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ABSTRACT

We present the first systematic analysis of key character-
istics of patch search spaces for automatic patch genera-
tion systems. We analyze sixteen different configurations
of the patch search spaces of SPR and Prophet, two cur-
rent state-of-the-art patch generation systems. The analysis
shows that 1) correct patches are sparse in the search spaces
(typically at most one correct patch per search space per
defect), 2) incorrect patches that nevertheless pass all of the
test cases in the validation test suite are typically orders of
magnitude more abundant, and 3) leveraging information
other than the test suite is therefore critical for enabling the
system to successfully isolate correct patches.

We also characterize a key tradeoff in the structure of the
search spaces. Larger and richer search spaces that contain
correct patches for more defects can actually cause systems
to find fewer, not more, correct patches. We identify two
reasons for this phenomenon: 1) increased validation times
because of the presence of more candidate patches and 2)
more incorrect patches that pass the test suite and block
the discovery of correct patches. These fundamental prop-
erties, which are all characterized for the first time in this
paper, help explain why past systems often fail to generate
correct patches and help identify challenges, opportunities,
and productive future directions for the field.

Categories and Subject Descriptors

D.2.5 [SOFTWARE ENGINEERING]: Testing and De-
bugging
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1. INTRODUCTION

Software defects are a prominent problem in software de-
velopment efforts. Motivated by the prospect of reducing
human developer involvement, researchers have developed a
range of techniques that are designed to automatically cor-
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rect defects. In this paper we focus on generate and validate
patch generation systems, which work with a test suite of
test cases, generate a set of candidate patches, then test the
patched programs against the test suite to find a patch that
validates [27, 17, 40, 28, 14, 29, 18, 20].

Patch quality is a key issue for generate and validate sys-
tems. Because the patches are validated only against the
test cases in the test suite, there is no guarantee that the
patch will enable the program to produce correct results for
other test cases. Indeed, recent research has shown that 1)
the majority of patches accepted by many current generate
and validate systems fail to generalize to produce correct re-
sults for test cases outside the validation test suite [29, 7, 37]
and 2) accepted patches can have significant negative effects
such as the introduction of new integer and buffer overflow
security vulnerabilities, undefined accesses, memory leaks,
and the elimination of core application functionality [29].
These negative effects highlight the importance of generat-
ing not just plausible patches (we define plausible patches to
be patches that pass all of the test cases in the patch valida-
tion test suite) but correct patches that do not have latent
defects and do not introduce new defects or vulnerabilities.

A rich search space that contains correct patches for tar-
get defects can be critical to the success of any automatic
patch generation system. Indeed, recent research indicates
that impoverished search spaces that contain very few cor-
rect patches is one of the reasons for the poor performance of
some prominent previous patch generation systems [17, 40,
29]. While more recent systems work with patch spaces that
contain significantly more correct patches [18, 20], continued
progress in the field requires even richer patch spaces that
contain more successful correct patches. But these richer
spaces may also complicate the ability of the system to iden-
tify correct patches within the larger sets of plausible but
incorrect patches.

1.1 SPR and Prophet

SPR [18] and Prophet [20] are two current state-of-the-
art generate and validate patch generation systems. Both
systems apply transformations to statements identified by
an error localization algorithm to obtain patches that they
validate against a test suite. SPR uses a set of hand-coded
patch prioritization heuristics. Prophet uses machine learn-
ing to characterize features of previously successful human
patches and prioritizes candidate patches according to these
features. The goal is to prioritize a correct patch as the first
patch to validate.

The baseline SPR and Prophet search spaces contain cor-
rect patches for 19 out of 69 defects in a benchmark set of



defects from eight open source projects [18, 20].1 For 11
of these defects, the first SPR patch to validate is a correct
patch. For 15 of these defects, the first Prophet patch to val-
idate is a correct patch. The GenProg [17], AE [40], RSRe-
pair [28], and Kali [29] systems, in contrast, produce correct
patches for only 1 (GenProg, RSRepair) or 2 (AE, Kali)
of the defects in this benchmark suite [29]. Moreover, the
correct SPR and Prophet patches for the remaining defects
lie outside the GenProg, RSRepair, and AE patch spaces,
which suggests that these systems will never be able to pro-
duce correct patches for these remaining defects. We note
that this benchmark set was developed not by us, but by
others in an attempt to obtain a large, unbiased, and real-
istic benchmark set [17].

As these results highlight, the characteristics of the patch
search space are central to the success of the patch genera-
tion system. But despite the importance of the search space
in the overall success of the system, we have been able to find
no previous systematic investigation of how the structure of
the search space influences critical characteristics such as
the density of correct and plausible patches and the ability
of the system to identify correct patches within the broader
class of plausible (but potentially incorrect) patches. Given
the demonstrated negative effects of plausible but incorrect
patches generated by previous systems [29], these charac-
teristics play a critical role in the overall success or failure
of any patch generation system that may generate plausible
patches with such negative effects.

1.2 Patch Search Space Analysis

We present a systematic analysis of the SPR and Prophet
patch search spaces. This analysis focuses on the density of
correct and plausible patches in the search spaces, on the
ability of SPR and Prophet to prioritize correct patches,
and on the consequences of two kinds of changes, both of
which increase the size of the search space: 1) increases
in the number of candidate program statements to which
patches are applied and 2) new program transformation op-
erators that can generate additional patches. Starting from
the SPR and Prophet baseline search spaces, these changes
make it possible to construct a collection of search spaces,
with each search space characterized by a combination of the
set of transformations and the number of candidate program
statements that together generate the search space.

We perform our analysis on a benchmark set of 69 real
world defects in eight large open source applications. This
benchmark set was used to evaluate many previous patch
generation systems [17, 40, 29, 28, 18, 20]. For each defect,
we first analyze the full search space to determine whether
or not it contains a correct patch. We acknowledge that,
in general, determining whether a specific patch corrects a
specific defect can be difficult (or in some cases not even
well defined). But for the defects in the benchmark set,
this never happens — the correct patches that are within
the search spaces are all small, all match the corresponding
developer patches, and the distinction between correct and
incorrect patches is clear.

!The paper that presented this benchmark set states that
the benchmark set contains 105 defects. An examination of
the relevant commit logs and applications indicates that 36
of these defects are actually deliberate functionality changes,
not defects. In this paper we focus on the remaining 69
actual defects as within the scope of the paper.

Because the full search spaces can, in general, be too large
to exhaustively search within any reasonable time limit, we
also consider the subset of the search spaces that can be ex-
plored by SPR and Prophet within a reasonable timeout, in
this paper 12 hours. Working with these explored subsets
of spaces, we analyze the number of plausible and correct
patches that each subset contains and the effect of the SPR
and Prophet patch prioritization on the ability of these sys-
tems to identify correct patches within the much larger sets
of plausible but incorrect patches in these search spaces.

