
for each enumerated string, the symbolic constants generate
enough non-determinism for the symbolic test generation to
explore all paths of the program. Consequently, the use
of symbolic grammars lets us profitably combine enumera-
tive and symbolic test generation techniques to get a com-
bined test generation algorithm whose performance should
be much better than either alone. This last claim must be
empirically validated. We have implemented CESE (Con-
colic Execution with Selective Enumeration), a tool that
implements test generation using symbolic grammars for C
programs that specify their input syntax using lex and yacc,
on top of the Yagg string generator [9] and Cute concolic
execution [32] tools.

We have applied our implementation to generate test in-
puts for a set of open source programs. In our initial exper-
iments on a calculator for arithmetic expressions (used as
an example application in many yacc tutorials), CESE out-
performed both strictly enumerative and strictly symbolic
test generation. The symbolic grammar had two orders of
magnitude fewer strings to be enumerated. With symbolic
grammar-based enumeration, CESE explored two orders of
magnitude fewer inputs than Cute for input buffers of size

four, and could finish enumeration for larger buffers when
Cute could not finish within 5 hours. Similar trends were
borne out in other experiments. Overall, CESE was able
to achieve an average 10% more branch coverage than Cute
in a 30 minute testing budget. Further, limit experiments
where Cute was run for 5 hours showed that the branch
coverage obtained by Cute saturated (i.e., , did not signif-
icantly improve over the coverage obtained in 30 minutes),
and remained approximately 9% less than CESE running for
30 minutes. Further, for the programs in our suite that
came with manual testcases, we saw that branch coverage
obtained by CESE was within 10% of coverage with manual
tests. This difference could be attributed to program behav-
iors that only manifest with larger input buffers. We find
this impressive: in spite of enumerating very small input
buffers, CESE was able to come within the same ballpark as
carefully crafted manual tests. In comparison to pure enu-
merative (grammar-based) input generation, CESE gener-
ated several orders of magnitude fewer inputs, and achieved
slightly better (6% better) coverage under the same testing
budget. Since generated tests are often added to regression
suites, the many fewer tests generated by CESE (and con-
sequently, the much lower test execution time) indicates a
win for CESE. We also used CESE to check for buffer over-
flows, in particular, to check if a known buffer overflow in
the path resolution function of the wuftpd FTP server can
be detected. CESE found the bug in four minutes, whereas
Cute timed out without finding the bug in 13 hours. The
specific configuration that leads to this bug requires a buffer
of over 1000 bytes, making it outside the scope of exhaustive
enumeration, and making the odds against random testing
astronomically high. These initial results are clearly indica-
tive that CESE is a scalable and useful technique for au-
tomated comprehensive test generation, and can match or
outperform several known test input generation algorithms.

2. EXAMPLE

We introduce and motivate our technique by testing a
calculator example SimpleCalc that is seen in many tutorials
for yacc [19] and lex [23]. The SimpleCalc implementation
consists of 1826 lines of generated C code. The grammar for
SimpleCalc inputs is shown below.

Expressions e == (e)|exe|efe|ePe|lete|le—e
eVeleNe|—el|l|n
Letters I

‘[a—zA—Z]
[0—9]

Numbers n

The program takes an arithmetic expression with letters
as variables, various numerical operators, parentheses for
precedence, and logical operators. The calculator implemen-
tation replaces letters with numbers that have been recorded
in an array. Numerical and logical operators are directly
applied, and precedence is handled during parsing. This im-
plementation contains bugs: the SimpleCalc implementation
forgets to check for division or modulus by zero.

We test SimpleCalc with a fixed input buffer of four bytes
called input. We compare and contrast random testing, test
generation using concolic execution using the tool Cute, and
concolic testing with selective enumeration using CESE. We
restrict the size of our buffer to four so we can exhaustively
test all program paths using both Cute and CESE. Although
it is generally infeasible to run either Cute or CESE to com-
pleteness for large inputs or large programs, this small ex-
ample clearly highlights the differences between naive con-

colic execution, concolic execution with selective enumera-
tion, random testing, and specification-guided testing using
concrete grammars. We compare the branch coverage ob-
tained for both Cute and CESE, where branch coverage is
the percentage of branches executed, and whether the bugs
can be found. We also examine the effect of increasing the
input buffer size on these techniques.

2.1 Random Testing

With an input size of four bytes, there are (2%)* =
unique inputs. The input space is too large for exhaustive
testing all inputs. An automatic way of tackling this prob-
lem is to randomly choose inputs. However, we claim that
random testing is not effective for this examples because the
chances of hitting bugs are very low.

Based on the SimpleCalc grammar, there are 80,910 valid
strings of size four, 27,032 of size three, 62 of size two and 62
of size one. To calculate the number of valid input buffers,
we take account of the string terminator. With an input
of size one, the string terminator must be at input[l]. The
contents at input[2] and input[3] do not matter. Therefore,
there is a total of 2% -2%.62 = 4,187,046 inputs representing
valid strings of size one. Following the same calculation,
we have 15,872 inputs representing valid strings of size two,
27,032 of size three and 80,910 of size four, totaling close to
4.2 million valid inputs. Therefore, every input has around
a 0.1% chance of being a syntactically correct input and the
majority of these inputs will be only of size one, thus unlikely
to exercise any interesting paths.

Generating an input that will show buggy behavior in
this calculator is smaller. This implementation does not
check for divide by zero errors, therefore operations divid-
ing by zero or modulo by zero result in runtime exceptions.
Valid strings containing “/0” or “%0” result in this error.
For valid inputs of size four or less, there are only 372
inputs that demonstrate the error. Thus, random testing
has a 0.000009% chance of hitting bugs. In fact, even if
SimpleCalc is tested with 8 million random inputs, there is
only a 50% chance that a bug causing string would have been
generated. The problem, as is well-known, is that random
testing is neither selective nor directed.