1.3 Results Overview

The experimental results indicate that:

e Sparse Correct Patches: Correct patches occur only
sparsely within the search spaces. For 45 of the 69 de-
fects, the search spaces contain no correct patches. For
15 of the remaining 24 defects, the search spaces con-
tain at most 1 correct patch. The largest number of
correct patches for any defect in any search space is 4.

¢ Relatively Abundant Plausible Patches: In com-
parison with correct patches, plausible (but incorrect)
patches are relatively abundant. For all of the bench-
marks except php, the explored search spaces typically
contain hundreds up to a thousand times more plausi-
ble patches than correct patches. These numbers high-
light the difficulty of isolating correct patches among
the large sets of plausible but incorrect patches.

The explored search spaces for php, in contrast, typi-
cally contain only tens of times more plausible patches
than correct patches. And for three of the php de-
fects, all of the (one or two) plausible patches are cor-
rect. The density of plausible patches is related to the
strength of the validation test suite — weak test suites
filter fewer incorrect patches. We attribute the differ-
ence in plausible patch density to the strength of the
php test suite — the php test suite contains an order of
magnitude more test cases than any other benchmark.

e SPR and Prophet Effectiveness: The SPR and
Prophet patch prioritization mechanisms are both ef-
fective at isolating correct patches within the explored
plausible patches. Despite the relatively scarcity of
correct patches, with the baseline search space, correct
patches for 14 defects are within the first ten patches
to validate for SPR; correct patches for 16 defects are
within the first ten patches to validate for Prophet.

e Search Space Tradeoffs: Increasing the search space

beyond the SPR and Prophet baseline increases the
number of defects that have a correct patch in the
search space. But it does not increase the ability of
SPR and Prophet to find correct patches for more de-
fects — in fact, these increases often cause SPR and
Prophet to find correct patches for fewer defects!
We attribute this phenomenon to the following trade-
off. Increasing the search space also increases the num-
ber of candidate patches and may increase the number
of plausible patches. The increased number of candi-
date patches consumes patch evaluation time and re-
duces the density of the correct patches in the search
space. The increased number of plausible but incor-
rect patches increases the chance that such patches
will block the correct patch (i.e., that the system will
encounter plausible but incorrect patches as the first
patches to validate).



These facts highlight the importance of including informa-
tion other than the test suite in the patch evaluation pro-
cess. SPR includes information in the form of hand-coded
patch prioritization heuristics. Prophet leverages informa-
tion available via machine learning from successful human
patches. This information is responsible for the ability of
these systems to successfully identify correct patches in the
baseline search space. The results also highlight that there
is still room for improvement, especially with richer search
spaces that contain correct patches for more defects.
Previous Systems: These facts also help explain past re-
sults from other systems. GenProg, AE, and RSRepair gen-
erate very few correct patches [29]. Part of the explanation is
that the search space exploration algorithms for these sys-
tems are no better than random search [28].2 Once one
appreciates the relative abundance of plausible but incor-
rect patches and the relative scarcity of correct patches, it is
clear that any algorithm that is no better than random has
very little chance of consistently delivering correct patches
without very strong test suites. And indeed, the majority
of the patches from these previous systems simply delete
functionality and do not actually fix the defect [29].
ClearView: ClearView, in sharp contrast, does leverage
information other than the test suite, specifically learned in-
variants from previous successful executions [27]. For nine of
the ten defects on which ClearView was evaluated, ClearView
successfully patched the defect after evaluating at most three
candidate patches. These results highlight how targeting a
defect class and leveraging fruitful sources of information
can dramatically increase the successful patch density.

1.4 Future Directions

Our results highlight the scalability challenges associated
with generalizing existing search spaces to include correct
patches for more defects. One obvious future direction, de-
ployed successfully in past systems [32, 21, 6], is to address
scalability issues by developing smaller, more precisely tar-
geted search spaces for specific classes of defects. An al-
ternative is to infer transformation operations from correct
human patches (instead using manually defined transforma-
tions). The goal is to obtain a search space that contains
correct patches for common classes of commonly occurring
defects while still remaining tractable.

More broadly, it is now clear that generate and validate
systems must exploit information beyond current validation
test suites if they are to successfully correct any but the
most trivial classes of defects [27, 20, 29]. One prominent
direction is to exploit existing correct code in large code
repositories to obtain new correct patches, either via sophis-
ticated machine learning techniques that learn to recognize
or even automatically generate correct code, automatically
transferring correct code (either within or between applica-
tions), or even generalizing and combining multiple blocks
of correct code throughout the entire software ecosystem.
Encouraging initial progress has been made in all of these
directions [20, 35, 38, 13]. The current challenge is to obtain
more sophisticated patches for broader classes of defects.

20ther parts of the explanation include search spaces that
apparently contain very few correct patches and errors in the
patch infrastructure that cause the system to accept patches
that do not even pass the test cases in the test suites used
to validate the patches [29)].

An orthogonal direction is to obtain stronger test suites
or even explicit specifications that can more effectively filter
incorrect patches. One potential approach is to observe cor-
rect input/output pairs to learn to recognize or even auto-
matically generate correct outputs for (potentially narrowly
targeted) classes of inputs. Another approach leverages the
availability of multiple implementations of the same basic
functionality (for example, multiple image rendering appli-
cations) to recognize correct outputs. Combining either of
these two capabilities with automatic input generation could
enable the automatic generation of much stronger test suites
(with potential applications far beyond automatic patch gen-
eration). Specification mining may also deliver (potentially
partial) specifications that can help filter incorrect patches.

1.5 Contributions
This paper makes the following contributions:

e Patch Space Analysis: It presents an analysis of
the patch search spaces of SPR and Prophet, including
how these patch spaces respond to the introduction of
new transformation operators and increases in candi-
date program statements. The analysis characterizes:

— Correct Patches: The density at which correct
patches occur in the full search spaces and the
explored space subsets.

— Plausible Patches: The density at which plau-
sible patches occur in the explored space subsets.

— Patch Prioritization: The effectiveness of the
SPR and Prophet patch prioritization mechanisms
at isolating the few correct patches within the
much larger set of plausible patches (the vast ma-
jority of which are not correct).

This paper presents the first characterization of how
correct and plausible patch densities respond to in-
creases in the size and sophistication of the search
space. It also presents the first characterization of
how these search space changes affect the ability of
the patch generation system to identify the few cor-
rect patches within the much larger sets of plausible
but incorrect patches.

e Tradeoff: It identifies and presents results that char-
acterize a tradeoff between the size and sophistication
of the search space and the ability of the patch gener-
ation system to identify correct patches. To the best
of our knowledge, this is the first characterization of
this tradeoff.

e Results: It presents experimental results from SPR
and Prophet with different search spaces. These re-
sults are derived from an analysis of 1104 different
search spaces for the 69 benchmark defects (we con-
sider 16 search spaces for each defect) and 768 patch
generation executions for the 24 defects whose correct
patches are inside any of the considered search spaces
(we run SPR and Prophet for each of the 16 search
spaces for each of these 24 defects). Together, these
executions consumed over 9000 hours of CPU time on
Amazon EC2 cluster. The results show:

— Sparse Correct Patches: Correct patches oc-
cur very sparsely within the patch spaces, with
typically no more than one correct patch in the
search space for a given defect.



— Relatively Abundant Plausible Patches: De-
pending on the strength of the validation test
suite, plausible patches are either two to three
orders of magnitude or one order of magnitude
more abundant than correct patches.

— Patch Prioritization Effectiveness: The SPR
and Prophet patch prioritization algorithms ex-
hibit substantial effectiveness at isolating correct
patches within the large set of plausible patches
(most of which are incorrect).

— Challenges of Rich Search Spaces: The chal-
lenges associated with successfully searching such
spaces include increased testing overhead and in-
creased chance of encountering plausible but in-
correct patches that block the subsequent discov-
ery of correct patches.

Progress in automatic patch generation systems requires
the development of new, larger, and richer patch search
spaces that contain correct patches for larger classes of de-
fects. This paper characterizes, for the first time, how cur-
rent state-of-the-art patch generation systems respond to
changes in the size and sophistication of their search spaces.
It therefore identifies future productive directions for the
field and provides a preview of the challenges that the field
will have to overcome to develop systems that work produc-
tively with more sophisticated search spaces to successfully
patch broader classes of defects.

2. SPR AND PROPHET

We next present an overview of the two automatic patch
generation systems, SPR [18] and Prophet [20], whose search
spaces and search algorithms we analyze.

2.1 Design Overview

SPR and Prophet start with a defective program to patch
and a validation test suite. The test suite contains 1) a
set of negative test cases which the original program does
not pass (these test cases expose the defect in the program)
and 2) a set of positive test cases which the original program
already passes (these test cases prevent regression). The test
cases include correct outputs for every input (the negative
test cases produce different incorrect outputs). The system
generates patches for the program with the following steps:
Error Localization: The system first uses an error local-
izer to identify a set of candidate program statements to
modify. The error localizer recompiles the given application
with additional instrumentation. It inserts a call back be-
fore each statement in the source code to record a positive
counter value as the timestamp of the statement execution.
The error localizer then invokes the recompiled application
on all test cases and produces, based on the recorded times-
tamp values, a prioritized list of target statements to modify.
The error localizer prioritizes statements that are 1) exe-
cuted with more negative test cases, 2) executed with fewer
positive test cases, and 3) executed later during executions
with negative test cases. See the SPR and Prophet papers
for more details [18, 20].

Apply Transformations: The system then applies a set
of transformations to the identified program statements to
generate the search space of candidate patches. SPR and
Prophet consider the following transformation schemas [18]:

e Condition Refinement: Given a target if statement
to patch, the system transforms the condition of the
if statement by conjoining or disjoining an additional
condition to the original if condition. The following
two patterns implement the transformation:

if () { ... y=>if (C&&P) { ...}
if (©{...¥y=>ifCIIP){...}
Here if (C) { ... }is the target statement to patch

in the original program. C is the original condition that
appears in the program. P is a new condition produced
by a condition synthesis algorithm [18, 20].

e Condition Introduction: Given a target statement,
the system transforms the program so that the state-
ment executes only if a guard condition is true. The
following pattern implements the transformation:

S =>if (P) S

Here S is the target statement to patch in the original
program and P is a new synthesized condition.

e Conditional Control Flow Introduction: Before a
target statement, the system inserts a new control flow
statement (return, break, or goto an existing label)
that executes only if a guard condition is true. The
following patterns implement the transformation:

S => if (P) break; S
S => if (P) continue; S
S => if (P) goto L; S

Here S is the target statement to patch in the original
program, P is a new synthesized condition, and L is an
existing label in the procedure containing S.

e Insert Initialization: Before a target statement,
the system inserts a memory initialization statement.

e Value Replacement: Given a target statement,
replace an expression in the statement with another
expression.

e Copy and Replace: Given a target statement, the
system copies an existing statement to the program
point before the target statement and then applies a
Value Replacement transformation to the copied state-
ment.

Condition Synthesis: The baseline versions of SPR and
Prophet work with synthesized conditions P of the form
E == K and E != K. Here E is a check expression, which we
define as either a local variable, a global variable, or a se-
quence of structure field accesses. Each check expression E
must appear in the basic block containing the synthesized
condition. K is a check constant, which we define as a con-
stant drawn from the set of values that the check expression
E takes on during the instrumented executions of the un-
patched program on the negative test cases.

Value Replacement: The baseline versions of SPR and
Prophet replace either 1) one variable in the target state-
ment with another variable that appears in the basic block
containing the statement, 2) an invoked function in the state-
ment with another function that has a compatible type sig-
nature and is invoked or declared in the source code file
containing the statement (or in an included header file), or
3) a constant in the statement with another constant that
appears in the function containing the statement.
Evaluate Candidate Patches: The system then evalu-
ates candidate patches in the search space against the sup-
plied test cases. To efficiently explore the search space, SPR



and Prophet use staged program repair [18, 20]. At the first
stage, the system operates with parameterized candidate
patch templates, which may contain an abstract expression.
It instantiates and evaluates concrete patches from a tem-
plate only if the system determines that there may be a
concrete patch from the template that passes the test cases.

For the first three transformation schemas (these schemas
manipulate conditions), the system first introduces an ab-
stract condition into the program and determines whether
there is a sequence of branch directions for the abstract con-
dition that will enable the patched program to pass the test
cases. If so, the system then synthesizes concrete conditions
to generate patches.

2.2 Extensions

We implement three extensions to the SPR and Prophet
search spaces: considering more candidate program state-
ments to patch, synthesizing more sophisticated conditions,
and evaluating more complicated value replacement trans-
formations.

More Program Statements to Patch: The baseline
SPR and Prophet configurations consider the first 200 pro-
gram statements identified by the error localizer. We mod-
ify SPR and Prophet to consider the first 100, 200, 300, and
2000 statements.

Condition Synthesis Extension (CExt): We extend the
baseline SPR and Prophet condition synthesis algorithm
to include the “<” and “>” operators and to also consider
comparisons between two check expressions (e.g., E < K,
E; == Ez,and E; > Eg, where E, E1, and E; are check expres-
sions and K is a check constant). In the rest of this paper,
we use “CExt” to denote this search space extension.
Value Replacement Extension (RExt): We extend the
baseline SPR and Prophet replacement transformations to
also replace a variable or a constant in the target statement
with an expression that is composed of either 1) a unary
operator and an atomic value (i.e., a variable or a constant)
which appears in the basic block containing the statement
or 2) a binary operator and two such atomic values. The
operators that SPR and Prophet consider are “+7, “=7 “x”
“==""“1=""and “&”. In the rest of this paper, we use “RExt”
to denote this search space extension.