232

2.2 Constrained Exhaustive Enumeration

Specification-based test generation improves the pitfalls
of random testing by generating inputs that are guaranteed
to satisfy certain well-formedness specifications [9, 17, 5,
20]. In particular, there are test input generators that take
as input a grammar (written, e.g., in yacc) describing valid
inputs, and generates test cases that satisfy the grammar [9,
25, 22]. Usually, these techniques exhaustively enumerate all
inputs satisfying the specification, and test the program on
all such inputs. Unfortunately, even for simple input speci-
fications such as our grammar for SimpleCalc, the space of
valid inputs is very big. As Table 1 demonstrates, for the
SimpleCalc example, the number of valid strings for an in-
put buffer of size six is already 187, 765,078. Enumerating
and testing this large space of inputs is expensive. More-
over, certain errors may only be exhibited when the input
buffer is much larger. Exhaustive enumeration can generate
many equivalent test cases, i.e., tests that have the same
observable behavior on the program. In this example, the
grammar-based input generator Yagg [9] generates the tests
040, 0+ 1, 0+ 2, etc., all of which exercise the identi-

cal program path. Thus, while the enumerative strategy for
specification-based testing is selective, it is not directed.

2.3 Symbolic or Concolic Execution

An alternative is symbolic execution of the code [21, 8],
where the program is executed on symbolic inputs, and sat-
isfying assignments to constraints collected along a program
path comprise new test inputs. Recent attempts combine
symbolic execution with concrete random execution of the
code [16, 32, 6] (called “concolic execution” in [32]). The
concrete execution allows the symbolic execution to simplify
constraints based on the concrete values along the run. Sym-
bolic execution based test generation is directed: test inputs
are generated by systematically exploring program paths at
the symbolic level, and these inputs are then guaranteed to
execute along pre-determined paths. Thus, the set of test
inputs generated are not redundant: each leads to a different
program path.

Unfortunately, current implementations of concolic execu-
tion based test generation are not selective: test inputs are
generated randomly, and iteratively refined using symbolic
constraints. While theoretically complete in the limit, in
practice, the lack of selectivity is a serious problem, and a
very large number of inputs must be generated to reach the
part of the code not related to input error handling. This
leads to poor coverage for most realistic testing budgets.

We test the capability of symbolic execution based test
generation on the calculator example, using Cute, an im-
plementation of concolic execution [32]. To test SimpleCalc
with Cute, we created a symbolic input buffer of size four.
Cute then exhaustively generates all paths in the program
by iteratively finding satisfying assignments to constraints
that lead to paths that have not yet been covered. Unfortu-
nately, the code for parsing examines all possible values for
its input characters. For lex, this operation is represented
by a table lookup. Figure 1 shows branches that are equiva-
lent to this table lookup. From just these 10 branches, Cute
can derive 10* unique paths for a size four buffer. Coupled
with the other branches in the code, Cute needed to explore
a total of 248,523 inputs, taking 30 minutes. This worsens
as the input size increases. As Table 1 shows, we could not
finish exhaustive testing of program paths for buffers greater
than four characters even after 5 hours.

24 ThisPaper: Ccese

The main idea of CESE is to combine the selectiveness of
specification-guided test generation with the directedness of
symbolic or concolic test generation. To do this, we intro-
duce symbolic grammars. It will be convenient for us to con-
sider context free grammars where the terminal symbols are
regular expressions rather than individual characters from
an alphabet. A symbolic grammar for a (concrete) gram-
mar replaces some terminals of the grammar with a symbolic
constant. Each string in the symbolic grammar represents
a set of strings, where each symbolic constant is substituted
with a string in the regular expression which it represents.

For example, a symbolic grammar G, for SimpleCalc
replaces the concrete productions for letters and numbers
with symbolic placeholders:

Letters [
Numbers n =

@R

Number of Inputs by Technique Time Coverage
Length | Grammar | Exhaustive Cute | Sym Grammar CESE | Cute | CESE

1 62 28 21 1 21| 0.5s 4s | 124/344 = 36%
2 124 216 247 2 40 2s 3s | 179/344 = 52%
3 27,156 2% 2,515 11 1,711 | 20s 24s | 186/344 = 54%
4 108,066 232 | 248,532 35 6,611 | 30m 3m | 194/344 = 56%
5| 47,008,834 210 n/a 201 | 260,792 | n/a 1h | 200/344 = 58%
6 | 187,765,078 218 n/a 652 | 1,492,802 | n/a 3h | 200/344 = 58%

Table 1: Effect of input size. Length is the maximum size of the input buffer. In the Number of Inputs
by Technique column: Grammar denotes the number of syntactically valid strings, Exhaustive denotes the
number of unique buffers, Cute gives the number of inputs generated by Cute, Sym Grammar gives the
number of strings in the symbolic grammar, CESE gives the number of inputs generated by CESE. Time gives
the execution time for CESE denoted by CESE and the execution time for Cute denoted by Cute in seconds (s),
minutes (m) or hours (h). Coverage shows the branch coverage for both Cute and CESE in the first 4 rows,
but just for CESE in the last two. Cute did not terminate within 5 hours for those tests so such entries are

marked as n/a.

where a and [are symbolic constants. With this change,
the number of strings of a certain length that can be gen-
erated by the grammar reduces significantly. For example,
instead of the 100 different strings “0/0”, “0/1”, ..., “9/9”
representing division, we now have just one symbolic string
“B1/B2" representing all these concrete strings. Note that
we use subscripts for the different occurrences of the sym-
bolic variables, each occurrence of a symbolic constant is
instantiated separately.

The original program does not know about symbolic con-
stants so our test generation algorithm must instantiate
symbolic constants with actual constants. This instantia-
tion can be performed in a directed way by treating symbolic
constants as unconstrained symbolic values to be filled in by
concolic execution. Think of a string generated by a sym-
bolic grammar as a string with “holes” for certain terminals.
These holes are filled in by a concolic execution, depend-
ing on branches executed within the code. Together, the
reduction in the number of possible strings in the language
enables exhaustive enumeration to scale —thus providing
selectivity— and concolic execution with the symbolic con-
stants enables exploration of non-redundant strings — thus
providing directedness.