2.3 SPR Prioritization Order

SPR uses a set of hand-coded heuristics to prioritize its
search of the generated patch space. These heuristics prior-
itize patches in the following order: 1) patches that change
only a branch condition (e.g., tighten and loosen a condi-
tion), 2) patches that insert an if-statement before the first
statement of a compound statement (i.e., C code block),
3) patches that insert an if-guard around a statement, 4)
patches that replace a statement, insert an initialization
statement, insert an if-statement, or insert a statement be-
fore the first statement of a compound statement, and 5)
finally all the remaining patches. For each kind of patch,
it prioritizes statements to patch in the error localization
order.

2.4 Prophet Prioritization Order

Prophet searches the same patch space as SPR, but works
with a corpus of correct patches from human developers. It
processes this corpus to learn a probabilistic model that as-
signs a probability to each candidate patch in the search

App. LoC | Tests | Defects | SPR | Prophet
libtiff 77k 78 8 1/3 2/3
lighttpd 62k 295 7 0/0 0/0
php 1046k | 8471 31 9/13 10/13
gmp 145k 146 2 1/1 1/1
gzip 491k 12 4 0/1 1/1
python 407k 35 9 0/0 0/0
wireshark | 2814k 63 6 0/0 0/0
fbe 97k 773 2 0/1 1/1
Total 69 11/19 15/19

Table 1: Benchmark Applications

space. This probability indicates the likelihood that the
patch is correct. It then uses this model to prioritize its
search of the patch space.

A key idea behind Prophet is that patch correctness de-
pends on not just the patch itself, but also on how the patch
interacts with the surrounding code:

e Extract Features: For each patch in the corpus,
Prophet analyzes a structural diff of the abstract syn-
tax trees of the original and patched code to extract
both 1) features which summarize how the patch mod-
ifies the program given characteristics of the surround-
ing code and 2) features which summarize relationships
between roles that values accessed by the patch play
in the original unpatched program and in the patch.

e Learn Model Parameters: Prophet operates with a
parameterized log-linear probabilistic model in which
the model parameters can be interpreted as weights
that capture the importance of different features.
Prophet learns the model parameters via maximum
likelihood estimation, i.e., the Prophet learning algo-
rithm attempts to find parameter values that maxi-
mize the probability of observing the collected training
database in the probabilistic model.

Prophet uses the trained model to rank the patches ac-
cording to its learned model of patch correctness, then eval-
uates the patches in that order. Previous results (as well
as additional results presented in this paper) show that this
learned patch correctness model outperforms SPR’s heuris-
tics [20]. This result highlights how leveraging information
available in existing large software development projects can
significantly improve our ability to automatically manipu-
late large software systems.

3. METHODOLOGY

Benchmark Application: We use a benchmark set of 69
real world defects to perform our search space study. Those
defects are from eight large open source applications, libtiff,
lighttpd, the php interpreter, gmp, gzip, python, wireshark,
and fbc [17]. Note that the original benchmark set also
includes 36 ostensible defects which correspond to deliberate
functionality changes, not defects, during the application
development [18]. We exclude those functionality changes as
outside the scope of our study because they are not actual
defects.

Table 1 summarizes our benchmark defects. The first col-
umn (App.) presents the name of each application. The sec-
ond column (LoC) presents the number of lines of code in the
application. The third column (Tests) presents the number



Localization
Defect Rank | RExt | CExt
lighttpd-2661-2662 1926 No No
lighttpd-1913-1914 280 No Yes
python-70056-70059 214 No Yes
python-69934-69935 136 Yes No
gmp-14166-14167 226 Yes No

Table 2: Search Space Extensions

of the test cases in the supplied test suite of the applica-
tion. php is the outlier, with an order of magnitude more
test cases than any other application. The fourth column
(Defects) presents the number of defects in the benchmark
set for each application.

The fifth column (SPR) and the sixth column (Prophet)
present the patch generation results for the baseline versions
of SPR [18] and Prophet [20], respectively. Each entry is of
the form “X/Y”, where Y is the number of defects whose
correct patches are inside the search space, while X is the
number of defects for which the system automatically gen-
erates a correct patch as the first generated patch.
Configure Systems: We run SPR and Prophet on each
of the 16 different search space configurations derived from
all possible combinations of 1) working with the first 100,
200, 300, or 2000 program statements identified by the error
localizer, 2) whether to enable value replacement extension
(RExt), and 3) whether to enable condition synthesis exten-
sion (CExt).

We run all of our experiments except those of fbc on Ama-

zon EC2 Intel Xeon 2.6GHz machines running Ubuntu-64bit
server 14.04. fbc runs only in 32-bit environments, so we run
all fbc experiments on EC2 Intel Xeon 2.4GHz machines run-
ning Ubuntu-32bit 14.04.
Generate Search Spaces: For each search space and
each of the 69 defects in the benchmark set, we run the con-
figured SPR and Prophet to generate and print the search
space for that defect. We then analyze the generated search
space and determine whether the space contains a correct
patch for the defect.

With all three search space extensions, the generated SPR
and Prophet search spaces contain correct patches for five
more defects (i.e., 24 defects in total) than the baseline
search space. Table 2 summarizes these five defects. The
first column (Defect) contains entries of the form X-Y-Z,
where X is the name of the application that contains the de-
fect, Y is the defective revision in the application repository,
and Z is the reference fixed revision in the repository. The
second column (Localization Rank) presents the error local-
ization rank of the modified program statement in the cor-
rect patch for the defect. The third column (RExt) presents
whether the correct patches for the defect require the RExt
extension (value replacement extension) The fourth column
(CExt) presents whether the correct patches for the defect
require the CExt extension (condition synthesis extension).
Generate Patches: For each search space and each of the
24 defects with correct patches in the search space, we run
SPR and Prophet to explore the search space for the defect.
For each run, we record all of the plausible patches that the
system discovers within the 12 hour timeout.

Analyze Patches: For each defect, we analyze the gener-
ated plausible patches for the defect to determine whether
the patch is correct or incorrect.

4. EXPERIMENTAL RESULTS

We next present the experimental results. php is an out-
lier with a test suite that contains an order of magnitude
more test cases than the other applications. We therefore
separate the php results from the results from other bench-
marks. We present the result summary for all of the 24
defects for which any of the search spaces contains a correct
patch. See our technical report [19] for the detailed results
of each defect in all different search space configurations.

Table 3 presents a summary of the results for all of the
benchmarks except php. Table 4 presents a summary of the
results for the php benchmark. Each row presents patch
generation results for SPR or Prophet with one search space
configuration. The first column (System) presents the eval-
uated system (SPR or Prophet). The second column (Loc.
Limit) presents the number of considered candidate pro-
gram statements to patch under the configuration. The
third column (Space Extension) presents the transforma-
tion extensions that are enabled in the configuration: No
(no extensions, baseline search space), CExt (condition syn-
thesis extension), RExt (value replacement extension), or
RExt+CExt (both).