This is the basic idea of CESE. We convert the concrete
grammar to a symbolic grammar by replacing certain lexical
tokens with symbolic constants. What tokens to replace is
decided by a simple heuristic. If the token represents one
concrete string (e.g., lexical tokens corresponding to pro-
gram keywords or operators), it is not replaced. On the
other hand, if the lexical token corresponds to an unbounded
set of concrete strings (e.g., variable names, numbers), we
replace it with a symbolic constant. Second, we exhaustively
enumerate all symbolic strings from the symbolic grammar
(G410 in the example) up to a certain size. Third, for each
(symbolic) string, we use concolic execution to perform di-
rected testing, where each symbolic constant is considered
to be an unconstrained input to be solved for.

For example, “a1 4+ a2” is run by forcing only the second
byte to be '+’ and allowing concolic execution to generate
values for a1 and aq that exercise different paths. For this
particular symbolic input, concolic execution exercised 188
unique paths. By working on the symbolic grammar, CESE
has replaced 3,844 possible runs (corresponding to the valid

if (kyy_cp >= 0 && *yy_cp <= 0) yy_c = 0;
if (xyy_cp >= 1 && *yy_cp <= 7) yy_c = 1;
if (kyy_cp >= 8 && *yy_cp <= 8) yy_c = 2;

if (xyy_cp >= 9 && *yy_cp <= 31) yy_c =1
if (xyy_cp >= 32 && *yy_cp <= 32) yy_c
if (kyy_cp >= 33 && *yy_cp <= 47) yy_c
if (xyy_cp >= 48 && *yy_cp <= 57) yy_c
if (xyy_cp >= 58 && *yy_cp <= 96) yy_c
if (kyy_cp >= 97 && *yy_cp <= 122) yy_c =
if (xyy_cp >= 123 && *yy_cp <= 255) yy_c = 1;

I | I [}
PR Wee

H
H
H
H
s

Figure 1: Calculator Lexer.

grammar strings) with 188 concolic executions. Compared
to Cute, CESE gets the same coverage for substantially fewer
inputs (6,611 versus 248,532) and an order of magnitude
less time (3 minutes, versus 30 minutes). Table 1 shows the
number of symbolic strings generated and also the number
of concrete inputs generated from all those symbolic strings.

While the number of inputs still grows as the input buffer
size increases, the significant reduction in the input space
by moving to a symbolic grammar allows us to exhaustively
search larger inputs. In further experiments detailed in Sec-
tion 4, we have found that this combination of selective sym-
bolic test input generation together with directed search is
essential in scaling concolic test generation to real examples.

3. THE CESE APPROACH

3.1 Programs

We describe our algorithm on an idealized imperative lan-
guage. The operations of the programming language consist
of labeled statements £ : s. Labels correspond to instruction
addresses. A statement is either (1) the normal termination
statement halt or the abnormal program termination state-
ment abort, (2) an input statement £ : | := input(k, G) that
copies an external character buffer of size k into a buffer | of
size at least k, where the input is expected (but not guaran-
teed) to be from a context free language defined by the con-
text free grammar G, (3) an assignment [:= e where [is an
lvalue and e is a side-effect free expression, (4) a conditional
statement if (e)goto £ where e is a side-effect free expression
and / is a program label. Execution begins at the program

label £p. For a labeled assignment statement ¢ : [:= e, or
input statement ¢ : [:= input(k,G) we assume £ + 1 is a
valid label, and for a labeled conditional ¢ : if (e)goto £’ we
assume both ¢’ and £+ 1 are valid program labels.

The set of data values consists of program memory ad-
dresses and character values. The semantics of the program
is given using a memory consisting of a mapping from pro-
gram addresses to values. Execution starts from the initial
memory My which maps all addresses to some default value
in their domain. Given a memory M, we write M[m +— v]
for the memory that maps the address m to the value v and
maps all other addresses m’ to M(m').

For an assignment statement ¢ : [:= e, the address m of
the left-hand side [, where the result is to be stored, and
the expression e is evaluated to a concrete value v in the
context of the current memory M, the memory is updated
to M[m — v], and the new program location is £+ 1. For an
input statement ¢ : [:= input(k, G), the transition relation
updates the memory M to the memory M[m +— v] where m
the base address of the buffer [, and v is a nondeterministi-
cally chosen character buffer of size k, and the new location
is £ + 1. For a conditional £ : if(e)goto ¢', the expression e
is evaluated in the current memory M, and if the evaluated
value is zero, the new program location is ¢’ while if the value
is non-zero, the new location is £+ 1. In either case, the new
memory is identical to the old one. Execution terminates
normally if the current statement is halt, abnormally if the
current statement is abort.

3.2 Concolic Test Generation

We briefly recapitulate the concolic testing algorithm from
[16, 32, 6]. Concolic testing performs symbolic execution of
the program together with its concrete execution. It main-
tains a symbolic memory map p and a symbolic constraint £
in addition to the (concrete) memory. These are filled in dur-
ing the course of execution. The symbolic memory map is
a mapping from concrete memory addresses to symbolic ex-
pressions, and the symbolic constraint is a first order formula
over symbolic terms. The details of the construction of the
symbolic memory and constraints is standard [36, 16, 32].
That is, at every statement £ : [:= input(k, G), the symbolic
memory map g introduces a mapping m — (ai,...,qk)
from the address m of [to a tuple of k fresh symbolic values
ai,...,ar, and at every assignment £ : | := e, the symbolic
memory map updates the mapping of the address m of | to
u(e), the symbolic expression obtained by evaluating e in
the current symbolic memory. As an optimization, a map-
ping is maintained in the symbolic memory for an address m
iff the value at m is a symbolic expression, if it is a concrete
value, the mapping is not maintained in p. The concrete
values of the variables (available from the memory map M)
are used to simplify p(e) by substituting concrete values for
symbolic ones whenever the symbolic expressions grow too
large or go beyond the theory that can be handled by the
symbolic decision procedures.

The symbolic constraint £ is initially true. At every con-
ditional statement ¢ : if(e)goto ¢, if the execution takes
the then branch, the symbolic constraint £ is updated to
EN(u(e) # 0) and if the execution takes the else branch, the
symbolic constraint £ is updated to & A (u(e) = 0). Thus,
& denotes a logical formula over the symbolic input values
that the concrete inputs are required to satisfy to execute
the path executed so far.

Given a concolic program execution, concolic testing gen-
erates a new test in the following way. It selects a conditional
£ : if(e)goto £’ along the path that was executed. Let & be
the symbolic constraint just before executing this instruc-
tion and &. be the constraint generated by the execution of
this instruction. Using a decision procedure, concolic testing
finds a satisfying assignment for the constraint & A—&.. The
property of a satisfying assignment is that if these inputs are
provided at each input statement, then the new execution
will follow the old execution up to the location ¢, but then
take the conditional branch opposite to the one taken by the
old execution.

3.3 Symbolic Grammars

Let ¥ be a finite alphabet. A terminal is a regular ex-
pression over X. We define a grammar G = (Vi, Vn, R, S)
where V; is a finite set of terminals, V,, is a finite set of
variables, R C Vi, x (V, U V4)" is a finite set of production
rules, and S € V,, is a distinguished start variable. The
language L(G) C X* of the grammar G is defined in the
usual way [33]. The language L, (G) C X* of the grammar
G = (W&, Vi, R, S) is defined as all strings derived from h ap-
plications of any of the productions rules R from the start
variable S. A word w € L, (G) has a height of h.

Let ai,...,ar be k symbolic names not in ¥. We
assume each «a; stands for the regular language {a;}.
A symbolic grammar G' for a grammar G w.r.t. termi-
nals T = {t1,...,tx} C Vi is the grammar (Vi \ T U
{ai,...,ar}, Va, Rlai/ti], S) where Rlo/t;] substitutes «;
for each occurrence of t; for i € {1,...,k}. The language of
the symbolic grammar G’ is a subset of (SU{a1,...,a,})".
Notice that a string can now contain symbolic constants.

A symbolic grammar G’ abstracts a concrete grammar G
in the following sense. For any string w € L(G), there
exists w'(B1,...,8k) € L(G') with symbolic constants 1,
..., Br replacing terminals t1, ..., tx such that there ex-
ist strings a1 € L(t1), ..., ax € L(ty) such that w =
w/[ﬁl/ah oo 7ﬁk/ak]'

Given a (concrete or symbolic) grammar G and a height h,
all possible strings in Ly (G) can be enumerated by dynamic
programming [9].

3.4 The cese Algorithm

The CESE algorithm has four phases: symbolic grammar
construction, exhaustive enumeration, program instrumen-
tation, and concolic execution. Let P be a program with
input statements m; := input(k;, G;) for some range of in-
dices 1.

For the first phase, we construct a symbolic grammar G,
for each concrete grammar G;. The symbolic grammar con-
struction uses the following heuristic. If a lexical token is
a constant string (equivalently, if the regular expression de-
fines a singleton language), then no symbolic constants are
generated. Otherwise, we distinguish between finite regu-
lar languages and infinite regular languages. This distinc-
tion can be checked by looking for cycles in the derived
automaton. For a finite regular language with bound k
on the length of strings, we introduce k symbolic variables
ai,...,ar and replace the token with the k sequences ag,
12, ..., a1...a. For an infinite regular language, we
replace the token with the symbolic regular language o™ de-
noting any number of symbolic constants.

In our experiments, the tokens either defined regular lan-
guages with one letter strings (e.g., tokens for single-letter
variable names in SimpleCalc), or infinite regular languages
(e.g., tokens for numbers).

However any subroutine that converts a concrete grammar
to an abstracting symbolic grammar can be used. There is
a trade-off between the number of symbolic strings with the
number of symbolic variables in each string. As the number
of symbolic variables increases, the number of valid symbolic
strings decreases. For example, the coarsest abstraction is
an unbounded number of symbolic letters. This symbolic
grammar only contains four strings for an input of size four:
a1, arae, arazaz and ajazasays. However using this ab-
straction is equivalent to just using concolic execution.

Once a symbolic grammar is constructed, we use exhaus-
tive enumeration techniques [9, 22, 25] to generate strings
from the grammar G’ up to height h;. The generated strings
have both constant symbols and symbolic constants. For
each choice w € Ly, (G}) and the length of w is less than k;,
we replace the statement m; = input(k;, G;) with the loop:*

for j =0 to k; — 1 do m;[j] := ~[j]

where v[j] = w[j] if w[j] is a constant symbol, and ~[j] =
input(1,-) if w[j] is a symbolic constant. Here, input(1,-)
generates a single character (and we ignore the grammar
component). The effect of the loop is to only retain the
symbolic constants in the string as inputs, while instantiat-
ing all constant symbols.

Finally, we perform concolic execution on this instru-
mented program.

The correctness of the CESE algorithm is defined relative
to the Cute algorithm and the algorithm that enumerates
all valid strings and executes the program on each string.
Specifically, for any program P (that generates exclusively
constraints within the capability of the underlying constraint
solver), the set of paths explored by Cute on valid inputs (an
input input(k, G) is valid if the k characters do form a string
in L(G)) is exactly the same as the set of paths explored by
CESE. Further, this set is exactly the set of paths explored by
exhaustive enumeration of all strings from G and executing
the program on each string.

4. EXPERIMENTS

CESE was implemented for programs that use yacc and
lex to describe their inputs. Both symbolic grammar gener-
ation and symbolic string generation were automatic. We
used Yagg [9] to automatically generate symbolic strings
from our symbolic yacc and lex grammars and Cute [32]
as our concolic testing engine. Cute was modified to han-
dle reasoning about statically allocated arrays by replacing
those array accesses by branches, as seen in Figure 1. We
used lp_solve [1] as our underlying linear constraint solver.
For real applications, there are rarely resources to explore
all symbolic strings, therefore, we can choose which sym-
bolic inputs to use. In the implementation, we sorted the
inputs by the number of symbolic constants in the input.
This optimization on the average increases coverage by 3%
in our 30 minute experiments.

'Our basic imperative language does not have a for loop.
However, we write this for loop for readability. This can eas-
ily be converted to more basic control flow in our language.