The fourth column (Correct In Space) presents the num-
ber of defects with correct patches that lie inside the full
search space for the corresponding configuration. The fifth
column (Correct First) presents the number of defects for
which the system finds the correct patch as the first patch
that validates against the test suite.

Each entry of the sixth column (Plausible & Blocked) is
of the form X(Y). Here X is the number of defects for which
the system discovers a plausible but incorrect patch as the
first patch that validates. Y is the number of defects for
which a plausible but incorrect patch blocked a subsequent
correct patch (i.e., Y is the number of defects for which 1)
the system discovers a plausible but incorrect patch as the
first patch that validates and 2) the full search space contains
a correct patch for that defect).

Each entry of the seventh column (Timeout) is also of the
form X(Y). Here X is the number of defects for which the
system does not discover any plausible patch within the 12
hour timeout. Y is the number of defects for which 1) the
system does not discover a plausible patch and 2) the full
search space contains a correct patch for that defect.

The eighth column (Space Size) presents the average num-
ber of candidate patch templates in the search space over all
of the 24 considered defects. Note that SPR and Prophet
may instantiate multiple concrete patches with the staged
program repair technique from a patch template that con-
tains an abstract expression (See Section 2.1). This column
shows how the size of the search space grows as a func-
tion of the number of candidate statements to patch and
the two extensions. Note that the CExt transformation ex-
tension does not increase the number of patch templates.
Instead it increases the number of concrete patches which
each patch template generates. The ninth column (Correct
Rank) presents the average rank of the first patch template
that generates a correct patch in the search space over all of
those defects for which at least one correct patch is inside
the search space. Note that the correct rank increases as the
size of the search space increases.

Each entry of the tenth column (Plausible in 12h) is of
the form X(Y). Here X is the number of defects for which
the system discovers a plausible patch within the 12 hour



System Loc. Space Correct Plausible Timeout Space Correct | Plausible | Correct
Limit | Extension | In Space | First | & Blocked Size Rank in 12h in 12h
SPR 100 No 4 1 7(3) 3(0) 20068.5 4614.0 8(2747) 4(5)
SPR 100 CExt 4 1 7(3) 3(0) 20068.5 4614.0 8(11438) 3(4)
SPR 100 RExt 4 1 7(3) 3(0) 21999.8 6004.8 8(2742) 4(5)
SPR 100 RExt4CExt 4 1 7(3) 3(0) 21999.8 6004.8 8(11192) 3(4)
SPR 200 No 6 2 7(4) 2(0) 46377.6 17889.5 9(2558) 6(8)
SPR 200 CExt 6 2 7(4) 2(0) 46377.6 17889.5 9(10823) 4(6)
SPR 200 RExt 7 2 7(4) 2(1) 52864.3 24759.9 9(3753) 6(8)
SPR 200 RExt+CExt 7 2 7(4) 2(1) 52864.3 24759.9 9(10855) 4(6)
SPR 300 No 6 1 3(5) 2(0) 73550.6 | 22060.0 | 9(2818) 6(8)
SPR 300 CExt 8 1 8(6) 2(1) 73559.6 30761.8 9(10237) 4(6)
SPR 300 RExt 8 1 8(6) 2(1) 82187.2 32951.4 9(2069) 7(8)
SPR 300 RExt+CExt 10 1 8(7) 2(2) 82187.2 37427.4 9(10455) 5(6)
SPR 2000 No 7 2 7(5) 2(0) 523753.8 | 157038.4 9(751) 5(6)
SPR 2000 CExt 9 2 7(6) 2(1) 523753.8 | 156495.1 9(6123) 4(5)
SPR 2000 RExt 9 2 7(6) 2(1) 574325.1 | 200996.7 9(657) 5(6)
SPR 2000 | RExt+CExt 11 2 7(7) 2(2) 574325.1 | 192034.0 | 9(5831) 1(5)
Prophet 100 No 4 4 4(0) 3(0) 20068.5 589.2 8(2481) 4(5)
Prophet 100 CExt 4 3 5(1) 3(0) 20068.5 589.2 8(11901) 3(4)
Prophet 100 RExt 4 4 4(0) 3(0) 21999.8 520.5 8(2183) 4(5)
Prophet 100 RExt+CExt 4 3 5(1) 3(0) 21999.8 520.5 8(11595) 3(4)
Prophet 200 No 6 5 4(1) 2(0) 46377.6 11382.8 9(2564) 5(7)
Prophet 200 CExt 6 4 5(2) 2(0) 46377.6 11382.8 9(10968) 4(6)
Prophet 200 RExt 7 5 4(1) 2(1) 52864.3 19581.0 9(1939) 5(6)
Prophet 200 RExt+CExt 7 4 5(2) 2(1) 52864.3 19581.0 9(10928) 4(5)
Prophet 300 No 6 4 5(2) 2(0) 73559.6 11997.2 9(2555) 5(7)
Prophet 300 CExt 8 3 6(4) 2(1) 73559.6 14466.8 9(10948) 4(6)
Prophet 300 RExt 8 4 5(3) 2(1) 82187.2 25769.1 9(1548) 5(6)
Prophet 300 RExt+CExt 10 3 6(5) 2(2) 82187.2 25455.1 9(10886) 4(5)
Prophet 2000 No 7 4 5(3) 2(0) 523753.8 | 188588.4 9(1229) 5(7)
Prophet 2000 CExt 9 3 6(5) 2(1) 523753.8 | 156555.8 9(8208) 4(6)
Prophet 2000 RExt 9 3 6(5) 2(1) 574325.1 | 170715.4 9(1216) 5(6)
Drophet | 2000 | RExt+CExt 11 2 7(7) 2(2) 574325.1 | 148288.4 | 9(7919) 1(5)

Table 3: Patch Generation Results with Search Space Extensions (excluding php)

timeout. Y is the sum, over the all of the 24 considered
defects, of the number of plausible patches that the system
discovers within the 12 hour timeout.

Each entry of the eleventh column (Correct in 12h) is of
the form X(Y). Here X is the number of defects for which
the system discovers a correct patch (blocked or not) within
the 12 hour timeout. Y is the number of correct patches
that the system discovers within the 12 hour timeout.

4.1 Plausible and Correct Patch Density

An examination of the tenth column (Plausible in 12h) in
Tables 3 and 4 highlights the overall plausible patch densi-
ties in the search spaces. For the benchmarks without php,
the explored search spaces typically contain hundreds up to
a thousand plausible patches per defect. For php, in con-
trast, the explored search spaces typically contain tens of
plausible patches per defect. We attribute this significant
difference in the plausible patch density to the quality of
the php test suite and its resulting ability to successfully
filter out otherwise plausible but incorrect patches. Indeed,
for three php defects, the php test suite is strong enough
to filter out all of the patches in the explored search spaces
except the correct patch.