We ran two sets of experiments to test coverage and bug
finding. Section 4.1 compares the effectiveness of CESE,
naive concolic testing, random testing and specification
based testing in branch coverage. Section 4.2 describes how
concolic testing and CESE can find a deep buffer overflow
bug. All experiments were performed on a MacBook Pro
2.33 Ghz Intel Core 2 Duo with 2GB RAM running Mac OS
X 10.4.8.

4.1 Coverage

Our first set of experiments measured branch coverage.
We can distinguish a branch statically (i.e., location in the
code) or dynamically (i.e., location on an executed path).
Branch coverage is statically unique branches executed over
all runs divide by the total number of branches in the pro-
gram. For all experiments, CESE distinguished each branch
dynamically to explore program paths, but then measured
the number of statically unique branches covered. CESE can
also explore paths based on distinguishing static branches
only but the measured branch coverage is usually signifi-
cantly reduced in that case[15].

We tested five programs bc, lua, logictree, cuetools,
and wuftpd. bc is the popular UNIX calculator. lua is an
interpreter. logictree is a logical formula solver. cuetools
is an API for playlists. wuftpd is a popular FTP server.
These programs were modified to take a buffer as an in-
put and were linked with a concolic execution aware string
library.

Each program has several command line and configura-
tion options. We restrict the programs to have their default
configurations and do not explore the alternate configura-
tions. We ran CESE on each program for 30 minutes. For
each program, CESE generated words with up to h appli-
cations of the production rules of the symbolic grammar,
where the parameter h was chosen so that all words that
can be derived with h — 1 applications, would be explored
within 30 minutes. Table 5 shows the values of h in the
Height column. Also note that the generated inputs can
be used independently of CESE as part of a regression suite.
All inputs generated by CESE for all experiments can be re-
run without the symbolic execution and constraint solving
in less than 5 minutes. We focus on measuring test genera-
tion for the default configuration so we may compare against
other approaches.

Manual Testing. Each program has various command line
or configuration options, but for all experiments only the
default configuration was used. Since we do not exercise
all configuration options, full branch coverage is not pos-
sible. To estimate the maximum possible branch coverage
based on the default configuration, we measure the branch
coverage of test cases created by the program developers.
We found testcases for all programs except for wuftpd. All
manual testcases were relatively complex and required sub-
stantial knowledge of the program to create. These testcases
included mathematical algorithms, sorting algorithms, and
a large CD playlist.

Table 2 shows how CESE running for 30 minutes compares
to manually created test cases. CESE’s automatically gen-
erated inputs have 10% less total coverage than the manual
tests. We found this quite remarkable considering that two
of these programs were language interpreters that included
large sets of library functions that were unspecified in the
grammar. Also, to our surprise, CESE performed slightly

better in the cuetools testcase, because the developer only
considered certain types of music lists and did not utilize
the complete grammar. In the other programs, CESE was
not as effective as manually created tests because CESE did
not use a large enough input buffer or did not have time to
enumeratively explore all symbolic constants.

Naive Concolic Testing. We used Cute [32] for the com-
parison. For all our Cute experiments, we chose the input
size to provide the best coverage for each 30 minute run. In-
put size was 10 for all Cute experiments. Table 3 shows
the results. On average, CESE had a 10% improvement
over Cute. Usually, CESE generates fewer inputs in the al-
lotted time, because CESE explores deeper paths resulting
in longer execution times while runs generated by Cute are
short runs resulting from parse errors. However in wuftpd,
Cute generated less inputs, because the number of symbolic
constants and their constraints overwhelmed the constraint
solver, causing it to timeout. As seen in Table 5, CESE could
generate longer input strings with significantly less symbolic
variables. Cute required all of the input to be symbolic there-
fore creating a burden in the constraint solving and limiting
the input size.

We also investigated how long it would take naive concolic
test generation to achieve the same amount of coverage as
running CESE for 30 minutes. Cute cannot get close to the
same coverage as CESE even when given ten times as much
time. We ran Cute for five hours on each program. There
was only a slight increase (1%) in average coverage — still 9%
less coverage than running CESE for 30 minutes. Note that
for programs requiring larger valid strings such as cuetools,
there was no improvement. Cute is stuck in the parsing code
— doing a search that is exponential in size of the input.
CESE on the other hand, essentially skips a large part of
the parsing code and its performance instead depends on
the number of production rules and the number of symbolic
variables in the symbolic grammar.

Specification-Based Testing. We used the concrete
grammar to exhaustively generate inputs with up to h ap-
plications of the production rules where h was chosen such
that we could explore all inputs with h — 1 applications. Ta-
ble 5 shows h per program in the Height column. Table
4 shows the coverage for 30 minute runs of grammar based
testing. Grammar based testing generates more inputs than
CESE in the same amount of time, but CESE explores in-
puts with more height, therefore, more complex and longer
paths. The introduction of symbolic letters in CESE reduces
the input space without sacrificing coverage. Normally, this
reduction is so significant that the cost of symbolic execution
is worth it (i.e., for be, there were 790 CESE inputs of height
3 but 257074 concrete words of height 3). However, gram-
mar based testing was slightly better than CESE for logic-
tree. logictree’s grammar allowed grammar based testing
to explore words of higher height than CESE in 30 minutes.
However, as we explore words with increasing height, there
is a combinatorial blowup in the number of concrete words.
If testing increased to one hour, CESE will explore words of
greater height than traditional grammar testing.

Overall, CESE only performed 6% better than
enumeration-based testing in the same budget. How-
ever, the number of inputs generated by CESE is usually
an order of magnitude fewer than the number of inputs
generated by exhaustive enumeration. Moreover, without
test generation, the total run time of CESE inputs was 5

minutes, in contrast to 2.5 hours for exhaustive enumera-
tion. Given that generated inputs are often added to the
regression suite, this clearly indicates the superiority of
CESE with respect to test suite quality.

Random Testing. We also applied random testing for 30
minutes. We fixed the input length to be 10 for each program
because that value gave the best coverage results. As seen
in Table 4, random testing explored the most inputs but was
the least effective, because most random inputs were invalid
and only exercised the syntax error handling code of the
test programs. These results reaffirm that random testing is
ineffective for programs requiring structured inputs.

Discussion and Limitations. As described in Section 2,
both concolic execution and specification based testing have
limitations. The combination of the two, as shown in our
experiments, lessen these limitations, allowing CESE to have
better performance and scale to larger programs.

Concolic testing is limited to the number and types of
constraints generated by the program. If the constraints are
beyond the theory of the constraint solver, concolic testing
resorts to random testing. If the number of constraint be-
comes large, the constraint solver will become very slow.
Although in our experiments all constraints were within the
theory of lp_solve, both lua and wuftpd generated con-
straints that caused 1p_solve to timeout when using naive
concolic testing. Specifically, uses of switch statements and
the strlen function introduces many inequalities in our con-
straints resulting in an exponential increase in the number
of constraints to be solved. CESE greatly reduces the num-
ber of symbolic constants per input. Instead of testing the
program with one large symbolic input, CESE divides the
search space using knowledge of the grammar, thus allowing
CESE to run all experiments without causing the underly-
ing constraint solver to timeout. However, these limitations
still affect performance when CESE is used to generate large
inputs.

With larger inputs, lex and yacc style symbolic grammars
do not give us enough constraints. Consider the following
program that calculates the 10th factorial in the bc lan-
guage:

define f (x) {
if (x<=1) return(1)
return (f(x-1)*x)
}
£ (10)

This 60 character input contains 30 tokens and 9 symbolic
constants in our symbolic grammar for bc. Generating in-
teresting inputs of this size is still infeasible. Enumerating
all possible symbolic strings and executing them with a large
number of symbolic constants would take far too many re-
sources.

Also, the grammar does not capture semantic properties
of the input. For example in bc and lua, we must rely solely
on concolic execution to ensure only defined functions are
being used, assigned variables are being read, input is type
correct, etc. Other properties are not captured by either
the grammar nor can be found by concolic execution. For
example in lua, there is a large set of library functions such
as “print” that can be called. These functions do not appear
in the grammar, and calls to these functions are sufficiently
deep making it hard if not impossible for concolic execu-
tion to realize them. To remedy this, one can either use a

more descriptive grammar such as one that captures seman-
tic properties i.e., £ (10) is a valid expression only if f has
been defined, or to focus on specific classes of bugs.

In summary, our preliminary data suggests that CESE is
highly effective in quickly generating a small test suite that
can match or outperform many other test generation algo-
rithms, and can get close to coverage obtained by manual
testing while investing in a relatively short testing budget.
However, more expressive specifications are required in order
to explore deeper parts of the program state space.

CESE Grammar
Program Height | Len | Sym | Height | Len
bc 3 10 2 3 10
logictree 6 5 3 7 6
cuetools 11 40 3 11 40
lua 11 20 5 7 10
wuftpd 15 21 4 13 16

Table 5: Inputs: CESE and Grammar Based Test-
ing. Height is the maximum applications of produc-
tion rules and Len is the maximum generated input
length for grammar based testing and CESE. Sym is
the maximum number of symbolic constants in CESE
inputs.

4.2 Bug Finding

Next we investigate the effectiveness of using CESE to find
a specific class of memory access bugs. We use CESE to find
a known buffer overflow in wuftpd that is difficult to find
with Cute. We show that CESE allows concolic testing to
scale so it can find interesting bugs that are beyond conven-
tional techniques.

In the path lookup code in wuftpd, the fb_realpath()
function has an off-by-one error that can be used as a buffer
overflow with specifically crafted instructions. Figure 2
shows the bug. If resolved is equal to a non-root direc-
tory, then an extra “/” is added. Therefore, the MAXPATHLEN
check is incorrect because rootd should be !rootd in line
07. Although this function is called by any command that
uses pathnames, finding this bug is difficult because one
needs to call this function with a pathname containing direc-
tory symlinks that results in a resolved pathname of exactly
MAXPATHLEN size.

However even if we avoid this difficulty by restricting path-
names to contain a specific directory symlink that can ex-
ercise this error, finding the other pieces is still difficult.
Suppose MAXPATHLEN is 1024 bytes and the directory link
expands from a single letter directory link to a 23 letter
directory name. Then the size of the string acting as the
buffer must be exactly 1000 characters long. Also, there
is the requirement of generating the right command. Ran-
dom testing fails because the chance of both the directory
and command string being generated is infinitesimally small.
Although grammar-based testing will find the right com-
mands to execute, grammar-based testing also fails because
the number of valid strings smaller than the bug causing in-
put is huge. For example, there are 27'°%° strings of lower
case letters and the character '/’ with length 1000. If we
use a combination of random and grammar-based testing,

/*

* Join the two strings together, ensuring that the
* right thing happens if the last component is

* empty, or the dirname is root.

*/

00 if (resolved[0] == ’/’ && resolved[1] == ’\0’)
01 rootd = 1;

02 else

03 rootd = 0;

04

05 if (*wbuf) {

06 if (strlen(resolved) + strlen(wbuf) +
o7 rootd + 1 > MAXPATHLEN) {

08 errno = ENAMETOOLONG;

09 goto erril;

10 }

11 if (rootd == 0)

12 (void) strcat(resolved, "/");

13 (void) strcat(resolved, wbuf);

14 }

Figure 2: wuftpd buffer overflow bug. In line 07,
rootd in the comparison with MAXPATHLEN should be
'rootd

we still are likely to fail to generate such a large string of
that specific size.

Concolic testing can theoretically find this bug by using
symbolic execution on string lengths. We experimentally
compare pure concolic testing against CESE by using both
techniques on wuftpd. The directory symlink is incorporated
into both techniques as extra constraints on the input. The
goal of the test is to generate any of the eight commands
that can hit the bug and a string which, combined with
the resolution of a known directory symlink, has a length of
exactly MAXPATHLEN.

Length Abstraction. Although generating an input that
exercises this buffer overflow requires a large pathname and
therefore a large input buffer, both CESE and Cute can use
a length abstraction for the strings while generating inputs
[13]. The concolic execution input is changed to include both
the original input buffer and a symbolic length. Concolic ex-
ecution can track the length constraints on the inputs by by
instrumenting the various string and memory manipulation
library functions with the appropriate symbolic operations.