An examination of the eleventh column (Correct in 12h)
in Tables 3 and 4 highlights the overall correct patch densi-
ties in the explored search spaces. In sharp contrast to the
plausible patch densities, the explored search spaces con-
tain, on average, less than two correct patches per defect for
all of the benchmarks including php. There are five defects

with as many as two correct patches in any search space
and one defect with as many as four correct patches in any
search space. The remaining defects contain either zero or
one correct patch across all of the search spaces.

4.2 Search Space Tradeoffs

An examination of the fourth column (Correct In Space)
in Table 3 shows that the number of correct patches in the
full search space increases as the size of the search space
increases (across all benchmarks except php). But an ex-
amination of the fifth column (Correct First) indicates that
that this increase does not translate into an increase in the
ability of SPR or Prophet to actually find these correct
patches as the first patch to validate. In fact, the abil-
ity of SPR and Prophet to isolate a correct patch as the
first patch to validate reaches a maximum at 200 candidate
statements with no extensions, then (in general) decreases
from there as the size of the search space increases. For
php, Table 4 shows that the number of correct patches in
the space does not significantly increase with the size of the
search space, but that the drop in the number of correct
patches found as the first patch to validate is even more sig-
nificant. Indeed, the 200+No Prophet configuration finds
10 correct patches as the first patch to validate, while the
largest 2000+RExt+CExt configuration finds only four!

We attribute these facts to an inherent tradeoff in the
search spaces. Expanding the search spaces to include more
correct patches also includes more implausible and plausi-
ble but incorrect patches. The implausible patches consume



System Loc. Space Correct Plausible Timeout Space Correct | Plausible | Correct
Limit | Extension | In Space | First | & Blocked Size Rank in 12h in 12h

SPR 100 No 12 8 3(3) 2(1) 13446.5 | 4157.8 11(237) 9(14)
SPR 100 CExt 12 8 4(4) 1(0) 13446.5 4157.8 12(415) 10(12)
SPR 100 RExt 12 8 1(4) 1(0) 14026.7 | 4360.8 12(288) 11(15)
SPR 100 RExt4CExt 12 8 4(4) 1(0) 14026.7 4360.8 12(421) 10(12)
SPR 200 No 13 9 3(3) 1(1) 26512.0 7369.8 12(197) 10(15)
SPR 200 CExt 13 9 3(3) 1(1) 26512.0 7369.8 12(330) 10(13)
SPR 200 RExt 13 9 3(3) 1(1) 28158.2 7984.5 12(200) 10(15)
SPR 200 RExt+CExt 13 9 3(3) 1(1) 28158.2 7984.5 12(323) 10(13)
SPR 300 No 13 3 1(4) (1) 11859.8 | 109152 | 12(176) 9(14)
SPR 300 CExt 13 8 1(4) (1) 41859.8 | 109152 | 12(305) 9(12)
SPR 300 RExt 13 8 4(4) 1(1) 44631.1 12440.9 12(179) 9(14)
SPR 300 | RExt+CExt 13 8 1(4) (1) 14631.1 | 124409 | 12(313) 9(12)
SPR 2000 No 13 5 2(2) 6(6) 327905.6 | 81570.5 7(58) 5(6)
SPR 2000 CExt 13 5 2(2) 6(6) 327905.6 | 81570.5 7(126) 5(6)
SPR 2000 RExt 13 5 3(3) 5(5) 356104.8 | 83997.9 8(59) 5(6)
SPR 2000 | RExt+CExt 13 5 2(2) 6(6) 356104.8 | 83997.0 7(127) 5(6)
Prophet | 100 No 12 8 3(3) 2(1) 134465 | 2599.4 11(279) T1(15)
Prophet 100 CExt 12 6 6(6) 1(0) 13446.5 2599.4 12(466) 11(11)
Prophet | 100 RExt 12 9 3(3) 1(0) 140267 | 3433.8 12(327) T1(15)
Prophet 100 RExt+CExt 12 6 6(6) 1(0) 14026.7 3433.8 12(458) 11(11)
Prophet 200 No 13 10 3(3) 0(0) 26512.0 3522.1 13(285) 13(18)
Drophet | 200 CExt 3 7 6(6) 0(0) 26512.0 | 3522.1 13(447) 12(13)
Prophet | 200 RExt 13 10 3(3) 0(0) 281582 | 4504.4 13(296) 12(17)
Prophet | 200 | RBExt+CExt 3 7 6(6) 0(0) 28158.2 | 4504.4 13(434) 12(13)
Prophet 300 No 13 10 3(3) 0(0) 41859.8 4319.6 13(280) 13(18)
Prophet 300 CExt 13 7 6(6) 0(0) 41859.8 4319.6 13(425) 12(13)
Prophet 300 RExt 13 10 3(3) 0(0) 44631.1 5403.1 13(283) 12(17)
Prophet 300 RExt+CExt 13 7 6(6) 0(0) 44631.1 5403.1 13(422) 12(13)
Prophet 2000 No 13 7 2(2) 4(4) 327905.6 | 21118.6 9(117) 7(10)
Prophet 2000 CExt 13 4 4(4) 5(5) 327905.6 | 21118.6 8(153) 6(6)
Prophet 2000 RExt 13 6 2(2) 5(5) 356104.8 | 25168.5 3(104) 6(9)
Drophet | 2000 | RExt+CExt 13 1 1(4) 5(5) 356104.8 | 251685 3(183) 6(6)

Table 4: Patch Generation Results with Search Space Extensions (php only)

validation time (extending the time required to find the cor-
rect patches), while the plausible but incorrect patches block
the correct patches. This trend is visible in the Y entries in
the sixth column in Table 3 (Plausible & Blocked) (these
entries count the number of blocked correct patches), which
generally increase as the size of the search space increases.

Tables 3 and 4 show how this tradeoff makes the baseline
SPR and Prophet configurations perform best despite work-
ing with search spaces that contain fewer correct patches.
Increasing the candidate statements beyond 200 never in-
creases the number of correct patches that are first to val-
idate. Applying the CExt and RExt extensions also never
increases the number of correct patches that are first to val-
idate.

Our results highlight two challenges that SPR and Prophet
(and other generate and validate systems) face when gener-
ating correct patches:

e Weak Test Suites: The test suite provides in-
complete coverage. The most obvious problem of
the weak test suite is that it may accept incorrect
patches. Our results show that (especially for larger
search spaces) plausible but incorrect patches often
block correct patches. For example, when we run
Prophet with the baseline search space (200+No),
there are only 4 defects whose correct patches are
blocked; when we run Prophet with the largest search
space (2000+RExt+CExt), there are 11 defects whose
correct patches are blocked.