Using this length abstraction, CESE finds the overflow
within four minutes while Cute does not find it within thir-
teen hours. Symbolic grammars allowed concolic execution
to scale by reducing the number of constraints needed to
be solved and the total number of inputs needed to be ex-
plored. Specifically, Cute is stuck tracking constraints in the
parsing of commands. Even after 13 hours of execution and
over 29,116 generated inputs, Cute still does not increase its
coverage of wuftpd and does not find the bug. On the other
hand, CESE gets the command from the grammar and thus
has fewer symbolic values to solve and less inputs to gener-
ate. Therefore, CESE finds the bug in 4 minutes and achieves
43% branch coverage in 30 minutes while Cute gets only 19%
coverage and does not find the bug within 13 hours.

5. RELATED WORK

There is a substantial body of related work in automatic
test generation that leverage techniques in static analysis
and grammar-based specification.

CESE (30 min) | Manual Testing
Program LOC Coverage | Inputs Coverage
bc 12K | 1010/2500 = 40% 133996 1235/2500 = 49%
logictree 8K | 599/1376 = 43% 16827 740/1376 = 53%
cuetools 10K 572/1876 = 31% 99367 514/1876 = 27%
lua 32K 704/2422 = 29% 1061 1300/2422 = 54%
wuftpd 36K | 552/1285 = 43% 10168 n/a

Total Coverage ||

[3437/9459 = 36% | [

3789/8174 = 46%

Table 2: Coverage: CESE and Manual Testing. LOC is lines of code.
Inputs is the number of inputs generated. Manual Testing

executed branches divided by total branches.

Coverage denotes the branch coverage for the developers’ testcases.

developers’ testcases.

Coverage is the branch coverage —

n/a denotes we could not find the

Cute (30 min) Cute (5 hour)
Program LOC Coverage | Inputs Coverage | Inputs
bc 12K 865/2500 = 35% 148868 883/2500 = 35% 949948
logictree 8K 298/1376 = 22% | 225103 341/1376 = 25% | 2133323
cuetools 10K | 456/1876 = 24% | 147915 456/1876 = 24% 720384
lua 32K 584/2422 = 24% 2734 668/2422 = 28% 22939
wuftpd 36K 238/1285 = 19% 1139 | 238/1285 = 19% 11195

Total Coverage ||

[2441/9459 = 26%

| 2586/9459 = 27% |

Table 3: Coverage: Cute. LOC is lines of code. Coverage is the branch coverage — executed branches divided
by total branches, and Inputs is the number of inputs generated, for 30 minute Cute runs and 5 hour Cute

runs.

Random Testing. Random testing is a widely used auto-
mated test generation technique [18, 4, 14, 27, 28]. However
the probability of using pure random testing to find inputs
that cause bugs is small [29] and many inputs result in the
same code coverage. Heuristics and user guidance can be
used to generate “good” random inputs that find bugs and
increase coverage. Eclat [30] infers software behavior by ex-
amining example tests and uses this inferred knowledge to
filter random test inputs. Randoop [31] creates a sequence of
randomly selected method calls whose arguments come from
previously generated inputs with the help of user specified
filters. JCrasher [10] randomly generates parameters to test
methods, and uses additional heuristics to rank exceptions
in the tested code. We avoid having to use heuristics by
guiding the input generation through constraints generated
by the code, thus guaranteeing non-redundant tests and sys-
tematic coverage.

Specification-based Testing. Specification-based testing
[17] is used to generate valid input that random testing
has little chance of creating. Specification-based testing has
been used for a wide variety of applications such as the Java
virtual machine [34], XML testing [2], and Haskell [7].

Bounded exhaustive specification testing has been imple-
mented in tools such as Yagg [9], TestEra [20] and Korat [5].
Both Korat [5] and TestEra [20] are tools that use specifi-
cations to test Java data structures. Yagg [9] generates all
strings of a grammar up to a given depth.

Exhaustive enumeration of all possible inputs is gen-
erally infeasible so randomized testing is combined with
specification-based testing. [26, 34, 7] use stochastic test-
data generation where input is described with a grammar
but rules are annotated with probabilities. Further annota-
tions can be added to restrict the expansion of certain terms

such as specifying the depth of productions, adding a guard,
or specifying a production rule direction. Languages that
describe these grammars include Geno [22] and DGL [25].
Our tool can use any specification-testing technique that
generates strings such as [25, 22, 35, 26, 34, 7, 9]. While prior
work uses random testing on terms that are left unexpanded,
we use concolic testing on these terms. By using concolic
testing, we can hope to find inputs that are hard to hit at
random.
Hybrid Approaches. Recent work has combined static
analysis with test input generation to increase coverage and
eliminate false positives. CnC [11] creates inputs that cause
errors from constraints generated by static analysis. DSD
[12] further reduces false positives in CnC by inferring in-
variants using dynamic analysis. EXE [6], DART [16], and
Cute [32] further extend this by running symbolic execution
with concrete execution. In all these techniques whenever
a bug is suspected, an input is generated that will expose
the bug. Unfortunately, exhaustive running the program
both concretely and symbolically is very expensive. [24] in-
terleaves random testing with concolic testing to reduce the
burden of constraint solving. Our work is similar in that it
helps performance by allowing Cute to explore certain parts
of the input but instead of using random testing, we rely on
specifications, drastically reducing the number of inputs to
be explored and increasing the speed of execution of each
input. Some recent approaches use function summaries to
reduce path explosion [15]. These techniques are comple-
mentary to CESE, but all share the same design goal of al-
lowing concolic execution to go beyond the initial parsing
code.