A more subtle problem is that weak test suites may
increase the validation cost of plausible but incorrect
patches. For such a patch, SPR or Prophet has to
run the patched application on all test cases in the
test suite. If a stronger test suite is used, SPR and
Prophet may invalidate the patch with one test case
and skip the remaining test cases.

e Search Space Explosion: A large search space
contains many candidate patch templates and our re-
sults show that it may be intractable to validate all
of the candidates. For example, with the baseline
search space (2004+No), Prophet times out for only
two defects (whose correct patches are outside the
search space); with the largest evaluated search space
(2000+RExt+CExt), Prophet times out for seven de-
fects (whose correct patches are inside the search
space).

Note that many previous systems [17, 40, 14, 28] neglect
the weak test suite problem and do not evaluate whether
the generated patches are correct or not. In contrast, our
results show that the weak test suite problem is at least as
important as the search space explosion problem. In fact,
for all evaluated search space configurations, there are more
defects for which SPR or Prophet generates plausible but
incorrect patches than for which SPR or Prophet times out.

4.3 SPR and Prophet Effectiveness

We compare the effectiveness of the SPR and Prophet
patch prioritization orders by measuring the costs and pay-



Search Space | SPR | Prophet R(Zl;dl;? (I;jss}?::)
100+No 52/3 ] 38/4 |65.0/14 | 65.0/1.4
7001 CBnt 65/2] 53/3 | 730/1.0 | 73.0/1.0
1004+ RExt 52 /3 38 /4 65.1 /14| 65.1 /14
o0t RExiiCE | 65 /2] 5373 | 730 /1.0 | 73.0 /1.0
200+No 59 /4| 45/5 | 735 /27| 762 /21
200+ CExt 66 / 3 54 /4 781 /1.7 | 781 /1.7
200+RExt 50 /4| 45 /5 76.2 /21| 75.9 /2.1
200+RExt+CExt 66 / 3 54 / 4 778 /1.7 | 771.8 /1.7
3001 No 60/5| 50/5 | 802/20 | 782 /21
300+ CExt 75 /2] 63/3 [8.9/13| 83.2/1.4
300+ RExt 62/4] 50/5 | 8Ld/ 14| 790 /21
300+ RExt+CExt 75 /2 63 /3 85.2 /1.1 | 84.4 /1.2
2000+No 56 / 4 50 / 5 789 /13| 77.8 /2.3
2000+ CExt 72 /2 63 /3 86.6 /0.7 | 83.2 /14
2000+ RExt 60 / 3 51 /5 74.7 /1.7 | 785 /2.1
2000+RExt+CExt | 72 / 2 64 /3 82.6 /1.1 | 84.4 /1.3

Table 5: Costs and Payoffs of Reviewing the First
10 Generated Patches (excluding php)

Search Space SPR Prophet R(E;r;dRO;n (l;:gs}?:tl)
100+ Ne 38790 | 37/9 | 458 /81| 447 /54
100+ CEnt A8/90 | 56/9 | 66.7/68 ] 668 /638
100+RExt 39 /10| 39 /10 | 50.9 /88 | 51.4 /8.9
100+RExt+CExt 46 / 9 57/ 9 66.9 / 6.8 | 66.7 /6.8
200+ N0 39 /10 | 30 /11 | 47.7 /9.1 | 49.3 / 104
2004 Chxt 39 /10 | 57 /11 | 597 /7.6 | 681/7.9
2004 RExt 39 /10 | 40 /11 | 47.8 /9.1 | 51.6 / 10.1
200+ RExirCE | 30 /10 | 58 /11 | 59.6 /7.6 | 68.0 /7.0
3001 No 3279 | 39/11 | 43.8 /81 | 50.2 /104
300+ OBt 32790 | 57 /11 | 59.3/64 | 728 /7.0
300+RExt 34/9 40 / 11 45.8 /8.1 | 51.5 / 10.2
300+ RExt+CExt 34/9 | 58 /11 [61.3/6.4 | 69.5/8.0
2000+No 7/5 25 /7 16.7 /44 | 374/ 6.3
2000+ CExt 7/5 34 /5 29.8 /2.9 | 46.4 /4.0
2000-+RExt 9/5 17 /6 187 /4.4 | 29.3 /5.3
2000+ RExt+CExt 7/5 27 /5 [298/29| 474 /3.2

Table 6: Costs and Payoffs of Reviewing the First
10 Generated Patches (php only)

offs for a human developer who reviews the generated patches
to find a correct patch. We consider a scenario in which the
developer reviews the first 10 generated patches one by one
for each defect until he finds a correct patch. He gives up if
none of the first 10 patches are correct. For each system and
each search space configuration, we compute (over the 24 de-
fects that have correct patches in the full SPR and Prophet
search space) 1) the total number of patches the developer
reviews (this number is the cost) and 2) the total number
of defects for which the developer obtains a correct patch
(this number is the payoff). We also compute the expected
costs and payoffs if the developer examines the generated
plausible SPR and Prophet patches in a random order. See
our technical report [19] for the raw data used to compute
these numbers.

Tables 5 and 6 present these costs and payoffs. The first
column presents the search space configuration. The second
and third columns present the costs and payoffs for the SPR
and Prophet patch prioritization orders; the fourth and fifth
columns present the corresponding costs and payoffs for the
random orders. Each entry is of the form X/Y, where X
is the total number of patches that the developer reviews

and Y is the total number of defects for which he obtains a
correct patch. These numbers highlight the effectiveness of
the SPR and Prophet patch prioritization in identifying the
few correct patches within the many plausible but incorrect
patches.

Table 6 presents the corresponding results for the php de-
fects. These numbers highlight the difference that a stronger
test suite can make in the success of finding correct patches.
The correct patch selection probabilities are dramatically
higher for php than for the other benchmarks. But note that
as the patch search spaces become large, the number of de-
fects for which the developer obtains correct patches become
smaller, reflecting 1) the increasing inability of the systems
to find any correct patch in the explored space within the
12 hour timeout and 2) the increasing presence of blocking
plausible but incorrect patches.

Finally, these numbers highlight the effectiveness of the
Prophet learned patch prioritization — following this pro-
cedure, the developer always obtains correct patches for at
least as many defects with Prophet as with SPR.

S. THREATS TO VALIDITY

This paper presents a systematic study of search space
tradeoffs with SPR and Prophet. One threat to validity is
that our results will not generalize to other benchmark sets
and other patch generation systems. Note that the bench-
mark set was developed by other researchers, not by us, with
the goal of obtaining a large, unbiased, and realistic bench-
mark set [17]. And this same benchmark set has been used to
evaluate many previous patch generation systems [17, 40, 28,
29, 18]. The observations in this paper are consistent with
previous results reported for other systems on this bench-
mark set [29, 17, 40, 28].

Another threat to validity is that stronger test suites will
become the norm so that the results for benchmark appli-
cations other than php will not generalize to other applica-
tions. We note that 1) comprehensive test coverage is widely
considered to be beyond reach for realistic applications, and
2) even php, which has by far the strongest test suite in
the set of benchmark applications, has multiple defects for
which the number of plausible patches exceeds the number
of correct patches by one to two orders of magnitude.