Grammar (30 min) Random (30 min)
Program LOC Coverage | Inputs Coverage | Inputs
bc 12K 779/2500 = 31% | 262773 626/2500 = 25% | 401673
logictree 8K | 620/1376 = 45% | 272851 526/1376 = 38% | 461524
cuetools 10K 425/1876 = 23% | 256748 452/1876 = 25% | 428672
lua 32K 650/2422 = 26% | 245130 541/2422 = 22% | 390404
wuftpd 36K | 377/1285 = 29% | 290356 68/1285 = 5% | 489904

Total Coverage |

| 2851/9459 = 30% |

[2213/9459 = 23% | |

Table 4: Coverage: Grammar Based Testing and Random Testing. LOC is lines of code.

Coverage is the

branch coverage — executed branches divided by total branches, and Inputs is the number of inputs generated.

6. CONCLUSIONS

Although concolic execution, in theory, can exhaustive
search all paths in a program, in practice, there is rarely
enough resources to rely solely on it. Instead, we show that
some knowledge of the input domain (encoded through sym-
bolic grammars) can provide extra constraints that enable
exploration of deeper and more interesting paths quickly.
Executing all symbolic strings from a symbolic grammar
with concolic execution gives coverage equivalent to execut-
ing all valid strings from the corresponding concrete gram-
mar. Symbolic grammars can be automatically generated
from concrete grammars that are widely used in real appli-
cations. While technically simple, the technique is highly
effective compared to random testing, specification based
testing, and naive concolic execution. Our implementation
of CESE shows that the technique can scale to real programs
and find deep bugs in software that are difficult to find with
other techniques. In fact, the failure to find the ftp buffer
overflow bug with earlier techniques was the motivation for
our work.

7[1} hBEE}%@EN%%? K. Eikland, and P. Notebaert.

Ip_solve (5.5.0.10). 2007.

[2] A. Bertolino, J. Gao, E. Marchetti, and A. Polini.
Systematic generation of XML instances to test complex
software applications. In RISE, 2006.

[3] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and
R. Majumdar. Generating tests from counterexamples. In
ICSE, 2004.

[4] D. L. Bird and C. U. Munoz. Automatic generation of
random self-checking test cases. IBM Systems Journal,
22(3):229-245, 1983.

[5] C. Boyapati, S. Khurshid, and D. Marinov. Korat:
automated testing based on Java predicates. In ISSTA,
2002.

[6] C. Cadar, V. Ganesh, P.M. Pawlowski, D.L. Dill, and D.R.
Engler. EXE: automatically generating inputs of death. In
CCS, 2006.

[7] K. Claessen and J. Hughes. Quickcheck: a lightweight tool
for random testing of Haskell programs. In ICFP, 2000.

[8] L. Clarke. A system to generate test data and symbolically
execute programs. IEEE Trans. Software Eng., 2:215-222;
1976.

[9] D. Coppit and J. Lian. yagg: an easy-to-use generator for
structured test inputs. In ASE, 2005.

[10] C. Csallner and Y. Smaragdakis. JCrasher: An automatic
robustness tester for Java. Software Practice € Experience,
34(11):1025-1050, 2004.

[11] C. Csallner and Y. Smaragdakis. Check 'n’ Crash:
combining static checking and testing. In ICSE, 2005.

[12] C. Csallner and Y. Smaragdakis. DSD-Crasher: a hybrid
analysis tool for bug finding. In ISSTA, 2006.

[13] N. Dor, M. Rodeh, and S. Sagiv. CSSV: towards a realistic
tool for statically detecting all buffer overflows in c. In
PLDI, 2003.

[14] J.E. Forrester and B.P. Miller. An empirical study of the
robustness of Windows NT applications using random
testing. In 4th USENIX Windows System Symposium,
2000.

[15] P. Godefroid. Compositional dynamic test generation. In
POPL, 2007.

[16] P. Godefroid, N. Klarlund, and K. Sen. DART: directed
automated random testing. In PLDI, 2005.

[17] J. B. Goodenough and S. L. Gerhart. Toward a theory of
test data selection. IEEE Trans. Software Eng.,
1(2):156-173, 1975.

[18] R. Hamlet. Random testing. In Encyclopedia of Software
Engineering, pages 970-978. Wiley, 1994.

[19] S.C. Johnson. YACC — yet another compiler-compiler. Bell
Labs Tehnical Report, (32), 1975.

[20] S. Khurshid and D. Marinov. TestEra: Specification-based
testing of Java programs using SAT. Autom. Softw. Eng.,
11(4):403-434, 2004.

[21] J. C. King. Symbolic execution and program testing.
Commun. ACM, 19(7):385-394, 1976.

[22] R. Lammel and W. Schulte. Controllable combinatorial
coverage in grammar-based testing. In TestCom, 2006.

[23] M.E. Lesk and E. Schmidt. Lex — a lexical analyser
generator. Bell Labs Tehnical Report, (39), 1975.

[24] R. Majumdar and K. Sen. Hybrid concolic testing. In
ICSE, 2007.

[25] P. M. Maurer. Generating test data with enhanced
context-free grammars. IEEE Software, 7(4):50-55, 1990.

[26] W. M. McKeeman. Differential testing for software. Digital
Technical Journal, 10(1):100-107, 1998.

[27] B. P. Miller, G. Cooksey, and F. Moore. An empirical study
of the robustness of macos applications using random
testing. In Random Testing, 2006.

[28] B. P. Miller, L. Fredriksen, and B. So. An empirical study
of the reliability of unix utilities. Commun. ACM,
33(12):32-44, 1990.

[29] A.J. Offutt and J.H. Hayes. A semantic model of program
faults. In ISSTA, 1996.

[30] C. Pacheco and M. D. Ernst. Eclat: Automatic generation
and classification of test inputs. In ECOOP, 2005.

[31] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball.
Feedback-directed random test generation. In ICSE, 2007.

[32] K. Sen, D. Marinov, and G. Agha. Cute: a concolic unit
testing engine for c. In FSE, 2005.

[33] M. Sipser. Introduction to the theory of computation. pages
91-101, 1997.

[34] E. Sirer and B. N. Bershad. Using production grammars in
software testing. In DSL, 1999.

[35] D. R. Slutz. Massive stochastic testing of SQL. In VLDB,
1998.

[36] W. Visser, C. S. Pasareanu, and S. Khurshid. Test input
generation with Java PathFinder. In ISSTA, 2004.