6. RELATED WORK

ClearView: ClearView is a generate-and-validate system
that observes normal executions to learn invariants that
characterize safe behavior [27]. It deploys monitors that
detect crashes, illegal control transfers and out of bounds
write defects. In response, it selects a nearby invariant that
the input that triggered the defect violates, and generates
patches that take a repair action to enforce the invariant.
A Red Team evaluation found that ClearView was able
to automatically generate patches that eliminate 9 of 10
targeted Firefox vulnerabilities [27], with each defect elim-
inated after the generation of at most three patches. We
attribute the density with which successful patches appear
in the ClearView search space, in part, to the fact that
ClearView leverages the learned invariant information to fo-
cus the search on successful patches and does not rely solely
on the validation test suite.
Kali: Kali is a generate-and-validate system that deploys
a simple strategy — it simply removes functionality. Al-



though Kali is obviously not intended to correctly repair a
reasonable subset of the defects that occur in practice, it
is nevertheless at least as effective in practice as previous
strategies that aspire to repair a broad class of defects [29].

These results are consistent with the results presented in
this paper, highlight the inadequacy of current test suites to
successfully filter incorrect patches, and identify one promi-
nent source of the relatively many plausible but incorrect
patches that occur in current patch search spaces.

An analysis of Kali remove statement patches, GenProg

patches, and NOPOL [4] patches for 224 defects in the De-
fects4J dataset [11] produced results broadly consistent with
the results in this paper: out of 42 manually analyzed plau-
sible patches, the analysis indicates that only 8 patches are
undoubtedly correct [7].
GenProg, AE, and RSRepair: GenProg [17], AE [40],
and RSRepair [28] were all evaluated on (for RSRepair, a
subset of) the same benchmark set that we use in this pa-
per to evaluate the SPR and Prophet search spaces. The
evaluations focus on plausible patches with no attempt to
determine whether the patches are correct or not. Unfor-
tunately, the presented evaluations of these systems suffer
from the fact that the testing infrastructure used to validate
the candidate patches contains errors that cause the systems
to incorrectly accept implausible patches that do not even
pass all of the test cases in the validation test suite [29)].

A subsequent study corrects these errors and sheds more
light on the subject [29]. This study found that 1) the sys-
tems generate correct patches for only 2 (GenProg, RSRe-
pair) or 3 (AE) of the 105 benchmark defects/functionality
changes in this benchmark set, 2) the systems generate plau-
sible but incorrect patches for 16 (GenProg), 8 (RSRepair),
and 24 (AE) defects/functionality changes, and 3) the ma-
jority of the plausible patches, including all correct patches,
are equivalent to a single modification that deletes function-
ality. Moreover, the correct SPR and Prophet patches for
these defects lie outside the GenProg, AE, and RSRepair
search space (suggesting that these systems will never be
able to generate a correct patch for these defects) [18].

Moreover, only 5 of the 110 plausible GenProg patches are
correct, only 4 of the analyzed plausible 44 RSRepair patches
are correct, and only 3 of the 27 plausible AE patches are
correct [29]. These results indicate that the GenProg, AE,
and RSRepair search space, while containing fewer correct
and plausible patches than the richer SPR and Prophet
search spaces [18, 20], still exhibits the basic pattern of
sparse correct patches and more abundant plausible but in-
correct patches.

A subsequent study of GenProg and RSRepair (under the
name TrpAutoRepair) on small student programs provides
further support for this hypothesis [37]. The results indi-
cate that patches validated on one test suite typically fail to
generalize to produce correct results on other test suites.

RSRepair uses random search; previous research found
that the GenProg genetic search algorithm performs no bet-
ter than random search on a subset of the benchmarks [28].
Systems (such as GenProg) that perform no better than ran-
dom will need to incorporate additional sources of informa-
tion other than the validation test suite if they are to suc-
cessfully generate correct patches in the presence of current
relatively weak test suites.?

30f course, if the patch space does not contain correct
patches, stronger test suites will prevent the system from

CodePhage: Horizontal code transfer repairs otherwise fa-
tal defects by transferring correct code across applications [35].
It therefore provides another example of how leveraging ad-
ditional information outside the validation test suite (in this
case, correct code from other applications) promotes the
automatic generation of successful patches. But of course
horizontal code transfer is not limited to patch generation
— indeed, it shows enormous potential for leveraging the
combined talents and labor of software development efforts
worldwide to solve a variety of software engineering prob-
lems.

Specifications: Explicit specifications (either provided by
a developer or inferred) provide an alternative to valida-
tion test suites. Researchers have built repair systems that
leverage data structure consistency specifications [5, 6, §],
method contracts [39, 26], access control specifications [38],
assertions [33], and pre- and post-conditions [16].

Other Related Work: See the full version of this pa-
per [19] for a more comprehensive discussion of related work
including 1) dynamic program repair techniques for mem-
ory errors [32], null pointer dereference and divide by zero
errors [21], infinite loops [2, 15], and memory leaks [24], 2)
additional patch generation systems [4, 7, 14, 23, 12, 9, 39,
26, 3, 16, 25, 10, 34], 3) studies of human patch character-
istics [1, 22, 41], and 4) task skipping and loop perforation,
which can improve performance and enable programs to sur-
vive tasks or loop iterations that trigger otherwise fatal er-
rors [30, 31, 36].

7. CONCLUSION

The scope of any automatic patch generation system is
limited by the range of patches in its search space — to
repair more defects, future systems will need to work with
search spaces that contain more correct patches. This pa-
per characterizes, for the first time, how larger and richer
search spaces that contain more correct patches can, coun-
terintuitively, hamper the ability of the system to find cor-
rect patches. It therefore identifies a key challenge that de-
signers of future systems must overcome for their systems to
successfully generate patches for broader classes of defects.

Experience with previous successful patch generation sys-
tems such as ClearView, Prophet, and CodePhage highlights
how leveraging information outside the validation test suite
enables these systems to successfully identify the few correct
patches within the many plausible patches (most of which
are incorrect) that the test suite validates. We anticipate
that future successful automatic patch generation systems
will deploy even more sophisticated techniques that lever-
age the full range of available information (test suites, pre-
vious successful patches, documentation, even formal specifi-
cations) to successfully identify the correct patches available
in larger, richer patch search spaces.

Acknowledgements

We thank the anonymous reviewers for their insightful com-
ments on early draft of the paper. We thank Yu Lao for
logistics support. This research was supported by DARPA
(Grant FA8650-11-C-7192 and FA8750-14-2-0242).

generating any patches at all. This is the case for GenProg
— at most two additional test cases per defect completely
disable GenProg’s ability to produce any patch at all except
the five correct patches in its search space [29)].
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